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Parameters in Pure Type Systems 

Twan Laan*, Roel Bloo**, Fairouz Kamareddine***, and Rob Nederpeltt 

Abstract. In this paper we add parameters to A-calculus and type theory and show that 
the resulting systems have nice meta-theoretical properties. We illustrate that parameters 
allow for a better fine-tuning of the strength of type systems and hence allow for a better 
description of existing type systems in the framework of pure type systems. 

1 What are parameters? 

Functions playa fundamental role in logic, mathematics and computer science. In the nowadays 
accepted view on functions, they are 'first class citizens', being entities on their own which act on 
a par with sets, elements of sets and other basic objects. Historically, however, functions have long 
been treated as a kind of meta-objects. It is true, function values have always been important, 
but abstract functions as such have not been recognised in their own right until the middle of the 
previous century. 

In order to make clear what we are talking about, we distinguish between the following two 
approaches to the notion of function: 

1. In the low level approach there are no functions as such, but only function values. So given 
a set A and an element a in A, then f(a) is defined as an element of, say, set B. This is the 
operational view on functions. It is unimportant what the function is, as long as we know how 
it works: for each x of A we must be able to find a value fIx), and that's all there is to say. 
In this view, the sine-function, for example, is always expressed together with a value: sin(/T), 
sin(x), etc. This gives formulas like sin(2x) = 2sin(x) cos(x). (Note that it has long been 
usual to call f(x)-and not f-the function and this is still the case in many introductory 
mathematics courses.) 

2. In the high level approach, however, functions are objects in their own right. Given sets A and 
B, there are (abstract' functions f (from' A 'to' B, which are objects of the function space BA 
(also written as A -t B). These functions can be indefinite (named by a variable name, like 
fl, or definite (i.e. uniquely defined, like sin). 
In this approach, a function f of type A -t B can be treated just as any other object. It can 
even be the value of another function. For example, if f is a bijective function from A to B, then 
inverse(J) is a function from B to A. Hence, inverse is a function of type (A -t B) -t (B -t A), 
taking functions of type (A -t B) as arguments. 

In concurrence with the usual terminology, we speak about functions with parameters when 
referring to functions with variable values in the low-level approach. So in this approach, the x in 
fIx) is a parameter. In the high-level approach, such an x is called a (variable) argument of the 
('abstract') function f. 

The above shows that an important difference between the low-level and high-level approach 
is whether functions are 'spectators' in the world under consideration which can be called upon 
for services but do not join the ongoing play, or (participants' standing on stage just like the other 
players. This has important consequences for the theory in which functions participate. In the 
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low-level approach, the corresponding theory can be of lower order than in the high-level case, e.g. 
first-order with parameters versus second-order without (cf. Section 1.5). This makes it possible 
to fine-tune a theory by using parameters for some classes of functions. An advantage can be, as 
we show below, that some desirable properties of the lower order theory (think of decidability, 
easiness of calculations, typability) can be maintained, without losing the flexibility of the higher­
order aspects. It will also turn out that using parameters is a natural thing to do in many logical 
and mathematical applications and in programming languages and software construction. 

Therefore, in this paper we stand up for a revaluation of the low-level approach, which has 
been lost sight of in the modern, Bourbaki-inspired style of doing mathematics. We show that 
this approach is still worthwhile for many exact disciplines. In fact, both in logic and in computer 
science it has certainly not been wiped out, and for good reasons. 

1.1 A different form of abstraction and application 

The basis of the A-calculus is a mechanism for abstraction and application. For abstraction, we 
use A-abstraction, and application is implemented via function application. Abstraction and ap­
plication form the basis of a type system. However, this view of abstraction and application is 
rigid and does not represent the development of logic in the 20th century. In particular, Frege and 
Russell's conceptions of functional abstraction, instantiation and application do not fit well with 
the .\-calculus approach. This is illustrated by • 9 . 14 and .9 . 15 on page 133 of the Principia 
Mathematica (cf. [35]): 

.9·14. If 'q,x' is significant, then if x is of the same type as a, 
'cpa' is significant, and vice versa. 

*9·15. If, for some a, there is a proposition q,a, then there 

is a function cpx, and vice versa. 

We see that the function cp is not mentioned as a separate entity but always has an argument, be 
it x, a or X. Indeed, in the formalisation of propositional functions of the Principia Mathematica 
given by Laan (cf. [22], def. 2.3), we see that e.g. R(x) and S(x, y) are propositional functions 
but Rand S alone are not. However, translation of the propositional function R{x} into ordinary 
.\-calculus results in .\x.Rx, since .\-abstraction is the only abstraction mechanism available, and 
.\x.Rx can only be typed if R can be typed on its own. 

Allowing parameters in type theory enables one to study Frege and Russell's work from the 
perspective of modern type theory while staying close to the originally intended interpretation as 
was done in Laan's thesis [22]. 

1.2 Developers versus users of a type theory 

The parameter mechanism enables us to describe the difference between developers and users of 
certain systems. We illustrate this by expressing the different attitudes of logicians and mathe­
maticians towards the induction axiom for natural numbers. A logician is someone developing this 
axiom (or studying its properties), whilst the mathematician is usually only interested in applying 
(using) the axiom. 

Let's give an example in type theory. We adopt the PTS-style, where PTS stands for Pure 
Type System (cf. [3]). Assuming a variable N (tlie type of natural numbers) of type ., a variable 
o (representing the natural number zero) of type N and a variable S (an implementation of the 
successor function: Snm is assumed to hold if and only if m is the successor of n) of type N -+ N -+ 
*, the induction axiom can be described by the following PTS-type (let's call it: Ind), abstracting 
over the variable p (a proposition ranging over the naturals): 

II p:(N-+ *) .pO-+(II n:N.II m: N.pn-+ Snm-+pm)-+ II n:N.pn 
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in a PTS with sorts *,0, axiom * : 0 and iI-formation rules (*, *, *), (*,0, D), (0, *, *). With 
this type lnd one can introduce a variable ind of type lnd that may serve as a proof term for any 
application of the induction axiom. This is the logician's approach. 

For a mathematician, who only applies the induction axiom and doesn't need to know the 
proof-theoretical backgrounds, this interpretation is too strong. Translating the mathematician's 
conduct to a PTS-like setting, we may express this as follows: The mathematician uses the term 
ind only in combination with terms P : N-H, 'Q : PO and R : iIn:N.iIm:N.Pn-+Snm-+Pm to 
form a term indPQR of type iIn:N.Pn. In other words: he is only interested in the application 
of the induction axiom, and treats it as an induction scheme in which values P, Q, R have to be 
substituted to use it. 

The use of the induction axiom by the mathematician is therefore much better described by 
the following, parametric, scheme (p, q and r are the parameters of the scheme): 

ind(p:N-+*, q:pO, r:(iIn:N.iIm:N.pn-+Snm-+pm)) : iIn:N.pn. 

If now P : N-+*, Q : PO and R : iIn:N.iIm:PlPn-+Snm-+Pm, then one can form the term 
ind(P, Q, R) of type iIn:N.Pn. The types that occur in this scheme can all be constructed using 
sorts *,0, axiom * : 0 and rules (*, *, *), (*,0,0), hence the rule (0, *, *) is not needed (in the 
logician's approach, this rule was needed to form the iI-abstraction iIp:(N -+ *) .... ). 

Consequently, the type system that is used to describe the mathematician's use of the induction 
axiom can be weaker than the one for the logician. Nevertheless, the parameter mechanism gives 
the mathematician limited (but for his purposes sufficient) access to the induction scheme. Without 
parameter mechanism, this would not have been possible. 

We see that the parameter mechanism enables us to describe the difference between a user of a 
system (in this example: the mathematician) and a developer of the same system (in this example: 
the logician). 

1.3 Automath 

In light of the previous section, it is interesting to note that the first tool for mechanical represen­
tation and verification of mathematical proofs, AUTOMATH, has a parameter mechanism and was 
developed from the viewpoint of mathematicians (see [11]). 

The representation of a mathematical text in AUTO MATH consists of a finite list of lines where 
every line has the following format: 

Xl : AI,' .. , xn : An f--- g(Xl' ... ,Xn ) = t : T. 

Here 9 is a new name, an abbreviation for the expression t of type T and Xl, ... , Xn are the 
parameters of g, with respective types AI, ... ,An. 

We see that parameters (and definitions as well) are a very substantial part of AUTOMATH since 
each line introduces a new definition which is inherently parametrised by the variables occurring 
in the context needed for it. 

Actual development of ordinary mathematical theory in the AUTO MATH system by e.g. van 
Benthem Jutting (ef. [5]) revealed that this combined definition and parameter mechanism is vital 
for keeping proofs manageable and sufficiently readable for humans. 

1.4 First-order logic in PAT needs para~eters 

The representation of mathematics in type theory as done in the AUTO MATH project is generally 
called the propositions-as-types (PAT) style. A mathematical proposition then corresponds to a 
type, a proof of the proposition corresponds to an inhabitant of the type. Implementations of 
first-order logic in PAT style usually use a type system that is a variant of the pure type system 
ApI. In AP, it is possible to construct types that are not in ,B-normal form. Hence, a derivation 

1 >'P is due to Berardi [7]. 
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in AP can have non-trivial applications of the conversion rule 

r r- B2 : s 

r r- A: B2 

This can be problematic in implementations. In theory, it is always decidable whether two terms 
B" B2 are !'i-equal or not (simply: check whether their !'i-normal forms are syntactically equal or 
not). In practice, such a calculation may take quite some time and memory. Therefore, it would be 
better to use a type system in which the conversion rule is superfluous. This is the case if all types 
in such a type system are in !'i-normal form. As all types in simply typed A-calculus A-t (that is: 
AP without a rule for forming top-level function types) are in !'i-normal form, it would be a good 
candidate for an implementation of first-order predicate logic. Unfortunately, first-order predicate 
logic cannot be described in PAT-style in A-t, since the introduction of the relation symbols in a 
first order language involves top-level function types. 

But in a first-order language, a relation symbol R always has a fixed arity ar(R). This means 
that R itself is not a proposition. It can only be used to construct a proposition: if II, ... , t=(R) 

are terms, then R( t" ... , t=(R)) is a proposition. Laan and Franssen show in [23J that with the use 
of parameters in a type system, it is possible to introduce the relation symbols without need for 
the top-level function types. This results in a system in which the conversion rule is superfluous, 
and therefore easier to handle in implementations. 

1.5 Programming languages need parameters 

Programming languages frequently use parameters. For example, consider the Pascal fragment P 
defining a function double: 

function double(z : integer) 
begin 

double .- z + z 
end; 

integer; 

The argument (z : integer) is a parameter in our sense: the function double can only be used 
when given an argument of type integer, ergo double is a function in the low-level approach. 
Pascal does not allow polymorphism on the type of the parameter z, but in Haskell we can even 
define 

double :: Num a => a -> a 
double z = z + z. 

Now double may be used without an argument, e.g. in the composition 

double. double, 

so here double is a function in the high-level approach. But in this definition double can be said 
to have an implicit parameter a: when evaluating double 3.0, then a is instantiated to Float; 
when evaluating double 3 however, a is instantiated to Integer. 

Alas, parameters as explained above do not exist in the A-calculus and type theory. In fact, 
the first double above can only be represented in the A-calculus as (Az:lnt.(z+z)). The second 
double is represented as: (Aa:Num.(Az:a.(z+z))). In the first case, the representation in A-calculus 
is unfaithful since double is a A-term on its own, of 'high-level character' (it can be used without 
a parameter). In the second case the representation in A-calculus of double is unfaithful since the 
parameter a is no longer implicit. Note the difference in order between the two representations: the 
Pascal representation of double is first order whereas the Haskell representation is second order. 

Another use of parameters can be found in the prototype verification system PVS developed 
at SRl (cf. [29]). The type system of PVS is more or less similar to simply typed A-calculus, 
polymorphic types are not allowed. But in addition, PVS has a mechanism for importing previously 
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defined theories with parameters. Together with overloading facilities this allows in practice for an 
almost polymorphic use of types since theories can be imported for each parameter type needed. 

Let's discuss the first double (the one from Pascal) in some more detail. Note that another 
problem with representing double by (Az:lnt.(z+z)) is that the representation in A-calculus does 
not give a name to the function (Az:lnt.(z+z)). Therefore every time we want to use double, we 
need to use the whole A-expression that represents it. If we wanted to give a name (say double) to 
the A-term (Az:lnt.(z+z)), then a natural way of doing so is to use type systems with a definition 
mechanism. For example, in the definition systems of [8, 32]' P can be represented by the following 
context declaration: 

In [8): ((Az:lnt.(z+z)) a)(A double)' 
In [32): double = (Az:lnt.(z+z)) : (Int -; Int). 
Of course, this declaration can imitate the behaviour of the function double perfectly well. 

But it has the following disadvantages: 

The declaration of [32) has as subterm the type Int -; Int. This subterm does not occur in 
the Pascal fragment P itself. More general,. Pascal does not have a mechanism to construct 
types of the form A -; B. Note that this disadvantage is not faced by the account of [8). 

- Due to the way in which double is defined in [8,32]' it is (again) a separate subterm in a 
PTS. But double itself is not a separate expression in Pascal; one can't write x := double in a 
program body. One may use the expression double in a program, provided that one specifies 
a parameter p that serves as an argument of double. 

We conclude that the translation of P by means of the context declaration above is not fully to 
the point. Extending type systems with both a definition mechanism and a parameter mechanism 
allows us to translate P by the parametric context declaration double(z:Int) = (z+z) : Int. This 
declaration does not have the disadvantages described above: 

- It doesn't have the subterm Int -+ Int; 
- As we will show in this paper, double itself is not a term. We always have to specify an 

argument p for double, thus constructing a term double(p). 

Similar remarks can be made about the representation of the Haskell-double by the A-term 
Aa : Num.(AZ : a.z + z). 

1.6 Extending pure type systems with parameters and definitions 

We believe that the previous sections provide ample motivation for extending type theory with 
parameters and definitions. Our goal is to treat parameters as formal as ordinary abstractions. 
Therefore we study the so called pure type systems (PTSs) (d. [3]) and extend these with both a 
parameter mechanism and the definition mechanism of [32). 

One important choice to make is whether to restrict the use of parameters. For a parametrised 
term t(Pl, .. . ,Pn) we might want to restrict its formation according to the type of t as well as 
according to the types of the parameters PI,· .. ,Pn. Our choice is to first study the unrestricted 
use of parameters. This is done in Section 4. 

But however elegant an unrestricted use of parameters may seem from a theoretical point of 
view, this is not custom in actual programming languages. 

In many Pascal versions, for instance, parametric terms can only have parameters at term 
level, like the integer parameter z of double above. It is, however, not possible in Pascal to write a 
function polydouble that takes both a numeric type Z and an element z of type Z as parameters, 
and returns the value z+z. 

In Section 5 we study PTSs with definitions and restrictions on the use of parameters. Ty­
pability of abstractions (or: the 'abstraction rights') in PTSs is governed by a set of triples of 
sorts. 

2 Note that in [8] we use the item notation (cf. [21]) where the application Fa is written as (a J)F. 
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In eight PTSs which together form what is called the Barendregt Cube (cf. [3]), there are two 
sorts * and D, and the various systems in the cube are determined by the various ways in which 
type abstractions can be made. If all constructions of iI-types are allowed, we obtain the Calculus 
of Constructions, with rules (*, *, *), (*,0, D), (0, *, *) and (0,0, D). If we do not allow all iI-type 
constructions, we get one of the subsystems of the Calculus of Constructions in the Barendregt 
Cube. 

We propose to govern the 'parametrisation rights 1 of our PTSs extended with parameters 
in a similar way, by a set of pairs of sorts. The first elements of these pairs tell which kind of 
paramaters are allowed, the second elements of these pairs tell which kind of terms are allowed to 
have parameters. 

The combination of the rules for parameter constructions with the well-known rules for the 
construction of abstractions in the Barendregt Cube leads in a natural way to a division of the 
Barendregt Cube into eight sub-cubes (we illustrate this in Figure 3 on page 31). As in the 
Barendregt Cube, one dimension in the cube still corresponds with one of the rules (*, D), (0, *) 
or (0, D). Following an edge of the cube iu dimension (SI, S2) can now be done in two ways: 

- As was already possible, we can follow the edge to the end. This still corresponds to accepting 
the iI-formation rule (81, S2, S2); . 

- We can also follow the edge only half-way. This means that we do not accept the iI-formation 
rule (SI, 82, 82), but that we do accept the parameter construction rule (81,82). 

This viewpoint suggests that allowing the iI-formation rule (SI, 82, 8,) also allows the parameter 
construction rule (81182)' Formally, one can work with systems in which we do allow the ll­
formation rule, but do not allow the parameter construction rule. We prove, however, that if the 
II -construction rule (81, 82, 82) is allowed, a parameter construction involving rule (81,82) can be 
imitated by A-abstractions (Theorem 100). 

This paper is organised as follows: 
In Section 2, we give definitions of PTSs extended with parametric constants and definitions. 

This definition includes an extension ofthe d-reduction described in [32] (which unfolds definitions) 
to parametric definitions. 

In Section 3 we show that the <I-reduction and lid-reductions have the Church-Rosser property, 
and that <I-reduction (under some reasonable conditions) is strongly normalising. 

In Section 4, we show some elementary properties of the system introduced in Section 2, like 
a Generation Lemma, and the Subject Reduction property for lid-reduction. We also prove that 
lid-reduction is strongly normalising if a slightly stronger PTS is Ii-strongly normalising. 

Section 5 is devoted to the various ways in which parameters can be added to a PTS (with or 
without definitions) in a more restricted way, with the refined Barendregt Cube of Figure 3 as a 
result. 

In Section 6, we compare our system with some other type systems, like AUTOMATH. We place 
various AUTOMATH systems in the refined Barendregt Cube of Figure 3. 

In Section 7 we see that the use of parameters can sometimes result in simpler and more 
realistic implementations of type systems. 

2 Parametric constants and definitions 

In this section, we extend Pure Type Systems (PTSs) (ef. [3]) with parametric constants and 
definitions. 

2.1 Pure Type Systems 

Pure Type Systems (PTSs) were introduced by Berardi [7] and Terlouw [33] as a general framework 
in which many current type systems can be described. The framework is a generalisation of the 
well-known Barendregt Cube. 
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Though PTSs were not introduced before 1988, they were already implicitly present in Neder­
pelt's thesis ([27], Chapter III, Definition 1.3) and many rules in PTSs are highly influenced by 
rules of known type systems like Church's Simple Theory of Types [12] and AUTO MATH (see 5.5.4. 
of [14]). The description below is based on [3]. 

Definition 1 (A-terms) Let V be a set of variables and C a set of constants disjoint with V. 
Terms of typed A-calculus are defined by the following abstract syntax: 

A ::= V I C I (AA) I (AV : A.A) I (IIV : A.A). 

We omit brackets when possible and consider terms modulo renaming of bound variables (ef. [3]). 
The notions FV(A) denoting the free variables in A-term A and substitution [x:=A] are defined 
as usual. Reduction on A-terms is defined as the contextual closure of 

(Ax: A.B)C -+~ B[x:=C]. 

Definition 2 (Specification) A specification is a triple (8, A, R), such that 8 <; C, A <; 8 x 8 
and R <; 8 x 8 x 8. The specification is called singly sorted if A is a (partial) function 8 -+ 8, 
and R is a (partial) function 8 x 8 -+ 8. 8 is called the set of sorts, A is the set of axioms, and 
R is the set of (II -formation) rules of the specification. 

Definition 3 (Contexts) A context is a finite (possibly empty) list x, :A" ... , xn:An (shorthand: 
~ ~ 

1:A) of variable declarations. {x" ... ,Xn} is called the domain Dom(1:A) of the context. The 
empty context is denoted (). We use r, .1 as meta-variables for contexts. 

Definition 4 We define r[x:=A] by induction on the length of r: 

O[x:=A] '" (); 
_ (r' ·B)[ .=A] = {r'[x:=A] if x'" y; 

,y. x. - r'[x:=A],y:B[x:=A] if x t y. 

Definition 5 (Pure Type Systems) Let S = (8,A,R) be a specification. The Pure Type 
System AS describes in which ways judgements r I-s A : B (or r I- A : B, if it is clear which 
S is used) can be derived. r I- A : B states that A has type B in context r. AS consists of the 
following derivation rules. 

(axiom) () I- 8, : s, (S,,8,) E A 

(start) 
rl-A:s 

x 'i Dom(r) 
r,x:A I- x: A 

(weak) 
rl-A:B r1-C:8 

x f/. Dom(r) 
r,x:c I- A: B 

(II) 
r I- A : 8, r,x:A I- B: 82 

(8,,82,83) E R 
r I- (II x:A.B) : 83 

(A) 
r,x:A I- b: B r I- (II x:A.B) : 8 

r I- (Ax:A.b) : (IIx:A.B) 

(appl) 
r I- F: (IIx:A.B) rl-a:A 

r I- Fa : B[x:-a] 

(conv) 
rl-A:B rI-B':8 B=~B' 

rl-A:B' 

A context r is legal if there are A, B such that r I- A : B. A term A is legal if there are r, B 
such that r I- A : B or r I- B : A. 



8 Laan, Bloo, Kamareddine, Nederpelt 

An important class of examples of PTSs is formed by the eight PTSs of the so-called Barendregt 
Cube. The Barendregt Cube (Figure 1 on page 8) is a three-dimensional presentation of eight 
well-known PTSs. All systems have sorts S = {*,D}, and axioms A = {(*,D)}. Moreover, all the 
systems have rule (*, *, *). System A-r has no extra rules, but the other seven systems all have 
one or more of the rules (*, D, D), (D, *, *) and (D, D, D): 

- Going to the right in the cube means adding rule (*, D, D); 
- Going upwards in the cube means adding rule (D, *, *); 
- Going backward in the cube means adding rule (D, D, D). 

Thus, going to the right, going upwards and going backward means going to a stronger type 
system. The systems depicted in Figure 1 have the following II-formation rules: 

A-r (*, *, *) 
A2 (*, *, *) (D, *, *) 
AP (*,*,*) (*,D,D) 
A~ (., *, *) (D, D, D) 
AP2 (*,*,*) (D,*,*) (*,D,D) 
AW (*, *, *) (D, *, *) (D, D, D) 
AP~ (*, *, *) (*, D, D) (D, D, D) 
AC (*, *, *) (D, *, *) (*, D, D) (D, D, D) 

The dependencies between these systems are depicted in the Barendregt Cube (see Figure 1). 

w 

A2 AP2 

.>.w [~CR (D,D,D) E R 

(*,D,D)ER 

'>'Pw 

Fig.!. The Barendregt Cube 

The systems in the Cube are related to many other type systems. The overview below is taken 
from [3]. 

System Related system Names, references 
A-r AT simply typed A-calculus; [12], [2] (Ap-

pendix A), [20] (Chapter 14) 
A2 F second order typed A-calculus; [18], [31] 
AP AUT-QE [10] 

LF [19] 
AP2 [24] 
A~ POLYREC [30] 
AW Fw [18] 
AC CC Calculus of Constructions; [13] 

Another PTS is the Extended Calculus of Constructions ECC (see [25]). This is a PTS with S = N; 
A = {(n,n+ 1) In E N}; and R = {(m,O,O) 1m E N} U {(m,n,r) I ° ~ m,n ~ r}. This is indeed 
an extension of AC (write * for ° and D for 1). 
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Pure Type Systems have some important meta-properties, which we describe below. The proofs 
can be found in [17] and [16]. Throughout this section, f- denotes derivability in a PTS with a 
certain specification S = (S, A, R). 

Lemma 6 (Free Variable Lemma) Let r == Xl :A1, . .. , xn:An be legal, say r f- B : C. Then 

1. The Xi are distinct; 
2. FV(B), FV(C) ~ Dom(r); 
3. FV(A;) ~ {Xl, ... ,xi-d for 1::; i::; n. 

Lemma 7 (Start Lemma) Let r be legal. Then 

1. r f- 81 : 82 for all (Sl, S2) E A; 
2. r f- X : A for all (x:A) E r. 

Lemma 8 (Transitivity Lemma) Let r, Ll be contexts. Assume r is legal, r f- x:A for all 
(x:A) E Ll, and Ll f- B : C. Then r f- B: C. 

Lemma 9 (Thinning Lemma) Let r1,x:A,r2 be a legal context such that r 1,r2 f- B: C. Then 
also r 1,x:A,r2 f- B: C. 

Lemma 10 (Substitution Lemma) If r, x:A, Ll f- B : C and r f- D : A then r, Ll[x:=D] f­
B[x:=D]: C[x:=D]. 

Lemma 11 (Generation Lemma) 

1. If r f- c : C for acE C then there is s E S such that C =~ sand (c:s) E A; 
2. If r f- x : C for an x E V then there is s E Sand B =~ C such that r f- B : sand (x:B) E r; 
3. If r f- (II x:A.B) : C then there is (Sl, S2, S3) E R such that r f- A : Sl, r, x:A f- B : S2 and 

C =~ S3; 
4. If r f- (.\x:A.b) : C then there is 8 E Sand B 8uch that r f- (II x:A.B) : s; r, x:A f- b : B; and 

C =~ (IIx:A.B); 
5. If r f- Fa: C then there are A, B 8uch that r f- F: (IIx:A.B), r f- a: A and C =~ B[x:=a]. 

Lemma 12 (Correctness of Types) If r f- A : B then B == 8 or r f- B : 8 for 80me 8 E S. 

Lemma 13 (Subterm Lemma) If A is legal and B is a sub term of A, then B is legal. 

Lemma 14 (Subject Reduction) If r f- A: B and A --t~ A' then r f- A' : B. 

Lemma 15 (Strengthening Lemma) If r, x:A, Ll f- B : C and x <t FV(Ll) U FV(B) U FV(C), 
then r,Ll f- B: C. 

The proof of the next lemma is due to van Benthem Jutting [6]. 

Lemma 16 (Unicity of Types) If S is singly sorted, r f- A : B1 and r f- A : B 2, then 
B1 ={3 B 2. 

Lemma 17 (Strong Permutation Lemma) If r,x:A, y:B, Ll f- C : D and x <t FV(B), then 
r,y:B,x:A,Ll f- C: D. 

Definition 18 (Topsort) A sort s is a topson if there is no s' E S such that (s, s') E A. 

Lemma 19 (Topsort Lemma) If 8 is a topson and r f- A : s then A is not of the form A1A2 
or .\x:A1.A2. 

Theorem 20 (Strong Normalisation for ECC) Let A be a legal term in the Extended Calculus 
of Constructions. Then A is strongly normalising. 

As the systems of the Barendregt Cube are slJ.bsystems of ECC, all legal terms in the systems 
of the Barendregt Cube are strongly normalising, too. 
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2.2 Extending PTSs with parametric constants and definitions 

Definition 21 The set Tp of parametric terms is defined together with the set LV of lists of typed 
variables and the set LT of lists of terms as follows: 

Tp ::= VIS 1 C(LT) 1 TpTp 1 W:Tp.Tp 1 IIV:Tp.Tp 1 C(Lv)=Tp:Tp in Tp; 
LV ::= 01 (LV, V:Tp); 
LT ::= 01 (LT, Tp). 

where, as usual, V is a set of variables, C is a set of constants, and S is a set of sorts. Formally, lists 
of variables are ofthe form ( ... ((0, X, :A, ), X2:A,) ... xn:An). We usually write (Xl :A

" 
... ,xn:An) 

or even Xl :AI , ... ,Xn:An. A similar convention is adopted for lists of terms. In a parametric term 
of the form c(b

" 
. .. ,bn ), the subterms b

" 
... ,bn are called the parameters of the term. 

Terms of the form C(Lv)=Tp:Tp in Tp represent parametric local definitions. An example of 
such a term is double(x:N)=(x+x):N in A. The term indicates that a subterm of A of the form 
double(P) is to be interpreted as P + P, and has type N. The definition is local, that is: the 
scope of the definition is the term A. Local definitions contrast with global definitions. Global 
definitions are given in a context r, and refer to any term that is considered within r (see the 
forthcoming Definition 28). The definition system in AUTOMATH can be compared to the system 
of global definitions in this paper. However, there are no local definitions in AUTOMATH . 

..., 
Definition 22 Let 7:A denote x,:A

" 
... ,xn:An. We extend the definition of FV(A) , the set of 

free variables of a term A, to parametric terms: 

FV(c(al, ... ,an)) = U~~l FV(a,); 
...,"" 

FV(c(x :A)=A:B in C) = U~~l (FV(Ai) \ {Xl,"" Xi-d) 
U ((FV(A) U FV(B)) \ {Xl, ... , Xn}) U FV(C); 

We similarly define Cons(A), the set of constants and global definitions of A: 

Cons(s) = Cons(x) = 0; 
Cons(c(a" ... ,an)) = {C}UU7~1 Cons(ai); 

Cons(AB) = Cons(A) U Cons(B); 
Cons(Ax:A.B) = Cons(IIx:A.B) = Cons(A) U Cons(B); 

...,"" 
Cons(c(x:A)=A:B in C) = U~=l Cons(Ai) U Cons(A) U Cons(B) U (Cons(C) \ {c}). 

FV(A) U Cons(A) forms the domain Dom(A) of A. 

Remark 23 The definition of FV(c(7:A)=A:B in C) and Cons(c(7:A)=A:B in 0) make clear ..., 
what the binding structure in a term c(7:A)=A:B in 0 is: 

...,"" 
- A variable declaration Xi:Ai in the parameter list x:A binds all the occurrences of Xi in A., 

for k > i. That is: the type of a parameter Xk may depend on earlier declared parameters; 
- Moreover, the declaration Xi :Ai binds all the occurrences of Xi in A and B. This corresponds 

to the intuitive idea of a parametric definition: Xi can serve as a parameter in the definiens A 
and in the type B of the definiens; 

- However, the variable declaration xi:Ai does not bind any occurrence of Xi in C. The definien­
dum c will occur in C only with a list of parameters al, ... , an behind it, so in the form 
c(al 1 '" ,an)' The variables Xl, .. "xn in the definition of c only serve to indicate what the 
type of the aiS must be (below, we will see that ai must have type Ai[xj:=ajJ;:;i), and what 

the type of the term c(a"", ,an) is (this turns out to be B[xj:=ajJ7~1); ..., 
- Moreover, we see that c is not included in the constants of c(1 :A)=A:B in C. This is because 

c is a local definition, and acts as a binder for the occurrences of c in C. 



Parameters in Pure Type Systems 11 

-> 
Remark 24 Our reasons for including the type B in a local definition c(1:A)=A:B in Care: 

We want to remain consistent with other binders, such as .\ and II. In a term '\x:A.B or 
II x:A.B we mention the type of the binder x, therefore we also mention the type of the binder 

c in a local definition c(1:A.)=A:B in C; 
Sometimes A : B indicates that the term A is a proof of a theorem B (using PAT). If we want to 
use B in the proof of a new theorem B', we must use the proof term A of B in the proof A' of 

-> 
B'. In that case it is attractive to abbreviate A by introducing a definition c(1 :A)=A:B in A'. 
It is important to remember that c is (an abbreviation of) a proof of B, and that is a reason 
to mention B, the type of A, in the definition declaration; 

- For practical purposes like proof assistants or proof checkers, it may seem to be problematic 
to have B in the definition declaration. However, the program does not always have to ask the 
user to explicitly mention the type of the abbreviation. Often it can find this type itself via a 
type inference algorithm. Of course, this also depends on whether type inference is decidable 
in the underlying type system. 
Sometimes, the user may wish to manually enter the type, because he/she may prefer a certain 
formulation of the type to a !'i-equivalent formulation that the program automatically offers. 

As usual in PTSs, we do not distinguish terms that are equal up to renaming of bound variables: 
we consider these terms to be syntactically equal. Moreover, we assume the Barendregt variable 
convention: 

Convention 25 Names of bound variables and constants will always be chosen such that they 
differ from the free ones in a term. 

Hence, we do not write (.\x:A.x)x but (.\y:A.y)x instead. 
Similarly, we write c(x':A)=x' + x':A in c(c(c(x))) instead of c(x:A)=x + x:A in c(c(c(x))). 

Definition 26 We extend the definition of substitution of a term a for a variable x in a term b, 
b[x:=aJ, to parametric terms, assuming that x is not a bound variable of either b or a: 

c(b
" 

... ,bn)[x:=a] == c(b, [x:=a]' . .. ,bn[x:=a]); 
->-> 

(c(x :A) = A:B in C)[x:=a] == C(XI :A,[x:=a], ... , xn:An[x:=a])=A[x:=a]:B[x:=a] in C[x:=a]. 

We now define contexts for type systems with parameters and definitions. 

Definition 27 The set of contexts which we denote by r, r', ... .is given by: 

Notice that .cv ~ Cp: all lists of variable declarations are contexts, as well. 

Definition 28 Let r be a context. Elements x:A, c(x,:B
" 

... , xn:Bn):A, c(x,:B
" 

... , xn:Bn)=a:A 
of r are called declarations. 

- x:A is a variable declaration. 
• The variable x is the subject of the declaration; 
• A is the type or predicate of the declaration; 

A declaration of the form c(xl:B1 , ... ,xn:Bn):A is a constant declaration. 
• The constant C is the subject of the declaration. As C is introduced without further defini­

tion, C is called a primitive constant (d. the primitive notions in AUTOMATH)i 

• Xl, ... , Xn are the parameters of the declaration; 
• A is the type (predicate) of the declaration; 

A declaration C(XI :B
" 

... ,xn:Bn)=a:A is called a global definition declaration or shorthand 
global definition or definition. 
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• The constant c is the subject or definiendum of the declaration. c is called a (globally) 
defined constantj 

• Xl,.'" Xn are the parameters of the declaration; 
• a is the definiens of the declaration; 
• A is the type (predicate) of the declaration. 

The reasons for including the type of a global definition or a parametric constant in its decla­
ration are the same as for local definitions, d. Remark 24. 

In the rest of this paper, ..d denotes a context Xl :BI , ... , Xn :Bn consisting of variable declara­
tions only. Such a context is typically used as a list of parameters in a definition c(LI)=a:A. We 
write..d i == xl:B1, ... ,Xi-I:Bi-1 for i::; n. 

We extend the definition of substitution to contexts: 

Definition 29 Let r E Cp , ME Tp. We define r[x:=M] as follows: 

0[x:=M] =' 0; 
(r,x:A)[x:=M] =' r[x:=M]; 
(r,x':A)[x:=M] =' (r[x:=MJ,x':A[x:=MJ) if x t x'; 

(r, c(LI):A)[x:=M] =' (r[x:=MJ, c(LI[x:=M]):A[x:=MJ); 
(r, c(LI)=a:A)[x:=M] =' (r[x:=MJ, c(LI[x:=M])=a[x:=M]:A[x:=MJ). 

For a term A we defined FV(A) and Cons(A). For a context r we do not form one set Cons(r), 
but we split this set into a set Prim(r), containing the primitive constants of r, and a set Def(r), 
containing the defined constants of r. 

Definition 30 Let r be a context. We define the free variables, constants and definitions of r: 
r FV(r) Prim(r) De/(r) 
000 0 
r,x:A FV(r) u {x} Prim(r) De/(r) 
r,c(LI):A FV(r) Prim(r) U {c} De/(r) 
r,c(LI)=a:A FV(r) Prim(r) De/(r) U {c} 

Finally we define the domain of r, Dom(r), by FV(r) U Prim(r) U Def(r). 

In ordinary Pure Type Systems we have that, for a legal term A in a legal context r, FV(A) <;; 
FV(r). The type of a free variable in A, therefore, can always be determined via r. In our pure 
type systems with definitions and parameters we will have: FV(A) <;; FV(r) and Cons(A) <;; 
Prim(r) U Def(r). This has not only as an effect that the type of a free variable or a constant can 
be determined via r, but also that r determines whether a constant in A that is not serving as a 
local definition within A, is a defined constant or a primitive constant. We therefore define: 

Definition 31 For a context r and a term A with Dom(A) <;; Dom(r) we define: 
De/r(A) = Cons(A) n De/(r); and Primr(A) = Cons(A) n Prim(r). 

We see that a constant c E C can play three roles in a term A, with respect to a context r: 
- If c occurs in a subterm (c(LI)=b:B in a) of A, then c is a locally defined constant; 
- If c E De/r(A), then c is a globally defined constant; 
- If c E Primr(A) (or c <1- Dom(r)), then c is a primitive constant. 

A natural condition on a context r" c(LI)=a:A, r 2 is that all the free variables and constants 
of a and A are declared in either r l or .d., and that all free variables and constants in a declaration 
xi:Bi E ..d are declared in rl,..d i (recall that L1 is a standard context Xl :BI , ... ,xn:Bn and 
..di == Xl :BI ,· .. ,Xi-l :Bi - l ). We call such a context sound: 

Definition 32 r E Cp is sound if r =' r
"

c(LI)=a:A,r2 implies 
Dom(a) U Dom(A) <;; Dom(rtl U Dom(LI) and Dom(B,) <;; Dom(r

" 
LI;). 
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The contexts occurring in the type systems proposed in this paper are all sound (see Lemma 
44). This fact will be useful when proving properties of these systems. 

We will consider several extensions of Pure Type Systems (PTSs). 

An extension that includes globally and locally defined constants is described and studied in 
[32J: 'PTSs with definitions' (D-PTSs); 
Orthogonally, we can extend PTSs with parameter-free primitive constants. Then we obtain 
C-PTSs. C-PTSs are not very interesting, as the role of parameter-free primitive constants can 
usually be imitated by variables.' One could agree that a parameter-free primitive constant 
is a special kind of variable, and promise not to make any (.\. or ll) abstraction over such a 
variable; 
Our first real extension describes PTSs with parametric primitive constants, but without def­
initions (CP-PTSs). The CP-PTSs include t.he C-PTSs, as a parameter-free primitive constant 
can be seen as a parametric primitive constant with zero parametersj 
Another extension includes parametric defined constants, and can be seen as a generalisation 
of D-PTSs: DP-PTSs; 

- We can combine the extensions with primitive constants and defined constants, choosing be­
tween parametrised or parameter-free variants. For instance, we can make an extension that 
includes parameter-free defined constants, and parametric primitive constants. We call this 
extension CPD-PTSs. 

Combining the various extensions, we obtain a hierarchy that can be depicted as in Figure 2. 

CPDP-PTS 

CPD-PTS CDP-PTS 

CP-PTS CD-PTS DP-PTS 

CoPTS D-PTS 

PTS 

Fig. 2. The hierarchy of parameters and definitions 

We give some examples of the possibilities of parameters and definitions. 

Example 33 We illustrate t.he difference between PTSs, C-PTSs and CP-PTSs. 

- In the PTS A-+ (with only one axiom * : 0 and one iI-formation rule (*, *, *)) we could 
introduce a type variable N : * and a variable 0 : N when we want to work with natural 
numbers. N represents the type of natural numbers and 0 represents the natural number zero; 

3 There are, however, extensions of PTSs in which constants play an essential role. See for instance the 
Modal PTSs in the thesis of Borghuis [9], p. 28-29. 
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Though the representation of objects like the type of natural numbers and the natural number 
zero as a variable works fine in practice, there is a philosophical problem with such a repre­
sentation. We do not consider the set N and the number 0 E N to be variables, because these 
objects 'do not vary'. If we have a derivation of N:*, o:N I- t : N for some term t, it is techni­
cally possible to make a A-abstraction over the variable 0 and obtain N,* I- Ao:N.t : N --; N. 
This is permitted since a is introduced as a variable, but it is probably not what we had in 
mind. 
In C-PTSs we can distinguish between constants and variables. If 0 is introduced as a constant, 
it is not possible to form a A-abstraction Ao:N.t; 
In some cases, we may need to introduce for each proposition E the type proof(E) of proofs 
of E. This cannot be done in the PTS A--; extended with (unparametrised) constants: such a 
constant proof should be of type prop --; type and this type cannot be constructed in A--; 
(notice that type:::: *, so the construction of prop --+ type would involve the l1-formation 
rule (*,0,0)). 
However, the term proof will hardly ever be used on its own. It is usually used when applied 
to a proposition E. In CP -PTSs it is possible to introduce a parametric version of proof by 
the following context declaration: proof (p:p~op) : type. 
This does not involve the construction of a type prop --; type. Nevertheless it is possible to 
construct the term prop(P) for any term P : prop. We obtain a form of polymorphism without 
using the polymorphism of A-calculus. 
A disadvantage may be that we cannot speak about the term proof 'as it is'. When using 
proof in the syntax, it must always be applied to a parameter T : prop. 
However, an advantage is that we can restrict ourselves to a much more simple type system. 
In the situation above we remain within the types of the system A--;. We do not need to use 
types of the system AP. This may have advantages in implementations of type systems. For 
instance, the system A--+ does not involve the conversion rule 

rl-A:B rl-B:s B=~ B' 
r I- A: B' 

while AP does involve such a rule. The conversion rule involves ,a-equality of terms, and though 
it is decidable whether two A-terms of AP are J3-equal or not, it may take a lot of time and/or 
memory to establish such a fact. This may cause serious problems when implementing certain 
type systems. Using parameters whenever possible may therefore simplify implementations. 
We give an example in Section 7. 

Example 34 We illustrate the difference between PTSs, D-PTSs and DP-PTSs. 

- In a simple PTS like A--; one can derive the following statement for an identity function: 
a,* I- (Ax:a.x) : a --; a; 

- The same derivation can be made in the corresponding D-PTS, but in that D-PTS we have 
the possibility of abbreviating the term Ax:a.x. We can do this in two ways: 
l. We can introduce this definition in the context: a,*, id=(Ax:a.x):(a--;a) I- id : a--;a. 
2. If we use this definition in the context and derive some judgement a: *, id=(Ax:a.x):(a--;a) l­
t : T, then the rules of D-PTSs permit us to introduce a local definition resulting in derivation 
of the judgement a : * I- id=(Ax:a.x):(a--;a) in t : id=(Ax:a.x):(a--;a) in T. We see that 
the definition of id now appears both in the term and in the type of the term, but no longer 
in the context. The advantages of definitions are: 

• We can abbreviate long expressions. This makes terms more surveyable: id is shorter than 
Ax:a.x; 

• We can give names to important expressions. This makes terms more understandable: id 
expresses that we are dealing with the identity function, whilst Ax:a.x does not express 
this fact; 

- In a DP -PTS we have more options for abbreviating the identity function. 
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• First of all, we can make the same derivation as in the D-PTS. Formally, there is a small 
difference: we cannot use id but must work with idO, a parametric term with zero pa­
rameters (as in D"-PTSs we can only work with parametric definitions). We obtain (in the 
case of the global definition): a=*, idO=(Ax:a.x):(a--+a) I- idO : a--+a; 

• But we could also decide to use parameters in the definition of id. For instance, we could 
parametrise the variable a resulting in the declaration id(a=*)=(Ax:a.x):(a--+a). 

If we want to use this declaration, we must have a term T of type *. Assuming that we 
have such a term T, we can derive: id(a,,)=(Ax:a.x):(a--+a) I- id(T) : T --+ T. 

We see that we obtain a restricted form of polymorphism in this way. The type system may 
not allow the construction of Aa:*.Ax:a'.x; nevertheless the parameter mechanism makes 
it possible to express id(T) for any type T : *; 

• We could also decide to parametrise the vflriable x, and leave the variable a unparametrised. 
This yields a context a=*, id(x:a)=x:a. We see that the A-abstraction Ax:a.x is parametrised 
now. The definition declaration means: For any term t of type a, the term id(t) of type a 
is defined by t. If we have such a term t, then we can derive a,., id(x:a)=x:a I- id(t) : a. 
Observe that id(t) does not have type a --+ a (as was the case with id) but type a (which 
would also be the type of id t if we had used the identity id=Ax:a.x from A-calculus); 

• Finally, one could parametrise both a and x. This results in a declaration 

id(a,., x:a)=x:a in the context. If we have a term T of type * and a term t of type T, we 
can derive id(a,., x:a)=x:a I- id(T, t) : T. 

The global definitions given in the Dr -PTS case could also be made local, as was done in the 
D-PTS case. 

We now start a more detailed description of the various extensions of PTSs with definitions and 
parameters. We define two reduction relations, namely the 6- and ,6'-reduction. ,6'-reduction is 
defined as usual, and we use ~(3, ---.-!ff(3) """'"*t, and ={3 as usual. As far as global definitions are 
concerned, &-reduction is comparable to 6-reduction in AUTOMATH. This is reflected in rule (&1) 
in the definition below. But now, a J-reduction step can also unfold local definitions. Therefore, two 
new reduction steps are introduced. Rule (62) below removes the declaration of a local definition if 
there is no position within its scope where it can be unfolded (,removal of void local definitions'). 
Rule (J3) shows how one can treat a local definition as a global definition, and thus how the 
problem of unfolding local definitions can be reduced to unfolding global definitions ('localisation 
of global definitions'). Remember that L1 == x,:B

" 
... ,xn:Bn. 

Definition 35 We define the following three reduction rules: 

r I- c(L1)=a:A in b --+, b if crt Cons(b) 

r, c(L1)=a:.4 I- b --+, b' 
r I- c(L1)-a:A in b --+, c(L1)-a:A in b' 

(J2) 

(J3) 

Furthermore, we have some compatibility rules. These rules are not very complicated, but 
unfortunately we need quite a lot of them. 

Definition 36 We define the following compatibility rules: 
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r, LI I- a --to a' 
r I- c(LI)-a:A in b --to c(LI)-a':A in b 

r I- a --+6 a' 
r I- ab --to a'b 

r, x:A I- a --+0 a' 
r I- Ax:A.a --to Ax:A.a' 

r, x:A I- a --to a' 
r I- II x:A.a --to II x:A.a' 

r, LI I- A --to A' 
r I- c(LI)-a:A in b --to c(LI)=a:A' in b 

r I- b --tS b' 
r I- ab --to ab' 

r I- A --to A' 
r I- Ax:A.a --to Ax:A'.a 

rI-A--t6A' 
r I- IIx:A.a --to IIx:A'.a 

Remark 37 One might also expect a compatibility rule 

r I- b--to b' 

r I- c(LI)=a:A in b --to c(LI)=a:A in b" 

However, this rule is a derived rule (see the forthcoming Lemma 47). 

Now we can give a formal definition of c)-reduction: 

Definition 38 6-reduction is defined as the smallest relation --to on Cp x Tp x Tp closed under 
the rules (JI), (62) and (63) of Definition 35 and under the compatibility rules of Definition 36. 

r I- . =, . denotes the refiexive, symmetric and transitive closure of r I- . --to '. 

When r is the empty context, we write a --+0 a' instead of r I- a --+0 a', 
We extend -+0 to contexts: 

Definition 39 o-reduction between contexts is the smallest relation --+0 on Cp x Cp closed under 
the following rules: 

n I- A --t, A' 
r 1 , x:A, r 2 -+0 r 1 , x:A', r 2 

r
" 

LI I- A --to A' 

r"c(LI):A,r, --to r"c(LI'):A,r, 

r
" 

LI I- a --to a' 

r
" 

LI --to r
" 

LI' r
" 

LI I- A --t, A' 
r" c(LI)-a:A, r, --to r

" 
c(LI')-a:A,r2 r

" 
c(LI)-a:A, r 2 --to r

" 
c(LI)-a:A', r, 

We now describe the extensions to PTSs that are needed to obtain CP-PTSs and DP-PTSs. 
We don't discuss D-PTSs and CPD-PTSs: D-PTSs are introduced in [32) and CPD-PTSs can be 
constructed by extending D-PTSs with the additional rules for CP - PTSs. 

Definition 40 (CP-PTS: Pure type systems with parametric constants) The typing rela­
tion I-C' is the smallest relation on C p x Tp x Tp closed under the rules in Definition 5 and the 
following ones (we still write LI == x,:B

" 
... ,xn:Bn): 

r I-c ' b : B r, LI I-c ' A: s 
r,c(LI): A I- cP b: B 

(CP-weak) 

(CP-app) 

r
"

c(LI):A,r2 I- C
' bi:Bi[xj:=bjg;;i (i = l, ... ,n) 

r
" 

c(LI):A, r 2 I-c ' A: s (if n = 0) 

n,c(LI):A,r2I-c ' c(b" ... ,bn): A[xj:=bj)j~l 
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where s E S and the c that is introduced in the CP-weakening rule is assumed to be r-fresh (i.e., 
it does not occur in r). 

At first sight one might miss a CP-introduction rule. Such a rule, however, is not necessary, as 
c (on its own) is not a term. c can only be (part of) a term in the form c(b

" 
. .. , bn ), and such 

terms can be typed by the CP -application rule. 
The extra condition r

" 
c(Ll):A, r, f- c ' A : s in the CP-application rule for n = 0 is necessary 

to prevent an empty list of premises. Such an empty list of premises would make it possible to 
have almost arbitrary contexts in the conclusion. The extra condition is only needed to aSSUre 
that the context in the conclusion is a legal context. 

Remark 41 If we have a parametric constant in the context, for instance plus(x : N, y : N) : N, 
then it is tempting to think of plus as a parametric function. Note however that in PTS-terms it 
is not a function anymore since the only way to obtain a legal term with it is in its parameterised 
form plus(x, y) which has type N; plus(x : N, y : N) itself is not a legal term. In order to talk about 
properties of plus 'as a function' we are forced to consider Ax : N.Ay : N.plus (x, V). 

Adapting the rules for f- c' and the rules for definitions of [32] results in rules for parametric 
definitions: 

Definition 42 (DP-PTS: Pure type systems with parametric definitions) The typing 
relation f-D' is the smallest relation on C p x Tp x Tp closed under the rules in Definition 5 and 
the following ones: 

(DP-weak) 

(DP-app) 

(DP-form) 

(DP-intro) 

(DP-conv) 

r f-D' b : B r, Ll f-D' a : A 
r, c(Ll)=a:A f-D' b: B 

r"c(Ll)=a:A,r, f-D' bi : Bi[Xj:=bj];;:;~ (i = 1, ... ,n) 
r

" 
c(Ll)=a:A, r, f-D' a: A (if n = 0) 

r" c(Ll)=a:A, r 2 f-D' c(b
" 

... , bn ) : A[xj:=bj]7~1 

r, c(Ll)=a:A f-D' B : s 
r f-D' c(Ll)=a:A in B : s 

( 
D' D' A) . r, c Ll)=a:A f- b : B r f- e(L.> =a:A ln B : s 

r f-DP e(Ll)=a:A in b : e(Ll)=a:A in B 

r f-D' b: B r f-DP B' : s r f- B =, B' 
r f-D' b: B' 

where s E S, and the c that is introduced in the DP -weakening rule is assumed to be r -fresh. 

f-D' includes the definition system of [32]: The D"-application rule for n = 0 can be seen as 
the o-start rule of D-PTSs. f-C'DP is the smallest relation on C p x Tp x Tp that is closed under 
the rules of Definition 5 and the rules of f- c ' and f-D'. 

Definition 43 (Pure Type Systems with (parametric) constants and (parametric) def­
initions) Let S be a specification (see Definition 2). 

A pure type system with (parametric) constants CP-PTS is denoted as AC'(S) and consists of 
a set of terms IP, a set of contexts Cp , the ,a-reduction rule and the typing relation r-.cp

; 
A pure type system with (parametric) definitions DP-PTS is denoted as ADP (S) and consists 
of a set of terms Tp, a set of contexts Cp, f3 and o-reduction and the typing relation f-DP; 

- A pure type system with (parametric) constants and (parametric) definitions CPD" -PTS is 
denoted as AC ' D' (S) and consists of a set of terms Tp, a set of contexts Cp, f3 and o-reduction 
and the typing relation r-. cP 

DP. 
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A term a is legal (with respect to a certain type system) if there are r, b such that either r f- a : b 
or r f- b : a is derivable (in that type system). Similarly, a context r is legal if there are a, b such 
that r f- a : b. 

All contexts occurring in CPDP-PTSs are sound (see Definition 32). As CPDP-PTSs are clearly 
extensions of PTSs, CP-PTSs and DP-PTSs, this implies that all contexts occurring in PTSs, 
CP -PTSs and DP -PTSs are sound. We need this fact in many proofs in the next sections. 

Lemma 44 Assume r f-G"D" b: B. The following holds: 
1. Dom(b), Dom(B) c: Dom(r); 2. r is sound. 

PROOF: We prove the statements (1) and (2) simultaneously by induction on the derivation of 
r f-G"D" b: B. We treat the two most important cases: 

(DP-weakening) r, c(Ll)=a:A f- boB because r f- b:B and r, Ll f- a:A. 
(1) is trivial; (2) follows from the induction hypothesis for (1); 
(DP-formation) r f- (c(LI)=a:A in B): s because r,c(Ll)=a:A f- B: s. 
(1) follows from the induction hypothesis for (2); (2) is trivial. 

3 Properties of terms 

In this section, we prove properties of terms without wondering whether these terms are legal or 
not. In Section 3.1 we discuss some basic properties, such as a Substitution Lemma, and substitu­
tivity. Section 3.2 is devoted to the Church-Rosser property for iJo-reduction, and in Section 3.3 
we prove strong normalisation for 5-reduction. 

Though we do not restrict ourselves to legal terms in this section, we often demand that the 
free variables and constants of a term are contained in the domain of a sound context. 

3.1 Basic properties 

In the following lemma we show that a 5-reduction step remains invariant if we enlarge the context. 
The proof is done by induction on the definition of -+15· 

Lemma 45 (--t,-weakening) 
Let (r

" 
r" r 3) E Cp be such that r " r3 f- b --t, b'. Then r " r" r3 f- b --t, b'. 

The implications from left to right of the following lemma are a particular case of Lemma 45. 
The implications from right to left allow to make the context shorter. The first two parts 

state that declarations of the form c(Ll):A and x:A in a context do not have any influence on the 
reduction relation --t~,. The last part states that declarations of the form c(Ll)=a:A in a context 
do not have any influence on the --t~, reduction behaviour of terms b E Tp with c '1. Cons(b). This 
allows to remove definition declarations, as rule (02) of the definition of o-reduction does for local 
definitions. The lemma is proved by induction on the definition of -+13 and -+15. 

Lemma 46 

1. Let (r"x:A,r,) E Cp and b E Tp. r"r, f- b --t~, b' if and only if r"x:A,r, f- b --t~, b'; 
2. Let (r"c(Ll):A,r,) E Cp and b E Tp. r"r, f- b --t~, b' if and only if r"c(Ll):A,r, f- b --t~, 

b' j 
3. Let (r"c(Ll)=a:A,r,) E Cp and b E Tp be such that c '1. Cons(b). 

r"T, f- b--t~, b' if and only if r"c(LI)=a:A,T, f- b--t~, b'. Gl 

Now we show that the compatibility rule for c(Ll)=a:A in b when we reduce inside b is a 
derived rule (and therefore not included in the list of compatibility rules in Definition 36). 



Parameters in Pure Type Systems 19 

LeInma 47 The following rule is derivable from the ones in the definition of --+5: 

r f- b --+, b' 
r f- c(Ll)-a:A in b --+, c(Ll)-a:A in b" 

PROOF: Suppose r f- b --+, b'. By Lemma 45, r,c(Ll)=a:A f- b --+, b'. By definition of --+" it 
follows that r f- c(Ll)=a:A in b --+, c(Ll)=a:A in b'. 181 

The following lemma is proved by induction on the structure of a. 

Lemma 48 (Substitution Lemma) 
Suppose x '" y and x 'Ie FV(d). Then a[x:=b][y:=dJ == a[y:=dJ[x:=b[y:=dJJ. 

The following lemma shows that --+~ is substitutive. It is proved by induction on the generation 
of --+ ~ and by the Substitution Lemma. 

Lemma 49 (Substitutivity for --+~) If a --+~ a' then a[x:=bJ --+~ a'[x:=bJ. 

The relation --+, is not substitutive when considered as a binary relation (disregarding the 
context). For example, let r == x:a, x':a, cO=x:a. We have r f-D' cO : a and r f- cO --+, x, but 
not r f- cO[x:=x'J --+, x[x:=x'J. 
The reason for this is to be found in the a-weakening rule. When we introduce a new parametric 
definition c(Ll)=a:A, the term a may contain free variables that are not in the domain of Ll but in 
the domain of r. When unfolding the definition c, these new variables can appear, thus destroying 
substitutivity. However, we do have the substitutivity property below. The proof is by induction 
on the derivation of r I-- a ---78 a' . 

Lemma 50 (Substitutivity for --+,) If r f- a --+, a' then r[x:=bJ f- a[x:=bJ --+, a'[x:=bJ. 

PROOF: Induction on the derivation of r I-- a ---78 a' . 

In the following lemma we reduce inside the term b of a[x:=bJ. The proof is by induction on 
the structure of a. 

Lemma 51 If r f- b --+~, b' then r f- a[x:=bJ -'ff~, a[x:=b'J. 

3.2 Church-Rosser for -l-f36 

In this section we prove the Church-Rosser theorem for -'ff~, -'ff, and -'ffM' The proof is of a 
rather technical nature. We suffice by mentioning the necessary lemmas, for proofs the reader is 
referred to the appendix. 

As for ordinary A-terms, we have: 

Theorem 52 (Church-Rosser theorem for /3-reduction) If a -'ff~ a1 and a -'ff~ a2 then 
there exists a term a3 such that al --.!ff(3 a3 and a2 --.!ff(3 a3· [gI 

The proof is similar to the proof for A-terms without definitions and parameters. 

For a context r and a term b we define Iblr1 which is, intuitively, b in which all definitions are 
unfolded. That is: both the local definitions inside b, and the global definitions given in r. The 
definition is by induction on the total number of symbols occurring in r and b. 

Definition 53 For a E Tp and r E Cp we define a term lair E Tp as follows: 

lair == a (for a == x E V or a == s E S); 

_ { lalr"Ll[x;:=lbilrJi~l if r == (r1, c(Ll)=a:A, r 2 ); 

Ic(b1, ... , bn)lr = 
c(lbdr, .. · ,Ibnlr ) if c 'Ie Def(r); 

labl r == lalrlbl r ; 

l(')x:A.Blr == (')x:IAlr.IBlr,,,A if (') is A or II; 

Ic(Ll)=a:A in bl r == Iblr,'(Ll)~a'A (where c is r-fresh). 
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The following lemma shows that Iblr is independent from variable declarations x:A and (prim­
itive) constant declarations c(L1):A in r. The proof is by induction on the definition of Ibl r r . " , 
Lemma 54 Iblr, ,I', = Ibl r , ,,,A,r,; and Iblr"r, = Iblr"c(Ll),A,r,· t8l 

By induction On the definition of Iblr one shows that Iblr does not contain any local definitions. 

Lemma 55 For all bE Tp and r E Cp , Ibl r has no subterms of the form (c(L1)=a:A in d). t8l 

The intuition on Ibl r suggests that all definitions of b are unfolded in Iblr. However, there 
may be global definitions in r that have not been unfolded in Ibl r . Take, for example, r = 
(cO=c'O'*, c'O=c"O=*)· Then IcOlr = Ic'010 = c'O, but c'O is not in 6-normal form with 
respect to r. This is due to the fact that r is not a sound context (see Definition 32). 

By induction On the definition of Ibl r , we show that if r is sound, Iblr is equal to b with all 
the definitions in band r unfolded. It is no serious restriction to consider only sound contexts, as 
all contexts that appear in CPDP-PTSs are sound (Lemma 44). 

Lemma 56 Let r be a sound context such that Dom(b) <; Dorn(r). Then Dorn(lbl r ) <; Dom(r) \ 
Def(r). t8l 

With the above we can show: 

Lemma 57 If r is sound and Dom(d) <; Dorn(r), then r I- d --*, Idlr. 

Corollary 58 In any (J']]P -FTS, the relation -t, is weakly normalising, i.e., each legal term has 
a 6 -normal form. 

PROOF: Ibl r is in 6-normal form (Lemmas 55 and 56) and Iblr is a 6-normal form of b (Lemma 
5n. t8l 

The mapping 1-1_ also helps us to show that -t~, is confluent (Theorem 63). For the proof 
we use some lemmas: 

Lemma 59 Assume (r"r3 ) is sound and Dom(b) <; Dom(r"r,). Then Ibl r r r = Iblr I' . t8l 
1, 2, 3 1, 3 

Lemma 60 Assume (r"r2 ) is sound, and Dom(a) <; Dom(r"r2 ), Dom(b) <; Dom(r,) and 
x <1. DomCr,). Then lair, ,I', [x:=lblr,l = la[x:=bll r , ,r,[x,=b]' t8l 

Lemma 61 If r I- d -t, d', r is sound, and Dom(d) <; Dom(r), then Idlr = Id'ir and Dom(d') <; 
Dom(r). 

PROOF: We prove the following two statements simultaneously by induction On the definition of 
Idl r : 1. If r I- d -t, d' then Idlr = Id'lr; and 2. If r -t, r' then Idl r = Idlr-' t8l 

Lemma 62 If r is sound, Dom(d) <; Dom(r) and d -t~ d', then Idlr --*~ Id'ir' 

The proof is similar to the proof of Lemma 61. 

Theorem 63 (Confluence for -t~,) If r is sound, r I- a --*~, bl and r I- a --*~, b2 then there 
exists a term d such that r I- b, --*~, d and r I- b2 --*~, d. 

PROOF: The proof is illustrated by the following diagram. 

)} b
2 

57 :12 :21 52 

/ 61 

" \;":: -;5",7-~~~ 52 

Ib,lr 

fJ 

fJ 
d 
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3.3 Strong normalisation for -+6 

In [15]' van Daalen presents a proof (originally due to de Bruijn) of strong normalisation for a 
definition system that is at the basis of AUTO MATH. De Vrijer uses a similar technique to prove 
the finite developments theorem [34]. A similar technique to the one of de Vrijer is also used in [32] 
to prove strong normalisation for a-reduction in DP -PTSs. We extend these techniques to prove 
strong normalisation for a-reduction in CPDP-PTSs. 

First we define the multiplicity Mz(r, a) of a variable z in a term a, depending on a context r. 

Definition 64 For Z E V, F E Cp and a E Tp we define a natural number Mz(F, a) by induction 
on the total number of symbols in F and a. 

Mz(F,z) = 1; 
Mz(F,a) = 0 if a == x 'I z or a == s E S; 

I
MZ((Fl,Ll),a) + I:7~lMz(F,bi) . max(I,Mx;((Fl , Ll),a)) 

( (
If F == (Fl ,c(Ll)=a:A,F2); 

Mz F,c bl , ... ,bn)) = 
E;~l Mz(r, bi ) otherwise; 

M,(F,c(Ll)=a:A in b) = M,((F,Ll),a) +M,((F,Ll),A) + I:7~1 Mz((F,Lli),Bi) + M,((F, c(Ll)=a:A),b); 
Mz(F,ab) = Mz(F,a) + Mz(F,b); 

. Mz(F, Ox:A.a) = M,((F, x:A), a) + M,(F, A); if 0 is oX or IT. 

Following the line of [34] one can prove the following lemma (using induction on the definitions 
of M_( -, - )): 

Lemma 65 

1. If F is sound, Dom(a) ~ Dom(r) and x <1. FV(a) U FV(r), then Mx(F,a) = 0; 
2. If (Fl , F3) is sound and Dom(a) ~ Dam( (Fl , F3)), then Mx( (TJ, F3), a) = Mx( (Fl , F2 , F3), a); 
3. If (F"F,) is sound, Dom(b) ~ Dom((TJ,r2)), Dom(a) ~ Dom(F,), x 1= z and x <1. FV(F,), 

then Mz( (F
" 

F2 [x:=aJ), b[x:=aJ) = M, ((F
" 

F,), b) + M, (F
" 

a) . Mx( (F
" 

F2)' b). ~ 

The following lemma requires a somewhat more complicated proof than in [34], as contexts are 
involved in our situation. 

Lemma 66 Let F be sound, Dom(a) ~ Dom(F). If F I- a --t, b, then Mx(F, a) 2': Mx(F, b). 

PROOF: We simultaneously prove, using induction on the total number of symbols in r and a, the 
following two statements: 
l. If F I- a --t, b, then Mx(F,a) 2': Mx(F,b); 2. If F --t, F', then Mx(F,a) 2': Mx(F',a). 
The proof is straightforward, using the lemma above. [gI 

Next we define, for F E Cp and a E Tp, a natural number Lr (a) that decreases with each J 
reduction step. It is similar to the mappings defined in [34] (used to prove the finite developments 
theorem), in [15] and in [32] (used to prove strong normalisation of o-reduction). This function 
L_ (-) computes an upper bound for the length of the longest J-reduction path from a term to 
its a-normal form. 

Definition 67 For F E Cp and a E Tp we define Lr (a) by induction on the total number of 
symbols in F and a: 

Lr (a) = 0 if a == x E V or a == s E S ; 

{ 

L(r",,) (a) + I:7~1 Lr (b i ) . max(l, Mx; ((F
" 

Ll), a)) + 1 

Lr(c(b
" 

... , bn)) = If F == (Fl , c(Ll)=a:A, F2 ); 

I:7~1 Lr (bi ) otherwise; 
Lr (c(Ll)=a:A in b) = L(r,") (a) + L(r,,,) (A) + I:7~1 L(r,,,;) (Bi) + L(r,,(")~aA) (b) + 1; 

Lr (ab) = Lr (a) + Lr (b); 
Lr (Ox:A.a) = L(r,,,A) (a) + Lr (A); if 0 is oX or IT 
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Similar properties as in Lemma 65 and Lemma 66 hold for L_ (-): 

LelTIlTIa 68 

1. If (r,,r3) is sound, Dom(a) <; Dom((rl ,r3)), then L(r"r,) (a) = L(r"r"r,) (a); 
2. If (rl , r 2 ) is sound, Dom(b) <; Dom((rl , r,)), Dom(a) <; Dom(rrl, and x '/. FV(rl ), then 

L(r"r,[xo=aj) (b[x:=aJ) = L(r"r,) (b) + Lr, (a)· Mx ((rl ,r2 ),b). 

The lemma above is used to prove the crucial property of L_ ( - ): 

LelTIlTIa 69 If r is sound, Dom(a) <; Dom(r) and r f- a -'s b, then Lr (a) > Lr (b). 

PROOF: Similar to the proof of Lemma 66. 

TheorelTI 70 (Strong NorlTIalisation for J) The reduction J (when restricted to sound contexts 
r and terms a with Dom(a) <; Dom(r)) is strongly normalising, i.e. there are no infinite J­
reduction paths. 

PROOF: This follows from lemma 69. 

Without the restriction to sound contexts r and terms a with Dom(a) <; Dom(r), we do not 
even have weak normalisation: take r '" (cO=dO:A, dO=cO:A). The term cO does not have a 
r -normal form. 

4 Properties of legal terms 

The properties in this section are proved for all terms that are legal in a pure type system with 
parameters, i.e. for terms a for which there are A, r such that r I---cp DP a : A or r I---

cp 
DP A: a. The 

main property we prove is that strong normalisation of a PTS is preserved by certain extensions. 
Many of the standard properties of PTSs in [3], [16] hold for CPDP -PTSs as well. In the same 

way as in [3], [16] we can prove the Substitution ~emma, Correctness of Types, Subject Reduction 
(for f3J-reduction) and Uniqueness of Types (for singly sorted CPDP-PTSs): 

TheorelTI 71 Let S be a specification. The type system )..G' D' (S) has the following properties: 

Substitution Lemma; 
Correctness of Types; 
Subject Reduction (for -.~,). 

Moreover, if S is singly sorted then )..G'D' (S) has Uniqueness of Types. 

The Generation Lemma is extended with two extra cases: 

Lemma 72 (Generation Lemma, extension) 

1. If r I--- cp 
DP c(b1 , •.. , bn) : D then there exist sort s, .d == Xl :Bl, ... ,xn:Bn and term A such 

that r f- D =~s A[Xi:=bi]Y=l' and r f-G'D' bi : Bi[xj'=bj]j:::;. Besides we have one of these 
two possibilities: 
(a) Eitherr=(rl,c(LI):A,r2) and rl,LI f-G'D' A:s; 
(b) Or r = (rl, c(LI)=a:A,r2) and r l , LI f-G'D' a : A; 

2. If r f-G'D' c(LI)=a:A in b: D then we have two possibilities: 
(a) Either r,c(LI)=a:A f-G'D' b : B, r f-G'D' (c(LI)=a:A in B) sand r f- D =~, 

c(LI)=a:A in B; 
(b) Or r,c(LI)=a:A f-G'D' b: sand r f- D =~, s. 
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In CMe l(b) we do not necessarily have r"LlI-G"D" A: s. For instance, in the CPDP-PTSs of the 
Barendregt Cube one can abbreviate terms a of type 0, whilst 0 is not typable in these systems. 

Also Correctness of Contexts hM some extra cases compared to usual PTSs. Recall that r is 
legal if there are b, B such that r I-C" D" b : B. 

Lemma 73 (Correctness of Contexts) 

1. If r,x:A,r' is legal then there exists a sort s such that r I-C"D" A: s; 
2. If r, c(Ll):A, r' is legal then r, Lll-G' D" A: s; 
3. If r,c(Ll)=a:A,r' is legal then r,LlI-C"D" a: A. 

Again, in case 3 we do not necessarily have r, 4 ~CP DP A: s. 
Now we prove that AC"D' (S) is ;3J-strongly normalising if a slightly larger PTS A(S') is ;3-

strongly normalising. The proof follows the same ideas of [32J to prove that a PTS extended with 
definitions is ,815-strongly normalising. 

For legal terms a E Tp in a context r, we define a lambda term Iialir without definitions and 
without parameters. If a is typable in a CPDP-PTS AC " D" (S), then Iialir will be typable in a PTS 
A(S'), where S' is a so-called completion (see Definition 81) of the specification S. Moreover, we 
take care that if a --'t~ a', then Iialir --*t Ila'llr (that is: Iialir --*~ Ila'llr and Iialir 'i= Ila'llr)' 
Together with strong normalisation of J-reduction (Theorem 70), this guarantees that AC ' D" (S) 
is ;3J-strongly normalising whenever A(S') is ;3-strongly normalising. 

We suppose that VuC, the set of variables and constants that are used to define Tp, is included 
in the set of variables that is used to define T, the set of terms used for the PTS A(S'). 

4 still denotes a list of variables with types xl:B1 ) ... ,xn:Bn and 4i is an abbreviation for 
xl:B1 , . .. ,Xi-l :Bi - 1 . A 4.a denotes A7=1 x(Bi.a and IT 4.A denotes rr~=l xi:Bi.A. 

Definition 74 For a E Tp and r E Cp we define Iialir M follows: 

Iialir = a if a = s E S or a = x E V ; 

_ { IIA Ll.allr, Ilb,llr .. '1lbnll r if r = (r
" 

c(Ll)=a:A, r z ); 

Ilc(b
" 

... , bn)llr = lib II ." lib II th '. C 1 r' ,n r 0 erWIse, 

Ilabll r = Iiali r Ilbll r ; 

IIOx:A.bll r = Ox: IIAllr ·llbllr,d; if 0 is A or II 

Ilc(Ll)=a:A in bll r = (Ac:(1111 Ll.Allr).llbllr,,(Al=a,A) IIA Ll.all r · 

The mapping II_II is slightly different from the mapping I_I . This is because we want II_II to 
maintain ;3-reductio';s. In a term c(Ll)=a:A in b, there may be ;3-redexes in Ll, a or A. These 
redexes may be lost in Ic(Ll)=a:A in blr = Iblr.c(Al=a,A' Due to the extra A-abstraction in the 
definition of Ilc(Ll)=a:A in bll r , the possible ;3-redexes in Ll, a and A are maintained. 

The mapping 11_11_ is extended to contexts. 

Definition 75 For a context r E Cp we define IITII as follows: 

11°11=O; 

Ilr, x:AII = Ilrll , x: IIAllr ; 

Ilr, c(Ll):AII = Ilrll , c: ([Ill Ll.All r ); 

Ilr, c(Ll)=a:AII = IITII, c: (1111 Ll.All r )· 

We have similar properties for II_II as for I_I : - -

Lemma 76 If (r
"

r 3 ) is sound and Dom(a) <;: Dom((T
"

T3 )), then Iiallr"r"r, = Iiallr"r,. ~ 
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The proof is similar to the proof of Lemma 59. 

Lemma 77 Assume (Fl,r2) is sound, and Dom(a) C; Dom((rl ,r2 )), Dom(b) C; Dom(rJ), and 

x rt Dom(rJ). Then Iiallr,.r, [x:= Ilbllr,J '" Ila[x:=bJllr,.r,[x.~bl. [8J 

The proof is similar to the proof of Lemma 60. 
We nOw show that II_II translates a J-reduction into zero or more {1-reductions, and that it 

translates a .a-reduction into one or more .a-reductions. 

Lemma 78 Let r be sound, and assume Dom(a) C; Dom(r). If r r a --+, b then Iialir --"f>~ Ilbllr . 
[8J 

Lemma 79 Let r be sound, and assume Dom(a) C; Dom(r). If a --+~ b then Iialir --"f>t Ilblir . [8J 

The proof for the cases c(bl , ... , bn ) and c(LI)=a:A in b shows that this lemma does not hold 
if we use I_I instead of II_II . The proof for the case c(LI)=a:A in b shows the need to prove that 
lIallr --"f>~ Iiallr- if r --+~ ri. 

Definition 80 The specification S = (S, A, R) is called quasi full iffor all 81, 82 E S there exists 
83 E S such that (81,82,83) E R. 

Definition 81 A specification S' = (S',A',R') is a completion of S = (S,A,R) if 

1. S C; S', A C; A', and R C; R'; 
2. S' is quasi full; 
3. for all s E S there is a sort 8' E S' such that (8, s') E A'. 

Theorem 82 Let S = (S,A,R) and S' = (S',A',R') 
r r~'D' a: A then Ilrll rS' Iialir : IIAllr· 

be such that S' is a completion of S. If 
~ 

Now we can prove our normalisation result for CPDP-PTSs. 

Theorem 83 LetS = (S,A,R) andS' = (S',A',R') be such thatS' is a completion ofS. If the 
PTS A(S') is {1-strongly normalising, then the (j'1Y' -PTS AC ' D' (S) is {1J-strongly normali8ing. 

PROOF: Suppose that A(S') is {1-strongly normalising, and suppose towards a contradiction that 
AC'D' (S) is not {1J-strongly normalising, i.e. there is an infinite {1J-reduction sequence al --+~, 

t t · t - drLcPDP·A a2 -+(30 ... , s ar mg a a = al an ,- a.. 

Observe that the number of {1-reductions in this sequence is infinite. Otherwise there would be 
n E N such that r I- an -+6 an+l -+0 an+2 ... , which contradicts the fact that a-reduction is 
strongly normalising (Theorem 70). 
We conclude that the reduction sequence is of the form r I- a ----* J anI -+(3 a n2 ----*6 a n3 -+(3 a n4 -+ 
--+, ... By lemmas 78 and 79 there is an infinite {1-reduction sequence starting at Iiallr: 

and by Theorem 82, IITII rS' Iialir : IIAllr, which contradicts the assumption that A(S') is {1-
strongly normalising. !8J 

Since ECC is {1-strongly normalising and a completion of all systems of the A-cube, Theorem 83 
guarantees that all systems of the A-cube are {1J-strongly normalising. Note that AC itself is not 
a completion since it has a topsort o. 



Parameters in Pure Type Systems 25 

5 Restrictive use of parameters 

In the extension of PTSs to CPDP-PTSs presented in Sections 2-4, we did not put any serious 
restrictions on the use of parameters: 

l. If S = (S, A, R) is a specification, then the introduction of a parametric constant c in .x CP DP (S) 
only requires that its intended type A is of type s, for some sort 8 E S. Similarly, for the 
introduction of a parametric definition we only require that its definiens a is of a certain type 
A. By correctness of types, either A == s, or A has type s, for some s E S; 

2. Similarly, if r = r"c(,1)=a:A,r" or r = r"c(,1):A,r2 , the only restrictions we put on ,1 
are that ,1 must contain only variable declarations, and that r" ,1 must be legal. There are 
no additional restrictions on the types Bi of the declarations Xi :Bi in ..1. 

Something similar is the case with lI-formation rules in a (parameter-free) PTS in which 
there is no restriction on the use of ll-formation rules: (S1,82,S3) E R for any S1,S2,S3 E S. In 
the specific situation that S = {(*,O)} and A = {*,O}, this would give a non-functional PTS 
even stronger than .xC, the system on top of the Barendregt Cube . .xC and the other systems of 
the Barendregt Cube cannot be constructed if we do not put restrictions on the rules that are 
allowed. It is the variation in the set of lI-formation rules that makes it possible to distinguish 
the various type systems in the Cube (and the various logical systems that are behind it, via the 
PAT-isomorphism). 

In this section we study CPDP -PTSs in which we put restrictions on the types of parametric 
constants and definitions, and their parameters. These restrictions can be described in a set P of 
parametric rules, just as the restrictions on ll-formation rules are described in R. The effect of 
the rules in P is as follows. 

- Assume we have a constant declaration c(,1) : A that is part of a legal context r. By Cor­
rectness of Contexts, A has type s for some s E S. Similarly, for each declaration Xi:Bi in .do 
there is a sort Si such that Bi has type Si. The use of parameters is restricted by demanding 
that (8i,8) E Pfor i = l, ... ,n; 

- In principle, the same holds for a definition declaration c(,1)=a:A. However, there is a small 
difference on this point. It is not necessary that A has type s for some sort s E S: it can be 
the case that A = S and that S : s' does not hold for any s' E S. This is a feature that occurs 
in the DPTSs of Severi and Poll. To keep our system compatible with the DPTSs, we want to 
maintain this feature. 
To cover this case, we do not only introduce rules of the form (Si, s), but also rules of the 
form (8i, TOP). If the usc of parameters is restricted by a set P, then either (8,,8) E P for 
i = 1, ... ,n, or A is atopsort, and (Si,TOP) E P fori = 1, ... ,n. 

In the specific case of the Barendregt Cube, the combination of Rand P leads to a refinement 
of the Cube, thus making it possible to classify more type systems within one and the same 
framework. 

The similarity of restricting the use of parameters by a set P with restricting the use of ll­
formation by a set R gives us a theoretical motivation for the work in this section. But there 
are also some practical motivations, as several type systems can be described using restriction of 
parameters. 

Example 84 Consider the Pascal function double that was presented in Section l. 

Remark that double only takes object variables as parameters. In Pascal, it is not possible to 
have functions with type variables as parameters; 
Moreover, double returns an object. It is not possible in Pascal to construct functions that 
return a type as result. 

So the use of parameters is restricted to the object level. 

Other examples (ML, LF, AUTOMATH) are discussed in Section 6. 
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5.1 CPDP -PTSs with restricted parameters 

We now give a formal definition of pure type systems with restricted parameters and restricted 
parametric definitions. 

Definition 85 (Parametric Specification) A parametric specification is a quadruple (S, A, R, P) 
such that (S, A, R) is a specification (cf. Definition 2), and P ~ S x (S U {TOP}). The parametric 
specification is called singly sorted if the specification (S, A, R) is singly sorted. 

The set P enables us to present a restricted version of the CP -weakening rule of Definition 40. 
We call this rule restricted CP-weakening (C-weak): 

r I-c b: B r, L1i I-G' Bi : 8i r, L1l-c A : 8 
(8i'S) E P 

r,c(L1): A I-c b: B 

The condition (Si' s) E P must hold for all i E {I, ... , n}. But it is not necessary that all the Si 

are equal: in one application of rule (C-weak) it is possible to rely on more than one element of 
P. 

Definition 86 The typing relation I-c is the smallest relation on C p x Tp x Tp closed under the 
rules in Definition 5, (CP-app) (see Definition 40), and (C-weak). 

Similarly, we present a restricted version of the a-weakening rule of Definition 42. We call this 
rule restricted DP-weakening (D-weak): 

r I-b b: B r, Ll i rb Bi : 8i r, Ll rb a : A : s 
(Si'S) E P 

r, c(L1)=a:A I-b b : B 

Again, (Si'S) E P must hold for all i E {I, .. . ,n}, and again it is not necessary that all the Si are 
equal. ' 

For the case that A is a topsort, we present a special version of this CD-weak) rule. By A : TOP 

we denote that A := S and that there is no Sf E S such that (s : Sf) EA. 

r I-b b: B r, L1i I-b Bi : Si r, L1l-b a : A : TOP 

r, c(L1)=a:A I-b b : B 
(Si' TOP) E P 

For all i E {I, ... , n}, (Si' TOP) E P must hold, but the Si may, again, be different. 

Definition 81 The typing relation I-b is the smallest relation on Cp x Tp x Tp closed under the 
rules in Definition 5, (DP-app), both versions of (D-weak), (DP-form), (DP-intro), and (DP-conv) 
(see Definition 42). 

Definition 88 The typing relation I-cb is obtained from the relation I-CPDP by replacing rule 
(CP-weak) by rule (C-weak) and rule (DP-weak) by rules (ii-weak). 

Definition 89 (Pure Type Systems with Restricted Parameters and Restricted Para­
metric Definitions) Let S be a parametric specification. The pure type system with restricted 
parameters and restricted parametric definitions (CD-PTS) and parametric specification S is de­
noted ),Cb(S). The system consists of the set of terms Tp, the set of contexts Cp , (3-reduction, 

a-reduction, and the typing relation rCb. 

We do not extensively discuss the various meta-properties of CD-PTSs. This is because a CD­
PTS with parametric specification (S, A, R, P) is a subsystem of the CPDP oPTS with specification 
(S, A, R). We only give a stronger formulation of the extension of the Generation Lemma 72 
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Lemma 90 (Generation Lemma, second extension) 

If r rcb c(b
" 

... , bn ) : D then there exist s, LI and A such that r r D =M A[Xi:=bil7~1' and 
r r bi : Bi[xj:=bjlj;;i. Besides we have one of these three possibilities: 

1. Either we have that r = (r"c(LI):A,r2) and r
"

LI rcb A: s, and for each i there is Si with 

(Si, s) E P and r, Lli rcb Bi : Si; 

2. Or we have that r = (r"c(LI)=a:A,r2)' and r
"

LI rcb a: A: s, and for each i there is Si 

with (Si, s) E P and r, Lli rcb Bi : Si; 

3. Or we have that r = (r
" 

c(LI)=a:A, r 2), and r
" 

LI reD a : A : TOP, and for each i there is 

8i with (8i, TOP) E P and r, Lli rcb Bi : 8i. 

An important observation is the following one. 

Remark 91 Our systems with restricted parameters cover the PTSs with Definitions (D-PTSs) 
that were introduced by Severi and Poll in [32]. Let S = (S, A, R) be a specification, and observe 
the parametric specification S' = (S, A, R, 0). The fact that the set of parametric rules is empty 
does not exclude the existence of definitions: it is' still possible to apply the rules D-weak for n = O. 
In that case, we obtain only definitions without parameters, and the rules of the parametric system 
reduce precisely to the rules of a D-PTS with specification S4 

For the comparison of CD-PTSs with other PTSs, we introduce some terminology. 
In the introduction to this paper, we argued that a parameter mechanism can be seen as a 

system for abstraction and application that is weaker than the A-calculus mechanism. We will 
make this precise by proving (in Theorem 100) that a D-PTS with specification (S, A, R) is as 
powerful as any CD-PTS with parametric specification (S, A, R, P) for which (81,82) E P implies 
(SI, S2, 82) E R. We call such a CD-PTS parametrically conservative: 

Definition 92 Let S = (S, A, R, P) be a parametric specification. S is parametrically conserva­
tive iffor all S"S2 E S, (SI,S2) E P implies (SI,82,S2) E R. 

Each CD-PTS can be extended to a parametrically conservative one by taking its parametric 
closure: 

Definition 93 Let S = (S, A, R, P) be a parametric specification. We define CL(S), the para­
metric closure of S, by (S,A,R',P), where R' = RU {(SI,S2,S2) I (81,S2) E P}. 

The Lemma below follows immediately from the definitions above. 

Lemma 94 Let S be a parametric specification. The following holds: 
1. CL(S) is parametrically conservative; and 2. CL(CL(S» = CL(S). 

5.2 Imitating parameters by A-abstractions 

Let S = (8, A, R, P) be a parametric specification. If S is parametrically conservative, then each 
parametric rule (81,82) of S has a corresponding n -formation rule (81,82, S2). In this section we 
show that this II -formation rule can indeed take over the role of the parametric rule (SI, S2). This 
means that S has the same 'power' (see Theorem 100) as (S, A, R, 0). With Remark 91 in mind, 
this even means that S has the same power as the D-PTS with specification (S, A, R). 

In order to compare S = (S, A, R, P) with S' = (S, A, R, 0), we need to remove the param­
eters from the syntax of A c b (S). This can be easily obtained as follows: 

4 The parametric system with specification S' has a CJ-weakening rule while the systems of Severi and 
Poll do not. But the C-weakening rule can only be used for n = 0, and in that case C-weakening can be 
imitated by the normal weakening rule of PTSs: a parametric constant with zero parameters is in fact 
a parameter-free constant, and for such a constant one can use a variable as welL 
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- The parametric application in a term c(b
" 

... , bn) is replaced by function application cb, ... bn; 
- A local parametric definition is translated by a parameter-free local definition, and the pa-

rameters are replaced by A-abstractions; 
- A global parametric definition is translated by a parameter-free global definition, and the 

parameters are replaced by A-abstractions. 

This leads to the following definitions: 

Definition 95 We define the parameter-free translation it} of a term t E Tp as follows: 

{a}=oa ifa=oxora=os; 

{c(b
" 

. .. ,bn )} =0 C {b,} ... ibn} ; 

{ab} =0 {a} {b}; 

{Ox:A.B} =0 Ox: {A}. {B} if 0 is A or II 

{c(LI)=a:A in b} =0 c()= {ALI.a}: {ITLI.A) in {b). 

Definition 96 We extend the definition of {_} to contexts: 

{O} =0 0; 
{r,x:A) =0 {r},x: {A}; 

{r, c(LI):A} =0 {T}, c(): {IT LI.A) ; 

{r,c(LI)=a:A} =0 {r},cO={ALI.a}:{ITLI.A}. 

To demonstrate the behaviour of {_} under /lo-reduction, we need a lemma that shows how 
to manipulate with substitutions and {_}. The proof is straightforward, using induction on the 
structure of a. 

Lemma 97 For a, bE Tp: {a[x:=b]} =0 {a}[x:= {b}]. 

The mapping {_} maintains /l-reduction. A O-reduction is translated into a o-reduction followed 
by zero or more ,B-reductions. These ,B-reductions take over the n substitutions that are needed in 
a O-reduction c(b

" 
. .. ,bn) -+, a[xi:=bir=I' 

Lemma 98 

1. If a -+~ a' then {a} -;)t {a'}; 
2. If r f- a -+, a' then there is aU such that {r) f- {a) -;)t aU -;)~ {a'); 
3. If r f- a -;)M a' then {T} f- {a) -;)~, {a'}. 

PROOF: (1) follows easily by induction on the structure of a, and Lemma 97. (3) follows from (1) 
and (2). We only show (2) by induction on the definition of r f- a -+0 a'. We treat only one case. 
Assume r =0 r

"
c(LI)=a:A,r2 and r f- c(b" ... ,bn) -+, a[xi:=b;J7=1' Observe that {r} 

{r,) ,c()= {ALI.a}: {IT LI.A} , {rz }, so 
n (97) n 

{r} f- cO {b,}· .. ibn} -+, {ALI.a} {b,}··· ibn} -;)~ {a} [Xi:= {b;}]i=1 =0 {a[xi:=b;Ji=I)' ~ 

Remark 99 In 98.1, we cannot replace -;)t by -+~. This has to do with the definition of 
{c(LI)=a:A in b). One /l-reduction in LI gives rise to (at least) two /l-reductions in 
c()= {A LI.a}: {IT LI.A} in {b}. Similarly, we cannot replace the -;)t in 98.2 by -+,. 

Now we show that {_} embeds the CD-PTS with parametric specification S = (S,A,R,P) in 
the CD-PTS with parametric specification S' = (S, A, R, 0), provided that S is parametrically 
conservative. 

Theorem 100 Let S = (S, A, R, P) be a parametric specification. Assume that S is parametri­
cally conservative. Let S' = (S, A, R, 0). Then r f-~b a : A implies {r} f-~,b {a} : {A}. 
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PROOF: Induction on the derivation of r f-~b a : A. With the help of Lemma 97 and Lemma 
98.3, all cases are straightforward except for the (C-weak) and (lJ-weak) rules. We only treat the 
(lJ-weak) rule; the proof for (C-weak) is similar. So: assume the last step of the derivation was 

r, L1i f-~b Bi : Si r, L1 f-~b a : A : S ( ) 
.. Si,S EP. r, c(L1)=a:A f-gD b : B 

By the induction hypothesis, we have: 

{r} f-~,b {b} : {B}; 

{r, L1,} f-~,D {B,} : Si; 

{r, L1} f-~,b {a} : {A}; 

{r, L1} f-~,b {A} : s. 

(1 ) 

(2) 

(3) 

(4) 

S is parametrically conservative, so (Si, 8, S) E R for i = 1, ... , n. Therefore, we can repeatedly 
use the iI-formation rule, starting with (4) and (2), obtaining 

{r} f-~,b m=l Xi: {Bd· {A} : s. (5) 

Notice: IT7=1 Xi: {Bd. {A} == {IT L1.A}. Repeatedly using A-formation, (3) and (5), results in 

.• n 
{r} f-gP .A Xi: {Bd· {a} : {IT L1.A}. 

1=1 
(6) 

Similarly, A~=l Xi: {B,}. {a} == {AL1.a}. Using (D-weak) (for the specification 5') on (1), (2), (5) 

and (6) results in {r} ,cO= {A L1.a} : {IT L1.A} f-~,b {b} : {B} . t8J 

Remark 101 The results in this section are presented for CD-PTSs. The same result, however, 
can be obtained for C-PTSs, that is: for PTSs with restricted parameters, but without definitions. 
We can also give an alternative formulation of Remark 91, stating that a C-PTS with specification 
(8, A, R, 0) is in fact nothing more than a CoPTS with specification (8, A, R). 

5.3 Refined Barendregt Cubes 

Theorem 100 has important consequences. The mapping {_} is fairly simple. It only translates 
some parametric abstractions and applications into A-calculus style abstractions and applications. 
Hence a CD-PTS with parametric specification S = (8, A, R, 0) can be extended with any set 
of parametric rules without extending its logical power, as long as the parametric specification 
obtained remains parametrically conservative. 

In this section, we will apply the insight obtained in Section 5.2 to a concrete situation: the 
Barendregt Cube of Section 2.1. This cube can be constructed not only for PTSs, but also for 
C-PTSs, D-PTSs, CP-PTSs, DP-PTSs, and their combinations (see Figure 2 on page 13). 

With Theorem 100, we can place certain CD-PTSs in the cube of D-PTSs (and, with Remark 
101 in mind, certain C-PTSs can be placed in the cube of C-PTSs). Let us, for example, have a 
look at the following parametric specifications (where 8 = {*, O} and A = {( *, OJ}): 

(8, A, {(*, *, *), (*, 0, D)}, 0); 
(8, A, {(*, *, *), (*, 0, oj), {(*, *J}); 
(8, A, {(*, *, *), (*, 0, D)}, {(*, oJ}); 
(S, A, {(*, *, *), (*, 0, oJ), {(*, *), (*, oJ}). 

According to Theorem 100, the CD-PTSs with the above specifications are all equal in power, and 
according to Remark 91, they are all equal in power to the D-PTS with the specification of AP. 
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Now look at the parametric specification S = (S, A, {(*, *, *)}, {(*, *), (*, D)}). The CoPTS 

AC(S) is clearly stronger than the PTS A-7, as in AC(S) it is possible (in a restricted way) to talk 
about predicates. For instance, we can have the following context: 

a: *, 
eq(x:a, y:a) : *, 

refl(x:a) : eq(x, x),. 
symm(x:a, y:a, p:eq(x, y)) : eq(y, x), 

trans(x:a, y:a, z:a, p:eq(x, y), q:eq(y, z)) : eq(x, z) 

This context introduces an equality predicate eq on objects of type a, and axioms refl, symrn, 
trans for the reflexivity, symmetry and transitivity of eq. It is not possible to introduce such 

a predicate eq in the PTS A-7 without any parameter mechanism. On the other hand, AC(S) 
is weaker than the PTS AP: in AP we can coqstruct the type ilx:a.ily:a.*, which allows uS to 
introduce variables eq of type ilx:a.ily:a.*. This makes it possible to speak ahout any binary 
predicate, instead of one fixed predicate eq. It also gives us the possibility to speak about the term 
eq without the need to apply two terms of type a to it (cf. the 'philosophical argument' in the 
introduction to this paper). 

Altogether, this puts the CopTS AC(S) clearly between the PTSs A-7 and AP. Similarly, the 

CD-PTS Acn(S) is between the D-PTSs A-7 and AP. We can illustrate this in the Barendregt 
Cube by putting the specification S in the middle of the edge that connects the systems A-7 and 
AP. 

This idea can be generalised to obtain a refinement of the Barendregt Cube. We start with the 
system A--+. Adding an extra n -formation rule (81,82,82) to A--+ corresponds to moving in one 
dimension (to the right, upward, or backward) in the Cube. We add the possibility of moving in 
one dimension in the Cube, but stopping half-way the Cube, and we let this movement correspond 
to extending the system with the parameter rule (8),8,). This 'going only half-way' is in line with 
Theorem 100, which says that 11-formation rule (s), 8" 8,) can mimic the parameter rule (8),8,). 
In other words, the system obtained by 'going all the way' is at least as strong as the system 
obtained by 'going only half-way'. 

The refinement of the Barendregt Cube is depicted in Figure 3. 

6 Systems in the refined Barendregt Cube 

In this section, we show that the Refined Barendregt Cube enables us to compare some well-known 
type systems with systems from the Barendregt Cube. In particular, we show that ML, LF, A68, 
and AQE can be seen as systems in the Refined Barendregt Cube. This is depicted in Figure 4 on 
page 33, and motivated in the four subsections below. 

6.1 ML 

In ML (ef. [26]) one can define the polymorphic identity by (we use the notation of this paper. In 
ML, the types and the parameters are left implicit): Id(a:» = (Ax:a.x) : (a -7 a). But it is not 
possible to make an explicit A-abstraction over a:*. That is, the expression Id = (Aa:*.Ax:a.x) : 
(11 a:>.a -7 a) cannot be constructed in ML, as the type 11 a:>.a -7 a does not belong to the 
language of ML. Therefore, we can state that ML does not have a 11-formation rule (0, *, *), but 
that it does have the parametric rule (0, .). 

Similarly, one can introduce the type of lists and some elementary operations in ML as follows: 
List(a:» : *; nil (a:» : List(a); cons(,,,,): a -7 List(a) -7 List(a), 
but the expression n a:*.* does not belong to ML, so introducing List by List: n a:*.* is not 
possible in ML. We conclude that ML does not have a 11-formation rule (0,0, D), but only the 
parametric rule (0, D). Together with the fact that ML has a 11-formation rule (*,', *), this places 
ML in the middle of the left side of the refined Barendregt Cube, exactly in between A-7 and AW. 
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6.2 LF 

';'2 

(0, *, *) E R 

(0, *) E P 

~(D,D,D) ER 
(0,0) E P 

,;,P 

Fig. 3. The refined Barendregt Cube 

,;,Pw 

Geuvers [16] initially describes the system LF (see [19]) as the PTS AP. However, the use of the 
ll-formation rule (*,0,0) is quite restrictive in most applications of LF. Geuvers splits the A­
formation rule in two rules: 

(Ao)r,x:A I- M: B r I- IIx:A.B: * 
r I- Aox:A.M: IIx:A.B 

(AP)r,x:A I- M: B r I- IIx:A.B: 0 
r I- Apx:A.M: IIx:A.B 

System LF without rule (Ap) is called LF-. j3-reduction is split into j3o-reduction and j3p-reduction: 
(Aox:A.M)N -+~o M[x:=N]; (Apx:A.M)N -+~p M[x:=N]. 

Geuvers then shows that 

- If M : * or M : A : * in LF, then the j3p-normal form of M contains no Ap; 
- If r I-LF M : A, and r, M, A do not contain a Ap, then r I-LF- M : A; 
- If r I- M: A(: *), all in j3p-normal form, then r I-LF- M: A(: *). 

This means that the only real need for a type IIx:A.B : 0 is to be able to declare a variable in 
it. The only point at which this is really done is where for the bool-style implementation of PAT, 

a term is needed to form, given a proposition, the type of proofs of that proposition. Since the 
resulting term is only used when it is applied to a proposition, this means that the practical use 
of LF would not be restricted if we introduced the type-of-proofs-term in a parametric form, and 
replaced the II-formation rule (*,0,0) by a parameter rule (*,0). 

This puts (the practical applications of) LF in between the systems A-+ and AP in the Refined 
Barendregt Cube. 
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6.3 .\68 and AUT-68 

The basic AUTOMATH system AUT-68 and its },-calculus variant }'68 (see [22], section 5c for a 
detailed description) have a parameter mechanism and a mechanism for global parametric defini­
tions: 

A line (r; k; PN; type) in a book is nothing more than the declaration of a parametric con­
stant k(r),*, and a line (r; k; 17,; type) is the declaration of a global parametric definition 
k(r)=E,,*.5 There are no demands on the context r, and this means that for a declaration 
x:A E r we can have either A '" type (in PTS-terminology: A '" *, so A : D) or A:type (in 
PTS-terminology: A: *). We conclude that AUT-68 has the parameter rules (*, D) and (0, D); 
Similarly, lines of the form (r; k; PN; 17,) and (r; k; 17,; 172 ), where E 2:type, represent para­
metric constants and global parametric definitions that are constructed using the parameter 
rules (*, *) and (0, *). 

Moreover, AUT-68 has a },-calculus mechanism with as only II-formation rule (*, *,.). 
This suggests that AUT-68 can be represented by a COoPTS with specification 

S" = (5, A, {(<, *, *n, 5 x 5) 

where 5 = {*, D} and A = {(*, On. This system can be found in the exact middle of the refined 
Barendregt Cube. 

As for the structure of abstraction and application, this gives a good description of AUT-68. 
The position of AUT-68 in the Refined Barendregt Cube gives a far better idea of the force of 
AUT-68 than, for instance, the description of AUT-68 in [3], where it cannot be clearly positioned 
in the Barendregt Cube. Another advantage is that },60(S68) has parameters. Thus, it is closer 
to the original system AUT-68 than the system that was described in [3]. On the other hand, we 

should not say that AUT-68 is exactly the system A6o(S68). There are several differences: 

- DPTSs have both global and local definitions. AUTO MATH has only global definitions; 
- In DPTSs, the type B of a definition x=T:B does not have to be typable itself (B can be a 

topsort). In AUTOMATH, B has to be typable; 
- The a-reduction of DPTSs is not substitutive; o-reduction of AUTO MATH is substitutive. 

6.4 .\QE and AUT-QE 

In the more sophisticated AUTO MATH system AUT-QE and its A-calculus variant AQE we have 
a II-formation rule (*,0, D) additionally to the rules of A68. This means that the applicational 
and abstractional behaviour can be described by the COoPTS with II-formation rules (*, *, *) and 
(*,0,0), and parametric rules (S"S2) for SI,S2 E 5. This system is located in the middle of the 
right side of the Refined Barendregt Cube, exactly in between AC and AP. 

6.5 PAL 

The AUTO MATH languages are all based on two concepts: typed A-calculus and a combined pa­
rameter / definition mechanism. Both concepts can be isolated: it is possible to study A-calculus 
without a parameter/definition mechanism (for instance via the format of Pure Type Systems), 
but one can also isolate the parameter/definition mechanism from AUTOMATH. One then obtains 
a language that is called PAL, the 'Primitive AUTOMATH Language'" It cannot be described within 
the Refined Barendregt Cube (as all the systems in that cube have at least some basic A-calculus 
in it), but it can be described as a COopTS with the following parametric specification: 
5 = {*, D}; A = {to, on; R = 0; P = {to, *), (*, D), (0, *), (0, on. 

This parametric specification corresponds to the parametric specifications that were given for 
the AUTOMATH systems above, from which the II-formation rules are removed. 

5 The latter corresponds to the AUTOMAT" line r f--- k(Xl l ••• 1 xn) = El : *, as discussed in Section 1.3. 
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Fig. 4. LF, ML, .\68, and >..QE in the refined Barendregt Cube 

7 First-order predicate logic 

A standard way to code first-order predicate logic in PAT-style (Curry-Howard variant) uses a type 
system that looks familiar to .\P. It is due to Berardi, and presented in Definition 5.4.5 of [3]. 

In order to keep objects and object types separated from proofs and propositions, the sorts 
* and ° of AP are replaced by *" *p, */' 0, and Op. Here, *, and 0, handle the objects and 
object types, whilst Op, *p are used for propositions and their proofs. The sort * / is used to 
store the types of the function symbols of the first-order language. For the construction of logical 
implication and universal quantification, the l1-formation rules (*p) *p, *p) and (*s, *p, *p) are used. 
The 1I -formation rule (* s, * s, * I) allows the formation of a function space between object types, 
and the lI-formation rule (*s,*I,*/) makes it possible to form functions of several arguments 
between object types. There is no sort 0/, as free variables for function spaces are not allowed. 
The construction of relation symbols requires l1-formation rule (*s) Op, Op). 

Thus, we find a PTS (or a D-PTS) with the following specification: 

S = {*S)*p,*"Os,Op}j 
A = {(*" 0,), (>p, 0p)}; 

R = {(*s, *S) * f), (*s, *J, */), (*s, *p, *p) (*p, *p' *p), (*s, Op) Dp)}. 

Due to the II-formation rule (*" Op, 0p) in the PTS-representation of first-order logic, there 
are types that are not in iJ-normal form: 

Example 102 For a term A : *, we can form the type II x:A.*p. If b is a term of type *p in which 
a variable x:A may occur free, we can form '\x:A.b of type II x:A.*p. Applying this term to a term 
a of type A results in (Ax:A.b)a of type *p" This term is a type (because it has type *p) and is not 
in ,B-normal form. 

H a PTS has types that are not in ,a-normal form, it is possible that there are applications of 
the conversion rule 

rf-A:B rf-B': s B=~B' 
rf-A:B' 

in a deduction in such a PTS. The conversion ru~e has as a disadvantage that its implementation 
in computer systems makes the system slow. This is because it may be very time-consuming (or 
memory-consuming) to establish whether two A-terms are iJ-equal or not. Hence, it would be useful 
to have a type system in which all types are in ,a-normal form. 
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In the formulation of first-order predicate logic above, it is only the rule (*" Op, Op) which 
allows to form types that are not in f3-normal form. We show this as follows. Assume, r I- P : s, 
P is not in f3-normal form, and all the subterms P' of P that are a type are in f3-normal form. 
Then P cannot be a sort or a variable. As P has type 8, P cannot be of the form AX:P1.P2, either. 
If P '= II X:P1.P2 then either PI or P2 are not in f3-normal form. As PI and P2 are both types, 
this does not occur. So P must be an application term P1P2. By the Generation Lemma for PTSs, 
there is a type A and a sort 8 such that r I- PI : (IIx:A.8). By Correctness of Types, there is a 
sort 8' such that r I- (IIx:A.s): 8'. By the Generation Lemma, there is (Sl,82,8') E R such that 
r I- A : 81 and r,x:A I- 8: 82. This meanS that (8,82) is an axiom, and therefore 82 E {O" Op}. 
Hence, (81,82,S3) = (*"Op,Op). 

We conclude that implementations of first-order predicate logic in type theory would be more 
efficient if it were possible to avoid rule (*s, Dp , Dp). With the use of parameters, it is easy to 
avoid that rule. This is because rule (*s, Dp, Dp) is only necessary to type the relation symbols of 
the first-order language. And as relation symbols in a first-order language are always introduced 
with parameters} it is no restriction to introduce them in the type system in a parametrised way. 
This can be done with parameter-rule (*" Op): if we want to introduce a n-ary relation symbol 
R with arguments of type U1 , . .. , Un (where the U;'s are of type *,), we apply CP-weakening (let 
Ll == Xl:U1,,,.,xn :Un and Ll i ==X1:U1,.",Xi-1:Ui _d: 

r I- b:B 

r, R(d) : *p I- b : B 

This involves the use of the parameter-rule (*" 0p). 
Hence, replacing rule (*s, Dp, Dp) by parameter-rule (* s, Dp) enables one to remove the conver­

sion rule in the type-theoretic representation of first-order predicate logic, making it more efficient 
(see the forthcoming Theorem lO5). It is reasonable to replace even more rules by parameter-rules 
in the case of first-order predicate logic, as we presently explain. 

Function symbols in a first-order language are also of a parametric nature. The sort */, the 
ll-formation rules (*s) *s, * f) and (*s, * /' * f) are only used to construct the types of these function 
symbols. We can introduce these function symbols in a more realistic way by using the parametric 
rule (*s,*s) instead of the ll-formation rules (*s,*s,*/) and (*s,*I,*/): 

r I- b:B 

r,l(d) : U I- b : B 

We have now obtained a C-PTS with parametric specification S' = (S', A', R', pI), where: 
S' = {*"*p,O,,Op}; A' = {(*"O,),(*p,Op)}; 
R' = {(*" *p, *p), (*p, *p, *p)}; P' = {(*" *,), (*" Op)}. 

We now prove that types in this C-PTS are always in f3-normal form. For the proof we need 
as a lemma that any object term (that is: a term P such that there is Q with P : Q : *,) is in 
f3-normal form. 

Lemma 103 If r I-g, P: Q : *, then P is in f3-normal form. 

PROOF: Induction on the structure of P. 
- The cases P E V and PES' are trivial; 
- If P '= c(b1 , . •. ,bn ) then we use the second extension of the Generation Lemma, 90, to find 

B l , .•• , B n , Band 81, ... , 8 n , 8 such that r f--~I bi:Bi(Xj:=bj];==i and r, xl:B1 , •.• Xi-l:Bi-l f--~, 
Bi:Si , and (Si' s) E p'. Due to the definition of P', Si == *s for all i. By the Substitution Lemma, 
r I- Bi[Xj:=bj]j;;;~ : *" and therefore r I- bi:Bi[Xj:=bj];;;;~ : *,. By the induction hypothesis, 
the bi are in .B-normal form. Therefore, c(b1 , . .. , bn ) is in .B-normal form; 

- If P '= P1P2 then there are (Generation Lemma) R 1,R2 such that r I-g, PI: IIx:R1.R2, and 

Q =~ R 2[x:=P2]. By Correctness of Types there is 8 E S' such that r I-g, (IIx:R1.R2) : s. 
By the Generation Lemma and the definition of R', r,x:R1 I-g, R 2,*p- By the Substitution 
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Lemma, r I-g, R2[x:=P2],*p. Let Q' be a common /i-reduct of Q and R,[x:=P,]. By Subject 

Reduction, r ~~, Q' : *8 and r ~~, Q' : *p, which contradicts Unicity of Types. We conclude 
that the case P == PI P2 does not occur; 
If P =0 AX:P1,P2 then there are R 1, R2 such that Q =~ II x:R1.R2 . Let Q' be a common /i­
reduct of Q and II x:R1.R2 . There are R;, R~ such that Q' =0 II x:R; .R~. By Subject Reduction, 

r ~~, IIx:R~.R~: *8. By the Generation Lemma, there are 81,82 such that (81,82,*8) E R'. 
This is not the case. So the case P:::::: AX:P1.P2 does not occur; 

- If P =0 IIx:P1.P, then there is s such that Q =0 S. By the Generation Lemma, this would mean 
that 8 : *8 is an axiom, which is not the case. So the case P :::::: II X:P1.P2 does not occur. 

Remark 104 The proof of this lemma not only shows that a P for which P : Q : " is always in 
normal form. It also shows that P can only be a variable or an expression of the form c(b1, ... , bn ) 

such that there are B 1, ... , Bn with bi : Bi : *8. This corresponds exactly to the definition of terms 
in first-order logic. We conclude that our specification S' results in an exact description of the 
terms of first-order logic. 

Theorem 105 Assume r I-g, P : s. Then P is in /i-normal form. 

PROOF: Induction on the structure of P. 
- The cases P E V and PES' are trivial; 
- P =0 c(b1, ... ,bn ). By the second extension of the Generation Lemma 90, there are sorts 

81,··· ,8n and terms B 1 , . .. ,Bn such that 
(8i,8) E P', rl-g, bi :B,[xj:=bj]j:\ andr,'f1:B1",.,Xi_1:Bi_1I-g, Bi'Si. 

By the definition of P', Si =0', for all i. By the Substitution Lemma, r I-g, bi : Bi[xj:=bj]j:\ : 
',. By Lemma 103, the bi are in /i-normal form. Therefore c(b1, ... , bn ) is in /i-normal form; 

P =0 PIP,. By the Generation Lemma, there are R1,R, such that r I-g, PI : IIx:R1.R2 and 
S =~ R,[x:=P,]. By Correctness of Types, the Generation Lemma and the definition of R', 
r, x:R1 ~~, R2 : *p. By the Substitution Lemma, r ~~, R2 [x:=P2 ] : *p" By Subject Reduction, 
r I-g, s: 'po This means that (s, 'p) is an axiom, which is not the case. We conclude that the 
case P :::::: PI P2 does not occur; 

- P =0 AX:P1.P,. By the Generation Lemma, 8 =~ II x:R1.R2 for some R1, R 2 . This is impossible. 
We conclude that the case P :::::: AX:P1 .P2 does not occur; 

- P =0 IIx:P1.P,. By the Generation Lemma, there are 81,82 such that r I-g, H : Sl and 

r, X:P1 ~~, P2 : 82. By the induction hypothesis, PI and P2 are in j1-normal form. So P is in 
/i-normal form. 

We conclude that replacing the II-formation rules (.".".,), (''''h'') and (."Op,Op) by 
parametric rules (*8, *8) and (*8, Dp) makes the implementations of first-order languages in type 
theory 

- easier to implement, as the conversion rule b~comes superfluous; 
- more realistic; it gives, for example, an exact description of the terms in first-order logic, 

something that cannot be done in the parameter-free PTS proposed by Berardi. 

8 Conclusions: Yet another extension of PTSs? 

Since PTSs have been introduced, many extensions have been proposed (see [4] for a non-exhaustive 
list). The reader may wonder why we propose yet another extension of PTSs, and whether it is 
more interesting than those other extensions or not. Here we answer to these questions. 



36 Laan, Bloo, Kamareddine, Nederpelt 

Our extension is compatible with (and can be seen as an extension of) the extension of PTSs 
with definitions as proposed by Poll and Severi, which is considered to be a standard way to 
introduce definitions in PTSs. In fact, allowing only parametric constants with zero parameters 
results in the D-PTSs of [32]; 
Parameters and parametric definitions occur in many implementations of type systems and 
programming languages. The Pascal-function double given at the beginning of this paper can 
be described in our formalism by the context declaration double(z:Int)=z+z:Int; 
The AUTOMATH systems, which form the basis for most modern proof checkers that are based 
on type theory, can be described in our system. A description of AUTO MATH that includes 
parameters does justice to that system and places it in a more general framework, so that it 
can more easily be compared with other type systems (see Figure 4 on page 33); 
Modern type systems, like LF and ML, have already been described as one of the systems 
of the Barendregt Cube (Figure 1 on page 8). In Section 6 we showed that a more detailed 
description can be given in the refined Barendregt Cube of Figure 4; 
As argued in Section 7, parameters are useful when describing first-order logic in type theory. 
Compared to the traditional PTS-representation (systems related to AP of the Barendregt 
Cube) of first-order logic, parametric representations are 

• easier to implement (because the conversion rule is not needed); 
• closer to the first-order language and therefore closer to the intuition; 

As argued in the beginning of this paper, parameters make it possible to distinguish the atti­
tude of users and developers of a system. Often, the user only needs a (partially) parametrised 
version of the system, whilst the developer wants to have the possibilities of full A-abstractions. 

Future work 

There are several issues concerning parametric type systems that deserve to be studied in the 
future: 

The meta-theoretical properties may have easier proofs than the ones presented in this paper. 
In particular, the proof of strong normalisation for a parametric type system is based on strong 
normalisation for a PTS that may have more II-formation rules. It would be interesting to 
know whether (and to what extent) these rather strong demands can be weakened; 

- There may be a relation between the parameter mechanism of this paper and AUTO MATH, 
and the use of parameters in the representation of higher order propositional functions in the 
ramified theory of types of Russell and Whitehead. 
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A Proofs 

PROOF OF LEMMA 56: Induction on the definition of Ibl r . We treat the two most interesting cases 
(at (IH) we use the induction hypothesis): 

- b '" c(b
" 

.. . , bn ) and r", (r
" 

c(Ll)=a:A, r,). 
Dom(lbl r ) Dom(lal r , .LI(xi:=lbilr Ji~Jl 

n 

<;; (Dom(lalr,.LI) \ {Xl,'" ,Xn}) U U Dom(lbil r ) 
i==l 

(IH) 
<;; (Dom(r" Ll) \ De/(n» \ {Xl, ... ,Xn } U (Dom(r) \ Def(r» 

= Dom(r) \ Def(r). 
We can use the induction hypothesis at (IH) because r is sound, and therefore Dom(a) C 

Dom(r
" 

Ll); 
- If b '" e(Ll)=a:A in b' then Dom(lblr) = Dom(lb'lr.'(LI)~d) 

(IH) 
<;; Dom(r, c(Ll)=a:A) \ Def(r, e(Ll)=a:A) = Dom(r) \ Def(r). 

PROOF OF LEMMA 57: Induction on the total number of symbols occurring in rand d. We treat 
two cases: 

- r", (r
"

e(Ll)=a:A,r2) and d '" e(b
" 

... ,bn ). Notice that r f- d --+, a(xi:=biJr~I' 
By induction, n,Ll f- a ~8Ialr"LI' so r f- a ~,lalr"LI (Lemma 45), so by Lemma 50, 

r(xi:=bdi~l f- a(xi:=biJi~1 ~, lalr"LI[Xi:=bdid' 

As the Xi are bound in c(Ll)=a:A, they do not occur free in r, so r[xi:=bdi~l '" r. Therefore 
(IH 51) 

r f- a(xi:=biJi~1 ~8 lair ,LI(Xi:=biJi~1 4, lair, LI(Xi:=lbilrJi~1 '" le(b
" 

... , bn)lr; 
- d", e(Ll)=a:A in b. By the induction hypothesis, T, e(Ll)=a:A f- b ~, Iblr,'(LI)~a'A 

hence r f- e(Ll)=a:A in b~, c(Ll)=a:A in Iblr,'(LI)~a'A' 
Now Dom(d) <;; Dom(r), so Dom(b) <;; Dom(r, c(Ll)=a:A), so by Lemma 56, 

Dom(lblr.c(")~d) <;; Dom(r, e(Ll)=a:A) \ Def(r, e(Ll)=a:A), 

so e ~ Cons(lblr,c(LI)~a'A)' so r f- d ~8 e(Ll)=a:A in Iblr,'(LI)~a'A --+,lblr,'(LI)~a'A' 

PROOF OF LEMMA 59: Induction on the definition of Iblr r . We consider only a few non-trivial " , 
cases: 

- b", e(b
" 

. .. , bn ) and r3 '" (r31' e(Ll)=a:A, r32)' 
Ic(b

" 
... ,bn)lr r '" lair r LI(Xi:=lbil r r J 1, 3 1, 31, 1, 3 

(IH,51) . 
'" lair r r LI(Xi:=lbil r r r I '" Ic(b

" 
... , bn)lr r r ; 

b - (A) A' bN' ht '",e>, "", ,.", ~ = C L.l =a: lTI . otlce t a 
Ic(Ll)=a:A in blr r '" Ibl r r '(LI)~a-A 1, 3 1, 3,.... . 

(I~ . 
'" Ibl r r r c(LI)~a'A '" jc(Ll)=a:A In blr r r . 1, 2, 3,· 1, 2, 3 

PROOF OF LEMMA 60: Induction on the definition of lalr"r,. We treat only a few non-trivial 
cases: 

- a'" e(b
" 

... ,bn ) and r, = r 21,e(Ll)=e':C,r22 • 

lalr"r, [x:=lblr,l 

le'lr, ,r" ,LI(xi:=lbil r , .r,li~l (x:=lbl r , 1 

(~) Ie' Ir, ,r",LI (x:= Ibl r, 1 (Xi :=1 bi Ir, ,r, (x:C'lbl r , lli~l 
(IH) 
'" Ie' (x:=bll r , ,r" [,,~bl,LI[,,~bl (Xi:= Ibi (x:=bllr, ,r,["~blJi~1 
= le(b

" 
... , bn)(x:=bllr, ,r,["~bl; 
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- a == c(LI)=c':C in d. 

lalr,.r,[x:=lblr,l == Idlr"r,.c(.1)=c"dx:=lblr,l 
(IH) 

== Id(x:=bll r , .r,[",=b].,(.1[xo=b])=,' [xo=b],C[x,=b] 

== l(c(LI)=c':C in d)(x:=bllr"r,[xo=b]" 

PROOF OF LEMMA 78: Using induction on the definition of r I- a -4, b, we simultaneously prove: 
1. If r I- a -4, b then Iialir --»~ Ilbllr; and 2. If r -4, r' then Iiali r --»~ IlallT" 
We only treat two non-trivial cases. 

- r
"

c(LI)=a:A,r2 I- c(b
" 

... ,bn) -4, a(xi:=bil~=I' Observe: 
Ilc(bl , ... ,bn)llr - IIA LI.all r , Ilblll r " '1lbnll r 

== C~, Xi: II B illr".1; .lIallr,.1) Ilblll r " '1lbnll r 

--»~ Ilallr".1 (Xi:= Ilbillrr=1 (~) lIallr, (Xi:= Ilbillrl~=1 
(76) n (77) n 
== Iialir (Xi:= IlbillrL=1 == Ila(xi:=bi],=lllr; 

- r I- c(LI)=a:A in b -40 b because c cf. Cons(b). Then c cf. FV(llbllr). Hence 

IIc(LI)=a:A in bill' == (Ac: 11[1 LI.All r .llbll r ,c(.1)=a,A) IIA LI.all r 

-4~ Ilbllr,c(.1)=a,A (c:= IIA LI.allrl == IIbll r · 

PROOF OF LEMMA 79: The following statements are proved simultaneously by induction on the 
structure of a: 1. If a -4~ b then Iialir --»t Ilbll r ; and 2. If r -4~ r' then Iiali r --»~ IlallT" 
(IH 1) refers to the induction hypothesis on 1, (IH 2) to the induction hypothesis on 2. We do not 
treat all cases, and only prove the first statement. 

- c(bl , ... , bn) -4~ c(bl , .. :." ,b
r
"" .. ,bn), where b, -4~ bi, and r == (rl, c(LI)=a:A, r 2 ). We have: 

Ilc(b
" 

... ,bn)llr = 1.1. Ll.all r , IlbIll l' Ilbnll r 
(IH 1) 
--»t IIA LI.allr , Ilblll r " '1Ibillr" 'lIbnll r == Ilc(bl , ... ,bi, .. · ,bn)llr; 

- (Ax:p.g)r -4~ g(x:=rl. Observe: 

II(Ax:p.g)rllr == (Ax: IIPllr .llgllr,,"p) Ilrlir 

(77) 
-4~ Ilglll'"p [x:= Ilrllrl == Ilg(x:=rlllr; 

- c(LI)=a:A in b -4~ c(LI')=a:A in b, where LI' == XI :BI , ... , xj:Bj, . .. , Xn : Bn; and Bj -4~ 
Bj. 
Write Ci == Bi if i io j and Cj == Bj and let LI~ == XI:C

" 
... ,Xi-I:Ci_ l . Observe that 

Ilc(LI)=a:A in bill' 

- (Ac: (11[1 LI.All r ) .llbll r ,c(.1)=a,A) 
(11.1. Ll.all r ) 

(IH 1) 

--»t (Ac: (11[1 Ll'.All r ) .llbll r ,c(.1)=a,A) 
(IIA LI' .allr ) 

(~;) (Ac: (11[1 LI'.Allr ) .llbllr,c(.1')=a,A) == Ilc(LI')=a:A in bill" 

(11-' LI'.allr ) 
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PROOF OF THEOREM 82: Induction on the derivation of r I-~P DP a : A. The rules of normal PTSs 
do not cause any problem, and the proof for the rules for parametric constants are simplifications 
of the proofs for the rules for parametric definitions. We therefore only focus on the rules for 
parametric definitions. 

- a-application: 

Write r == r"c(LI)=a:A,rz. If n = 0 then we know by induction that IIFIII-S' Iialir : IIAllr 
(76) 

and we are done because Ilc(b" ... ,bn)llr == Iiallr, == Iialir. 

Now assume n > O. As we have a derivation of r1 ,c(Ll)=a:A,r2 ~CPDP b1:B1 , we can use 
Correctness of Contexts to find a (shorter) derivation of r" LI I-cp DP a:A. By the induction 
hypothesis, we have 

IIr" Lllll-s' Iiall r ,." : IIAllr,.",· (7) 

Moreover, we can use the induction hypothesis to find 

(8) 

We can use Correctness of Types for the PTS AS' to find s E S' with 

IIr,lIl-S' IIIILI.Allr, : s. (9) 

Using rule (A), (7) and (9) result in IIr,lI I-s' IIALI.all r , IIII LI.All r ,. By definition of 
IIII LI.All r " this means 

IIFlll-s' IIALI.all r , : m~, Xi: IIBill r,." ·IIAllr ,.,,· (10) 

By Lemma 77, IIB;[Xj:=bjl;:.;ill
r 

== IIBillr,,,, [xj:=llbjllrl;:';;· Using (8) and the application 

rule, we can derive from (10) that: 

IIFlll-s' (lIALI.allr, Ilb,ll r " '1lbnllrl : (1IAllr"" [Xj:= Ilbjllrl7~,)' 
We are done because IIc(b" ... , bnlll r == IIA Ll.all r , Ilb,ll r ' . 'lIbnll r and 

IIAllr"" [Xj:= Ilbjllrl;~, (~) IIAllr,,, [Xj:= IIbjllrl;~, (~) IIA[xj:=bjl7~,llr ; 
. . rl- cP DP b:B r,Lll-cP DP a:A 

- a-weakenmg. r,c(Ll)_a:AI-CPDP b:B 

By induction, IIr, LlIII-S' Iiallr,,, : IIAll r ,,,, so 

Ilrll, x,:IIB,ll r .", , ... , Xn: IIBnll r ,,,. I-S' Iiall r ." : IIAll r ." . (11) 

By Correctness of Contexts for AS', there are 81, ... ,Sn E S' such that 

Ilrll, x,: IIB,ll r .", , ... , Xi-': IIBi-,llr,Ll,_, I-s' IIBill r ,,,, : Si· (12) 

By Correctness of Types for A~P DP , there are two possibilities: 
• There is S E S such that A == s. As S' is a completion of S, there is s' E S' such that 

IIF, LIllI-s' s : s' . 
• There is s' E S such that r, Lll-cP DP A : s'. Then by induction, Ilr, LlIII- IIAllr" : s'. 
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In any case: we can determine s~ E 8' such that 

(13) 

As S' is quasi-full, we can subsequently determine s~, ... , s~ such that (Si' S~_l' s~) E R' for 
i = 1, ... ,n. This allows us to apply ll-formation n times, with as premises (12) and (14), and 
as conclusion: Ilrlll-s' [17=1 Xi: IIBillr,Ll,·IIAllr,Ll : 8~. 
Notice that [17=1 Xi: IIBillr Ll ·IIAllr Ll == 11[1 L1.Allr· As the induction hypothesis gives us also 
IIFIII-s' Ilbllr : IIBllr, we ca~ use the weakening rule of )"S' to obtain 

IIFII , c: 11[1 L1.Allr I-s' Ilbllr : IIBllr' 
We are done because Ilbllr == Ilbllr,,(Ll)=a,A and IIBllr == IIBllr,,(Ll)=a,A (Lemma 76); 

- <l-formatlOn: 
r l ,c(L1)=a:A I-C'D' B: 8 

r l I-C'D' c(L1)-a:A in B: s' 

Write r == r l ,c(L1)=a:A. By the induction hypothesis, we have Ilrlll-s' IIBlir : 8, so 

IlFdl ,c: 11[1 L1.All r , I-s' IIBllr: s. (14) 

By Correctness of Contexts on (14) there is SI E S' such that 

(15) 

Moreover: As S' is a completion of S, there is 82 E S' such that (8:8,) E A'. By the Start 
Lemma, 

IlFdl , c: 11[1 L1.All r , I-s' 8 : 82· (16) 

As S' is quasi-full, there is S3 E S' such that (81,82, S3) E R'. Hence we can apply ll-formation: 

IlFdll-so llc: 11[1 L1.All r , .8: S3· (17) 

We can now apply )..-formation on (14) and (17): 

IIrl lll-s' ()..c: 11[1 L1.All r, ·IIBllr) : (11 c: 11[1 L1.All r , .s) . (18) 

As we have a derivation of rl , c( L1)=a:A I-C'D' B : 8, we can apply Correctness of Contexts to 
find a (shorter) derivation of n, L1I-C'D' a:A, so by induction: 11F1, L1lll-so Iialir Ll : IIAllr Ll' 

1, 1, 
Using (15), we can repeatedly apply )..-abstraction and obtain 

lin III-s' II).. L1.all r, : 11[1 L1.All r , . (19) 

Using (18) and the application rule, we find: IIrl lll-S' (Ac: 11[1 L1.Allr , ·IIBllr ) II).. L1.all r, : s; 
- a-introduction: 

r l ,c(L1)=a:A I-C'D' b:B r l I-C'D' c(L1)=a:A in B: 8 

r l I-C'D' (e(L1)=a:A in b) : (c(L1)=a:A in B) 

In a similar way as in the previous case, we can find derivations of (19) and 

Ilrdll-s' ()..c: 11[1 L1.All r , ·llbllr) : (lIe: 11[1 L1.Allr, ·IIBllr)· 
Using (19), (20) and the application rule, we find 

(20) 

11F1111-so ()..c: II[] L1.All r , ·llbllr) II).. L1.allr, : IIBllr [e:= II).. L1.allr, 1 . 
By the induction hypothesis, IlFdll-S' ()..e: II[] L1.Allr , ·IIBllr) II).. L1.all r, : 8, so we can apply 
the conversion rule to find Ilnlll-s' Ilc(L1)=a:A in bll r, : Ilc(L1)=a:A in Bll r ,; 

- a-conversion: 
rl-C'D' b:B r I- B =; B' 

r rCPDP b: B' 
By induction, 1IFllI-so Ilbllr : IIBllr and Ilrlll-s' IIB'llr : 8. By Lemma 78, IIBllr =~ IIB'llr' 
By Conversion, Ilrlll-s' Ilbllr : IIB'llr' 
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