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Abstract

The problem Parsimony Haplotyping (PH) asks for the smallest set of haplotypes which can explain

a given set of genotypes, and the problem Minimum Perfect Phylogeny Haplotyping (MPPH) asks

for the smallest such set which also allows the haplotypes to be embedded in a perfect phylogeny, an

evolutionary tree with biologically-motivated restrictions. For PH , we extend recent work by further

mapping the interface between “easy” and “hard” instances, within the framework of (k, `)-bounded

instances where the number of 2’s per column and row of the input matrix is restricted. By exploring, in

the same way, the tractability frontier of MPPH we provide the first concrete, positive results for this

problem, and the algorithms underpinning these results offer new insights about how MPPH might

be further tackled in the future. In addition, we construct for both PH and MPPH polynomial time

approximation algorithms, based on properties of the columns of the input matrix. We conclude with

an overview of intriguing open problems in PH and MPPH .

Index Terms

Combinatorial algorithms, Biology and genetics, Complexity hierarchies

I. INTRODUCTION

The computational problem of inferring biologically-meaningful haplotype data from the geno-

type data of a population continues to generate considerable interest at the interface of biology

and computer science/mathematics. A popular underlying abstraction for this model (in the

context of diploid organisms) represents a genotype as a string over a {0, 1, 2} alphabet, and

a haplotype as a string over {0, 1}. The exact goal depends on the biological model being

applied but a common, minimal algorithmic requirement is that, given a set of genotypes, a set

of haplotypes must be produced which resolves the genotypes.

To be precise, we are given a genotype matrix G with elements in {0, 1, 2}, the rows of which

correspond to genotypes, while its columns correspond to sites on the genome, called SNP’s. A

haplotype matrix has elements from {0, 1}, and rows corresponding to haplotypes. Haplotype

matrix H resolves genotype matrix G if for each row gi of G, containing at least one 2, there are

two rows hi1 and hi2 of H , such that gi(j) = hi1(j) for all j with hi1(j) = hi2(j) and gi(j) = 2

otherwise, in which case we say that hi1 and hi2 resolve gi, we write gi = hi1 + hi2 , and we

call hi1 the complement of hi2 with respect to gi, and vice versa. A row gi without 2’s is itself

a haplotype and is uniquely resolved by this haplotype, which thus has to be contained in H .
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We define the first of the two problems that we study in this paper.

Problem: Parsimony Haplotyping (PH)

Input: A genotype matrix G.

Output: A haplotype matrix H with a minimum number of rows that resolves G.

There is a rich literature in this area, of which recent papers such as [5] give a good overview. The

problem is APX-hard [13][17] and, in terms of approximation algorithms with performance guar-

antees, existing methods remain rather unsatisfactory, as will be shortly explained. This has led

many authors to consider methods based on Integer Linear Programming (ILP) [5][10][11][13].

A different response to the hardness is to search for “islands of tractability” amongst special,

restricted cases of the problem, exploring the frontier between hardness and polynomial-time

solvability. In the literature available in this direction [6][13][14][17], this investigation has

specified classes of (k, `)-bounded instances: in a (k, `)-bounded instance the input genotype

matrix G has at most k 2’s per row and at most ` 2’s per column (cf. [17]). If k or ` is a “∗” we

mean instances that are bounded only by the number of 2’s per column or per row, respectively.

In this paper we supplement this “tractability” literature with mainly positive results, and in

doing so almost complete the bounded instance complexity landscape.

Next to the PH problem we study the Minimum Perfect Phylogeny Haplotyping (MPPH)

model [2]. Again a minimum-size set of resolving haplotypes is required but this time under

the additional, biologically-motivated restriction that the produced haplotypes permit a perfect

phylogeny, i.e., they can be placed at the leaves of an evolutionary tree within which each

site mutates at most once. Haplotype matrices admitting a perfect phylogeny are completely

characterised [8][9] by the absence of the forbidden submatrix

F =




1 1

0 0

1 0

0 1




.

Problem: Minimum Perfect Phylogeny Haplotyping (MPPH)

Input: A genotype matrix G.
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Output: A haplotype matrix H with a minimum number of rows that resolves G and admits a

perfect phylogeny.

The feasibility question (PPH) - given a genotype matrix G, find any haplotype matrix H

that resolves G and admits a perfect phylogeny, or state that no such H exists - is solvable in

linear-time [7][19]. Researchers in this area are now moving on to explore the PPH question

on phylogenetic networks [18].

The MPPH problem, however, has so far hardly been studied beyond an NP-hardness result

[2] and occasional comments within PH and PPH literature [4][19][20]. In this paper we thus

provide what is one of the first attempts to analyse the parsimony optimisation criteria within a

well-defined and widely applicable biological framework. We seek namely to map the MPPH

complexity landscape in the same way as the PH complexity landscape: using the concept of

(k, `)-boundedness. We write PH(k, `) and MPPH(k, `) for these problems restricted to (k, `)-

bounded instances.

Previous work and our contribution

In [13] it was shown that PH(3, ∗) is APX-hard. In [6][14] it was shown that PH(2, ∗) is

polynomial-time solvable. Recently, in [17], it was shown (amongst other results) that PH(4, 3)

is APX-hard. In [17] it was also proven that the restricted subcase of PH(∗, 2) is polynomial-

time solvable where the compatibility graph of the input genotype matrix is a clique. (Informally,

the compatibility graph shows for every pair of genotypes whether those two genotypes can use

common haplotypes in their resolution.)

In this paper, we bring the boundaries between hard and easy classes closer by showing that

PH(3, 3) is APX-hard and that PH(∗, 1) is polynomial-time solvable.

As far as MPPH is concerned there have been, prior to this paper, no concrete results

beyond the above mentioned NP-hardness result. We show that MPPH(3, 3) is APX-hard and

that, like their PH counterparts, MPPH(2, ∗) and MPPH(∗, 1) are polynomial-time solvable

(in both cases using a reduction to the PH counterpart). We also show that the clique result

from [17] holds in the case of MPPH(∗, 2) as well. As with its PH counterpart the complexity

of MPPH(∗, 2) remains open.

The fact that both PH and MPPH already become APX-hard for (3, 3)-bounded instances
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TABLE I

APPROXIMATION RATIOS ACHIEVED IN THIS PAPER

Problem (` ≥ 2) Approximation ratio

PH(∗, `) 3
2
` + 1

2

PH(∗, `) where every genotype has at least one 2 3
4
` + 7

4
− 3

2
1

`+1

MPPH(∗, `) 2`

MPPH(∗, `) where every genotype has at least one 2 ` + 2− 2
`+1

means that, in terms of deterministic approximation algorithms, the best that we can in gen-

eral hope for is constant approximation ratios. Lancia et al [13][14] have given two separate

approximation algorithms with approximation ratios of
√

n and 2k−1 respectively, where n is

the number of genotypes in the input, and k is the maximum number of 2’s appearing in a

row of the genotype matrix1. An O(log n) approximation algorithm has been given in [21] but

this only runs in polynomial time if the set of all possible haplotypes that can participate in

feasible solutions, can be enumerated in polynomial time. The obvious problem with the 2k−1

and the O(log n) approximation algorithms is thus that either the accuracy decays exponentially

(as in the former case) or the running time increases exponentially (as in the latter case) with an

increasing number of 2’s per row. Here we offer a simple, alternative approach which achieves

(in polynomial time) approximation ratios linear in ` for PH(∗, `) and MPPH(∗, `) instances,

and actually also achieves these ratios in polynomial time when ` is not constant. These ratios are

shown in the Table I; note how improved ratios can be obtained if every genotype is guaranteed

to have at least one 2.

We have thus decoupled the approximation ratio from the maximum number of 2’s per row, and

instead made the ratio conditional on the maximum number of 2’s per column. Our approximation

scheme is hence an improvement to the 2k−1-approximation algorithm except in cases where

the maximum number of 2’s per row is exponentially small compared to the maximum number

of 2’s per column. Our approximation scheme yields also the first approximation results for

MPPH .

1It would be overly restrictive to write PH(k, ∗) here because their algorithm runs in polynomial time even if k is not a

constant.
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As explained by Sharan et al. in their “islands of tractability” paper [17], identifying tractable

special classes can be practically useful for constructing high-speed subroutines within ILP

solvers, but perhaps the most significant aspect of this paper is the analysis underpinning the

results, which - by deepening our understanding of how this problem behaves - assists the search

for better, faster approximation algorithms and for determining the exact shorelines of the islands

of tractability.

Furthermore, the fact that - prior to this paper - concrete and positive results for MPPH had

not been obtained (except for rather pessimistic modifications to ILP models [5]), means that

the algorithms given here for the MPPH cases, and the data structures used in their analysis

(e.g. the restricted compatibility graph in Section III), assume particular importance.

Finally, this paper yields some interesting open problems, of which the outstanding (∗, 2)

case (for both PH and MPPH) is only one; prominent amongst these questions (which are

discussed at the end of the paper) is the question of whether MPPH and PH instances are

inter-reducible, at least within the bounded-instance framework.

The paper is organised as follows. In Section II we give the hardness results, in Section III we

present the polynomial-time solvable cases, in Section IV we give approximation algorithms and

we finish in Section V with conclusions and open problems.

II. HARD PROBLEMS

Theorem 1: MPPH(3, 3) is APX-hard.

Proof: The proof in [2] that MPPH is NP-hard uses a reduction from VERTEX COVER,

which can be modified to yield NP-hardness and APX-hardness for (3,3)-bounded instances.

Given a graph T = (V, E) the reduction in [2] constructs a genotype matrix G(T ) of MPPH

with |V |+ |E| rows and 2|V |+ |E| columns. For every vertex vi ∈ V there is a genotype (row)

gi in G(T ) with gi(i) = 1, gi(i + |V |) = 1 and gi(j) = 0 for every other position j. In addition,

for every edge ek = {vh, vl} there is a genotype gk with gk(h) = 2, gk(l) = 2, gk(2|V |+ k) = 2

and gk(j) = 0 for every other position j. Bafna et al. [2] prove that an optimal solution for

MPPH with input G(T ) contains |V |+ |E|+ V C(T ) haplotypes, where V C(T ) is the size of

the smallest vertex cover in T .

3-VERTEX COVER is the vertex cover problem when every vertex in the input graph has at

most degree 3. It is known to be APX-hard [15][1]. Let T be an instance of 3-VERTEX COVER.
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We assume that T is connected. Observe that for such a T the reduction described above yields

a MPPH instance G(T ) that is (3, 3)-bounded. We show that existence of a polynomial-time

(1 + ε) approximation algorithm A(ε) for MPPH would imply a polynomial-time (1 + ε′)

approximation algorithm for 3-VERTEX COVER with ε′ = 8ε.1

Let t be the solution value for MPPH(G(T )) returned by A(ε), and t∗ the optimal value for

MPPH(G(T )). By the argument mentioned above from [2] we obtain a solution with value

d = t− |V | − |E| as an approximation of V C(T ). Since t ≤ (1 + ε)t∗, we have d ≤ V C(T ) +

εV C(T ) + ε|V |+ ε|E|. Connectedness of T implies that |V | − 1 ≤ |E|. In 3-VERTEX COVER,

a single vertex can cover at most 3 edges in T , implying that V C(T ) ≥ |E|/3 ≥ (|V | − 1)/3.

Hence, |V | ≤ 4V C(T ) (for |V | ≥ 2) and we have (if |V | ≥ 2):

d ≤ V C(T ) + εV C(T ) + 4εV C(T ) + 3εV C(T )

≤ V C(T ) + 8εV C(T )

≤ (1 + 8ε)V C(T ).

Theorem 2: PH(3, 3) is APX-hard.

Proof: The proof by Sharan et al. [17] that PH(4, 3) is APX-hard can be modified slightly

to obtain APX-hardness of PH(3, 3). The reduction is from 3-DIMENSIONAL MATCHING with

each element occurring in at most three triples (3DM3): given disjoint sets X , Y and Z containing

ν elements each and a set C = {c0, . . . , cµ−1} of µ triples in X ×Y ×Z such that each element

occurs in at most three triples in C, find a maximum cardinality set C ′ ⊆ C of disjoint triples.

From an instance of 3DM3 we build a genotype matrix G with 3ν + 3µ rows and 6ν + 4µ

columns. The first 3ν rows are called element-genotypes and the last 3µ rows are called matching-

genotypes. We specify non-zero entries of the genotypes only.2 For every element xi ∈ X define

element-genotype gx
i with gx

i (3ν + i) = 1; gx
i (6ν + 4k) = 2 for all k with xi ∈ ck. If xi occurs

in at most two triples we set gx
i (i) = 2. For every element yi ∈ Y there is an element-genotype

gy
i with gy

i (4ν + i) = 1; gy
i (6ν + 4k) = 2 for all k with yi ∈ ck and if yi occurs in at most two

1Strictly speaking this is insufficient to prove APX-hardness but it is not difficult to show that the described reduction is

actually an L-reduction [15], from which APX-hardness follows.
2Only in this proof we index haplotypes, genotypes and matrices starting with 0, which makes notation consistent with [17].
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triples then we set gy
i (ν + i) = 2. For every element zi ∈ Z there is an element-genotype gz

i with

gz
i (5ν + i) = 1; gz

i (6ν + 4k) = 2 for all k with zi ∈ ck and if zi occurs in at most two triples

then we set gz
i (2ν + i) = 2. For each triple ck = {xi1 , yi2 , zi3} ∈ C there are three matching-

genotypes cx
k, cy

k and cz
k: cx

k has cx
k(3ν + i1) = 2, cx

k(6ν + 4k) = 1 and cx
k(6ν + 4k + 1) = 2;

cy
k has cy

k(4ν + i2) = 2, cy
k(6ν + 4k) = 1 and cy

k(6ν + 4k + 2) = 2; cz
k has cz

k(5ν + i3) = 2,

cz
k(6ν + 4k) = 1 and cz

k(6ν + 4k + 3) = 2.

Notice that the element-genotypes only have a 2 in the first 3ν columns if the element occurs

in at most two triples. This is the only difference with the reduction from [17], where every

element-genotype has a 2 in the first 3ν columns: i.e., for elements xi ∈ X , yi ∈ Y or zi ∈ Z a

2 in column i, ν + i or 2ν + i, respectively. As a direct consequence our genotype matrix has

only three 2’s per row in contrast to the four 2’s per row in the original reduction.

We claim that for this (3,3)-bounded instance exactly the same arguments can be used as for the

(4,3)-bounded instance. In the original reduction the left-most 2’s ensured that, for each element-

genotype, at most one of the two haplotypes used to resolve it was used in the resolution of other

genotypes. Clearly this remains true in our modified reduction for elements appearing in two or

fewer triples, because the corresponding left-most 2’s have been retained. So consider an element

xi appearing in three triples and suppose, by way of contradiction, that both haplotypes used to

resolve gx
i are used in the resolution of other genotypes. Now, the 1 in position 3ν + i prevents

this element-genotype from sharing haplotypes with other element-genotypes, so genotype gx
i

must share both its haplotypes with matching-genotypes. Note that, because gx
i (3ν + i) = 1,

the genotype gx
i can only possibly share haplotypes with matching-genotypes corresponding to

triples that contain xi. Indeed, if xi is in triples ck1 , ck2 and ck3 then the only genotypes with

which gx
i can potentially share haplotypes are cx

k1
, cx

k2
and cx

k3
. Genotype gx

i cannot share both its

haplotypes with the same matching-genotype (e.g. cx
k1

) because both haplotypes of gx
i will have

a 1 in column 3ν + i whilst only one of the two haplotypes for cx
k1

will have a 1 in that column.

So, without loss of generality, gx
i is resolved by a haplotype that cx

k1
uses and a haplotype that

cx
k2

uses. However, this is not possible, because gx
i has a 2 in the column corresponding to ck3 ,

whilst both cx
k1

and cx
k2

have a 0 in that column, yielding a contradiction.

Note that, in the original reduction, it was not only true that each element-genotype shared at

most one of its haplotypes, but - more strongly - it was also true that such a shared haplotype

was used by exactly one other genotype (i.e. the genotype corresponding to the triple the element
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gets assigned to). To see that this property is also retained in the modified reduction observe

that if (say) gx
i shares one haplotype with two genotypes cx

k1
and cx

k2
then xi must be in both

triples ck1 and ck2 , but this is not possible because, in the two columns corresponding to triples

ck1 and ck2 , cx
k1

has 1 and 0 whilst cx
k2

has 0 and 1.

III. POLYNOMIAL-TIME SOLVABILITY

A. Parsimony haplotyping

We will prove polynomial-time solvability of PH on (*,1)-bounded instances.

We say that two genotypes g1 and g2 are compatible, denoted as g1 ∼ g2, if g1(j) = g2(j)

or g1(j) = 2 or g2(j) = 2 for all j. A genotype g and a haplotype h are consistent if h can be

used to resolve g, ie. if g(j) = h(j) or g(j) = 2 for all j. The compatibility graph is the graph

with vertices for the genotypes and an edge between two genotypes if they are compatible.

Lemma 1: If g1 and g2 are compatible rows of a genotype matrix with at most one 2 per

column then there exists exactly one haplotype that is consistent with both g1 and g2.

Proof: The only haplotype that is consistent with both g1 and g2 is h with h(j) = g1(j)

for all j with g1(j) 6= 2 and h(j) = g2(j) for all j with g2(j) 6= 2. There are no columns where

g1 and g2 are both equal to 2 because there is at most one 2 per column. In columns where g1

and g2 are both not equal to 2 they are equal because g1 and g2 are compatible.

We use the notation g1 ∼h g2 if g1 and g2 are compatible and h is consistent with both. We

prove that the compatibility graph has a specific structure. A 1-sum of two graphs is the result

of identifying a vertex of one graph with a vertex of the other graph. A 1-sum of n+1 graphs is

the result of identifying a vertex of a graph with a vertex of a 1-sum of n graphs. See Figure 1

for an example of a 1-sum of three cliques (K3, K4 and K2).

Lemma 2: If G is a genotype matrix with at most one 2 per column then every connected

component of the compatibility graph of G is a 1-sum of cliques, where edges in the same clique

are labelled with the same haplotype.

Proof: Let C be the compatibility graph of G and let g1, g2, . . . , gk be a cycle in C. It suffices

to show that there exists a haplotype hc such that gi ∼hc gi′ for all i, i′ ∈ {1, ..., k}. Consider
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g1

g2

g3

g4

g5

g6

g7




0 0 1 0 2 0 1

2 0 2 0 0 0 1

0 0 1 2 0 0 1

0 0 1 0 0 0 2

0 0 1 1 0 2 1

1 2 0 0 0 0 1

0 0 1 1 0 0 1




Fig. 1. Example of a genotype matrix and the corresponding compatibility graph, with h1 = (0, 0, 1, 1, 0, 0, 1), h2 =

(0, 0, 1, 0, 0, 0, 1) and h3 = (1, 0, 0, 0, 0, 0, 1).

an arbitrary column j. If there is no genotype with a 2 in this column then g1 ∼ g2 ∼ . . . ∼ gk

implies that g1(j) = g2(j) = . . . = gk(j). Otherwise, let gij be the unique genotype with a 2 in

column j. Then g1 ∼ g2 ∼ . . . ∼ gij−1 together with g1 ∼ gk ∼ gk−1 ∼ . . . ∼ gij+1 implies that

gi(j) = gi′(j) for all i, i′ ∈ {1, ..., k} \ {ij}. Set hc(j) = gi(j), i 6= ij . Repeating this for each

column j produces a haplotype hc such that indeed gi ∼hc gi′ for all i, i′ ∈ {1, ..., k}.

From this lemma, it follows directly that in PH(∗, 1) the compatibility graph is chordal,

meaning that all its induced cycles are triangles. Every chordal graph has a simplicial vertex,

a vertex whose (closed) neighbourhood is a clique. Deleting a vertex in a chordal graph gives

again a chordal graph (see for example [3] for an introduction to chordal graphs). The following

lemma leads almost immediately to polynomial solvability of PH(∗, 1). We use set-operations

for the rows of matrices: thus, e.g., h ∈ H says h is a row of matrix H , H ∪ h says h is added

to H as a row, and H ′ ⊂ H says H ′ is a submatrix consisting of rows of H .

Lemma 3: Given haplotype matrix H ′ and genotype matrix G with at most one 2 per column

it is possible to find, in polynomial time, a haplotype matrix H that resolves G, has H ′ as a

submatrix and has a minimum number of rows.

Proof: The proof is constructive. Let problem (G,H ′) denote the above problem on input

matrices G and H ′. Let C be the compatibility graph of G, which implied by Lemma 2 is

chordal. Suppose g corresponds to a simplicial vertex of C. Let hc be the unique haplotype

consistent with any genotype in the closed neighbourhood clique of g. We extend matrix H ′ to

H ′′ and update graph C as follows.

1) If g has no 2’s it can be resolved with only one haplotype h = g. We set H ′′ = H ′ ∪ h

10



and remove g from C.

2) Else, if there exist rows h1 ∈ H ′ and h2 ∈ H ′ that resolve g we set H ′′ = H ′ and remove

g from C.

3) Else, if there exists h1 ∈ H ′ such that g = h1 + hc we set H ′′ = H ′ ∪ hc and remove g

from C.

4) Else, if there exists h1 ∈ H ′ and h2 /∈ H ′ such that g = h1 + h2 we set H ′′ = H ′ ∪ h2 and

remove g from C.

5) Else, if g is not an isolated vertex in C then there exists a haplotype h1 such that g = h1+hc

and we set H ′′ = H ′ ∪ {h1, hc} and remove g from C.

6) Otherwise, g is an isolated vertex in C and we set H ′′ = H ′ ∪ {h1, h2} for any h1 and h2

such that g = h1 + h2 and remove g from C.

The resulting graph is again chordal and we repeat the above procedure for H ′ = H ′′ until

all vertices are removed from C. Let H be the final haplotype matrix H ′′. It is clear from the

construction that H resolves G.

We prove that H has a minimum number of rows by induction on the number of genotypes.

Clearly, if G has only one genotype the algorithm constructs the only, and hence optimal, solution.

The induction hypothesis is that the algorithm finds an optimal solution to the problem (G,H ′)

for any haplotype matrix H ′ if G has at most n−1 rows. Now consider haplotype matrix H ′ and

genotype matrix G with n rows. The first step of the algorithm selects a simplicial vertex g and

proceeds with one of the cases 1 to 6. The algorithm then finds (by the induction hypothesis)

an optimal solution H to problem (G \ {g}, H ′′). It remains to prove that H is also an optimal

solution to problem (G,H ′). We do this by showing that an optimal solution H∗ to problem

(G,H ′) can be modified to include H ′′. We prove this for every case of the algorithm separately.

1) In this case h ∈ H∗, since g can only be resolved by h.

2) In this case H ′′ = H ′ and hence H ′′ ⊆ H∗.

3) Suppose that hc /∈ H∗. Because we are not in case 2 we know that there are two rows

in H∗ that resolve g and at least one of the two, say h∗, is not a row of H ′. Since hc is

the unique haplotype consistent with (the simplicial) g and any compatible genotype, h∗

can not be consistent with any other genotype than g. Thus, replacing h∗ by hc gives a

solution with the same number of rows but containing hc.
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4) Suppose that h2 /∈ H∗. Because we are not in case 2 or 3 we know that there is a haplotype

h∗ ∈ H∗ consistent with g, h∗ /∈ H ′ and h∗ 6= hc. Hence it is not consistent with any other

genotypes than g and we can replace h∗ by h2.

5) Suppose that h1 /∈ H∗ or hc /∈ H∗. Because we are not in case 2, 3 or 4, there are

haplotypes h∗ ∈ H\H ′ and h∗∗ ∈ H\H ′ that resolve g. If h∗ and h∗∗ are both not equal

to hc then they are not consistent with any other genotype than g. Replacing h∗ and h∗∗

by h1 and hc leads to another optimal solution. If one of h∗ and h∗∗ is equal to hc then

we can replace the other one by h1.

6) Suppose that h1 /∈ H∗ or h2 /∈ H∗. There are haplotypes h∗, h∗∗ ∈ H∗\H ′ that resolve

g and just g since g is an isolated vertex. Replacing h∗ and h∗∗ by h1 and h2 gives an

optimal solution containing h1 and h2.

Theorem 3: The problem PH(∗, 1) can be solved in polynomial time.

Proof: The proof follows from Lemma 3. Construction of the compatibility graph takes

O(n2m) time, for an n times m input matrix. Finding an ordering in which to delete the simplicial

vertices can be done in time O(n2) [16] and resolving each vertex takes O(n2m) time. The overall

running time of the algorithm is therefore O(n3m).

B. Minimum perfect phylogeny haplotyping

Polynomial-time solvability of PH on (2, ∗)-bounded instances has been shown in [6] and [14].

We prove it for MPPH(2, ∗). We start with a definition.

Definition 1: For two columns of a genotype matrix we say that a reduced resolution of these

columns is the result of applying the following rules as often as possible to the submatrix induced

by these columns: deleting one of two identical rows and the replacement rules
[
2 a

]
→


1 a

0 a


,

[
a 2

]
→


a 1

a 0


,

[
2 2

]
→


1 1

0 0


 and

[
2 2

]
→


1 0

0 1


, for a ∈ {0, 1}.

Note that two columns can have more than one reduced resolution if there is a genotype with

a 2 in both these columns. The reduced resolutions of a column pair of a genotype matrix G

are submatrices of (or equal to) F and represent all possibilities for the submatrix induced by
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the corresponding two columns of a minimal haplotype matrix H resolving G, after collapsing

identical rows.

Theorem 4: The problem MPPH(2, ∗) can be solved in polynomial time.

Proof: We reduce MPPH(2, ∗) to PH(2,*), which can be solved in polynomial time (see

above). Let G be an instance of MPPH(2, ∗). We may assume that any two rows are different.

Take the submatrix of any two columns of G. If it does not contain a [2 2] row, then in terms

of Definition 1 there is only one reduced resolution. If G contains two or more [2 2] rows then,

since by assumption all genotypes are different, G must have


2 2 0

2 2 1


 and therefore


2 0

2 1




as a submatrix, which can only be resolved by a haplotype matrix containing the forbidden

submatrix F . It follows that in this case the instance is infeasible. If it contains exactly one [2 2]

row, then there are clearly two reduced resolutions. Thus we may assume that for each column

pair there are at most two reduced solutions.

Observe that if for some column pair all reduced resolutions are equal to F the instance is

again infeasible. On the other hand, if for all column pairs none of the reduced resolutions is

equal to F then MPPH(2, ∗) is equivalent to PH(2, ∗) because any minimal haplotype matrix

H that resolves G admits a perfect phylogeny. Finally, consider a column pair with two reduced

resolutions, one of them containing F . Because there are two reduced resolutions there is a

genotype g with a 2 in both columns. Let h1 and h2 be the haplotypes that correspond to the

resolution of g that does not lead to F . Then we replace g in G by h1 and h2, ensuring that a

minimal haplotype matrix H resolving G can not have F as a submatrix in these two columns.

Repeating this procedure for every column pair either tells us that the matrix G was an

infeasible instance or creates a genotype matrix G′ such that any minimal haplotype matrix H

resolves G′ if and only if H resolves G, and H admits a perfect phylogeny.

Theorem 5: The problem MPPH(∗, 1) can be solved in polynomial time.

Proof: Similar to the proof of Theorem 4 we reduce MPPH(∗, 1) to PH(∗, 1). As there,

consider for any pair of columns of the input genotype matrix G its reduced resolutions, according

to Definition 1. Since G has at most one 2 per column there is at most one genotype with 2’s

in both columns. Hence there are at most two reduced resolutions. If all reduced resolutions are

equal to the forbidden submatrix F the instance is infeasible. If on the other hand for all column
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pairs no reduced resolution is equal to F then in fact MPPH(∗, 1) is equivalent to PH(∗, 1),

because any minimal haplotype matrix resolving G admits a perfect phylogeny.

As in the proof of Theorem 4 we are left with considering column pairs for which one of the

two reduced resolutions is equal to F . For such a column pair there must be a genotype g that

has 2’s in both these columns. The other genotypes have only 0’s and 1’s in them. Suppose we

get a forbidden submatrix F in these columns of the solution if g is resolved by haplotypes h1

and h2, where h1 has a and b and therefore h2 has 1−a and 1−b in these columns, a, b ∈ {0, 1}.

We will change the input matrix G such that if g gets resolved by such a forbidden resolution

these haplotypes are not consistent with any other genotypes. We do this by adding an extra

column to G as follows. The genotype g gets a 1 in this new column. Every genotype with a

and b or with 1 − a and 1 − b in the considered columns gets a 0 in the new column. Every

other genotype gets a 1 in the new column. For example, the matrix



2 2

0 1

1 0

1 1




gets one extra column and becomes




2 2 1

0 1 1

1 0 1

1 1 0




.

Denote by Gmod the result of modifying G by adding such a column for every pair of columns

with exactly one ‘bad’ and one ‘good’ reduced resolution. It is not hard to see that any optimal

solution to PH(∗, 1) on Gmod can be transformed into a solution to MPPH(∗, 1) on G of the

same cardinality (indeed, any two haplotypes used in a forbidden resolution of a genotype g

in Gmod are not consistent with any other genotype of Gmod, and hence may be replaced by

two other haplotypes resolving g in a non-forbidden way). Now, let H be an optimal solution

to MPPH(∗, 1) on G. We can modify H to obtain a solution to PH(∗, 1) on Gmod of the

same cardinality as follows. We modify every haplotype in H in the same way as the genotypes

it resolves. From the construction of Gmod it follows that two compatible genotypes are only

modified differently if the haplotype they are both consistent with is in a forbidden resolution.

However, in H no genotypes are resolved with a forbidden resolution since H is a solution to

MPPH(∗, 1). We conclude that optimal solutions to PH(∗, 1) on Gmod correspond to optimal

solutions to MPPH(∗, 1) on G and hence the latter problem can be solved in polynomial time,

by Theorem 3.
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If we use the algorithm from the proof of Lemma 3 as a subroutine we get an overall running

time of O(n3m2), for an n×m input matrix.

The borderline open complexity problems are now PH(∗, 2) and MPPH(∗, 2). Unfortunately,

we have not found the answer to these complexity questions. However, the borders have been

pushed slightly further. In [17] PH(∗, 2) is shown to be polynomially solvable if the input

genotypes have the complete graph as compatibility graph, we call this problem PH(∗, 2)-C1.

We will give the counterpart result for MPPH(∗, 2)-C1.

Let G be an n×m MPPH(∗, 2)-C1 input matrix. Since the compatibility graph is a clique,

every column of G contains only one symbol besides possible 2’s. If we replace in every 1-column

of G (a column containing only 1’s and 2’s) the 1’s by 0’s and mark the SNP corresponding to

this column ‘flipped’, then we obtain an equivalent problem on a {0, 2}-matrix G′. To see that this

problem is indeed equivalent, suppose H ′ is a haplotype matrix resolving this modified genotype

matrix G′ and suppose H ′ does not contain the forbidden submatrix F . Then by interchanging

0’s and 1’s in every column of H ′ corresponding to a flipped SNP, one obtains a haplotype

matrix H without the forbidden submatrix which resolves the original input matrix G. And vice

versa. Hence, from now on we will assume, without loss of generality, that the input matrix G

is a {0, 2}-matrix.

If we assume moreover that n ≥ 3, which we do from here on, the trivial haplotype ht defined

as the all-0 haplotype of length m is the only haplotype consistent with all genotypes in G.

We define the restricted compatibility graph CR(G) of G as follows. As in the normal

compatibility graph, the vertices of CR(G) are the genotypes of G. However, there is an edge

{g, g′} in CR(G) only if g ∼h g′ for some h 6= ht, or, equivalently, if there is a column where

both g and g′ have a 2.

Lemma 4: If G is a feasible instance of MPPH(∗, 2)-C1 then every vertex in CR(G) has

degree at most 2.

Proof: Any vertex of degree higher than 2 in CR(G) implies the existence in G of submatrix:
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B =




2 2 2

2 0 0

0 2 0

0 0 2




It is easy to verify that no resolution of this submatrix permits a perfect phylogeny.

Suppose that G has two identical columns. There are either 0, 1 or 2 rows with 2’s in both

these columns. In each case it is easy to see that any haplotype matrix H resolving G can be

modified, without introducing a forbidden submatrix, to make the corresponding columns in H

equal as well (simply delete one column and duplicate another). This leads to the first step of

the algorithm A that we propose for solving MPPH(∗, 2)-C1:

Step 1 of A: Collapse all identical columns in G.

From now on, we assume that there are no identical columns. Let us partition the genotypes

in G0, G1 and G2, denoting the set of genotypes in G with, respectively, degree 0,1, and 2 in

CR(G). For any genotype g of degree 1 in CR(G) there is exactly one genotype with a 2 in

the same column as g. Because there are no identical columns, it follows that any genotype g

of degree 1 in CR(G) can have at most two 2’s. Similarly any genotype of degree 2 in CR(G)

has at most three 2’s. Accordingly we define G1
1 and G2

1 as the genotypes in G1 that have one

2 and two 2’s, respectively, and similarly G2
2 and G3

2 as the genotypes in G2 with two and three

2’s, respectively.

The following lemma states how genotypes in these sets must be resolved if no submatrix F

is allowed in the solution. If genotype g has k 2’s we denote by g[a1, a2, . . . , ak] the haplotype

with entry ai in the position where g has its i-th 2 and 0 everywhere else.

Lemma 5: A haplotype matrix is a feasible solution to the problem MPPH(∗, 2)-C1 if and

only if all genotypes are resolved in one of the following ways:

(i) A genotype g ∈ G1
1 is resolved by g[1] and g[0] = ht.

(ii) A genotype g ∈ G2
2 is resolved by g[0, 1] and g[1, 0].

(iii) A genotype g ∈ G2
1 is either resolved by g[0, 0] = ht and g[1, 1] or by g[0, 1] and g[1, 0].
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(iv) A genotype g ∈ G3
2 is either resolved by g[1, 0, 0] and g[0, 1, 1] or by g[0, 1, 0] and g[1, 0, 1]

(assuming that the two neighbours of g have a 2 in the first two positions where g has a 2).

Proof: A genotype g ∈ G2
2 has degree 2 in CR(G), which implies the existence in G of a

submatrix:

D =

g

g′

g′′




2 2

2 0

0 2


 .

Resolving g with g[0, 0] and g[1, 1] clearly leads to the forbidden submatrix F . Similarly,

resolving a genotype g ∈ G3
2 with g[0, 0, 1] and g[1, 1, 0] or with g[0, 0, 0] and g[1, 1, 1] leads to

a forbidden submatrix in the first two columns where g has a 2. It follows that resolving the

genotypes in a way other than described in the lemma yields a haplotype matrix which does not

admit a perfect phylogeny.

Now suppose that all genotypes are resolved as described in the lemma and assume that there

is a forbidden submatrix F in the solution. Without loss of generality, we assume F can be found

in the first two columns of the solution matrix. We may also assume that no haplotype can be

deleted from the solution. Then, since F contains [1 1], there is a genotype g starting with [2 2].

Since there are no identical columns there are only two possibilities. The first possibility is that

there is exactly one other genotype g′ with a 2 in exactly one of the first two columns. Since

all genotypes different from g and g′ start with [0 0], none of the resolutions of g can have

created the complete submatrix F . Contradiction. The other possibility is that there is exactly

one genotype with a 2 in the first column and exactly one genotype with a 2 in the second

column, but these are different genotypes, i.e. we have the submatrix D. Then g ∈ G3
2 or g ∈ G2

2

and it can again be checked that none of the resolutions in (ii) and (iv) leads to the forbidden

submatrix.

Lemma 6: Let G be an instance of MPPH(∗, 2) and G2
1, G3

2 as defined above.

(i) Any nontrivial haplotype is consistent with at most two genotypes in G.

(ii) A genotype g ∈ G2
1∪G3

2 must be resolved using at least one haplotype that is not consistent

with any other genotype.
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Proof: (i) Let h be a nontrivial haplotype. There is a column where h has a 1 and there

are at most two genotypes with a 2 in that column.

(ii) A genotype g ∈ G2
1∪G3

2 has a 2 in a column that has no other 2’s. Hence there is a haplotype

with a 1 in this column and this haplotype is not consistent with any other genotypes.

A haplotype that is only consistent with g is called a private haplotype of g. Based on (i) and

(ii) of Lemma 5 we propose the next step of A:

Step 2 of A: Resolve all g ∈ G1
1∪G2

2 by the unique haplotypes allowed to resolve them according

to Lemma 5. Also resolve each g ∈ G0 with ht and the complement of ht with respect to g.

This leads to a partial haplotype matrix Hp
2 .

The next step of A is based on Lemma 6 (ii).

Step 3 of A: For each g ∈ G2
1 ∪G3

2 with g ∼h′ g′ for some h′ ∈ Hp
2 that is allowed to resolve

g according to Lemma 5, resolve g by adding the complement h′′ of h′ w.r.t. g to the set of

haplotypes, i.e. set Hp
2 := Hp

2 ∪ {h′′}, and repeat this step as long as new haplotypes get added.

This leads to partial haplotype matrix Hp
3 .

Notice that Hp
3 does not contain any haplotype that is allowed to resolve any of the genotypes

that have not been resolved in Steps 2 and 3. Let us denote this set of leftover, unresolved

haplotypes by GL, the degree 1 vertices among those by GL1 ⊆ G2
1, and the degree 2 vertices

among those by GL2 ⊆ G3
2. The restricted compatibility graph induced by GL, which we denote

by CR(GL) consists of paths and circuits. We first give the final steps of algorithm A and argue

optimality afterwards.

Step 4 of A: Resolve each cycle in CR(GL), necessarily consisting of GL2-vertices, by starting

with an arbitrary vertex and, following the cycle, resolving each next pair g, g′ of vertices by

haplotype h 6= ht such that g ∼h g′ and the two complements of h w.r.t. g and g′ respectively.

In case of an odd cycle the last vertex is resolved by any pair of haplotypes that is allowed to

resolve it. Note that h has a 1 in the column where both g and g′ have a 2 and otherwise 0. It

follows easily that g and g′ are both allowed to use h (and its complement) according to (iv) of

Lemma 5.
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Step 5 of A: Resolve each path in CR(GL) with both endpoints in GL1 by first resolving the

GL1 endpoints by the trivial haplotype ht and the complements of ht w.r.t. the two endpoint

genotypes, respectively. The remaining path contains only GL2-vertices and is resolved according

to Step 6.

Step 6 of A: Resolve each remaining path by starting in (one of) its GL2-endpoint(s), and

following the path, resolving each next pair of vertices as in Step 4. In case of a path with

an odd number of vertices, resolve the last vertex by any pair of haplotypes that is allowed to

resolve it in case it is a GL2-vertex, and resolve it by the trivial haplotype and its complement

w.r.t. the vertex in case it is a GL1 vertex.

By construction the haplotype matrix H resulting from A resolves G. In addition, from

Lemma 5 follows that H admits a perfect phylogeny.

To argue minimality of the solution, first observe that the haplotypes added in Step 2 and Step

3 are unavoidable by Lemma 5 (i) and (ii) and Lemma 6 (ii). Lemma 6 tells us moreover that the

resolution of a cycle of k genotypes in GL2 requires at least k + dk
2
e haplotypes that can not be

used to resolve any other genotypes in GL. This proves optimality of Step 4. To prove optimality

of the last two steps we need to take into account that genotypes in GL1 can potentially share

the trivial haplotype. Observe that to resolve a path with k vertices one needs at least k + dk
2
e

haplotypes. Indeed A does not use more than that in Steps 5 and 6. Moreover, since these paths

are disjoint, they cannot share haplotypes for resolving their genotypes except for the endpoints

if they are in GL1, which can share the trivial haplotype. Indeed, A exploits the possibility of

sharing the trivial haplotype in a maximal way, except on a path with an even number of vertices

and one endpoint in GL1. Such a path, with k (even) vertices, is resolved in A by 3k
2

haplotypes

that can not be used to resolve any other genotypes. The degree 1 endpoint might alternatively be

resolved by the trivial haplotype and its complement w.r.t. the corresponding genotype, adding

the latter private haplotype, but then for resolving the remaining path with k − 1 (odd) vertices

only from GL2 we still need k − 1 + dk−1
2
e, which together with the private haplotype of the

degree 1 vertex gives 3k
2

haplotypes also (not even counting ht).

As a result we have polynomial-time solvability of MPPH(∗, 2)-C1.

Theorem 6: MPPH(∗, 2) is solvable in polynomial time if the compatibility graph is a clique.
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IV. APPROXIMATION ALGORITHMS

In this section we construct polynomial time approximation algorithms for PH and MPPH ,

where the accuracy depends on the number of 2’s per column of the input matrix. We describe

genotypes without 2’s as trivial genotypes, since they have to be resolved in a trivial way by one

haplotype. Genotypes with at least one 2 will be described as nontrivial genotypes. We write

PHnt and MPPHnt to denote the restricted versions of the problems where each genotype is

nontrivial. We make this distinction between the problems because we have better lower bounds

(and thus approximation ratios) for the restricted variants.

A. PH and MPPH where all input genotypes are nontrivial

To prove approximation guarantees we need good lower bounds on the number of haplotypes

in the solution. We start with two bounds from [17], whose proof we give because the first one

is short but based on a crucial observation, and the second one was incomplete in [17]. We use

these bounds to obtain a different lower bound that we need for our approximation algorithms.

Lemma 7: [17] Let G be an n×m instance of PHnt (or MPPHnt). Then at least

LBsqrt(n) =

⌈
1 +

√
1 + 8n

2

⌉

haplotypes are required to resolve G.

Proof: The proof follows directly from the observation that q haplotypes can resolve at

most
(

q
2

)
= q(q − 1)/2 nontrivial genotypes.

Lemma 8: [17] Let G be an n × m instance of PHnt(∗, `), for some ` ≥ 1, such that the

compatibility graph of G is a clique. Then at least

LBsha(n, `) =

⌈
2n

` + 1
+ 1

⌉

haplotypes are required to resolve G.

Proof: Recall that, after relabeling if necessary, the trivial haplotype ht is the all-0 haplotype

and is consistent with all genotypes. Suppose a solution of G has q non-trivial haplotypes.

Observe that ht can be used in the resolution of at most q genotypes. Also observe (by Lemma

5 in [17]) that each non-trivial haplotype can be used in the resolution of at most ` genotypes.
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Now distinguish two cases. First consider the case where ht is in the solution. Then from the

two observations above it follows that n ≤ (q + `q)/2 and hence the solution consists of at

least q + 1 ≥ 2n/(` + 1) + 1 haplotypes. Now consider the second case i.e. where ht is not

in the solution. Then we have that n ≤ `q/2 and hence that the solution consists of at least

2n/` haplotypes. If n ≥ `(` + 1)/2 we have that 2n/` ≥ 2n/(` + 1) + 1, and the claim follows.

If n < `(` + 1)/2 then this implies that ` >
√

1+8n−1
2

. Combining this with that by Lemma 7

q ≥
√

1+8n+1
2

gives that (` + 1)(q − 1) > 1
4
(
√

1 + 8n + 1)(
√

1 + 8n− 1), which is equal to 2n.

It follows that q > 2n/(` + 1) + 1.

The LBsha bound has been proven only for PHnt (and MPPHnt) instances where the compat-

ibility graph is a clique. We now prove a different bound which, in terms of cliques, is slightly

weaker (for large n) than LBsha, but which allows us to generalise the bound to more general

inputs. (Indeed it remains an open question whether LBsha applies as a lower bound not just

for cliques but also for general instances.)

Lemma 9: Let G be an n×m instance of PHnt(∗, `), for some ` ≥ 1. Then at least

LBnt
mid(n, `) =

⌈
2(n + `)(` + 1)

`(` + 3)

⌉
(1)

haplotypes are required to resolve G.

Proof: Let C(G) be the compatibility graph of G. We may assume without loss of generality

that C(G) is connected. First consider the case where C(G) is a clique. If n ≥ `(` + 1)/2, it

suffices to notice that LBnt
mid(n, `) ≤ LBsha(n, `) for each value of ` ≥ 1, since the function

f(n) =
2n

` + 1
+ 1− 2(n + `)(` + 1)

`(` + 3)
(2)

is equal to 0 if n = `(` + 1)/2 and has nonnegative derivative f ′(n) = 2
`+1

− 2 `+1
`(`+3)

≥ 0.

Secondly, if 1 ≤ n ≤ `(`+1)/2, straightforward but tedious calculations show that for all ` ≥ 1

the function

F (n) =
1 +

√
1 + 8n

2
− 2(n + `)(` + 1)

`(` + 3)
(3)

has value 0 for n = `(` + 1)/2 and for some n in the interval [0, 1], whereas in between these

values it has positive value. Hence, LBnt
mid(n, `) ≤ LBsqrt(n) for 1 ≤ n ≤ `(` + 1)/2.

To prove that the bound also holds if C(G) is not a clique we use induction on n. Suppose

that for each n′ < n the lemma holds for all n′×m instances G′ of PHnt(∗, `′) for every m and
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`′. Since C(G) is not a clique there exist two genotypes g1 and g2 in G and a column j such

that g1(j) = 0 and g2(j) = 1. Given that G is a PHnt(∗, `) instance t ≤ ` genotypes have a 2

in column j. Deleting these t genotypes yields an instance Gd with disconnected compatibility

graph C(Gd), since the absence of a 2 in column j prevents the existence of any path from g1

to g2. Let C(Gd) have p ≥ 2 components C(G1), ..., C(Gp), and let ni ≥ 1 denote the number

of genotypes in Gi. Thus, n = n1 + ... + np + t. We use the induction hypothesis on G1, . . . , Gp

to conclude that the number of haplotypes required to resolve G is at least
p∑

i=1

⌈
2(ni + `)(` + 1)

`(` + 3)

⌉
≥

⌈
2(

∑p
i=1 ni + p`)(` + 1)

`(` + 3)

⌉
≥

⌈
2(

∑p
i=1 ni + 2`)(` + 1)

`(` + 3)

⌉

≥
⌈

2(
∑p

i=1 ni + t + `)(` + 1)

`(` + 3)

⌉
=

⌈
2(n + `)(` + 1)

`(` + 3)

⌉

Corollary 1: Let G be an n×m instance of PHnt(∗, `) or MPPHnt(∗, `), for some ` ≥ 1.

Any feasible solution for G is within a ratio ` + 2− 2
`+1

from optimal.

Proof: Immediate from the fact that any solution for G has at most 2n haplotypes. In the

case of MPPH we can check whether feasible solutions exist, and if so obtain such a solution,

by using the algorithm in for example [7].

Not surprisingly, better approximation ratios can be achieved. The following simple algorithm

computes approximations of PHnt(∗, `). (The algorithm does not work for MPPH , however.)

Algorithm: PHntM

Step 1: construct the compatibility graph C(G).

Step 2: find a maximal matching M in C(G).

Step 3: for every edge {g1, g2} ∈ M , resolve g1 and g2 by in total 3 haplotypes: any haplotype

consistent with both g1 and g2, and its complements with respect to g1 and g2.

Step 4: resolve each remaining genotype by two haplotypes.

Theorem 7: PHntM computes a solution to PHnt(∗, `) in polynomial time within an ap-

proximation ratio of c(`) = 3
4
` + 7

4
− 3

2
1

`+1
, for every ` ≥ 1.

Proof: Since constructing C(G) given G takes O(n2m) time and finding a maximal

matching in any graph takes linear time, O(n2m) running time follows directly.
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Let q be the size of the maximal matching. Then PHntM gives a solution with 3q+2(n−2q)

= 2n− q haplotypes. Since the complement of the maximal matching is an independent set of

size n − 2q, any solution must contain at least 2(n − 2q) haplotypes to resolve the genotypes

in this independent set. The theorem thus holds if 2n−q
2n−4q

≤ c(`). If 2n−q
2n−4q

> c(`), implying that

q > 2−2c(`)
1−4c(`)

n, we use the lower bound of Lemma 9 to obtain

2n− q

LBnt
mid(n, `)

<
2n− 2−2c(`)

1−4c(`)
n

LBnt
mid(n, `)

<
(2n− 2−2c(`)

1−4c(`)
n)`(` + 3)

2n(` + 1)
=

3`c(`)

4c(`)− 1

` + 3

` + 1
= c(`).

The last equality follows directly since (4c(`)− 1)(` + 1) = 3`(` + 3).

B. PH and MPPH where not all input genotypes are nontrivial

Given an instance G of PH or MPPH containing n genotypes, nnt denotes the number of

nontrivial genotypes in G and nt the number of trivial genotypes; clearly n = nnt + nt.

Lemma 10: Let G be an n×m instance of PH(∗, `), for some ` ≥ 2, where the compatibility

graph of the nontrivial genotypes in G is a clique, G is not equal to a single trivial genotype,

and no nontrivial genotype in G is the sum of two trivial genotypes in G. Then at least

LBmid(n, `) =

⌈
n

`
+ 1

⌉

haplotypes are needed to resolve G.

Proof: Note that the lemma holds if nt ≥ n/` + 1. So we assume from now on that

nt < n/` + 1.

We first prove that the bound holds for nnt ≤ `. Combining this with nt < n/2 + 1 gives that

n < 2`+2. Thus n/`+1 < 4. Hence if nt ≥ 4 then we are done. Thus we only have to consider

cases where both nt ∈ {0, 1, 2, 3} and ` ≥ max{2, nnt}. We verify these cases in Table II; note

the importance of the fact that no nontrivial genotype is the sum of two trivial haplotypes in

verifying that these are correct lower bounds. (Also, there is no nt = 1, nnt = 0 case because

of the lemma’s precondition.)

We now prove the lemma for nnt > `. Note that in this case there exists a unique trivial

haplotype ht consistent with all nontrivial genotypes. Suppose, by way of contradiction, that

N = Nt + Nnt is the size of the smallest instance G′ for which the bound does not hold. Let H

be an optimal solution for G′ and let h = |H|.
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TABLE II

CASE nt < 4, nnt ≤ ` IN PROOF OF LEMMA 10

nt nnt dn/` + 1e
0 1 2

0 z ≥ 2 ≤ dz/z + 1e = 2

1 1 2

1 z ≥ 2 ≤ d(z + 1)/z + 1e = 3

2 0 2

2 1 ≤ 3

2 z ≥ 2 ≤ d(z + 2)/z + 1e = 3

3 0 ≤ 3

3 1 ≤ 3

3 2 ≤ 4

3 z ≥ 3 ≤ d(z + 3)/z + 1e = 3

Observe firstly that N = 1 (mod `), because if this is not true we have that LBmid(N − 1, `) =

LBmid(N, `) and we can find a smaller instance for which the bound does not hold, simply by

removing an arbitrary genotype from G′, contradicting the minimal choice of N .

Similarly we argue that h = LBmid(N, `)− 1, since if h ≤ LBmid(N, `)− 2 we could remove

an arbitrary genotype to yield a size N − 1 instance and still have that h < LBmid(N − 1, `).

We choose a specific resolution of G′ using H and represent it as a haplotype graph. The

vertices of this graph are the haplotypes in H . For each nontrivial genotype g ∈ G′ there is an

edge between the two haplotypes that resolve it. For each trivial genotype g ∈ G′ there is a loop

on the corresponding haplotype. There are no edges between looped haplotypes because of the

precondition that no nontrivial genotype is the sum of two trivial genotypes.

From Lemma 5 of [17] it follows that, with the exception of the possibly present trivial

haplotype and disregarding loops, each haplotype in the graph has degree at most `. In addition,

if an unlooped haplotype has degree less than or equal to `, or a looped haplotype has degree

(excluding its loop) strictly smaller than `, then deleting this haplotype and all its at most `

incident genotypes creates an instance G′′ containing at least N − ` genotypes that can be

resolved using h − 1 haplotypes, yielding a contradiction to the minimality of N . (Note that,

because Nnt > `, it is not possible that the instance G′′ is empty or equal to a single trivial
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genotype.)

The only case that remains is when, apart from the possibly present trivial haplotype, every

haplotype in the haplotype graph is looped and has degree ` (excluding its loop). However,

there are no edges between looped vertices and they can therefore only be adjacent to the trivial

haplotype, yielding a contradiction.

Lemma 11: Let G be an n×m instance of PH(∗, `), for some ` ≥ 2, where G is not equal

to a single trivial genotype, and no nontrivial genotype in G is the sum of two trivial genotypes

in G. Then at least LBmid(n, `) haplotypes are needed to resolve G.

Proof: Essentially the same inductive argument as used in Lemma 9 works: it is always

possible to disconnect the compatibility graph of G into at least two components by removing

at most ` nontrivial genotypes, and using cliques as the base of the induction. The presence

of trivial genotypes in the input (which we can actually simply exclude from the compatibility

graph) does not alter the analysis. The fact that (in the inductive step) at least two components

are created, each of which contains at least one nontrivial genotype, ensures that the inductive

argument is not harmed by the presence of single trivial genotypes (for which the bound does

not hold).

Corollary 2: Let G be an n×m instance of PH(∗, `) or MPPH(∗, `), for some ` ≥ 2. Any

feasible solution for G is within a ratio of 2` from optimal.

Proof: Immediate because 2n/(n/` + 1) < 2`. (As before the algorithm from e.g. [7] can

be used to generate feasible solutions for MPPH , or to determine that they do not exist.)

The algorithm PHntM can easily be adapted to solve PH(∗, `) approximately.

Algorithm: PHM

Step 1: remove from G all genotypes that are the sum of two trivial genotypes

Step 2: construct the compatibility graph C(G′) of the leftover instance G′.

Step 3: find a maximal matching M in C(G′).

Step 4: for every edge {g1, g2} ∈ M , resolve g1 and g2 by three haplotypes if g1 and g2 are

both nontrivial and by two haplotypes if one of them is trivial.
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Step 5: resolve each remaining nontrivial genotype by two haplotypes and each remaining trivial

genotype by its corresponding haplotype.

Theorem 8: PHM computes a solution to PH(∗, `) in polynomial time within an approxi-

mation ratio of d(`) = 3
2
` + 1

2
, for every ` ≥ 2.

Proof: Since constructing C(G) given G takes O(n2m) time and finding a maximal

matching in any graph takes linear time, O(n2m) running time follows directly.

Let q be the size of the maximal matching, n the number of genotypes after Step 1 and nt the

number of trivial genotypes in G′. Then PHM gives a solution with 2n − q − nt haplotypes.

Since the complement of the maximal matching is an independent set of size n− 2q in C(G′),

any solution must contain at least n−2q haplotypes to resolve the genotypes in this independent

set. The theorem thus holds if 2n−q−nt

n−2q
≤ d(`). If 2n−q−nt

n−2q
> d(`), implying that q > (d(`)−2)n+nt

2d(`)−1
,

we use the lower bound of Lemma 11 and obtain

2n− q − nt

LBmid(n, `)
<

2n− (d(`)−2)n+nt

2d(`)−1

dn
`

+ 1e <
2n− (d(`)−2)n

2d(`)−1

n
`

=
3d(`)`

2d(`)− 1
= d(`).

The last equality follows directly since 2d(`)− 1 = 3`.

V. POSTLUDE

There remain a number of open problems to be solved. The complexity of PH(∗, 2) and

MPPH(∗, 2) is still unknown. An approach that might raise the necessary insight is to study

the PH(∗, 2)-Cq and MPPH(∗, 2)-Cq variants of these problems (i.e. where the compatibility

graph is the sum of q cliques) for small q. If a complexity result nevertheless continues to be

elusive then it would be interesting to try and improve approximation ratios for PH(∗, 2) and

MPPH(∗, 2); might it even be possible to find a PTAS (Polynomial-time Approximation Scheme)

for each of these problems? Note also that the complexity of PH(k, 2) and MPPH(k, 2) remains

open for constant k ≥ 3.

Another intriguing open question concerns the relative complexity of PH and MPPH in-

stances. Has PH(k, `) always the same complexity as MPPH(k, `), in terms of well-known

complexity measurements (polynomial-time solvability, NP-hardness, APX-hardness)? For hard

instances, do approximability ratios differ? A related question is whether it is possible to directly
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encode PH instances as MPPH instances, and/or vice-versa, and if so whether/how this affects

the bounds on the number of 2’s in columns and rows.

For hard PH(k, `) instances it would also be interesting to see if those approximation algo-

rithms that yield approximation ratios as functions of k, can be intelligently combined with the

approximation algorithms in this paper (having approximation ratios determined by `), perhaps

with superior approximation ratios as a consequence. In terms of approximation algorithms for

MPPH there is a lot of work to be done because the approximation algorithms presented in

this paper actually do little more than return an arbitrary feasible solution. It is also not clear

if the 2k−1-approximation algorithms for PH(k, ∗) can be attained (or improved) for MPPH .

More generally, it seems likely that big improvements in approximation ratios (for both PH and

MPPH) will require more sophisticated, input-sensitive lower bounds and algorithms. What

are the limits of approximability for these problems, and how far will algorithms with formal

performance-guarantees (such as in this paper) have to improve to make them competitive with

dominant ILP-based methods?

Finally, with respect to MPPH , it could be good to explore how parsimonious the solutions

are that are produced by the various PPH feasibility algorithms, and whether searching through

the entire space of PPH solutions (as proposed in [19]) yields practical algorithms for solving

MPPH .
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