L^p-inversion of the diffusion equation

Citation for published version (APA):

Document status and date:
Published: 01/01/1989

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
RANA 89-08
June 1989
L^p-INVERSION OF THE
DIFFUSION EQUATION
by
Liu Gui-Zhong
Abstract

The ranges of the propagation operator for the diffusion equation are characterized. Thus, the formal inversion formula for the diffusion equation is made precise in L^p space setting.

Consider the diffusion equation in the space of tempered distributions S':

$$
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}.
$$

(1)

Here the differentiation with respect to x is in the sense of that of tempered distributions, while the differentiation with respect to t is in the topology of S'. Since the Fourier transform F and its inverse F^{-1} are continuous on S', equation (1) is equivalently transformed into

$$
\frac{\partial (Fu)}{\partial t} = -x^2 Fu.
$$

(2)

From this we get immediately the propagator of the initial value problem of (1):

$$
T(t) u = e^{i \frac{x^2}{4t}} F^{-1} [e^{-i\alpha^2} F u] = \frac{1}{2\sqrt{\pi t}} e^{-\frac{x^2}{4t}} *_{(x)} u
$$

(3)

where $*_{(x)}$ denotes convolution with respect to x. One may directly check that the family

* Permanent address: Department of Mathematics, Xi'an Jiaotong University, Xi'an, China.
\{T(t) \mid t \geq 0\} of operators defined in (3) is indeed a \(C_0\) semigroup on each of the Banach spaces \(L^p(\mathbb{R})\) (\(1 \leq p < \infty\)). Since \(S\), the Schwartz test space of rapidly decreasing functions, is dense in \(L^p(\mathbb{R})\) and \(T(t)S \subset S\) for all \(t \geq 0\), it serves as a core for the generator \(A_p\) of \(\{T(t) \mid t \geq 0\}\) in \(L^p(\mathbb{R})\). Of course, one can also show straightforwardly that the operator \(\frac{\partial^2}{\partial x^2}\) as defined on \(S\) is an essentially dissipative operator in \(L^p(\mathbb{R})\) and so generates a \(C_0\) semigroup on \(L^p(\mathbb{R})\).

The purpose of this note is to answer the twin questions: Which are the possible states of the system at time \(t\) if the system starts evolution according to equation (1) from initial states in \(L^p(\mathbb{R})\)? What is the initial state in \(L^p(\mathbb{R})\) if the state at time \(t\) is known?

Proposition 1. If \(u \in L^p(\mathbb{R})\), then \(v = T(t)u\) extends to an entire function \(v(z) (z = x + iy)\) such that

\[
\|v(x+iy)\|_{p,s} \leq e^{\frac{\gamma^2}{4t}} \|u\|_p.
\]

(Proof. Define

\[
v(z) = v(x + iy) = \frac{1}{2^{\sqrt{\pi t}}} \int e^{-\frac{(x+iy)^2}{4t}} u(x) \ast (x) \, dx
= \frac{1}{2^{\sqrt{\pi t}}} \int e^{-\frac{(x-z)^2 + 2i(x-z)y}{4t}} u(z) \, dz.
\]

Since the integral in (5) converges uniformly on each compact set of \(z\), \(v(z)\) is a well defined entire function. In view of (3) it is an extension of \(v(x) = T(t)u\). From equality (5) by Young's inequality we have immediately (4). Indeed

\[
\frac{1}{2^{\sqrt{\pi t}}} \int e^{-\frac{(x-z)^2 + 2i(x-z)y}{4t}} \, dz = \frac{1}{2^{\sqrt{\pi t}}} \int e^{-\frac{x^2}{4t}} \, dx = 1.
\]

\[\]

Definition 2. Given \(1 \leq p \leq \infty\) and \(s > 0\). Let \(A_{p,s}\) denote the normed space of entire functions \(v(\zeta)\) such that

\[
\|v\|_{p,s} = \sup_{x \in \mathbb{R}} e^{-\gamma^2} \left(\int e^{-\frac{(x+iy)^2}{4t}} dx \right)^{1/p} < \infty.
\]

In the case \(p = \infty\) the above equality should be understood as follows:
Lemma 3. \(A^{p,s} \hookrightarrow A^{\infty,s'} \) for any \(1 \leq p < \infty \) and \(0 < s < s' < \infty \). Namely \(A^{p,s} \subset A^{\infty,s'} \) and there exists a constant \(\alpha \) depending only on \(p,s \) and \(s' \) such that

\[
\sup_{x+iy \in \mathcal{C}} |v(x+iy)| \leq \alpha |u|_{p,s} e^{s'y^2}.
\]

(8)

Proof. Let \(R > 0 \) be fixed. By the mean value theorem we have

\[
v(x+iy) = \frac{1}{\pi R^2} \int_{|\zeta+i\eta| < R} v[(x+\zeta)+i(y+\eta)] d\zeta d\eta.
\]

So

\[
|v(x+iy)| \leq \frac{1}{\pi R^2} (\pi R^2)^{1-p} \left(\sup_{|\zeta+i\eta| < R} |v[(x+\zeta)+i(y+\eta)]|^p d\zeta d\eta \right)^{1/p}
\]

\[
\leq (trR)^{-1/p} (2R) \sup_{|\eta-y| < R} |v(\zeta+i\eta)|^p d\zeta
\]

\[
\leq (2/\pi R)^{1/p} |u|_{p,s} e^{s'(y+R)^2}.
\]

(9)

This implies that \(A^{p,s} \subset A^{\infty,s'} \) and inequality (8) holds, for \(2|y| R \leq e y^2 + e^{-1} R^2 \) (\(e > 0 \) arbitrary). That is, \(A^{p,s} \hookrightarrow A^{\infty,s'} \).

Corollary 4. For \(1 \leq p \leq \infty \) and \(s > 0 \) the normed space \(A^{p,s} \) is complete so it is a Banach space.

Proof. Let us first show that \(A^{\infty,s} \) is complete. Let \(\{v_n\} \) be a Cauchy sequence in \(A^{\infty,s} \). Then for any \(\varepsilon > 0 \) there exists \(N \) such that

\[
e^{-sy^2} |v_n(x+iy)-v_m(x+iy)| \leq \varepsilon \text{ for all } n,m \geq N.
\]

(10)

Hence the sequence \(\{v_n(x+iy)\} \) of functions converges uniformly on each compact subset of \(\mathcal{C} \), so to an entire function \(v(x+iy) \). Letting \(m \to \infty \) in the last inequality we have

\[
e^{sy^2} |v_n(x+iy)-v(x+iy)| \leq \varepsilon \text{ for } n \geq N.
\]

Therefore \(v_n - v \) belongs to \(A^{\infty,s} \), so does \(v \). Moreover \(\{v_n\} \to v \) in \(A^{\infty,s} \); \(A^{\infty,s} \) is complete.
Next let $1 \leq p < \infty$. Let $\{v_n\}$ be a Cauchy sequence in $A^{p,s}$. So, for any $\varepsilon > 0$ there exists N such that

$$e^{-\varepsilon y^2} \left(\int_{\mathbb{R}} |v_n(x+iy) - v_m(x+iy)|^p \, dx \right)^{1/p} \leq \varepsilon \text{ for all } n, m > N \text{ and } y \in \mathbb{R}.$$

(11)

Lemma 3 shows that $\{v_n\}$ is a Cauchy sequence in $A^{\infty,s'}$ for $s' > s$. By the completeness of $A^{\infty,s'}$ proved above $\{v_n\}$ converges to an entire function v. Letting $m \to \infty$ in (11) by Lebesgue's dominance convergence theorem we then obtain

$$e^{-\varepsilon y^2} \left(\int_{\mathbb{R}} |v(x+iy) - v(x+iy)|^p \, dx \right)^{1/p} \leq \varepsilon \text{ for } n > N.$$

Therefore $v_n - v$ belongs to $A^{p,s}$, so does v and $\{v_n\} \to v$ in $A^{p,s}$. We have thus proved that $A^{p,s}$ is complete.

Proposition 5. Assume that $v \in A^{p,s}$ ($1 \leq p < \infty$, $s > 0$) and $t < 1/4s$. Then

(i) The function

$$u(x) = \frac{1}{2^{\sqrt{-1}t}} \int_{\mathbb{R}} e^{-\frac{1}{4t}(x-i\eta)^2} \, v(i\eta) \, d\eta, \quad x \in \mathbb{R}$$

(12)

is well defined and is equivalently given by

$$u(x) = \frac{1}{2^{\sqrt{-1}t}} \int_{c-i\infty}^{c+i\infty} e^{\frac{1}{4t}(x-\zeta)^2} \, v(\zeta) \, d\zeta, \quad x \in \mathbb{R}$$

(13)

($c \in \mathbb{R}$ arbitrary), in particular

$$u(x) = \frac{1}{2^{\sqrt{-1}t}} \int_{-\infty}^{\infty} e^{-\frac{1}{4t} \eta^2} \, v(x+i\eta) \, d\eta.$$

(14)

(ii) $u(x) \in L^p(\mathbb{R})$, and for any $a \in (s, 1/4t)$ there holds the estimate ($q = p^* = \frac{p}{p-1}$):

$$\|u\|_p \leq \frac{\|v\|_{p,s}}{2^{\sqrt{-1}t}} \|e^{-\frac{1}{4t}(a-x)^2}\|_q \|e^{-\frac{1}{4t}a^2}\|_p.$$

(15)

(iii) $T(t) u = e^{t \frac{\partial}{\partial x}} u = v$.

Proof:

(i) For any $s' \in (s, 1/4t)$ Lemma 3 ensures the existence of some constant α such that inequality
(8) holds. Therefore a function \(u \) is well defined by equality (12). Furthermore, by Cauchy’s contour integral theorem we have

\[
u(x) = \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{1}{4t}(x-\zeta)^2} v(\zeta) \, d\zeta
\]

\[
u(x) = \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{1}{4t}(x-\zeta)^2} v(\zeta) \, d\zeta.
\]

In particular \(u \) is given by (14) if \(c \) assumes \(x \).

(ii) By Hölder’s inequality and Fubini’s theorem we have

\[
(2\sqrt{\pi t})^p \int_{-\infty}^{+\infty} |u(x)|^p \, dx
\]

\[
= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\frac{1}{2\pi|\eta|^2} \eta^2} \eta \, d\eta \, dx \quad \text{by (14)}
\]

\[
\leq \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} e^{-\frac{1}{2\pi|\eta|^2} \eta^2} \eta \, d\eta \right)^{p/q} \left(\int_{-\infty}^{+\infty} |v(x+i\eta)|^p \, d\eta \right)^{q/p}
\]

\[
= \|e^{-(\frac{1}{2\pi} |\eta|^2)}\|_q^p \int_{-\infty}^{+\infty} e^{\frac{1}{p} |\eta|^2} \left(\int_{-\infty}^{+\infty} |v(x+i\eta)|^p \, d\eta \right) \, d\eta
\]

\[
\leq \|e^{-(\frac{1}{2\pi} |\eta|^2)}\|_q^p \|v\|_{L^p}^p \int_{-\infty}^{+\infty} e^{-p(|\eta|^2)} \, d\eta
\]

\[
= \|e^{-(\frac{1}{2\pi} |\eta|^2)}\|_q^p \|v\|_{L^p}^p.
\]

Thus \(u \in L^p(\mathbb{R}) \) and there holds the estimate (15).

(iii) Put \(w(x) = e^{-\frac{1}{4t^2} x^2} u(x) \). Then, by (5) and (14) we have

\[
w(x) = \frac{1}{2\sqrt{\pi t}} e^{-\frac{1}{4t^2} x^2} u(x)
\]

\[
= \frac{1}{4\pi t} \int e^{-\frac{1}{4t^2} (x-\zeta)^2} \frac{1}{4t^2} |\eta|^2 v(\zeta+i\eta) d\zeta d\eta.
\]
\[\begin{align*}
\frac{1}{4\pi t} & \int_0^\infty e^{-\frac{r^2}{4t}} \int_0^{2\pi} v(x+re^{i\theta}) d\theta \\
& = \frac{1}{4\pi t} \int_0^\infty 2\pi v(x) re^{-\frac{r^2}{4t}} dr \\
& = v(x) \quad (x \in \mathbb{R}).
\end{align*} \tag{17} \]

We remark that the form of the above inversion formula (12) was suggested by Widder in [2]. See also [1], Section 5.4.

Definition 6. For \(s \in (0,\infty] \) let \(A_*^{p,s} = \bigcup_{\sigma < s} A_*^{p,\sigma} \) be the inductive limit of the family of Banach spaces \(\{ A_*^{p,\sigma} \mid \sigma < s \} \). For \(s \in [0,\infty) \) let \(A_*^{p,s} = \bigcap_{\sigma > s} A_*^{p,\sigma} \) be the projective limit of the family of Banach spaces \(\{ A_*^{p,\sigma} \mid \sigma > s \} \).

Let \((L^p)_t^{(\frac{\partial^2}{\partial x^2})} \) be the range at time \(t \) of the propagator of the diffusion equation (1) in \(L^p(\mathbb{R}) \), i.e., \(R(T(t)) = R(e^{t \frac{\partial^2}{\partial x^2}}) \). With the graph norm it is a Banach space. Moreover, \((L^p)_t^{(\frac{\partial^2}{\partial x^2})} \rightarrow (L^p)^{\sigma}(\frac{\partial^2}{\partial x^2}) \) if \(t > s \). Let \((L^p)^{\sigma}(\frac{\partial^2}{\partial x^2}) = \bigcup_{\sigma > t} (L^p)^{\sigma}(\frac{\partial^2}{\partial x^2}) \) \((0 \leq t < \infty) \) be the inductive limit, and \((L^p)_t^{(\frac{\partial^2}{\partial x^2})} = \bigcap_{\sigma < t} (L^p)^{\sigma}(\frac{\partial^2}{\partial x^2}) \) \((0 < t \leq \infty) \) be the projective limit.

Summarizing Propositions 1 and 5 we obtain the characterization:

Theorem 7. For \(t \in [0,\infty) \), \((L^p)^{1+}(\frac{\partial^2}{\partial x^2}) = A_*^{p,1/4t} \) topologically. For \(t \in (0,\infty) \), \((L^p)^{1-}(\frac{\partial^2}{\partial x^2}) = A_*^{p,1/4t} \) topologically.

Therefore, in an obvious sense we have \((L^p)^{1}(\frac{\partial^2}{\partial x^2}) \approx A_*^{p,1/4t} \). In the special case \(p = 2 \), however, we can characterize each of the Hilbert spaces \((L^2)^{1}(\frac{\partial^2}{\partial x^2}) \) exactly.

Theorem 8. \((L^2)^{1}(\frac{\partial^2}{\partial x^2}) \) is isometrically equivalent to the Hilbert space of entire functions \(v \) such that
\[|v|_2^2 = \frac{1}{\sqrt{2\pi t}} \int \int_{\mathbb{C}} |v(x+iy)|^2 e^{-\gamma^2 u} \, dx \, dy < \infty. \]

Proof. For \(u \in L^2 \) and \(v = e^{\frac{\partial^2}{\partial x^2}} u \), using Plancherel's theorem we have

\[
\frac{1}{\sqrt{2\pi t}} \int \int_{\mathbb{C}} |v(x+iy)|^2 e^{-\gamma^2 u} \, dx \, dy
\]

\[
= \frac{1}{\sqrt{2\pi t}} \int_{\mathbb{R}} e^{-\gamma^2 u} \, dy \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{i\alpha k} e^{-ky-k\gamma^2 u} \, (F u) \, dk \, |F u|^2
\]

\[
= \frac{1}{\sqrt{2\pi t}} \int_{\mathbb{R}} e^{-2k^2} \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-ky-k\gamma^2 u} \, (F u) \, dk \, |F u|^2
\]

\[
= \int_{\mathbb{R}} |F u|^2 \, dk
\]

\[
= \int_{\mathbb{R}} |u|^2 \, dx. \tag{18}
\]

This together with Theorem 3 in [Z-S] completes the proof. \(\Box \)
Acknowledgement
The author would like to express his gratitude to Prof. De Graaf for his inspiring advices.

References

Key Words: Inversion formula; Diffusion equation.