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THE MAXIMUM OF A SOLUTION OF A NONLINEAR DIFFERENTIAL EQUATION 

by 

J.J.A.M. Brands 

Department of Mathematics, Eindhoven University of Technology, 

The Netherlands 

1 BSTRACT 

Parameters occur in a second order nonlinear differential equation 

and in the initial values. The solution of this initial value problem has 

a maximum M. An asymptotic expression is derived for M as a function of 

the parameters. 

1. INTRODUCTION 

A colleague*) of the ~uthor has posed the following problem: 

( ) - . (.)2 y 1 Y = -qy + r y - pe , 

(2) y(O) 
-1 o , y(O) = r q, 

where p, q, and r are positive real numbers, and r < 1. It is asked to 

determine 

(3) M :={max y(t) I t ~ O} • 

This problem arose. in the study of the stress-strain behaviour 

of polymers that deform by crazing. In the special case under 

consideration the values of the parameters p and r are roughly 

p = 0.01 , r = 0.5 , and the values of q can be adjusted between 

10 and 1000. It is unlikely that one can find an explicit solution. 

Therefore it is better to seek an expression M(p,q,r) which 

approximates M with sufficient accuracy. 

*)S.D. Sjoerdsma, Laboratory of Polymer Technology, Eindhoven University 

of Technology. 
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2~ RESULTS

The kind of formulas which we have derived are in fact asymptotic

formulas. Instead of presenting them with the order symbols of Landau,

we give explicit bounds for the error terms. We give two formulas for M;

the first one is very simple, but not so precise as the second one.

The simple formula reads as follows:

(4) 2
M = log(q /(pr)) - Ct(r) + Rt '

where C1(r) depends only on r. The error Rt satisfies the condition:

if

then

2 ~t
0< R

1
< 8(q /(pr)) •

Explanations about the determination of Ct(r) will be given after

formula (5).

A more complicated formula is

(5) 2 2 r-lM = log(q /(pr)) - Ct(r) + CZ(r)(q /(pr)) + R
2

'

where Ct(r) is the same function as in (4), and Cz(r) also depends

only on r. The error R2 satisfies the condition:

if

then

I I -I 2 Zr-2RZ < 45r (q /(pr)) •



- 3 -

The determination of C
1
(r) and C

2
(r) can be done in several ways:

(i) One can compute M numerically from (I), (2) for some large

values of q2/p and fixed r. Then (4) and (5) provide us some

equations for C1(r) and CZ(r).

(ii) One can compute m, defined by the boundary value problem (II),
2

(12), for some large values of q /p, and then apply (9).

(iii) One can compute C}(r) and C
2
(r) using their definitions (27)

and (37). Lemma's (}6) and (38) provide some partial control.

3. THE BEHAVIOUR OF A SOLUTION

LEMMA. There are positive numbers I and I} with a < T < T}, such that

y is increasing on [O,T] with y' < 0, Y is decreasing on [T,"') with

y < 0 on [T,T}) and y:> 0 on (TI,oo). Moreover yet) ~ -00 if t ~CO.

-}
PROOF. Since yeO) = -p < 0 we have that 0 < yet) < r q for 0 < t < 6,

6 > 0 and {) sufficiently small. Since yet) ~ -p as long as
-Io ~ yet) ~ r q, we see that yet) decreases to zero in a finite time

T for the first time after t O. From the fact that y = 0 implies

y < 0, we deduce that yet) < 0 on (T,"'). The supposition that yet) < 0

on (T,oo) leads to a contradiction since the right hand side of (I)

would become positive for t sufficiently large. The assumption that y

has a lower bound leads also to a contradiction, for then yet) would

decrease to a limit, say L, for t ~ 00, and yet) would increase to zero
Lfor t ~ 00, and hence y( t) would tend to -pe for t ~oo. Q

4. A FIRST APPROXIMATION OF THE MAXIMUM M.

Throughout the rest of this paper r is a fixed number between

o and I, and P : = }/ r .

Introducing

(6)
-] Z -} r

a := (p q r ) ,

and transforming according to

(7) , := qt , u := ae-ry
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we get the initial value problem

du
d"t = u l - P , u(O) = a , d~(O) =

d1.
-a •

The problem (3) is transformed into

(8) m : == min{utT ) I T ~ O}.

Clearly m depends only on a (and r). By (3), (7) and (8) we have

(9)
-I

M == r log(a/m).

"d\f·
Considering u a function of v :=-'dT the problem becomes

u(a) = a , u(O) = m.

It is easily seen that u ~ v for 0 ~ v ~ a. This suggests the substitution

(10) w := u - v

which leads to

(II) dw -(1 + v(v + w)p-I) -I ==: "(v,w) ,dv =

(12) w(O) == m , w(a) = O.

The problem (11),(12) is our starting point for finding approximations

of m. To indicate that m depends on a we sometimes write m(a) instead

of m. A solution of (11),(12) is denoted by w(v,a). Obviously, for fixed

v, w(v,a) and, hence m(a) == w(O,a), are increasing functions of a.

Clearly w(v) > 0 on [O,a), hence w'(v) ~ -(I + vP)-1 on [O,a]. Integrating

over [v,a] we find

(13) w(v,a)'< r (I + xp)-I dx < foo (l + xp)-I dx < (p - 1)-lv-p+1 .
v v
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Formula (13) provides an upper bound for m when v = O.

r p -1 I / -1 -1
(14) m < J

O
(I + x) dx = n:(psinl.n: p» -< pep - I)

It follows that mea) increases to a limit, say m(oo) , when a ~oo.

We denote by w(v,oo) the solution w of (II) with initial value w(O) =

m(oo). Some properties of w(v,oo) are summarized in the following

(IS) LEMMA. The solution w(v,oo) is positive and decreasing, and

w(v,oo) ~ 0 if v ~ 00.

PROOF. w(v,oo) > 0 since w(v,oo) > w(v,a) for all a> O. w(v,oo) is

decreasing since it satisfies (II). Let E> O. Let A:= (2Y/E)Y, where

y = r/(I-r). Since a solution w of (II) depends continuously on the

initial value w(O), there exists a positive number, say a, such that

w(v,oo) - w(v,a) < h for 0 ::; v ::; A. Hence, by (13), w(A,oo) < E/2 + yA- I / y = E. [J

We sample some useful properties of m(oo) in the following

(16) LEMMA.

(17) log 2' < mea) < m("") (a ~ I • p » I)

( 18) m(oo ) -I -I
1- p logp + O(p loglogp) (p ~ "')

(19)
-I -I -1

e pep - I) . < m(oo) < pcp - I) (p > 1)

PROOF OF (17). Since u(v) = v + w(v,a) is increasing in v E [O,a] we have

for all v E (O,a]

(20)

Hence,

u(v) < v + mea) -

= v + mea) -

f
v -I -I

(I + s(u(v»p ) ds =
o

I-p p-I
(u(v» log(1 + v(u(v» ).

(21) I-p p-Imea) > u - v + U log(l + vu ) (0 < v ::; a).
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The righthand side of (21) is a decreasing function of v for fixed

u; since v < u(v), it follows by substitution of v:= u, that

(22) (m(a.) < u :5 a.).

We will show that the inequality holds for all u € (O,a.]. Let

f(u):= uI-Plog(I + uP) for u> O. Let f(uO) = max {feu) 10 <u:5 a.}

with o' < uo :5 a.. Suppose m(a.) :5 f(u
O
). Then m(a.) < uo since,

trivally, f (u) < u for all u > O. But by (22) we would have

m(a.) > f(uO)' a contradiction. So

(23) (0 < u :5 a.).

Of course (23) implies

(24) (u > 0).

If a ~ I, then (17) follows by substitution of u = I in (23).

PROOF OF (18). Obviously, v + w(v,~) ~ m(~) for v € [O,m(~)] ,

v + w(v,~) > v'for v € (.(~),~). So

m(",,) r
(~) . fro-I -I< (I + v(m(~»p ) dv + (I

o m("")

= (m(oo»I-Plog(1 + (m(oo»p) + m(oo)J~ (I

P -I+ v) dv

Putting x := (m(oo»p, we derive

I < x-Ilog(I + x) +P~I f: (tp/(p-I) + x)-I dt

. -I -1-1
<x 10g(1 + x) + (p - 1) 10g(1 + x ).

Now (18) can be derived, using this latter inequality and (24),

by standard asymptotic methods.
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PROOF OF (19). Substituting u = exp[.(p - I)-I] in (24) we get the

first inequality. The second inequality follows from (14). 0

Since :v (w(v,,,,) - w(v,a» > 0 on [O,a], we have, for v E (O,a),

(25) m(oe) - m(a) < w(v,oo) - w(v,a) < w(a,oo).

From (13) it follows that

(26) -I I-p
w(a,co) < (p - I) a •

-IWe easily infer from (19), (25) and (26) that m(oo) - m(a) ~ 3 e m(co)

if a> (3/p)I/(P-I)=: a
l

. Using the fact that -log(t - x)' < 2.7x

if x ~ e/3 we infer

-I _I
RI := -plog[ I - (m(oo» (m(oo) - m(a»j < 2.7 p (m(oo» (m(oo) - m(a»

if a > a l . By (9), (19), (25) and (26) we infer (4) where

(27) -I
CI(r):=r logm(oo).

5. A SHARPER APPROXIMATION OF M.

We want to find a second term in the asymptotic expression for m(a),

a ~oo. Therefore we need the following

(28) LEMMA.

(29) d 'Ja ~Fda m(a) = -F(a,O)exp[ - 0 aw (v,w(v,a»dv ].

PROOF. Let a be a given positive number. Then, using (II), we have for

every 0 ~ v ~ a and every h > a that there is a number n = n(v,h)

between w(v,a) and w(v,a + h) such that

d 3F
dv (w(v,ct + h) - w(v,a» = (w(v,a + h) - w(v,a» 3w (v,n).



- 8 -

Dividing both sides by w(v,a + h) - w(v,a), integrating over [O,a].

and exponentiating we find

00) mea + h) - mea) = w(a,a + h) exp[ -f: Fw(v,n)dv ].

Furthermore we have, for all h >0,

w(a,a + h) = _fa+h F(v,w(v,a + h)dv •
a

Since -F(v,w) is decreasing in both v and w, we have

-hF(a + h,w(a,a + h)) < w(a,a + h) < -hF(a,O).

It follows that

-1
lim h w(a,a + h) = -F(a,O).
MO

Dividing both sides of (30) by h and taking limits for h ~ 0

we arrive at (29) for the righthand derivative of mea). In a

similar way we can prove (29) for the lefthand derivative. 0

We define a function g by

(31 ) g(a) .= fa ~ (v ,w(v ,a) )dv• 0 ow (O~a<oo).

As we shall see

(32) g(oo) := f"" :F (v,w(v,oo)dv
o w

is the limit value of g(a) for a ~ 00. The integral in (32) exists
ofsince the integrand is continuous on [0,(0) anda;(v,w(v,oo» =

= 0(v-
P
-

1
) (v ~ (0). We need an estimate of g(oo) - g(a). We have
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(00 OF 
:= I ~(v,w(v,~»dv ~ 

J a uw 

~ (I - r)a-p
, 

I
co 

-1 -I (p - I)v (1 + vP) dv 
a 

f
a 3F 3F 

12 := [-(v ,w(v ,00» - rev ,w(v ,a» ]dv. 
o 3w w 

Denoting the integrand of 12 by A, we have 

I a2F 
IAI ~ (w(v,~) - w(v,a» ~(v,n) 

dW 

~ pal-P(I + vP)-I(v + w(v,a»-2, 

where, besides (25) and (26), we used that 

and 

02F .. -2 
-2 = (p - I)(v + w) F(l + F)(p + 2(p - I)F), 
Ow 

II + Flip + 2(p - I)FI ~ p . 

It follows that 

-2 fa -2-p' I-p [(m(a.» + v dv ]pa. 

So, using (17), we have, for a ~ I, 

I-p 
< 3pa 

. I 
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Integrating both sides of (29) over the interval [a,oo) we get 

m(oo) - mea) = _foo F(s,O)e-g(S)dS = ]00 S-Pe-g(oo)dS + R , 
a a 

where R is given by 

eg(OO)R = (00 (I + sP)-I(eg(oo)-g(S) _ l)dS ~ Joo S~P(I + S,)-ldS • 
)a a 

If S ~ a ~ e, then exp(3ps l- p) - 1 ~ 20PSI-p. Hence, if a ~ e, 

where we used that leX - 11::; e lxl - 1 for all x € R 

It follows that 

(33) m(oo) - m(a) 
-I _g(oo) I-p 

(p - I) e a + R, 

where 

(34) (a ~ e). 

As before, we easily infer from (19), (25) and (26) that 

(m(oo»-I(m(a) - mea»~ ::; e/3 if a ~ (3/p)I/(P-I). Further, using that 

Ix-2
Iog(1 + x) + x-I I < 2 if x::; e/3, and (19), we deduce that, for 

a ~ (3/p)I!(P-l), 

-I o < log m (a) - log m (00) + (m(co» (m(oo) - m(a» 

By means of (33) and (34) we derive 
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where

(36) 2-2p
< 45pa.

Using (35) and (36) in (9) we arrive at (5) with

(37) -1 -1 -g(~)C2(r) = (I - r) (m(oo» e .

Finally, we sample some properties of g(oo) and C
2
(r) in the

following lennna.

(38) LEMMA.

(39) -g(~)
< (I + (m(oo»-p)-I+r.e

(40) -g(oo)
... 0 (r -} 0)e

(41) -g(oo)
=O(I)(r t1)e

(42) C2(r) ... 0 (r -} 0)

(43) C2(r) = O«r - 1)2) (r t I)

aF -IPROOF OF (39). We have aw = -(p - I)u (1 + F)F, where u is defined by
du p p -I du(10). Furthermore, 1 + F(v,w) = dv < u (I + u) and -F(v,w) = 1 - dv'

Hence,

g(oo) = (p - I)f: l:~ -(~~)2]u-IdV .

. -I du 2 P-I P -I du
Smce u (dv) < u (I + 9) dv we have

,

g(oo) > (p - I) J: [u- I :~ - up-I(I + u )-1 ~~]dV

= (p - 1) ldg [(m(oo»-I(J + (m(oo»p)l/p].

PROOF OF (40), (41), (42) and (43). Now using (18) and (19) it is a routine

matter to prove the rest of lemma (38). 0


