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Abstract

Classical Bayesian inference uses the expected value of a loss function with

regard to a single prior distribution for a parameter to compare decisions,

and an optimal decision minimizes the expected loss. Recently interest has

grown in generalizations of this framework without specified priors, to

allow imprecise prior probabilities. Within the Bayesian context the most

promising method seems to be the intervals of measures method.

A major problem for the application of this method to decision problems

seems to be the amount of calculation required, since for each decision

there is no single value for expected loss, but a set of such values

corresponding to all possible prior distributions. In this report the

determination of lower and upper bounds for such a set of expected loss

values with regard to a single decision is discussed, and general results

are derived which show that the situation is less severe than would be

expected at first sight. A simple algorithm to determine these bounds is

described. The choice of a decision can be based on a comparison of the

bounds of the expected loss per decision.
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1. Introduction

The Bayesian theory of statistical inference demands a prior distribution

for some parameter. The prior represents information available before

experimental data became available. Walley (1991) presents a clear and

extensive discussion about the major drawbacks of describing a certain

amount of information, or lack of information, by a single prior

distribution. This leads to a generalization of the concept in which the

single prior distribution is replaced by a set of prior distributions, using

a generalized concept of probability, imprecise probabilities. Pericchi and

Walley (1991) conclude that the intervals of measures method, introduced by

DeRobertis and Hartigan (1981), is the most suitable form for a set of prior

distributions in Bayesian inference.

The idea of imprecise probabilities goes back to Boole (1854), but little

attention was paid to it until the contributions of Smith (1961), who

proposed an axiom system for imprecise probabilities (Wolfenson and Fine,

1982) and Good (1962). Dempster (1968) proposed a framework of statistical

inference that leads to unreasonable results in some cases (Walley, 1991;

section 5.13). Walley (1991) provides a thorough mathematical foundation of

a coherent theory of imprecise probabilities, where the interpretation of

lower and upper probabilities is in terms of betting rates, strongly related

to the ideas of de Finetti (1974).

In his book Walley pays little attention to application of imprecise

probabilities to statistical decision theory, in which field the Bayesian

concept is attractive (Lindley, 1973). Other interesting contributions to

decision theory with imprecise probabilities are provided by Fishburn

(1965), Gardenfors and Sahlin (1982,1983), Levi (1982) and Wolfenson and

Fine (1982). Smith (1961) also pays attention to decision making. Berger

(1985) discusses a method of sensitivity analysis within statistical

decision theory, called robust Bayesian inference. This method differs from

the theory discussed by Walley (1991) in that Berger does not use

imprecision in probabilities as a tool to report the amount of information

on which the probabilities are based, the most important reason for

introducing the generalization.

While these contributions develop the theory they do not provide an

effective basis for use through a method of calculation. All these methods

imply an exhaustive process of evaluating a loss function at each decision
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and for all possible priors.

In this report it is shown that the amount of calculation is less than

expected at first sight, when the set of prior probabilities is given

through intervals of measures. The results make the practical application of

imprecise prior probabilities to decision problems possible. Important

additional aspects for such application, e.g. introduction of suitable

statistical models and assessment of imprecise prior probabilities, are

discussed by Coolen (1992a,b,1993).

In section 2 of this report Bayesian decision theory with imprecise prior

probabilities is introduced and the restriction to intervals of measures is

suggested. In section 3 results are given for possible practical application

by reducing the required amount of calculation. An algorithm for general

problems is described.
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(2)

2. Bayesian decision theory with imprecise prior probabilities

Decision problems (Lindley, 1990) can, with a good deal of generality, be

described as follows. Let X be the sample space of points x and e the

parameter space of points a. These are connected by p(xla), the probability

density of X for a given a (with respect to some measure). Let D be the

decision space of points d, and L(d,a) the loss in selecting d when a

obtains (we assume L(d,a)eR for all d and a). The Bayesian approach uses a

prior probability density n(a) over parameter space e and chooses as the

optimum decision that d which minimizes the expected loss

EL(d,x) = JL(d,a)p(9I x)da, (1)

e
where p(alx) is the posterior probability density of a, given x, obtained by

Bayes' theorem. If no data x are available, the decision can be based on the

prior, in which case the optimum decision is that d which minimizes the

expected loss

EL(d) = JL(d,a)n(a)d8.

e
Without loss of generality we work with (2), since the posterior at one

stage is just the prior for the next (eoolen, 1992a,1993).

Suppose that the probability density n(a) is not known precisely, but is

only known to belong to a space TI of probability densities. This

generalization is known in literature as imprecise (prior) probabilities

(Walley, 1991). In contrast to a hierarchical Bayesian approach we do not

define a probability density over TI. Assuming the loss function L(d,a) is

known, the expected loss for neTI and deD is

EL(d,n) = JL(d,a)n(9)da. (3)

e
For each decision deD this leads to a set values of expected loss, denoted

by

go.f(d,IT) = {EL(d,n) IneTI}. (4)

To choose an optimal decision an additional criterion is needed, by which

these sets go.f(d,TI) can be compared for all deD. In this direction, two

useful characteristics of go.f(d,TI) are the lower expectation go.f(d,TI) and the

upper expectation go.f(d,TI):

go.f(d,IT) = inf go.f(d,IT) and go.f(d,IT)

3

sup go.f (d, IT) . (5 )



As remarked by Pericchi and Walley (1991), the intervals of measures method

of DeRobertis and Hartigan (1981) is especially useful when imprecise

probabilities are used for parameters, as in the Bayesian framework. Hence,

in this paper we restrict IT to the form

(6)

for all Bee

for all Bee. Further, in this

J t(B)dB > 0 and

e
then IT contains exactly one

paper we restrict to continuous t and u with

IT = { n I n(B) = q(B)/C
q

with l(B)sq(B)$U(B)

and Cq- Jq(B)dB },

e
where land U are given and 0 s l(B) s u(B)

Ju(B)dB < m. If t(B) = u(B) for all Bee

e
probability density and the standard situation without imprecision occurs.

This report is restricted to imprecise prior probabilities. Another possible

generalization of the standard Bayesian decision theory is obtained by

allowing imprecise loss functions. However, if it is only known that the

loss function L(d,B) is between two functions, say ~(d,B) s L(d,B) s L(d,B)

for all deD and BeS, then the analysis does not become much more difficult,

as (3), (4) and (5) imply that the lower bound of the set of all possible

values for the expected loss must be calculated using L(d,B), and the upper

bound using L(d,B) .
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3. Bounds for expected loss

To choose an optimal decision the sets &f(d,TI) for all deD must be compared.

An attractive simplification is derived by replacing this problem by one of

comparing intervals [&f(d,TI),&f(d,TI)]. This reduces, for each deD, the

calculation of EL(d,n) for all neTI to the calculation of only two values,

and seems to be reasonable as &f(d,TI) c [&f(d,TI),~(d,TI)] whereas no

smaller closed interval exists that contains &f(d,TI). However, it is still

not clear that this reduces the amount of calculation. To this point,

theorem 3.1 is an important result for TI of the form (6), as it shows that

&f(d,TI) and &f(d,TI) are determined by a subspace of TI consisting of

probability densities that depend on L(d,S), t(S) and u(S), and that can be

characterized by one parameter that belongs to a parameter space that is

bounded if the loss function is bounded. To derive at theorem 3.1 several

additional definitions and lemmas are needed.

For each decision deD we define

L1 ,d = inf{L(d,S) IseS} and L
u,d

sup{L(d,S) IseS}], (7)

which may be equal to -00 or +00, and a partition of the parameter space S

(for ~ e [L1 ,d,Lu ,d])

S (d,~)
u

{seSI L (d, S) >~} ,

{seSIL(d,S)<~} .

8 (d,~)
~

{seSIL(d,S)=~} and

(8)

From this point we restrict to situations where the loss function L(d,S) is

such that

3.1 we will discuss the situation without this restriction.

I dS

e (d,~)
~

After theorem

o for all (9)

Remark that, if 8=~, this restriction implies that there is no interval in

e on which L(d,S) is constant.

For deD we define, for ~ e [L1 , d' Lu , d] :

C d(~) = J u(S)dS + J t(S)dS and (10)u,
8 (d,~) 8

1
(d,~)

u

5



J t(a)da + J u(a)da.

8
u

(d,u) 8
1

(d,u)

(11 )

We define two probability densities in TI that depend through u on the above

partition of 8:

{u(a)jc d(U) for aeS (d,u)u8 (d,U)
u u, u U andn
d

(a) =
,u t (a) jc d(U) for aeSl(d,U)u,

1 {t (a) jcl , d(U) for Bee (d,u)u8 (d,u)
n

d
(a) u U

,u
u(a)jcl,d(U) for BeSl(d,U)

(12)

(13 )

Next we define subspaces of TI by considering the normalizing constants of

original densities between t and u that determine the probability densities

in TI. With

and C
u.

Ce = Je(a) da

S
we define, for C

t
~ C ~ C

u
:

JU(a) da,

S

(14)

TI(C) = { neTI I n(a) = q(a)jC
q

with e(a)~(a)~(a) for all Bee

and C
q

= Jq(a) da = C }. (15)

e

Lemma 3.1
C

u.
TI = U TI (C)

C=Ce
and

C
u.

TI = U TI (C)

C=Ct

L
u, d

U TI(C d(U»,u,
U=Ll,d

(16)

(17)

Proof

The first equality is an obvious consequence of (15)"

The second equality of (16) holds because restriction (9) and continuity of

t(a) and u(a) imply that C d(U) is a continuous non-increasing function of
u,

u, with C d(Ll d) = C and C d(L d) = Ceou, , u u, u,
Analogously, the second equality of (17) holds because CD (U) is a

<.., d

,
6



continuous non-decreasing function of U, with Ct,d(L1,d)

Cl,d(Lu,d) = Cu· o

Lemma 3.2 is an important result for the proof of theorem 3.1.

Lemma 3.2

Let deD, and let ~ e [L1,d,Lu,d). Then the following relation holds for

all probability densities n e IT(C d(U)):
u,

EL(d,n)
u

:5 EL(d,n
d

).,u

And for all 1l e IT(C1 , d(U)) :

EL(d,n)
1

~ EL(d,n
d

).,u

(18)

(19 )

Proof

Thenfor all gea.

be a corresponding function between l1l e IT(C d(U)) and let q (9)u, n
so n(9) = q (9)/C d(U) with l(9):5q (9):5U(9)n u, 1l

JL(d,9)n(9)d9 JL(d,9)qn(9)d9/Cu ,d(U)

a a
EL(d,ll)

and u,

We prove (18).

Let

J L(d,9)q (9)d9/C d(U) +n u,
a (d, u)

u

J L(d,9)q (9)d9/C d(U)n u,
8

1
(d,U)

J JL(d,9)U(9)d9/C d(U) +u,
8 (d, u)

u

L(d,a)l(a)da/c d(U)u,
8

1
(d,~)

I L(d,a)n~,u(a)da
8

u
EL(d,n

d
).,u

I
To prove the inequality herein we use the fact that

Cu,d(~) = I u(9)da + I l(a)da =

8u(d,~) 81(d,~)

I qn (a) da,

8
1

(d,U)

so I [u(a)-qn(a»)da

e (d, u)
u

J
which, in combination with (8), leads to
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J L(d,a)u(a)da + J L(d,a)l(a)da - J L(d,a)qn(a)da - J L(d,a)qn(a)da

8u(d,~) 8
1
(d,~) 8u(d,~) 8 1 (d,~)

J
~ J ~[U(a)-qn(a)]da +

8 (d,~)
u

J ~[qn(a)-l(a)]da +

81(d,~)

J

J

J

J

Remark that restriction (9) is necessary.

The proof of (19) is analogous. [J

Now theorem 3.1 can be proved. This is an essential result since it shows

that for a given decision deD, one need consider only probability densities
u -

of the form n
d

(a) to determine g~(d,TI), and probability densities of the
1 ,~

form n
d

(a) to determine g~ (d, TIl •
,~

We define

(20 )

{ EL(d,n) I n e TI~ }; (21 )

(22 )

(23 )

1
g~ (d, TId)

1
g~ (d, TId)

{ EL(d,n) I n E TI~

1
inf g~(d,TId).

B

and (24 )

(25 )



Theorem 3.1

Let deD and let the loss function L(d,B) satisfy restriction (9), then

(26)

and

ts~cd,m C27 )

Proof

We prove (26).

ts~cd,rr) = sup {ELCd,n) IneTII = sup {sup {ELCd,n) IneTICC) I

sup

sup

{sup {ELCd,n) jneTICC d(U» I I U e [L
1

d,L dl I =u, , u,
u u --- u

{ELCd,nd,u) I U e [L1,d,Lu,dl I = sup g.'£(d,ITd ) ts.'£(d,TId )·

The second and third equality are based on lemma 3.1, the fourth on lemma

3.2. The other equalities follow from (4), (5), (20), (21) and (22).

The proof of (27) is analogous. c

In theorem 3.1 restriction (9) needs to be satisfied. Of course loss

functions that do not satisfy this restriction can be of interest, so the

above theory needs to be generalized. We first consider what happens if

restriction (9) is not satisfied, so if

C28 )

C29 )

and

lim C dew)
W~U U,

J dB > O.

e (d,u)
u

and (17)

such that

C d(U-) = lim C dCW)
U, i u,wu

Then the second equalities of (16) do not hold, as C d(U)u,
C~,d(U) are no longer continuous functions of u. In fact, if

+
and C d(U)u,

and

and (30)

exist, then

9



C d(~) J u(B)dB + J u(B)dB + J i (B) dB; (31 )
u,

8 (d,~) e (d,~) 81(d,~)
u ~

+ J J i(B) dB + J i (B) dB. (32)C d(~ ) u(B)dB +
u,

8 (d,~) 8
1
(d,~) 8 (d,~)

u ~

C1,d(~ ) J l(B)dB + J l(B) dB + J u (B) dB; (33)

e (d,~) 8 (d,~) 8
1
(d,~)

u ~

+ J l(B) dB + J J u(B)dB. (34)Cl,d(~ ) u(B)dB +

e (d,~) 81(d,~) e (d,~)
u ~

- +
C E (C d(~ ),C d(~» andu, u,

If J [U(B)-i(B)]dB> 0,

L
u,d

then n E U TI(C d(~)) for n E TI(C)u,
~=Ll,d

L
u,d

n E U TI(C1,d(~» for n E TI(C) if

~=L1,d

if

are a non-empty intervals. This implies that lemma 3.1

- +
C E (C1,d(~ ),C1,d(~ »,

- +
(C1,d(~ ),C1,d(~ »

whereas
- +

(C d(~ ),C d(~»u, u,
and

does not hold anymore.

To solve this problem, we define (for ~ E [L
1
,d,L

u
,d] and q E [0,1])

*C d(~,q)u,

and

C d(~) +u, J [qu(B)+(l-q)i(B)]dB

8~(d,~)

(35)

J [ql(B)+(l-q)u(B)]dB.

8 (d,~)
~

(36 )

Of course, if J *dB = 0 then C d(~' q)u, C d(~) andu,
8 (d,~)
~

C1,d(~) for all q E [0,1].

10



Further, we define

* ( neTT I = q(B)/CTT(C d(U,q» n(9) with l(9) SQ.(9) Sti(9)
u, q

J q(9)d9 == *for all geS, C == C d(U,q) and
q u,

e

I q(9)d9 == I [qu(9)+(1-q)l(9»)d9 } , (37)

e (d, u) e (d, u)
U U

and

* ( neTT I ... q(9) IcTT(Cl,d(U,q) ) n(9) with l(9) SQ.(9) Sti(9)
q

Jq(9)d9 = *for all geS, C = Cl,d(U,q) and
q

S

J q(9)d9 J [ql(9)+(1-q)u(9»)d9 } . (38 )

e (d, u) S (d,u)
U U

Lemma 3.3 is a generalized form of lemma 3.1.

Lemma 3.3
C L

u,d 1u
*TT == U TT (C) U U TT(C d(U,q» (39 )

C=C
t U=Ll,d q=0

u,

and

C L
u,d 1u

*TT ... U TT( C) U U TT (C
l

, d(U, q» . (40 )
C=C

t U=Ll,d q=0

Proof

The second equality of (39) follows from

(41 )

where again continuity of t(9) and u(9) plays a role.

The proof of (40) is analogous.

11
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Definitions (12) and (13) must also be replaced in this generalized

situation. Here we use the fact that we know that L(d,e)=~ for all

eee (d,~), so to determine e~(d,rr) and e~(d,rr) we do not need to specify
~

probability densities analogous to definitions (12) and (13) for all eee.

We define, for all q e [0,1]

lId
U

, * (e)
,~,q

*u(e)jc d(U,q)
U,

*l(e)jc d(~,q)
U,

for

for
(42)

whereas we do not need to specify

these values need to be such that

lIU
d

, * (e)
,u, q

exactly for See (d, U) ,
~

but

U * *lId' (e) = q(e)jc d(U,q) for See (d,~), where q is some density
,u,q u, u

between land u, so i(9) ~ 9(9) ~ u(9), with

f 9(9) de

8 (d,~)
u

f [qU(e)+(1-q)l(e))d9.

8 (d, u)
~

(43 )

Analogously, we define, for all qe [0, 1]

.{ *
1I~' * (e)

l (9) jcl , d(U, q) for gee (d,u)
u

*,~,q

ute) jcl , d(~' q) for eeel(d,~)

1 *and the values of lId' (e) for eee (d,~) need to be such that
,~,q U

(44 )

lI~::,q(e) = 9(9)jc~,d(~,q)

between land u, so i(9) ~ 9(9) ~ u(9), with

for See (d,~), where 9 is some density
~

f
8 (d,~)
~

9(9)d9 f
8 (d,~)
~

[q£(9)+(1-q)U(9)]d9. (45 )

For both (43) and (45) it is possible to derive such 9(e) for each

q e [0,1]; for 9 we could even choose continuous functions as t and u are

continuous. However, we do not need to specify these 9.

Now a generalized form of lemma 3.2 is given.

12



Lemma 3.4

Let deD, u e [L1,d,Lu,d]' and qe[O,l]. Then the following relation holds

*for all probability densities x e TI(C d(U,q)):u,

EL(d,x) u *
:5 EL(d,X

d
' ) .,u, q

(46)

*And for all x e TI(C1,d(U,q»:

EL(d,x) 1 *
~ EL(d,x

d
' ) .
,u,q

(47)

Proof

for all Bea, and

Then

£(8):5q (8) :5U(8)
1l

be a corresponding function between £

[qu(8)+(1-q)£(8)]d8.J
n (8)

*n e TI(C d(U,q» and let 9 (8)u, x

*9 (8)/C d(U,q) withx u,

J

We prove (46).

Let

also with

and u, so

EL (d, x) J L(d,8)x(8)d8

a

J

a (d, u)
u

J

J
J

J
*L(d,8)q (8)d8/C d(U,q)x u,

a1 (d, u)

*U[qU(8)+(1-q)i(8)]de/c d(U,q)u,
e (d, u)

u

+

+

J

*uq (8)d8/C d(U,q)
1l U,

a (d, u)
u

*L(d,8)9 (8)d8/C d(U,q) +
1l U,

a (d,u)
u

J L(d,8)U(8)d8/C:,d(U,q) +

e (d,u)
u

J
+ J

= J
a

The inequality is proved analogously to the proof of lemma 3.2.

The proof of (47) is analogous. []

13



Now a generalized form of theorem 3.1 can be proved. We define

TI
u , * = { u, * I
d

nd e TI u e eLl d,L d)' q e [0,1) I;, u, q , u,
(48 )

g,f (d, TI~' *)

g,f (d, TI~' *)

u *
{EL(d,n) In e TId' }; (49 )

(50 )

TIl, * { 1, * TI I [ ) [0 1 ) }d = nd,u,q e u e Ll,d,Lu,d' q e , ; (51 )

(;,f (d, TI~' *) 1 *
{ EL(d,n) I n e TId' and (52)

(53)

Theorem 3.2

Let deD, then

(;,f(d,TI> - u *= (;1:, (d, TId' ), (54)

and

(;1:, (d, TI> 1 *(;1:, (d, TId' ). (55 )

Proof

We prove (54).

(;1:, (d,TI) = sup {EL(d,n) IneTI} = sup (sup {EL(d,n) IneTI(C)} I ce[ct,cu )}

*sup {sup {EL(d,n) IneTI(C d(U,q»} I u e eLl d,L d]' ge[O,I]} =u, , u,

sup {EL(d,n
d
u,* ) I u e [L

l
d,L dl, ge[O,I] I = sup (;1:,(d,TT

d
u
,*)

,u,q , u,

The second and third equality are based on lemma 3.3, the fourth on lemma

3.4. The other equalities follow from (4), (5), (48), (49) and (50).

The proof of (55) is analogous.
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The above theory suggests that, to determine g2(d,TI) and g2(d,TI), we need to

calculate u *EL(d,lld' ),u,q
and 1 *EL (d, lld' ),u,q

for all and

qe [0,1) • However, (see remark after (36) ) , if J dB = 0 then

8 (d,u)
u

u * u 1 * 1
allEL(d,lld' ) = EL(d,lld ) and EL (d, lld' ) EL(d,lld ) for

,u,q ,u ,u,q ,u

qe [0,1). Next we show that also for u e [L1, d' Lu, d J with J dB > 0

e (d,u)u
u * 1 *it is not necessary to calculate EL(d,lld' and EL(d,lld' ) for all, u, q , u, q

q e [0,1). This will lead to theorem 3.3, a more useful result than theorem

3.2.

Lemma 3.5

Let deD, and let

u *EL(d,Tt
d

' ),u, q

u e [L1,d,Lu,dJ • Then, for all q e [O,lJ

u *
S sup (EL(d,lld' ) I q e {O,l}}

,u,q
(56)

and

EL(d,llld'* ) ~
, u, q

1 *inf (EL(d,lld' ) I q e {O, 1ll.,u, q
(57)

Proof

We prove (56). Let q e [O,lJ, then

8 (d,u)
u

EL (d, lld
u

, * )
,u,q J u *L (d, B) lld' (B) dB

,u,q
8

A + Uh(q)
B + h (q)

L(d,B)l(B)dB;JL(d,B)u(B)dB +JAwith

B J u (B) dB + J t (B) dB;

8
u

(d,u) 8
1

(d,U)

and h(q) = J [qu(B)+(l-q)l(B) JdB.

Su(d,U)

If u > AlB then the function
A + Uh(q)
B + h (q)

is an increasing function of

h(q), and since h(q) is a non-decreasing function of q it follows that

A + uh (q)
B + h (q)

A + uh(l)
B + h (1)

for all q e [0, 1J . (58)

15



If ~ < AlB then the function
A + ~h (q)

B + h (q)
is a decreasing function of

h(q) so
A + ~h (q)

B + h (q)

A + ~h (0)

B + h (0)
for all qelO,lJ. (59 )

Finally, if ~ = AlB then the function

of h(q).

The proof of (57) is analogous.

A + ~h (q)

B + h (q)
is a constant function

D

To derive a result that reduces the amount of calculation compared to

theorem 3.2, we define

(60)

u **{ EL(d,1l) I 1l e IT
d

' };

u,**
supgil(d,IT

d
);

(61)

(62)

(63)

1 **{ EL(d,1l) I 1l e IT
d

' and (64)

(65)

Theorem 3.3

Let deD, then

gil (d, TIl - u **= gil (d,IT
d

' ), (66)

and

gil (d, TIl 1 **gil (d, IT
d

' ). (67)

Proof

Equalities (66) and (67) are based on lemma 3.5 and theorem 3.2 together

with definitions (60)-(65).
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For each deD, the problem of determining g~(d,rr) and g~(d,rr) can, as a

- u **result of theorem 3.3, be replaced by the problem of determining g~(d,rrd' )

1 **and g~(d,rrd' ). To solve these optimization problems we must consider

u * 1 *
EL(d,Wd;U,q) and EL(d,Wd;u,q) for all u e [L1,d,Lu,dJ and q e ID,l}.

We next show that these optimization problems are much simpler than they

seem to be, because of the form of

functions of u.

u *EL (d, W
d

' ),u, q
and 1 *EL(d,w

d
' )
,u,q

as

Lemma 3.6 is an important result on which the proof of the remarkable

theorem 3.4 is based. We introduce a new notation:

8
1u

(d,U)

Lemma 3.6

leeeIL(d,e)~}

leeeIL(d,e)sU}

e (d,u)u8 (d,u) and
u U

Let deD and

hold:

u *For EL(d,w
d

' ) the following relations
,u,q

If u *minIEL(d,Wd' ) IqeID,l}} ~ u,,u,q then for all ID e [L1, d' u) :

u * u *maxIEL(d,w
d

' ) IqeID,l}} s maXIEL(d,wd' ) IqeID,l}}.
,ID, q ,u, q

(69 )

If u *max I EL (d, w
d

' ) IgE I D, 1 }} s u,
,u,q then for all ID e (u, L d J :u,

u * u *maX{EL(d,w
d

' ) IgE{D,I}} s max{EL(d,w
d

' ) IgE{D,I}}.
,ID, q ,u, q

1 *And, for EL(d,w
d

' ) analogous relations are:,u, q

(70 )

If 1 *min{EL(d,W
d

' ) IgEID,I}} ~ u,
,u,q then for all

1 * 1 *min{EL(d, w
d

' ) IgE{ 0, I}} c: min{EL(d, w
d

' ) IgelD, I} } .
,ID, q ,u, q

(71)

If 1 *max{EL(d,w
d

' ) IgEID,I}} s u,
,u,q

then for all ID e (u, L d J :u,

1 * 1 *min{EL(d,W
d

' ) IgEID,I}} c: minIEL(d,wd' ) IqeID,I}}.
,ID, q , u, q

17
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Proof

u,we [L1,d,Lu,d] with w < u. We need to

u *EL(d,n
d

' ) for all four possible
,w,qw

q elO,l}. Let q =q =0, then the fact that thew u w

We prove (69) and (70).

For the proof of (69), let

u *compare EL(d,n
d

' ) with
,u,qu

combinations of q elO,l} and
u

following relations hold:

8
uU

(d,U) ~ 8
u

(d,W), 8
1w

(d,W) ~ 8
1

(d,U) and

au (d,w) \8
u

(d,u) {BeS IUJ<L(d, B) SU} = 8
1U

(d, u) \8
1w

(d, w) ,

leads to

(73 )

u * u *
EL(d,n

d
' 0) S EL(d,n

d
' 0) ~, w, , u,

J L (d, B) u (S) d8 + J L(d,S)l(8)d8

8 (d, w) 81
w

(d,w)
u *u

J
S EL (d, n

d
' 0)

u(8)d8 + J l(8)d8 ' u,

8 (d, w) 8
1w

(d,W)
u

JL(d,S)u(8)dS + JL(d,S)l(S)d8 + JL(d,S) [u(8)-l(S)]dS

8 (d,u) Sl •• (d,U) 8 (d,w)\S (d,u)
u 'U u U

J u(S)d8 + J l(S)d8 + J [u(S)-l(S)]d8

Su(d,U) 8
1U

(d,u) Su(d,W)\8
u

(d,U)

J L(d,B)U(9)dS + J L(d,9)l(8)d9

8
u

(d,U) 81
U

(d,U)

J u(9)dS + J l(S)dS

S (d, u)
u

JL (d, 9) [u (B) -l (9) ] dS

8 (d,w) \S (d,u)
u u u *-----J-=----------- s EL (d, nd ' 0)',u,

[u (B ) - t (B) ] d9

e (d,w)\S (d,u)
u u

(74)

From the fact that L(d,B) s u for all 9 E S (d,w)\S (d,u),
u u

we conclude

u *that (74) holds if EL(d,n
d

' 0) ~ u., u,
The proof is similar for the other three possible combinations of qu and qw'

18



for which one has to replace the partitions of e but for which analogous

relations as (74) appear. This completes the proof of (69), as

maX{EL(d,lt
d
u,* ) IgE{0,1}} :5 min{EL(d,lt

d
U '* ) \gE{0,1}}

, UJ, q , u, q

U *
:5 max {EL (d, ltd' ) IgE {0, 1 } } .,u, q

(75)

The proof of (70) is quite similar to that of (69). Let u,~ E [L1,d,Lu,d]

with ~ > u and let q =q =0, then analogous relations as (73) are used to
u ~

prove that:

u *EL(d,1td ' 0):5,~,
u *EL(d,1td ' 0), u,

I L ( d, a) t (a) da ­

81
U

(d, u)

e1U(d,U)

I L(d,a)u(a)da +

8 (d,u)
u

I u (a) da +

e (d, u)
u

I t (a) dS -

JL(d,a) [u(a)-l(B)]da

e (d,U)\e (d,~)
u u

I [uta) -l(a) ]da

e (d, u) \e (d, w)
u u

I L(d,a)u(a)da + I L(d,S)l(a)dS

8
u

(d,u) e1U(d,U)

I u(a)dS + I l(a)dS

8 (d,u)
u

I L ( d, a) [u (a) - l (a) ] dS

8 (d, u) \e (d,~)
u u

J[u ( a) - l (a) ] da

e (d,U)\e (d,w)
u u

u *
~ EL (d, Tr

d
' 0)', u, (76)

From the fact that u < L(d,a) for all a E e (d,U)\e (d,~), we conclude
u u

u *that (76) certainly holds if EL(d,Tr
d

' 0):5 U., u,
Again the proof is analogous for the other three possible combinations of qu

and q , for which one has to replace the partitions of e but for whichw
analogous relations as (76) appear. This completes the proof of (70), again

by use of (75).

The proofs of relations (71) and (72) are analogous.
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Theorem 3.4 is a useful result for the optimization process necessary to

calculate gf(d,TT) and gf(d,TT), as it gives us as well a strong tool to

delete a part of e while searching for these optima (after one calculation)

as a sufficient condition for a calculated value to be such an optimum.

We define

U ** u *TT' = { TC ' e TT I w. e [(9, L d]' q e {O, I} };
d, (9+ d, w., q u, (77 )

u **gf(d TT' ) = { EL(d,n), d,(9+
u **IneTT' };
d,(9+

(78 )

u,**supgf(d,TT
d

);
, (9+

(79)

(80)

u **gf(d TT' ) = { EL(d,n), d, (9-
u **I neTT' );d,(9- (81)

- u **gf(d,TT
d

' )
,0\9-

u,**supgf(d,TT
d

);
,0\9-

(82)

1 ** 1 *
TT' = { n ' e TT I w. e [0\9, L d], q e {O, I} };d,0\9+ d, w., q u, (83)

1 **gf(d,TT
d

' )
,0\9+ ( EL(d,n)

1 **
IneTT' };

d,0\9+
(84)

1 **gf (d, TT
d

' )
- ,0\9+

1,**infgf(d,TT
d

);
, 0\9+

(85)

(86)

1 **gf(d TT' ), d,0\9- { EL(d,n)
1 **

/TCeTT' };
d,0\9-

(87)

1,**inf gf(d,TT
d

);
,0\9-
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Theorem 3.4

u *
If min I EL (d, 1ld' ) Ige {O, I} } ~ ~, then

,~,q

n (d, TI)
- u ** (89).. f;.f (d, TId: ~+) •

u *If max{EL(d,ll
d

' ) Ige{O, I}} :S ~, then
,~,q

f;.f(d,TI)
- u ** (90)= f;.f (d, TId' ).

,~-

1 *If min{EL(d,ll
d

' ) I gel O,l} } ~ ~, then
,~,q

f;.f(d,TI)
1 ** (91)= f;.f (d, TId' ).

- ,~+

1 *If maX{EL(d,ll
d

' ) IgelO,l}} :S ~, then
,~, q

f;.f(d,TI)
1,** (92)= f;.f (d, TId, ~_) .

u * u *
If minIEL(d,lld' ) Ige{O,l}} max{EL(d,ll

d
' ) IqEIO,l}} ~, then

,~,q ,~,q

f;.f(d,TI) = ~. (93)

1 * 1 *If min {EL (d, 1ld' ) I ge {O, I} } = max{EL(d,ll
d

' ) IgelO,l}} ~, then
,~,q ,~,q

f;.f(d,TI) = ~. (94)

Proof

Relations (89)-(92) are based on theorem 3.3, lemma 3.6 and definitions

(77)-(88). Relation (93) is a result of combination of (89), (90) and lemma

3.6, and (94) of combination of (91), (92) and lemma 3.6. c

For a special loss function L(d,S) corollary 3.1 is a useful result of

theorem 3.4.
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Corollary 3.1

Let deD and let L(d,8) be continuous, bounded (so L d>-oo and L d<oo) and
1, u,

such that restriction (9) holds. As assumed before, let l(8) and u(8} also

be continuous.

&'.f(d,IT> and

such that

(95)

(96 )

Proof

We prove (95).

Let then, as restriction (9) holds, theorem 3.4 states

that a sufficient condition for &'.f(d,IT) = ~O

For ~ e [L1 ,d,Lu ,d):

EL(d,rr
d
U

) - ~ = 0
,~

J [L(d,8)-~lu(8}de

e (d,~)
u

is

J [~-L(d,e)ll(e}de

e1(d,~}

(97)

In (97) k
1
(~) is a continuous non-increasing function of ~, with

k1 (L1 ,d) = J[L(d,8)-L1 ,d)u(e)de ~ 0 and k
1

(Lu,d) = 0, and k2(~) is a

e
continuous non-decreasing function of ~, with k

2
(L

1
,d) = 0 and

one

J[LU,d-L(d,S»)l(S)dS ~ O. This implies that there is at least

e
[L1 ,d,Lu,d) for which k 1 (~O) = k2(~O)' which proves (95).

The proof of (96) is analogous. []

of the form (6) with continuous l(S) and u(8) given, such that

L(d,S) are known (deD, Bee) and that IT is

Jl(8} de > 0

eJu (8) de < 00.

e

The theory in this section allows us to describe a simple algorithm to

calculate &'.f(d,IT) and &'.f(d,IT) for a decision deD, if IT is of the form (6).

Hereto, we assume that D, e and

and
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such that all e. have equal measure (so
~

8,ee, multiplied by
~ ~

If n is large this approximation will be reasonable. If e is

If e is bounded then it is possible to define a partition tel' .. ,en } of e

Jd8 Jd8 for all

e. e.
~ J

for a function of interest isi,j e {l, .. ,n}). The integral over e.
~

approximated by the value of that function in one point

Jd8.

e,
:l.

unbounded, we must define bounds such that the integral over the bounded

subspace is a good approximation of the integral over e. This is a standard

method of numerical integration.

Quite informally an algorithm for the determination of g~(d,n) for a

decision deD can be described by the following steps (given d):

1. Determine L1,d and Lu,d (in many cases approximations can be used).

2. Take a ~ e [L1,d,Lu,d]' Calculate JL(d,8)n~::,q(8)d8, if necessary

e
numerically by using a partition {e. li=1, .. ,n} as described above,

~

calculating L(d,8,) for some 8,ea, for all i, multiplying this by u(8,) if
~ ~ ~ * :l.

L(d,8,»~ or by £(8.) if L(d,8,)<~, and approximating EL(d,n
d
u

, ) by the
~ ~ ~ ,~, q

sum of these terms divided by the sum of the u(8,) and £(8.) used herein. If
~ ~

L(d,8,)=~, then we have to perform two calculations, one using u(8,) and one
~ ~

using £(8.), and afterwards take the largest of the corresponding results.
~

3. Compare the (approximate) value of JL(d,8ln
d
u ,* (8)d8 to ~ and use the
,~,q

a
results of theorem 3.4 to determine whether these steps must be repeated

using a new value We(~,Lu,d) or We[Ll,d'~)' or the calculated value is the

maximum we are looking for (or a good approximation to it). If the maximum

is not yet found, repeat steps 2 and 3 until the maximum is found (or an

approximation) .

During this calculation of g~(d,n) we can also perform the necessary steps

to calculate g~(d,n).

To end this section, we present a simple example of the above theory.
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Example 3.1

Let, for a given decision deD, the loss function be equal to

L(d,B) = B(l-B), with Be[O,l]. We want to determine, for this decision d,

e~(d,rr) and e~(d,IT), with IT given according to (6), with t(B) = 1 and

u(B) = 2 for all Be[O,l]. As L(d,B) is not constant on an interval of

positive length, this loss function satisfies restriction (9) and theorem

3.1 holds. Therefore, we can restrict to probability densities of the form

(12) to determine e~(d,IT) and of the form (13) to determine e~(d,IT).

For this example, we have L1,d=0, L
u

,d=1/4 and, for -1.ge[0,1/4],

8
u

(d,-1.9) «1-h-4U)/2, (1+Vl-4-1.9)/2),

8 1 (d,-1.9) [0, (1-Vl-4U]/2»U«1+Vl-4-1.9)/2,1] and

8-1.9 (d, -1.9) { (1-h-4U) /2, (1+Vl-4U) /2), from which it is clear that indeed

restriction (9) holds.

Further, C
u

,d(-1.9) = 1+Vl-4-1.9 and C
1

,d(-1.9) = 2-Vl-4u. Using theorem 3.1 we

can determine e~(d,rr) by maximization of
u

EL(d,1l
d

)
,-1.9

(for

1 + (1+2-1.9)~

6 (1+V1- 4U)
by minimization ofand £5~(d,TIl

e~(d,rr) = 0.1435leading to

(for -1.9=0.1875)e~(d,rr) = 0.1875

2 - (1+2-1.9)~

6 (2-h-4U)

1
EL(d,1l

d
)

,-1.9

leading to

-1.9=0.1435) .

The fact that the optima are equal to the values of -1.9 for which these optima

are adopted is in agreement with theorem 3.4.
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