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ANALYSIS OF OIL TRAPPING IN POROUS MEDIA FLOW
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�Dipartimento di Matematica� Universit�a di Roma� �Tor Vergata��

Via della Ricerca Scienti�ca� I�		
�� Roma� Italy�
yDepartment of Mathematics and Computer Science� Eindhoven University of Technology�

P�O� Box �
�� �
		 MB Eindhoven� The Netherlands�

�� Introduction and problem formulation� It is well�known that capillary
forces� combined with spatial variations of rock properties� considerably reduce the
recovery factor of an oil reservoir� For instance� it is di�cult to remove oil from parts
of the reservoir with small scale heterogeneities� Sometimes� the oil may even remain
trapped� see for instance �K� W�� This is clearly a di�cult problem� mainly due to
the complex nature of rock 	soil
 heterogeneities�

To understand oil trapping in heterogeneous media more quantitatively� �DMN�
considered the case of a ��phase water�oil �ow which is perpendicular to an interface�
separating two types of rock� across which the permeability changes abruptly� Under
simplifying assumptions this leads to a one dimensional �ow problem which allowed
them to investigate the role of convection and capillary di
usion in relation to the
discontinuous permeability� They used formal asymptotics and numerical techniques�
In this paper we will take their formulation as starting point� The aim is to analyse
the structure of the model equations resulting in existence� uniqueness and regularity
properties� as well as matching conditions between the two rock types�

Following �DMN�� further references are given there� the one dimensional �ow
of water and oil through a porous medium is described by a nonlinear convection�
di
usion equation for the reduced water saturation S � S	x� t
� with � � S � �� This
equation has the form

�
�S

�t
�

�

�x

�
qfw	S
 � k	x
H	s


�p

�x

�
� � �	���


where � 	porosity
 and q 	discharge
 are positive constants� and where the functions
fw� H � ��� �� � ����
 satisfy fw	�
 � �� fw	S
 � � for � � S � � 	typically
convex�concave behaviour
 and H	�
 � H	�
 � �� H	S
 � � for � � S � �� Further
k	x
 denotes permeability and p capillary pressure� Situating the discontinuity in
permeability at x � �� we have

k	x
 �

�
k� for x � � �
k� for x � � �

	���


Without loss of generality we take � � k� � k� ��� This means that coarse material
occupies fx � �g and �ne material fx � �g� The �ow is in positive x�direction�

For the capillary pressure the Leverett model �L� was used� With � � � denoting
interfacial tension� this means

p � p	x� S
 � �
J	S
p
k	x
��

for � � S � � �	���


where the Leverett function J is strictly decreasing in 	�� �� with J	�
 � �� The
quantity

p
k�� may be associated with the mean pore diameter� and the J�Leverett

function is typical for the lithology of the porous medium� When J	�
 � �� the
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Fig� �� Capillary pressure curves for �ne ��� and coarse ��� material� Here J�
� � 	� so an
entry pressure exists�

medium has an entry pressure given by J	�
�
p
k�	� This is the minimum pressure

needed for the oil to enter a medium that is saturated by water� In this paper we
assume J	�
 � � and show that the ocurrence of an entry pressure causes trapping
of oil at the interface when the medium changes from coarse to �ne� Figure � shows
two typical capillary pressure functions� the top curve for �ne material 	x � �
� the
bottom curve for coarse material 	x � �
�

Because k is discontinuous� the capillary pressure may be discontinuous as well�
This makes the interpretation of 	���
 across x � � di�cult� To circumvent this
problem� �DMN� considered 	���
 for x � � and x � �� with matching conditions at
x � �� One condition is obvious� Conservation of mass across x � � requires that the
�uxes to the left and right of x � � are equal�

	fM�


�
qfw � k�H

�p

�x

�
x���

�

�
qfw � k�H

�p

�x

�
x���

�

for all t � �� A condition related to the pressure was obtained by a formal regular�
ization procedure� Replacing in 	���
 k	x
 by C� approximations kn	x
� according
to

kn	x
 �

�����������
k� for x � � �

n
�


	nx
 for � �

n
� x �

�

n
�

k� for x � �

n
�

	���


with 
 smooth 	
	��
 � k�� 
	�
 � k� and 
� � �
� blowing up the transition

�



region by x� nx and letting n��� the following was found� Let S� be de�ned by
the relation

J	S�
p
k�

�
J	�
p
k�

� � �	���


and let S� and S� denote� respectively� the left and right limit of S at x � �� Then
for all t � �� see also Figure ��

	fM�


�����
J	S�
p

k�
�
J	S�
p

k�
if S� � S� 	pressure continuous


S� � � if S� � S� 	positive pressure jump
�

Instead of analysing 	���
 and conditions 	fM���
 in the form presented above� we
shall consider a further simpli�ed model problem� without losing essential character�
istic features� We take in 	���


f	S
 � S � H	S
 � �� S and J	S
 � �� S �

After a trivial scaling� the following equations result for the oil saturation u � �� S�

ut � fx � � 	u � �
 �	���


f � u�Nc k u px �	���


p �
� � up
k	x


�	���


where f denotes the �ux and Nc the dimensionless capillary number

Nc �
�
p
K	

q�wL
�

Here K is a characteristic k�value� L a characteristic length scale and �w the water
viscosity� By an additional scaling we may set Nc � �� Further� k is given by 	���

and the subscripts t and x denote partial di
erentiation�

We solve equation 	���
�	���
 in the subdomains

Q� � f	x� t
 � x � R� � t � 	���
g �

with transformed matching conditions at x � �� These are

	M�
 �f � � � in 	���
 �

and� see Figure �������
� � u�p

k�
�

� � u�p
k�

if u� � u�

u� � � if u� � u�
in 	���
 �

or� equivalently�

	M�
 u��p� � � � �p� � � in 	���
 �

�
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Fig� �� Transformed capillary pressures�

Here u� �
q

k�

k� � �� As before� u� � u�	t
 � u	��� t
� �u� � u� � u� and similar

notation for f and p�
At t � � we prescribe

u	�� �
 � u�	�
 in R	���


with u� satisfying

	H


���������
u� � R � ����
� supp	u�
 	 R is bounded �

u� uniformly Lipschitz continuous in Rnf�g �

u�� �p�� � � � f� �� u� �
p
k

�
	u��


� � BV 	Rnf�g
 �
The pressure condition at t � � is needed to construct an approximate sequence fu�ng
for which the corresponding �uxes f�n �� u�n � knu�n	p�n
� are uniformly bounded
in BV 	R
� This in turn will imply f � L�		���
� BV 	R

� which is a crucial point
in the existence proof� If the kn are taken as in 	���
� then �p�� � � is needed as well�
We will return to this in Section � and in the Appendix�

For steady state solutions� the role of 	M�
 can be seen explicitly� Assume u �
u	x
 only� with u	��
 � u	��
 � �� Then

f � u� k up � � � in Rnf�g �	����


Using u � �� we obtain

u	x
 � � for x � � �

Hence the �rst condition in 	M�
 is always satis�ed� Given any u� � �� we see that

u	x
 �

	
u� �

�p
k�

x
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Fig� �� Admissible steady state solutions �u� � u���

satis�es 	����
 for x � �� Here 	 � 
� �� maxf�� �g� However only for u� � ��� u�� we
have �p� � �� Thus we have a family of admissible steady state solutions as shown in
Figure ��

Integrating the maximal steady state gives the maximal amount of oil that can
be trapped to the left of the permeability discontinuity� It is given by

�M �
�

�
	u�
�

p
k� �	����


Next we give the weak formulation of the trapping problem� Because the �ux is
expected to be continuous across x � �� it will be de�ned globally in the formulation�
The saturation 	and pressure
 will be considered in the subdomains Q� and Q�

separately� Let

Q� �� Q� 
Q� and Q �� R � 	���
 �

Combining the saturation equations and the matching conditions gives
Problem P� Find u � Q� � ����
� f � Q� R such that

	i
 u� 	u�
x � L�	Q�
� u is uniformly continuous in Q��
	ii
 f � L�		���
�BV 	R

�

	iii
 f � u�
p
k

�
	u�
x a�e� in Q� and

R
Q

	u�t � f�x
dxdt �
R
R
u�	x
�	x� �
dx � �

for all � � H�	Q
 � C	 �Q
� vanishing for large jxj and for large t�

	iv
 u��p� � � and �p� � � in 	���
� where p ��
� � up

k
in Q� �

To prove existence we apply a k�regularization as in 	���
� This yields a sequence
of approximating problems on Q for which we derive the necessary estimates� This
is done in Section �� In Section � we consider the limit n � � giving existence for
Problem P� with u satisfying a porous media equation 	m � �
 with linear convection
in Q�� Clearly 	M�
 is satis�ed� The weak equation in 	iii
 implies �f � � � a�e�
in 	���
� The comparison principle� with uniqueness as a consequence� is shown in

�



Section �� In Section � we give su�cient conditions for oil trapping� i�e� conditions
that imply u	x� t
 � � for x � � and for all t � �� Finally� in Section �� we present
some closing remarks about non�uniqueness� waiting times and optimal regularity�

In a recent paper �DMP� considered oil transport in a multi�layered porous medium�
This work involves a discontinuous permeability which varies periodically in space�
Using homogenisation techniques they derived e
ective 	upscaled
 transport equa�
tions for the case where the periodicity length is small compared to the characteristic
length L� In their analysis matching conditions fM� and fM� play a crucial role� They
lead to a macroscopic irreducible oil saturation�

�� The approximate problem� In this section we study the approximate equa�
tion in which k is replaced by the smooth function kn� de�ned by 	���
� Together with
k we also need to approximate the initial value u�� We construct approximations u�n�
so that the corresponding �uxes

f�n �� u�n � knu�np
�
�n � p�n ��

� � u�np
kn

�	���


have a uniformly bounded total variation� In addition we require that each u�n
is strictly positive� to eliminate the degeneracy of the equation at points where u
vanishes� The existence of such u�n is given in the following lemma� Since the proof
is quite technical� we have put it in the appendix�

Lemma ���� Let n � Z
� and let kn be de�ned by ������ Suppose u� satis�es

hypothesis H and in addition

�p�� �
� � u��p

k�
� � � u��p

k�
� � �	���


Then there exist u�n �W ���	R
 and 
n � R� such that�
�i� u�n � 
n � � in R	 and u�n	x
 � 
n for jxj su
ciently large�
�ii� u�n is uniformly bounded in R and f�n	 de�ned by �����	 is uniformly bounded

in BV 	R
�
�iii� As n��	

u�n � u� uniformly in Rnf�g

and

u�n � 
n � u� in L�	R
 �

For each n � Z� we consider the approximate problem

	Pn


�����
ut � ux � 	knu px
x � p �

� � up
kn

in Q

u	x� �
 � u�n	x
 for x � R �

In the remainder of this section we prove the following results�
Theorem ���� Let u�n be given by Lemma ���� Then Problem Pn has a solution

un � C�	Q
 � C	 �Q
 such that
�i� � � un � C in Q	 where C does not depend on n�
�ii� fn �� un � knun	 ��unp

kn

x is uniformly bounded in L�	����
�BV 	R

�

�iii� un is uniformly continuous in fRn	�
� 

g � ����
 for all 
 � ��






Proof� Since u�n � 
n � � in R� Problem Pn is non�degenerate at t � �� Hence it
has a unique local 	with respect to t
 classical solution un� see for instance �LSU� and
�F�� This solution can be continued as long as it remains bounded and bounded away
from zero� Let QTn �� R � 	�� Tn
 denote the maximal existence domain for un�

A positive lower bound follows from the maximum principle� Indeed� if we set
Ln �� max

R

j	pkn
��j we observe that the solution of the initial value problem

	LB


�
s� � �Lns	� � s
 for t � � �

s	�
 � 
n �

is a subsolution for Problem Pn� Hence if sn denotes the solution of LB� we have

un	x� t
 � sn	t
 � � for 	x� t
 � QTn �	���


Before proving a uniform upper bound for un� we observe that the �ux fn is
uniformly bounded in QTn � A straightforward calculation yields for fn the linear
equation

ft � anfxx � bnfx �	���


where

an	x� t
 �� un
p
kn � bn	x� t
 �� � fn

un
� unk

�
n

�
p
kn

�	���


Hence� by the maximum principle

jjfnjjL��QTn
� � jjf�njjL��R� � C	���


for all n � Z��
We use this estimate to demonstrate a uniform upper bound for un in QTn � As a

�rst observation we note that 	���
 implies the di
erential inequality

jun �
p
k� ununxj � C in

�
���� �

n

�
� ��� Tn
 �	���


Then the upperbound for un in this set is immediate if we can control the decay of
un as x� ��� This decay results from the following argument�

Let �un be a steady state solution satisfying��� u� knu p
� � 
n � p �

� � up
kn

� in R

u	��
 � 
n �

Clearly� �un	x
 � 
n for all x � �
n � The corresponding pressure �pn satis�es�������

kn	p
p
kn � �
p� � p

p
kn � �� 
n for x �

�

n
�

p

�
�

n

�
�

� � 
np
k�

�

At points where �p�n � � and �pn � �� we must have �p��n � �� We use this to show
�p�n � � and �pn � ���np

k�
on 	��� �n 
� and �pn	x
 � ���np

k�
as x � ��� In particular�

�un	x
 � 
n exponentially as x� �� and �un � 
n � L�	R
� uniformly in n � Z��

�



Now using Lemma ��� 	iii
 and an argument as in the proof of Theorem ���� one
�nds for t � � the L��contractionZ

R

jun	x� t
� �un	x
jdx �
Z
R

ju�n	x
 � �un	x
jdx �

This inequality controls the behaviour of un as jxj � �� Combined with 	���
 it gives
the upper bound in 	���� �

n � � 	�� Tn
� Arguing similarly for x � �
n � we conclude

that for all n � Z�

un	x� t
 � C for jxj � �

n
� � � t � Tn �	���


To obtain the upperbound in the remaining strip �� �
n �

�
n �� ��� Tn
 we express 	���
 in

terms of the pressure pn�

jpn
p
kn � �� kn	pn

p
kn � �
pnxj � C �	���


By 	���
� pn	� �
n � t
 is uniformly bounded� Then 	���
 implies that pn� and thus un�

is uniformly bounded as well�

The uniform upper bound� together with lower bound 	���
 guarantees existence
for all t � �� Hence� Tn � � for each n � Z�� This completes the proof of 	i
�

The proof of 	ii
 is a direct consequence of Lemma ���	ii
 and the total variation
estimate for the �ux in Lemma ��� below�

We conclude by proving 	iii
� The boundedness of un and the �ux estimate 	���

imply that un is uniformly H�older continuous 	exponent �

� 
 with respect to x in
f	x� t
 � x � � �

n � t � �g� The same result holds in f	x� t
 � x � �
n � t � �g�

The smoothness and boundedness of the coe�cients in the un�equation allow us to
apply �G��� yielding that un is uniformly H�older continuous 	exponent �

� 
 with respect
to t in f	x� t
 � jxj � �

n � t � �g� Since� for �xed 
 � �� �
n � 
 for n large enough� this

proves 	iii
 and completes the proof of Theorem ����

Remark ���� It is not di
cult to show that the steady states �un	 corresponding
to k � kn and �un	��
 � 
n	 approximate the maximal steady state in Figure 
� In
essence this follows from �un	x
 � 
n for all x � �

n and	 using the pressure equation	

� � �pn

�
�

n

�
� �pn

�
� �

n

�
�

Z � �
n

� �
n

�

kn

�pn	x

p
kn � �� 
n

�pn	x

p
kn � �

dx� �

as n���

It remains to prove the following lemma used in the proof of Theorem ����

Lemma ���� Let u�n be given by Lemma ��� and let un be the corresponding
solution of Problem Pn� Then

TVR	fn	t

 � TVR	f�n
 for all t � � �

Proof� Each �ux fn satis�es the linear problem�
ft � anfxx � bnfx in Q

f	x� �
 � f�n	x
 for x � Q

�



where an and bn� de�ned in 	���
� are bounded functions and where f�n has uniformly
bounded variation� First we proceed formally� Let us �x 
 � � and calculate 	dropping
the subscript n


d

dt

Z
R

�p
f�x � 
�p


�
�

Z
R

fxp
f�x � 


	afxx � bfx
x

� �

Z
R

fxx	afxx � bfx


	f�x � 

	��
�

Integrating in time gives for any t � �Z
R

�p
f�x	t
 � 
�p




�
Z
R

�q
f ��n

� � 
�p




� �

Z
R����t�

af�xx � bfxfxx
	f�x � 

	��

� �
Z
R����t�


fx
	f�x � 

	��

bfxx �

Since ���� 
fx
	f�x � 

	��

���� � �

and


fx
	f�x � 

	��

� � � pointwise in Q as 
� ��

the boundedness of b and Lebesgue�s dominated convergence theorem implyZ
R

jfx	t
j �
Z
R

jf ��nj �

provided fxx � L�	R � 	�� t

� To complete the proof of the lemma we need to make
this argument rigorous�

It is enough to apply a molli�er to the initial function f�n of the linear �ux
problem� This ensures the necessary smoothness up to t � �� to carry out the above
calculations�

�� Existence for Problem P� Let un be the solution of Problem Pn as stated
in Theorem ���� By a standard argument there exist a subsequence of fung� denoted
again by fung� and u � L�	Q
 � C		R� 
 R� 
� ����

 such that

un � u in Cloc		R
� 
 R� 
� ����



as n��� Below we show
Theorem ���� u is a solution of Problem P�
Proof� Clearly u is a 	weak
 solution of the equation

ut � ux �
�

�

p
k�	u�
xx in Q�

and

f � u� �

�

p
k� 	u�
x � L�	����
� BV 	R� 

 �

�



The boundedness of u and f implies that u� is uniformly Lipschitz continuous with
respect to x in Q�� Hence the following quantities are well de�ned for each t � ��

u�	t
� f�	t
 and p�	t
 �
� � u�	t
p

k�
�

Using the equation

ut � fx � � a�e� in Q�

and again the boundedness of f � we obtain as in �DP� that the functions

t� u�	t


are continuous in ����
�
Next we claim

f�	t
 � f�	t
 for almost all t � � �	���


Indeed� using the asymptotic behavior of un	x� t
 as jxj � � we �nd for n���Z
R

	un	x� t
 � 
n
dx �

Z
R

	u�n	x
� 
n
dx�
Z
R

u�	x
dx

and hence Z
R

u	x� t
dx �

Z
R

u�	x
dx for all t � � �

which expresses conservation of mass� This identity implies

� � lim
����

�Z ��

��
u	x� t
dx �

Z �

�

u	x� t
dx�
Z ��

��
u�	x
dx �

Z �

�

u�	x
dx

�
�

Z t

�

	f�	s
� f�	s

ds for all t � � �

Together with the equations in Q�� equality 	���
 implies the weak form 	iii
 of
Problem P�

It remains to prove

u��p� � � and �p� � � for all t � � �	���


For this purpose we study un and pn in the interal 	� �
n �

�
n 
� Since kn changes rapidly

there� we make the blow up

y � nx for � �

n
� x �

�

n
�

Knowing that the �uxes fn are uniformly bounded� we obtain

jun � nknun	pn
yj � C �
i�e�

jun	pn
yj � C
n
�


	



for all �� � y � � and t � �� This implies that as long as un	y� t
 remains bounded
away from zero� say un	y� t
 � � � � for all n � N � then

j	pn
y	y� t
j � C
n�

�	���


First suppose u�	t
 � � for some t � �� Then there is a left neighborhood of y � �
where un	y� t
 � � � �� In that neighborhood 	���
 applies� giving

pn	y� t
 � pn	�� t
 �O

�
�

n

�
	���


and

un	y� t
 � pn	y� t

p
kn	y
� � � pn	�� t


p
kn	y
� � �O

�
�

n

�
�

Since kn is non�increasing� we obtain that un	y� t
 remains uniformly bounded away
from zero� and hence 	���
� in the entire interval �� � y � �� As a consequence
�p� � ��

Next consider u�	t
 � �� We now have to show �p� � �� If � � u�	t
 � u�� we
�nd

�p� � p� � p� � �p
k�

� � � u�p
k�

� � �

If u�	t
 � u�� then un	y� t
 � � � � in a right neighborhood of y � ��� As above�
	pn
y is uniformly small as long as un is bounded away from �� giving

un	y� t
� �� �
p
kn	y


un	��� t
 � �p
k�

�O

�
�

n

�
� �� �

r
k�

k�
	u� � �
 �O

�
�

n

�
as long as un	y� t
 is bounded away from �� But since the right hand side of the latter
inequality vanishes as n��� we conclude that the inequality holds up to y � �� and
we �nd u�	t
 � � and �p� � ��

�� The comparison principle� We start with some preliminary observations
for solutions 	u� f
 of Problem P� Choosing test functions with support in Q� we
obtain Z

Q�
u�t �

Z
Q�

�
u�

p
k�

�
	u�
x

�
�x � � �

This implies that

ut �

�
u�

p
k�

�
	u�
x

�
x

� � a�e� in Q�	���


and that

supp	u	t

 is bounded in R	���








for all t � ����
� Using 	���
 and the weak form 	iii
 in Problem P� we �nd again

�f � � � a�e� in 	���
 �	���


Let

Q� �� Rn	��� �
 � 	���
 	for � � �� �xed
�

Applying a Bernstein argument to 	���
 as in �A�� and using hypothesis H we �nd

jjuxjjL��Q�� � C	�
 �	���


Next we derive an estimate on ut in Q�� Let u be a smooth solution of 	���
� in
the sense of the usual  porous media� approximations� and let � � R � ��� �� be an
even C� cut�o
 function satisfying

�	x
 �

�����
� for � � x � ��� �

� for � � x � L �

� for x � L� � �

for any L � �� Multiplying 	���
 by ��ut givesZ
Q

��u�t� �
Z
Q

��utux �
Z
Q

���
p
kut	u

�
x �
Z
Q

��
p
k

�
uxt 	u�
x �

Using uxt	u
�
x � u	u�x
t� the last integral becomesZ

R

��
p
k

�
uu�x

����
�
�
Z
Q

��
p
k

�
utu

�
x �

Then 	i
 of Problem P and 	���
 in Q��� giveZ
Q

��u�t � C	�
 �

implying

ut � L�
loc	

�Q�
 �	���


We are now in a position to prove�
Theorem ���� Let 	u�� f�
 and 	u�� f�
 be weak solutions of Problem P corre�

sponding to initial values u�� and u��	 respectively� Then u�� � u�� in R implies
u� � u� in Q��

Proof� Let � � � be arbitrary� In the weak equation for the di
erenceZ
Q

fu� � u�
�t � 	f� � f�
�xg�

Z
R

�	u�� � u��
 � � �

we take the following test function�

� � ��S�	u
�
� � u��
 �

where


�



	i
 � is an even C� cut�o
 function near x � ��

�	x
 �

�
� for � � x � ��� �

� for x � � �
��	x
 � � for ��� � x � � �

	ii
 � is a C� cut�o
 function near t � � �

�	t
 �

�
� for � � t � � � � �

� for � � t �
��	t
 � � for � � � � t � � �

	iii
 S� � R � ��� �� is given by

S�	r
 �

���
� r � � �

rp
r� � 
�

r � � �

Here �� � and 
 are small positive parameters� Note that for 

 �

S�	r
 � �fr��g ��

�
� r � �

� r � �

rS��	r
 � �

����� pointwise in R�	���


Integrating the �rst term by parts gives� with Q� � R � 	�� �
�Z
Q�

	u� � u�
t ��S�	u
�
� � u��


�

Z
Q�

	f� � f�
�
n
��S�	u�� � u��
 � �S��	u

�
� � u��
	u

�
� � u��
x

o
�
Z
Q�

	f� � f�
��
�S�	u�� � u��
 �

Z
Q�

	u� � u�
��S
�
�	u

�
� � u��
	u

�
� � u��
x �

For �xed �� � � �� we �rst let 

 �� Using 	���
 we have

	u� � u�
��S
�
�	u

�
� � u��
 � � pointwise in Q� �

Hence there resultsZ
Q�

��		u� � u�
�
t �
Z
Q�

	f� � f�
��
��fu��u�g �

Next we let �
 �� This givesZ
R

�	u� � u�
�	�


�
Z �

�

�Z ����

��
	f� � f�
�

��fu��u�g �

Z �

���

	f� � f�
�
��fu��u�g




��

Z �

�

fI�� � I�� g �

	���


Let t � 	�� �
 be chosen such that f�� f� exist� Consider the possibilities�


�



	i
 u�� �� u�� � say u�� � u�� � Then u� � u� in a right neighbourhood of x � �
and �fu��u�g � � in 	���� �
 for � su�ciently small� The pressure conditions 	M�


give u�� � u�� � if u�� � � then �p� � � implies u�� � u�� � if u�� � � then �p� � �
gives u�� � u�� while u�� � u�� Therefore also �fu��u�g � � in 	�������
� As a
consequence

lim
���

	I�� � I�� 
 � �f��� �f�� � � �

	ii
 u�� � u�� � Then we need to compare the corresponding �uxes� Suppose f�� � f�� �
Then

sup
�������

	f� � f�
�fu��u�g � � as � 
 � �

and the same in 	�������
� Thus again

lim
���

	I�� � I�� 
 � � �

If f�� � f�� � then 	u��
x � 	u��
x and therefore u� � u� in 	���� �
� Thus

I�� � I�� � I�� � � for � � �� su�ciently small�

Finally� if f�� � f�� � then 	u��
x � 	u��
x and u� � u� in 	���� �
� Thus lim��� I
�
� �

f�� � f�� � Furthermore� since

	f� � f�
�
��fu��u�g � 	f� � f�
�

� in 	�������
 �

for � small enough� we have for any � � �

I�� � I�� � � for � � �	�
 �

Combining these results we obtain from 	���


u�	�� �
 � u�	�� �
 � � in Rnf�g �

which proves the theorem�
As an immediate consequence we have
Corollary ���� Problem P has at most one solution 	u� f
�

�� Oil trapping� The steady state solutions shown in Figure � suggest that oil
may be trapped at the interface between coarse and �ne material� Indeed� if u�	x
 � �
for x � � and if for some u� � 	�� u��

u�	x
 �
	
u� �

�p
k�

x



�

for x � � �

then the comparison principle guarantees

u	x� t
 �
	
u� �

�p
k�

x



�

for all 	x� t
 � Q� �


�



and

u � � in Q� �

The following theorem explains trapping in terms of the oil mass� For convenience�
let

�u	x
 ��

�����
	
u� � �p

k�
x



�

for x � � �

� for x � � �

denote the maximal admissible steady state having �M � given by 	����
� as correspond�
ing mass�

Theorem ���� Let u� satisfy hypothesis H and letZ x

��
u�	s
ds �

Z x

��
�u	s
ds for x � � �

Then the solution of Problem P satis�esZ �

��
u	s� t
ds � �M for all t � � �

Proof� Fix any � � � and set

V�	x� t
 �

Z x

��
u	s� t
ds � � for 	x� t
 � �Q �

Then V� � C	 �Q
� V 	�� t
 � C�		��� ��
 
 C�	����

 for all t � �� and

V� � � to the left of the free boundary of u in Q��

V� �

Z
R

u�	s
ds � � to the right of the free boundary of u in Q��

As a consequence V� satis�es

Vt � Vx �
p
k�VxVxx � � in Q� �	���


Setting

�v	x
 ��

Z x

��
�u	s
ds for x � R �

we have

Vs � �v in Qt �� R � 	�� t


for t su�ciently small� Let

t� � supft � � � Vs � �v in Qtg �
Below we show t� � �� Suppose t� ��� Then there exists 	x�� t�
 � Q such that

V� � �v in Qt�	���



�



and

V�	x� t�
 � �v	x
 for all x � R with V�	x�� t�
 � �v	x�
	���


We �rst rule out x� � ��
If x� � �� we distinguish the cases

	i
 u	��� t�
 � u�� Using the pressure condition M� we have

�V�
�x

	��� t�
� �V�
�x

	��� t�
 � u	��� t�
� u	��� t�


� u�	u	��� t�
 � �
 � u� �

while

d�v

dx
	��
� d�v

dx
	��
 � u� �

This contradicts 	���
�
	ii
 u	��� t�
 � u�� By continuity there exists 
 � � such that u	��� t�
 � u� and

u	��� t�
 � � for t� � 
 � t � t�� Since f�	t
 � f�	t
 � � for almost all
t � 	t� � 
� t�
� see also Section �� we �nd from integrating the u�equation in
	��� �
� 	t� � 
� t�
Z �

��
u	s� t�
ds�

Z �

��
u	s� t� � 

ds � �

Z t�

t���
f�	t
dt � � �

Hence

V�	�� t� � 

 � V�	�� t�
 � �v	�
 �

which contradicts 	���
�
	iii
 u	��� t�
 � u�� Then V�	�

�� t�
 � �v	�
 as well as

�V�
�x

	��� t�
 �
d�v

dx
	��
 � u� �

Using equation 	���
 locally in Q� and the strong maximum principle� we
obtain again a contradiction�

Hence x� �� � and V�	�� t�
 � �v	�
 in ��� t��� We then apply the comparison principle
to equation 	���
 in Qt� to �nd V� � �v in R � ��� t��� This shows that t� � �� As a
consequence V� � �v in 	��� ��� ����
 for any � � �� which implies the assertion of
the theorem�

Similarly one shows
Theorem ���� Let u� satisfy hypothesis H and letZ �

x

u�	s
ds �
Z �

x

�u	s
ds for x � R �

Then

u � � in �Q� �







�� Closing remarks� In this section we brie�y discuss some qualitative proper�
ties of solutions of Problem P�

���� Non	uniqueness� In the proof of the comparison principle� implying unique�
ness� we have used the pressure condition

�p� � � �	���


By means of a counterexample we show here that uniqueness fails if we drop condi�
tion 	���
� Let u� satisfy the structural properties

	 !H


�����
u�	x
 � � if x � � � u� �� �u in R �

�u	x
 � u�	x
 � 	u� � �x
� if x � � for some � � � �
�p
k�

�

Based on the results of Section �� we expect that the corresponding solution u of
Problem P will have a non�trivial component in Q�� i�e� u �� � in Q�� We will
construct a second solution !u which solves Problem P� except condition 	���
 and
which satis�es !u � � in Q�� This construction is based on a modi�cation of k�
Instead of 	���
 we consider

!kn	x
 �

���������
k� for x � � �

� for � � x �
�

n
�

k� for x �
�

n
�

	���


where � � � � k� � k�� and we let n���
Theorem ���� Let u� satisfy hypotheses H and !H and let u denote the unique

solution of Problem P� Then
�i� u �� � in Q��
�ii� there exists a second solution !u of Problem P	 except �����	 which satis�es

!u � � in Q��
Proof� We �rst show that u �� � in Q�� Arguing by contradiction� we assume

u	��� t
 � � for all t � � �

Using �p� � � and u � �u in Q� we conclude

u	��� t
 � u� for all t � � �

Hence in Q� u solves the problem

	P�


�����
ut � 	u�

p
k�uux
x � � in Q�

u	�� t
 � u� for t � �

u	x� �
 � u�	x
 for x � � �

Now observe that ��u �� 	u� � �x
� is a supersolution for Problem P�� Hence the
solution ��u	x� t
 of Problem P� with initial data u	�� �
 � ��u�� is decreasing with respect
to time and converges to a steady�state solution ��u	x
� By comparison ��u � �u in R� �
but since �u is maximal we have

��u � �u in R
� �


�



Using

�u	x
 � u	x� t
 � ��u	x� t
 for all 	x� t
 � Q� �

we obtain

lim
t��u	x� t
 � �u	x
 uniformly in x � � �

Combining this result with u � � in Q�� we �nd

lim
t��

Z ��

��
u	x� t
ds�

Z ��

��
�u	x
dx �

Z ��

��
u�	x
dx �

which contradicts mass conservation for u�
Next we use 	���
 to explain the construction of !u� As a �rst observation we note

that the class of steady state solutions of the equation	
u� !kn

�
� � up

!kn

��
�
� � in R �

having compact support and satisfying M� and M�� has the same structure as the one

shown in Figure �� but with u� �
q

k�

k� � � replaced by !u� �
q

k�

� � �� In particular

this class does not depend on n� For � su�ciently small we �nd for �!u� the maximal
steady state�

u� � �!u in R �

As a consequence� the solution !un of the problem����� ut �

	
u� !kn

�
� � up

!kn

�
x



x

in Q �

u	x� �
 � u�	x
 for x � R �

satis�es

!un	x� t
 � �!u	x
 for all 	x� t
 � Q �

In particular

!un � � in Q�

for all n � Z�� Finally� letting n��� !un converges along subsequences to a function
!u � !u	x� t
 which satis�es all properties required for Problem P� except 	���
�

���� Waiting times and optimal regularity� Numerical simulations reported
in �DMN� show that the right free boundary of u has a  waiting time� when it reaches
the permeability discontinuity� The free boundary becomes stagnant there� while the
oil saturation increases� It continues whenever the pressure exceeds the entry pressure
of the low permeable region�

The following makes this precise�


�



Theorem ���� Let u� satisfy hypothesis H and let supp	u�
 	 R
� � Further	 let

the solution u of Problem P satisfy u �� � in Q�� Set

t� �� lim
���

supf� � � � u � � in 	�
��
� 	�� �
g

and

t� �� supf� � � � u � � in R
� � 	�� �
g �

Then

� � t� � t� �� 	t� � t� is the waiting time�

and

u	��� t�
 � � � u	��� t�
 � u� �

Proof� Clearly t� and t� are well�de�ned� Continuity of u�	t
 and M� imply
directly t� � t� and u	��� t�
 � ��

Suppose u	��� t�
 � u�� By continuity� there exists � � � such that u	��� t
 � u��
and thus u	��� t
 � �� for t� � t � t���� Thus u � � in R��	�� t���
� contradicting
the de�nition of t��

Next we consider the case where the oil initially is positioned in the �ne material
	x � �
� If the initial position is su�ciently close to the interface at x � �� di
usion
may drive the oil towards x � �� i�e� against the �ow� where it will penetrate the coarse
material� This follows from the transformation y � x � t� t � t and by considering
an appropriate subsolution for the resulting porous media equation� see �G���

Supposing the oil reaches x � �� we have the following result�
Theorem ���� Let u� satisfy hypothesis H and let supp	u�
 	 R

� � Further	 let
the solution u of Problem P satisfy u �� � in Q�� Set

t��� supf� � � � u � � in R
� � 	�� �
g �

t��� supf� � � � u	��� t
 � � for � � t � �g �

Then

� � t� � t� � � �

In addition	 there exists t � 	t�� t�
 such that for some A � �

u	x� t
 � A
p
x	� � o	�

 as x� � � �

Proof� By the �nite speed of propagation we have t� � �� Continuity of u	��� �

implies u	��� t�
 � � and u	��� t
 � u� and hence u	��� t
 � �� for all t in an upper
neighbourhood of t�� Hence t� � t�� If u	��� t
 � u� for all t � �� we have t� � ��
Since u �� � in R� � 	t�� t�
 and u	��� �
 � � in 	t�� t�
� there exists t � 	t�� t�
 such
that

f	t
 � f�	t
 � f�	t
 � � �


�



Hence� for this t �xed� setting f	t
 � �C	C � �
�

u�
p
k�uux � �C	� � o	�

 as x� �� �

giving

�

�
u�	x� t
 �

Cp
k�

x	� � o	�

 as x� � � �

Appendix A� Proof of Lemma ���� Let 
n � � be such that


n � o

�
�

n

�
as n�� �

and set

u�n	x
 �

�������
q
u��	x� �

n 
 � 
�n if x �
�

n
�q

	u�� 
� � 
�n if x �
�

n
�

where u�� � limx�� u�	x
� Since ju��n	x
j � ju��	x � �
n 
j for x � �

n � the uniform
Lipschitz continuity of u� in R� implies

u�n is uniform Lipschitz continuous in � �n ����

Since

f� � u� � �

�

p
k�	u��


� in R
� �

f�n� u�n � �

�

p
k�	u��n
� in

�
�

n
��
�
�

the total variation of 	u��

� in R

� � TVR�		u��
�
� is bounded� and since 	u��n
�	x
 �
	u��


�	x� �
n 
�

TV� �
n
���	f�n
 � TVR�	f�
 as n�� �	A��


In order to extend u�n to the interval �� �
n ��� we distinguish two di
erent cases�

u�� � � and u�� � �� At this point we remind the reader that the constant u� is
de�ned by

� � u�p
k�

�
�p
k�

� i�e� u� �

r
k�

k�
� � �

	i
 Case u�� � ��
We de�ne u�n in �� �

n �
�
n 
 by the relation p�n � p�n	 �n 
 in �� �

n �
�
n 
� i�e�

u�n	x
 � �� �

r
kn	x


k�

�
� �

q
	u�� 
� � 
�n

�
�

�	



In particular� as n���

u�n	� �
n 
 � �� �

r
k�

k�

�
� �

q
	u�� 
� � 
�n

�

� �� �

r
k�

k�
	� � u�� 
 � u�� �

	A��


where we have used� by hypothesis H� �p�� � � if u�� � �� Since u�n	� �
n 
 � u�� � there

exist �n � � such that

u�n

�
� �

n

�
�

q
	u�� 
� � ��n �	A��


It follows directly from the construction of u�n that

TV�� �
n
� �
n
�	f�n
 � u�n

�
�

n

�
� u�n

�
� �

n

�
� �u�� as n���	A��


and

f�n

�
�

n
�

�
� f�n

�
�

n
�
�

� ��

�

p
k�	u��n
�

�
�

n
�

�
� ��

�

p
k�	u��


�	��
 �	A��


	ii
 Case u�� � ��
Since �p�� � �� u�� � � implies that

� � u�� � �� �

r
k�

k�
� u� �

Hence

	� � 
n

p
k� �

p
k� �

p
k�	� � u�� 
 �

and there exist �n � � such that���������
�n � � as n��

	� � 
n

p
k� �

p
k�
�

� �
q

	u�� 
� � ��n

�
�q

	u�� 
� � ��n � 
n �

These two inequalities imply that for some �n � 	k�� k�


	� � 
n

p
k� �

p
�n	� �

q
	u�� 
� � ��n
 �

Then there exists xn � 	� �
n �

�
n 
 such that

kn	xn
 � �n �

and we de�ne u�n in �� �
n �

�
n 
 by the relations

u�n	x
 � u�n

�
�

n

�
	� 
n
 if xn � x �

�

n
�




and

p�n	x
 � p�n	xn


�
�

� � 
np
�n

�
if � �

n
� x � xn �

By the de�nition of �n and p�n� the latter relation can be written as

u�n	x
 � �� �

r
kn	x


k�

�
� �

q
	u�� 
� � ��n

�
if � �

n
� x � xn �

In particular we have

u��n � � in

�
� �

n
� xn

�
and u�n

�
� �

n

�
�
q

	u�� 
� � ��n � u�� as n���	A��


and

TV�� �
n
�xn�	f�n
 � TV�� �

n
�xn�	u�n
 � �u�� as n���	A��


Since jk�n j � C
n and 
n � o	 �n 
 as n��� and since

f�n	x
 � 
n �
�

�

n	� � 
n


k�n	x
p
kn	x


if xn � x �
�

n
�

it follows that

TV�xn� �n �	f�n
 � � as n�� �	A��


In addition� as n���

f�n

�
�

n
�

�
� f�n

�
�

n
�
�
� ��

�

p
k�	u��


�	��
	A��


and

f�n	xn�
� f�n	xn�
 �
�

�

n	� � 
n


k�n	xn
p
�n

� � �	A���


Combining 	A��
�	A���
 gives

TV�� �
n
� �
n
�	f�n
 � �u�� as n�� �	A���


Finally we have to de�ne u�n	x
 for x � � �
n � In view of 	A��
 and 	A��
 it seems

natural to set

u�n	x
 �

s
u��

�
x �

�

n

�
� ��n if x � � �

n
�	A���


Arguing as in the interval 	 �n ��
� we obtain as n��
TV����� �

n
�	f�n
 � TVR�	f�
	A���


and

f�n

��
� �

n

�
�

�
� f�n

��
� �

n

�
�
�
� �

�

p
k�	u��


�	��
 �	A���


��



Combining 	A��
� 	A���
 and 	A���
 with� respectively� 	A��
� 	A��
 or 	A��
� 	A���
�
we �nd

TVR	f�n
 � TVR	f�
 as n�� �

Now� if �n � 
n� u�n satis�es all properties of Lemma ���� In general� however�
�n �� 
n and we have to correct the construction of u�n in 	���� �

n 
� Since u�n	� �
n 
 �

u�n	 �n 
 � 
n� we can still use de�nition 	A���
 in a neighbourhood of x � � �
n � Since

kn is constant in 	���� �
n 
� the expression for the �ux is simply

f�n � u�n � �

�

p
k�	u��n
� in 	���� �

n

 �

Therefore it is not di�cult to change slightly the de�nition of u�n such that
u�n � 
n in R and u�n	x
 � 
n for �x su�ciently large� We leave the details to the
reader�
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