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by 
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The Netherlands 

Abstract 

The asymptotic behaviour for x + 00 of solutions y(x) of the initial value 

problem yy" + 2xy' = 0, yeO) = Ct > 0, y'(O) = 8, and also the asymptotic 

behaviour for 8 + +00 and for 8 + -00 of· L : = lim y(x) is investigated. 
x+oo 

I. Introduction 

In this paper we consider the following initial value problem 

( 1) yy" + 2xy I o (x > 0) 

(2) yeO) a. > 0, y '(0) = 8 . 

Equation (I) occurs in boundary layer theory (see [1], p. 22 - 23) and arises 

from the diffusion equation 

uo -e e 

ae 
at (D~) dZ dZ' 

and if C only depends on x then y := e-C satisfies (1). 



- 2 -

In boundary layer theory one is also interested in the boundary value 

prob lem (l), (3) with 

(3) yeO) = a > 0 , y(oo) = L > 0 • 

A case of special interest is 

(2') yeO) = y' (0) y , 

since all solutions of (1), (2) are expressible in solutions of (1), (2') 

by means of the transformation (11) (see Section 2). We shall study the 

asymptotic behaviour of solutions y(x,y) of (1), (2') for x + roo Moreover, 

we shall pay attention to the asymptotic behaviour of the limit 

L(y) := lim y(x,y) for y + 00 and y + -00, since physicists seem interested 
x+oo 

in large values of Iyl. 
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2. Results 

In Section 3 the following fundamental results are proved. There exists a 

unique solution Y(',a,S) of (1), (2), defined on [0,00). This solution 

y(x,a,S) tends monotonically to a positive limit L(a,S) if x + 00. The 

transformation rule 

(11) y(x,a,S) 
_1 

ay(a 2 x,y) L(a,S) a L(y) y 
-' a 2 S 

enables us to consider only the solution y(.,y) of (1), (2') and its limit 

L(y). This limit is a continuous increasing bijection L : ~ + (0,00). Hence 

the boundary value problem (1), (3) has a unique solution. 

In Section 4 the asymptotic behaviour of y(x,y) for x + 00 is determined. 

(20) 

where 

y(x,y) 

00 

A ! 'If! L! Y exp [2 f s (L -1 - (y (s , y ) ) -1 ) dS] • 

o 

(x + 00) , 

In Sections 5 and 6 bounds for the limit L(y) are determined. 

(36) 2 2 -1 2 
2 LO log(l + LO Y ) < L(y) - LO Y < 47 LO log(1 + 3(16) y) + 47 LO 

(y > 1.8) 

(56) -2 2 -2 
1 - y < L (y) exp [! y +! ] < 1 + y (y < -7) , 

where LO = 0.3574 ..• denotes the limit of the special solution y of (1) 

with initial values yeO) = 0, y'(O) = 1. 
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3. Preliminaries 

We shall investigate existence and uniqueness properties, and prove the 

continuous dependence of the limit as functions on the initial values. 

(4) Theorem. There exists a unique solution y of the initial value problem 

(I), (2) which is defined on [O,w). This solution y is positive and mono-

tone, and y(x) tends to a positive limit L if x + 00. 

Proof. According to well-known existence and uniqueness theorems (see for 

example Sections 1.1 and 1.2 of [2J), there is a positive number, say 0, 

such that there is a unique solution, say y, of (1), (2), defined on [0,0). 

Let I be the maximal interval of the form [O,a), (possibly a may be 00) on 

which Y is positive and satisfies (I), (2). Dividing both sides of (I) by 

yy', integrating over [O,xJ with x E I we get 

(5) 

x 

y'(x) = Sexp[-2 f S(Y(S»-ldS] 

o 

a result also correct if y' = O. It follows that 

(6) 

(x E I) , 

(x 1£ I) • 

Let a > 0, a € I. Dividing both sides of (1) by xy integrating from a to x, 

X E I, x > a, taking exponentials, we find 

x 

(7) y(x) = yea) exp[~a-lY'(a) - ~x-ly'(x) -! J S-2 Y'(S)dS] • 

a 
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From (6) and (7) we infer that 

(8) 
< -1 

y(x) ; yea) exp[!a y'(a)] (a < x, x € I) , 

where ~ holds if S ~ 0 and> if S < 0. It follows from (5) and (8) that y 

is bounded, and increasing if B > 0, and that y is bounded away from zero 

and decreasing if B < 0, and that I = [0,00). Clearly lim y(x) exists and 

is positive. 

We shall denote the solution of (I), (2) by y(x,a,S) and its limit by 

L(a,B). In the case of (I), (2') we write y(x,y) and L(y). Simply by in-

spection we can prove 

(9) Theorem. For every A > ° 
(10) 2 2-1 

y(x,A a,AB) = A yeA x,a,B) 
2·· 2 

L(A a,AS) = A L(a,B) • 

Theorem (9) enables us to consider, without loss of generality, only the 

initial value problem (1), (2'). We have 

(I I) y(x,a,B) 
_1 

a yea 2 x,y) L(a,B) = a L(y) 
_1 

I" a 2 S 

(12) Theorem. L(o) : m + (0,00) is an increasing continuous bijection. 

Proof. Let 1"2 > 1"1' Then there is a <5 > ° such that y(x,Y2) > y(x,YI) on 

[0,6). Suppose that there exists a positive ~ such that y(xO,Y2) = y(xO,YI) 

and y(x,Y2) > y(x,YI) for 0 < x < xo· Clearly yl(~'Y2) < y'(xO,y J), 

Dividing (1) by y and integrating from 0 to x we find 

x 

(13) y'(x,y) - y + 2xlogy(x.y) = 2 f s logy(s,y)ds • 

o 
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Applying (13) twice with Y = Y2 and Y = YI and subtracting both results 

we get for x = Xo 

x 

y'(xO'Y2) - y'(xO'Yt) - Y2 + YI = 2 I slog (y(s'Y2}/(y(s'YI»ds , 

o 

a contradiction since both sides have different signs. It follows that 

In the sequel of the proof we need the formula 

(J 4) log L -2 (y - y'(s»s ds, 

where y = y(o,y), L = L(y), and which is obtained by integration of 

-} -I 
y'y = -!x y". The integral in (14) exists since y"(s) = -2ys + O"(s) 

(s ~ 0) and y - y'(s) = YS2 + 0(s2) (s + 0). Applying (14) to Y2 := y(o,y 2) 

and YI := y(o'YI) respectively, and subtracting the results we get 

(15) 

o 

-1 , -1 
If Y1 > 0 then by (5), YZ > Y2YI Yl which implies directly L2 > 1 + Y2Yl (L 1 - 1), 

and, by (15) and (14) 



IfY t =0 

L2 < (1 + 
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2 
then by (5), Y:2 < Y 2 exp[ -x LZJ which upon integration gives 

I 2 
i 1f~ Y 2) • 

If YZ = 0 then by (5) Yi > y
t

exp[-x
2

] which leads to L} >} + !1f~YI· 

-} 
If Y2 < 0 then by (5) Y2 < Y2Y1 Yj which implies 

-1 -I 
L2 - L 1 < (1 - Y 2 Y I ) (1 - L 1) < (1 - Y 2 Y 1 ) 

It follows that L(o) is continuous and strictly increasing on lR, and, 

moreover L(y) ~ 00 if y ~ 00, L(y) ~ 0 if Y ~ -00. 
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4. Asymptotic behaviour 

First we investigate the asymptotic behaviour of solutions y := y(o,y) 

with y ~ O. Using the inequality y(x) S L := L(y) in (5) we get 

2 y' (x) S y exp[ -x /LJ , 

from which it follows by integration over [x,oo) that 

Hence 

(16) 
-) 2 

y(x) = L + d(x exp[-x /L]) 

It follows that 

(17) Q := 2 f 
o 

exists and that 

-1 -1 
s«y(s» - L )ds 

(x -+ 00) • 

( 18) 
-1 -1 -I 2 

s «y(s» - L )ds = C1(x exp[ -x /LJ) 

x 

Using (17) and (18) ~n (5) we get 

(19) 2 -1 2 y' (x) = y exp[ -Q - x /LJ (1 + C1(x exp[ -x /LJ» 

which upon integration from x to ao gives 

(20) 

(x -+ 00) • 

(x -+ ao) , 
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Secondly we consider the case y < O. Then using L < y(x) < 1 in (5) we 

get y'(x) ~ yexp[-x2J. By integration over [x,oo) it follows that 

-} 2 
y(x) = L + C1(x exp[-x J) (x -+ (0) • 

Repeating the same kind of arguments (after (16» as in the case y ~ 0 

we arrive at the same Formula (20) except for the order term which ~s 

-2 2-1 
now C1(x exp[ -x (L + 1) J). Hence Formula (16) holds. Again by repeating 

the arguments after (16) we get (20). 
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5. Bounds for the limit if y > 0 

By (10) we have 

(21) 
2 -2 

L(I,y) = y L (y ,1) . 

We shall prove that there are positive constants Cl~C2 such that for 

~ > a sufficiently small 

For sinrplicity we write y, L, Yo' La instead of Y(';(1,I), L«(1,I)',Y(';O,l), 

L(O,I) respectively. It is easily seen that 

(23) 2 3 
YO(x) = x - x + ~(x ) (x + 0) • 

Clearly, Formula (5) with e = I holds for YO' It follows by (5) that 

initially y'(x) > Yo (x) , since initially y(x) > yO(x). By standard reasoning 

we can conclude that 

(24) Y I (x) > YO (x) y(x) > Ya(x) + (1 (x > 0) • 

For later use we shall prove the following facts: 

(25) 

(26) 

2 
> x - x 

-2x 
yO(x) < ~(l - e ) 

(27) LO = 0.35742210059 ••• 

2 
> x - x (0 < x S 1) 

(x > 0) 
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Proof of (25), (26) and (27). From YO > 0 and YO(O) = 0 it follows that 

Yo(x) > xYO(x) (x> 0). From (l) we deduce YO > -2 which leads to 

YO > x - x2• Using this last result in (5) we find YO > (1 - x)2 

2 1 3 
(0 < x :s; 1) whence YO > x - x +"3 x (0 

I 
< x:S; 1). Clearly LO > YO(I) >"3' 

-2x -2x 
Using YO(x) < x (x > 0) in (5) we get YO < e and YO < ~(l - e ). 

Hence LO < ~. A numerical computation gives (27). We also need 

Let 0 < a :s; i. The line y ~ a - a2 + (] - 2a)(x - a) is tangent to the curve 

y = x - x2 in the point (a,a - a2). It follows by (25) that 

2 Y2(x) := y(x;a ,I - 2a) equals yO(x) for some x = b < a since Y2(a) < YO(a). 

At x = b we have YO(b) = Y2(b) and YO(b) > Yi(b). We show that yO(x) > Y2(x) 

for all x> b. Immediately to the right of x = b we have yO(x) > Y2(x). Then 

in some interval (b ,b + 0) 

x 

yO(x) = YO(b) exp [-2 J s(YO(S»-ldS] > YO(b) exp [-2 

b 

By standard arguments it follows that yo(x) > Y2(X) ex > b). 

Letting x ~ 00 we find Lea2 ,) - 2a) < LO' By (10) we 

2 2 -2 1 = (l - 2a) L(a (1 - 2a) ,1). Substituting a = et 2 (J 

Now we proceed with the proof of (22). 

2 have L(a ,1 

i -) 
+ 2et) we 

o 

- 2a) = 

get (28). 
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The function K defined by (29) satisfies (30). 

(29) K(x) := y'(x)/YO(x) • 

(30) 
-1 -1 

K'(x)/K(x) = 2x«yO(x» - (y(x» ) , K(O) 1 • 

Using (24) and the inequalities YO(x) < x, YO(x) < 1 for x > 0, we see that 

-] 
K' /K > 2a (YO + 0. ) YO' 

fram which it follows by integration 

2a 
K > (1 + YO/o.) • 

Using (29) and integrating we get 

Y > a + a(2a + 1)-1 [(1 + Yo/o.) 20.+1 - IJ • 

Letting x + 00 we find for all a > 0 

L > 0. + a(20. + 1)-1 [(1 + L
O

/a)2a+l - lJ • 

Using that LO < ~ we derive 

Now we turn to the proof of the right hand inequality of (22). 

Let u := Y - YO' Then u satisfies 

(32) Y uti = -2x u' - yft U o u(O) = a u' (0) = 0 • 



1 
We want an upper bound for u('4)' 
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From (24) we know that u' > 0, and also y > a + YO' Moreover, we have 

123 1 
-Yo s 2, and, using (30), YO (x) > x(1 - x + 3'x ) > '4x on [0,'4]' Hence 

(33) 
3 -1 

u" S 2(a + 4x) u 
1 

(0 S x s 4) . 

We introduce a function v as follows: v(O) = a, v'(O) = 0, v satisfies (32) 

with equality. Thenv(x) :::: u(x) on [O,i], This follows by standard arguments 

using the differential (in-)equa1ities for ~ := u'/u, ~ := v'/v. Since v is 

convex we have v(s) S 48 v
l 

+ a(1 - 4s) (0 S s s i) where VI := v(i). Hence 

3 -1 
V"(S) S 2(a + "4S) (4sv1 + a(1 - 4s». Integrating twice we find 

I 
from which an upper bound for VI arises, thus also for u('4)' We get 

(34) 1 -1 
u("4) < a + a log(l + 3(l6a) ) • 

) 
Finally we shall show that u(oo)/u("4) < C, where C is independent of a for 

1 
a E (0,3')' Defining ~ := u'/u we get from (32): 

-1 -I 2 
cp' = Zx(y y) y' - 2xy cp - cp =: F(x,cp) o 0 

cp(O) = 0 • 

Let ~(x) := (YO + (2xYO)~)(YO)-I. Then ~'(x) - F(x,~(x» = (2x)~(yo)3/2(Yo)-2 + 

~ -1 -) -1 -1 
+ (2xyO) (yO) (x(2(y) - (yO) ) + (2xyO) ). Clearly~' F(x,~) > 0 for 

o < x < 2-~. Further ~' - F(x,~) > 0 for x :::: 2-! provided that 2(y) -) - (YO) -1 > 0 

on [Z-!,oo). This condition is fullfilled, since by (25) and (28), we have 

and the second inequality holds if 0 < a S ~. 
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Further, F(x,O) > 0 (x > 0), and ~ > a (x > 0). It follows (see [3J p. 177) 

that 0 < ~ <: q,. Therefore, 

7; 

i -I II! 
(2xyO) (YO) dx = log(LO/Yo(7;» + 2(2YO(4» -

4 
00 

- 2- l J 
7; 

Using YO(t) > 37/192 (from (25» and YO(t) < e-! (see proof of (26» we find 

(35) 

Combining (21), (3J), (34) and (35) we can summarize the results of this 

section by 

(y > 1.8) . 

Remark. Numerical experiments suggest that 

2 L - La y ,... Clog y (y -+ (0) • 
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6. Bounds for the limit if y < O. 

Integrating (1) in the form y" 
-1 -2xy y' over [I,x] we get 

x 

(37) y(x) = 1 + yx + 2 f 
2 -I 

(s - xs)(y(s» y' (s)ds . 

o 

2 !)2 1 2 Writing s - xs = (s - 2X - t;X and taking exponentials we arrive at 

(38) y(x) 

where 

(39) I(x) 

-2 -} -2 
exp[2x + 2yx - 2x y(x) + I(x)] , 

x 

:= 4x-
2 I 

o 

2 -1 
(s - !x) (y(s» y' (s)ds • 

Since lex) < 0 we have 

(40) 
-2 -I 

y(x) < exp[2x + 2yx ] (x > 0) . 

\ 
-} 2 

Obviously, we have the inequality L < y(2 y\ ) < exp[-!y ], but we can do 

much better. First we will show that 

This inequality states that y(2Iy\-I) is a very good approximation of L for 

large hi. 

Secondly, we will obtain sharp inequalities for y(2Iy\-I) which, by (41), 

will result in sharp inequalities for L. 
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Utilizing (5) with x = a := zhl- l - 212hl -2 and x = 13 := zhl-
1 

respectively, and (40) we have 

z z -Z -) 
> yexp[-(S - a ) exp -2a - 2ya J > 

> y exp[-s12h I -3 expn/JJ . 

Using this in (8) with a = Zlyl-J we get (41). 

In order to obtain good estimates for y(Zly\-I) we have, by (3S), to find 

good estimates for I(2Iyl-l). Therefore we put 

Then, with e := Zlyl-Z we get 

t 

(43) u(t) = -1 + etu(t) exp [ f 
-1 ] (u(s» ds u(O) 1, 

and 0 
Z 

(44) I(2Iyl-l) = f (t - 1)2(u(t»-ldt 

0 

The solution u of (43) has the following global behavioor. It starts with the 

value I, decreases till t = to' where it attains a minimum uo := u(tO) > 0 

ft -1 
and thereafter it increases very rapidly. Since f(t) := u(t) exp [0 (u(s» dsJ 

-I 
is increasing and f(tO) = (e to) we have u(t) :::; -I + t/to (0:::; t:::; to)' 

from which it follows that u(t) :::; ) - t + !t
2
/to ' whence 0 < uo < 1 - ~tO' 

Hence to < 2. 
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We need the relations 

t 

t(u + 1)-1 -I 
f 

-I 
= e s(u(s» ds (45) 

0 
t t 

(46) J 
2 -I -I 

+ (u + t) ( J -1 -I) s (u(s» ds = e: s(u(s» ds - e: , 

0 0 

the correctness of both is easily checked by differentiation. Substituting 

to = to in (42), (45) and (46) we obtain 

(47) 

(48) 

(49) 

-I 
(u(s» ds = -log(e to uo) , 

-1 
s(u(s» ds 

We will now prove that to > 1 for e: > 0 sufficiently small. For suppose that 

to ::;; 1. Then on the one hand we have 

2 
(s - s )ds 

which implies Uo > 1 - ito - ~ t~ ;:: i. On the other hand we have 

-I 
(u(s» ds = -log(e: to Uo) < -log(e: Uo) , 

o 

-) -I 1 
implying that Uo < e: exp[l"- e: ] which contradicts Uo ;:: 6" for 0 < e: < 0.23. 
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In the sequel we need the inequalities 

(50) 

Using (47), (48) and the inequality u(s) ~ - s (0 ~ s ~ 1) we can write 

to (0 -1 f -I -1 
-to log(e: to uO) E - t = 

J 
s(u(s» ds < to (u(s» ds = 

0 
0 0 

1 (0 -\ 

f 
-1 -1 

£ - t > s(u(s» ds + (uCs» ds = 0 
0 1 

\ to 

J 
-\ 

f 
-] -\ 

= (s - l)(u(s» ds + (u(s» ds > -1 + log(e to uO) , 

0 0 

from which (50) follows. 

The next stage in our treatment is the proof of 

(51 ) to - 1 < ~ £ + 4£ 21log e: I (0<e:~0.05) • 

Since u t- I 
(li + I) + u- I (li + 1)2 > 0 on [O,tOJ we have 

(52) 

Therefore 

(53) 2 -I 
(s - s)(u(s» ds 

2 -1 
(s - s)(to + uo - s) ds = 
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Using (48), (49), (50) and the inequality u(t) ~ 1 - t on [O,IJ we find 

I 

J 
2 -1 

(s - s)(u(s» ds + 
2 -I 

(s - s)(u(s» ds > 

o 

> -i + (0 (82 -s)(u(s»-I ds 

1 

which with (53) leads to 

from which (51) follows. 

Next we show that 

(54) 2 -1 2 
(t - 1) (u(t» dt ~ 3£ (0 < £ ~ 0.05) . 

Since u· = 3(u + 1)2(tu)-1 + (u + 1)2(u + 2)u-2 
> 0 we have u(t) 

-1 -1 -1 1 -I 2 2 
= to + Uo > Uo for t > to whence u(t) > Uo + IUo (t to) 

Now, using this latter inequality and (50), (51) we have 

(55) 2 -1 (s - I) (u(s» ds 

2 -1 
+ (s - to) J(u(s» ds ~ 

I 
<-

2 

> u( to) = 

(t > to). 

2 _1 2 I -2 2 
~ (to - I) 2 21T + (2(tO - l)uO + uO)log(I + IUo ) < 3€ (0 < € s; 0.05). 

to 2 -1 
Finally, we are able to estimate of (1 - s) (u(s» ds as follows, using 
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(48), (51) and (55), 

o 

1 

(I - s)2(u(s»-lds < f 
o 

2 -1 
(1 - s) (1 - s) ds + 

r to 
+ (to - I) 2 J s ( u (s) ) -

1 
ds :::;: 

o 

1 (! £2 4 21 I 6 4 2) (1 ) 1 1 :::;: "2 + 4 + e log £ + 1 £ log £ € - to :::;:"2 + 3" e (0 < e :::;: 0.05) , 

and, using (52) and (51) and (50) 

I 

(1 - S)2(u(S»-lds > J 
o 

2 -I 
(1 - s) (uO + to - s) ds = 

o 

--1 
> -Z - (t - I) - u o 0 

1 I 2 "2 - "2 e - 4e \log e 1 
I e 

- -e 
£::: 

(0 < e: :::;: 0.05) . 

Combining the last two inequalities with (38), (41), (44), (54) and (55) we 

can obtain 

(56) -2 
- y L(y) expO yZ + n < 1 + y-2 (y < -7) • 

Remark. Numerical experiments suggest that 

L(y) exp[~ y2 + n - ~ Cy-Z (y -+- -co) • 

- u > o 
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