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SPACES: SOME PROPERTIES ANV APPLICATIONS
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1. I n:tJt.odu.mon

In the present paper a review is given of the important system theoretic

concept of (A,B)-invariant subspace. The concept was introduced (with the

name controlled invariant subspace) by Basile and Marro in 1969 [BM]. In 1970

this concept was rediscovered by Wonham and Morse [WM1] The· concept turned

out to be of fundamental importance for numerous applications and for many

theoretic investigations. It was the basis of the geometric approach to linear

multivariable systems propagated by Wonham and Morse (WM,Wn]" Since there is

another important development in linear system theory, the polynomial matrix

approach (see e.g. [Ro], [Wo], [JID]) it is useful to obtain polynomial repre

sentations, or frequency domain characterizations of (A,B) -invariant subspaces

.in orcler to bridge the two diverging branches. Results of this type were ob

tiil.ined in [EB], [FW] [Ha4,S] and some of them will be mentioned here. In

addition some properties and appl~9ations of stabilizability subspaces, in

t.roduced in [HaS], are discussed. Jrlso the relation between strong obser":,,

Vability and strong detectability introduced in [Ps], [Mo] (for discrete time)

and (A,B)-invariant subspaces is indicated.

2. A-..LnvalLlanc.e

Consider the time invariant linear diffex:ential equation

(2.1)
o
x(t) = Ax(t)

n
in X := 1R . A subspace V c X is called A-invariant if for each initial value

Xo € V we have x(t) € V for t ~ O.

If v l' ... ,vk is a basis of V, the matrix V := [vI' •• ' ,vk ] is called a

basis matrix of V. Gbviously, x E V iff there exists ~ E ]RK such that x = Vp.

The following result can easily be proved.

(2.2) THEOREM. Given equation (2.1) and a subspace V c X~ the following
~_.

statements aPe equivalent

(i) V is A-iwaPiant

(ii) AV 5.. V, i.e.~ Ax E V for all x E V
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(iii) If V is a basis matrix of V, then the matrix equation

AV = VP

has a soLution P.

Here we consider the controlled system

o

(3.1)
o
x(t) = Ax(t) + Bu(t) (t ;::: 0)

with A .x ... X, B : U -+- X, where X:== lR
n , U:= lR

m• A subspace V .=. X is

called weakly invariant if for each Xo € V, there exists u € 0 such that

~u(t,xO) € V for all t ;::: O. Here n denotes the set of piecewise continuous

functions u : lR + ~ U and f; u( t, xo) denotes the solution of (3.1) with ini

tial value Xo and control u.

For a given x € X, the formula

x = (sl - A) f,; (s) - Burts)-,
...

will be called a (f;,w)-representation if f;(s) and w(s) are strictly proper

rational functions.

Then we have the followinq re~nlt.

(3.2) THEOREM. Given system (3.1) and V =. X.. the foU-owing statements are

aquiva"lent

(1) (Open loop characterization) V is weakLy invariant.

(ii) (Geometric characterization) V is (A,B)-invariant i.e., AV =. V + BU.

(iii) (Matrix characterization) If V is a basis matrix Of V.. then there mst

matriaes P and Q suah that AV = VP + BQ.

(iv) (Feedback characterization) There exists F X -+- U suah that V is

(A + BF)-invariant.. i.e ... (A + BF)V =. V.

(v) (Frequency domain characterization) Every x E V has a (f,;,w)-representation

with f,;(s) E V.

PROOF: (i) ~ (ii) If x(t) € V for t ~ 0 then ~(O+)
o

AXO = x(O+) - Bu(O+) E V + BU.

= lim t- 1 (x(t) - x(O» E V. Henct
t.j.O
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(ii) • (iii) similar as in theorem 2.1.

(iii) .~ (iv) V is left invertible, say v+ V = I. Take F

(A + BF)V = VP.

+
:= -QV • Then

-1
(iv) .... (v) Cho~se ~(~) := (sI - A - BF) xo' w(s) := F~(s) •

(v) .. (i) Let ~(t), wet) be the time domain functions (inverse Laplace trans-
~ ,...., ,...,,,..,, ""J

forms) of ~(s), w(s). Then ~(t) • A~(t) + Bw(t), F;(O) = X
o

and ~(t) E: V tor all

t :::: O. 0

Because of the equivalence of (i) and (iv), we may say that, if for every

Xo EO: V there exists a control U such that the trajectory stays in the space,

then there exists a feedback law u = Fx, such tha~ the state stays in V for

all initial values.

In this section we consider the controlled system with output equation:

(4.1 )
o
X = Ax + Bu, Y = cx. ....

We are interested in a weakly invariant subspace contained in ker C which is

as large as possible. We denote the system (4.1) briefly by (C,A,B) or by E.

(4.2) DEFINITION. Given E = (C,A,B), then V
E

denotes the space of points

Xo ~ X such that thepe ezists u EO: n foP which yu(t,xO} := C~u(t,xO) = 0

fop aU t :::: o.
The'following result follows easily from the definition (for a proof

see [HaS]).

(4.3) THEOREM. VE is the largest (A,B)-invaPiant subspace contained in ker C

that is~ VI: is (A,B)-invaPiant~ VE S ker C and fop every (A,B}-invaPiant

subspace V c ker C we have V ~ V1: • 0

The following result, which is a direct consequence of theorem (3.1),

gives some further properties of Vt :
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(4.4)

(i)

(ii)

(iii)

(iv)

THEOREM. Given 1:" and x E: X the following statements are equivalent:

x EO: VI:

x has a (~,w)-representation satisfying C;(s) = 0

These exists a strictly proper rational funation w(s) such that

-1
R(s)w(s) = -C(sl - A) Xo'

lJhere R(s) := C(sl - A) -lB is the transfer matri:x; of L.

There e:x:ists a strictly proper rational solution <;,w) of

[

SI - A -B ] r~(s)J = [xo1
c a LW(S) 0 J o

A. Strong observability. A system E is called strongly observable if for

any two points x
1
,x

2
EO: X we have: If there exist u

1
,u

2
E: Q such that

y (t,x1) = y (t,x2) for t ~ 0, then Xl = X2 • In a strongly observable
loll u 2 ...

system the initial state is uniquely determined from the output alone. The

concept was introduced for example in Cps], where it was termed perfect observabi

By linearity, the following is easily seen: L is strongly observable iff

yu(t,xO) = 0 for all t ~ 0 implies Xo = O. Thus we have the equivalence of

i) and ii) in

every s E: a:.
observable for' every F,

: A -:] = n + m. for

VI: = 0,

(C,A +BF) is

fI
L

rankiV)

(5.1) THEOREM. Let rank B = m, i.e." let B be injective. Then the following

statements are equivalent:

i) 1: is strongly observable"

ii)

iii)

PROOF. i) ~ ii) have been observed before.

ii) - iv). Suppose that for some So E: ~ we have
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< n + m.

Then there exist vectors Xo E X, Uo ~ U not both zero, such that

-:] [::1 = 0

-1
If we define ~(s) := (s - sO) xo' w(s)

forward calculation shows that

-1
:= (s - sO) uO' then a straight-

Xo =: (sI - A)~(s) - Bw(s), C~(s) =: 0,

hence that Xo EVE' Since Vr =: 0 this implies Xo =: O. Consequently Bu =: (sOl - A)XO
=: O. Because of rank B =: m we conclude that Uo =: 0 which is a contradiction

to the assumption that xo and Uo were not both zero.

iv) - iii) A system is observable iff
...

rank L1
: AJ

=: n (s € a:)

(see [Hal]) . If iv) is satisfied then we have for every F,

rank. [01 - A - BF -:] =: rank [01 - A

-:J ~ J =: n + m

C C

Hence rank
(s € a:)

sO that (C,A +BF) is observable.

iii) .. i) Suppose that V,<" t: a and choose F such that (A + BF) V c V • Then V
" r - E r

is an (A + BF)-invariant subspace contained in ker C, which contradicts the

observability of (C,A + BF) o
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REMARK. If rank B ~ m then condition iv) can never be satisfied. However, it

is easily seen that the theorem remains valid if we replace condition iv) by

for all S E: ct.

iv) , : rank n + rank B

o

for t 2 '1'

The property of strong observabili ty is important in the following situation:

Suppose we have a system with two types of input, a control u and a distur

bance q which is completely unknown. Then the following question arises: Is

it possible to determine the state uniquely from u and y? It is easily seen

that this is the case iff E1 := (C,A,E) is strongly observable, where we

assume that the system equations are

o
X = Ax + Bu + Eq

y = Cx.

The foregoing theorem gives necessary and sufficient conditloos for this to

be the case. ~

B Output null controllability. We denote <AlB> the set of null controllable points

(or equivalently, the set of reachable points) in X. A point Xo E: X is called

output null controllable if there exists u E: Q such that for some '1' > 0 we

have

y (t,xO) = 0. u

Let S denote the space of output null controllable points. The following

results are shown in [Ha4J:

(5.2)'1'HEOREM. (i) S = <AlB> + VE'
(ii) x E: S iff there exist rational

and c, is a polynomial.

functions ~,w suoh that x = (sI - A) t - Bw

o

L is called output null controllable if S = X, i.e., if <AlB> + Vt = X.

(5.3) COROLLARY. t is output null controllable iff there exist rational matrices

P and Q satisfying

(sI - A)P(s) - BQ(s) = I,

CP(e) is a polynomial. o



- 6 -

C Left invertibility. E is called left invertible if

y (.,0) = y (.,0)" u
1

= u
2

•
u

1
u

2

By linearity, an equivalent condition is :

yu(.'O) = 0 .. u = O.

=n+.m

(Compare [Wn.Ex.4.1] and [sP]). The foUowing statements are

left invertible

B = m and Vr n BU = 0

["I : A -:]

(5.4) THEORJi:M.

QquivaZtmt

(i) 1: is

(ii) rank

(iii) rank

for almost aU s € lC.

PROOF.(i) .. (iii) If the condition of (iii) is not satisfied then there

exist rational functions ~ and w.not both zero, which may be supposed to be

strictly proper, such that

-8J. [~(S).J
o w(s)

..

=-=0

Let ~(t) and wet) be the inverse laplace transform of these rational functions.

Then
o.... ....,...

(*) ~(t) = A~(t) + Bw(t), ~(O) = 0

c~ (tJ =; \).

By invertibility we must have wet) = O. But then ~(t) must be zero because

of (*) contradicting our assumption.

iii) .. ii) If iii) holds, then obviously rank B = m. Let Xo € Vr n BU. Then

there exist Uo € U and ~,w, strictly proper such that

x = Bu = (sI - A)~ - Bwo 0

Hence
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Hence, by iii), ~ = 0, uo + w = O. Since w is strictly proper this implies

uo = 0 and therefore :'K
O

= O.

ii) • i) Choose F such that (A + BF)V
E
~ VEe Suppose that yu{t,O) ; 0 for

soma u E Q. The function v(t) :; u{t) - F~ (t,O), satisfies
u

o

(t 2: 0)
o

Bv(t) ; ~u(t,O) - (A + BF)~u{t,O) E Vr
o

since 'u(t,O) E Vr and Vr is (A + BF)-invariant. But obviously Bv{t) E BU

and hence Bv(t) ; 0, so that
o
~ (t,O) ; (A + BF)~ (t,O). Because of ~ (O,O) = 0,

u u u
this implies u(t,O). O. In addition, because of rank B c m, and Bu{t) ;

o
= ~ (t,O) - At: (t,O) = 0 we have u(t) = O.

u u

It follows from theorem 5.4 that the (~,w)-representationsatisfying ct c 0 of

each element Xo E Vt is unique iff r is left invertible.

D. Disturbance decoupling. We consider the system

o
X = Ax + Bu + Eq, z = Ox

and we aSk Whether it is possible -to find F : X ~ U such that with the feedback

u .. Fx the output z is independent of the noise q.
q.

L
~•

I F I u.
l j

X I
~.~iz i~ ~1~ ~o-called disturbanoe decoupling problem (DDP), see [WM]. The

following is proved in [HaS]:

(5.5) THEOREM. The foUOlJJirIfJ statements aPe equivalent

(i) DDP has a soZution F.

(11) EQ;:. Vri here Q is the space in which the disturbance q takes its

vaZues and E := (D,A,B).

(iii) There exists a strictZy proper rational matrix Q{s) such that

~her~ R
1

(s) := D(s1 - A)-l B is the control to output transfer matrix

and R
2

(S) := D(SI - A)-l i$ the noise to output transfer matrix.
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(iv) The~e e~8ts st~ictly p~ope~ xes) ,U(3) such that

[
SI - A -B llx (5)J ==[ E 1

C 0 U(s) 0 o

The eq~ivalence (i) # (ii) is proved in [WMJ. See also [Wn, section 4.1J.

We consider stability from a general point of view, i.e., we assume

that we are given a set a:- ~ a: such that a:- n lR rf ~ and we denote by a:~ the

complement of a:- in a:. A rational function will be called stable if it has
. +

no poles in a: . A (~,w)-representation will be called stable if t and w are

stable rational functions. We consider again the system given by (3.1). A

subspace V of X will be called a stabilizability subspace if there exists

F : X -+ U such that (A + BF) V ~ V and a (A + BF) IV ~ a:-. Obviously a sta

bilizability subspace is weakly inyariant. We have the following frequency..
domain characterization:

(6.1) THEOREM. V is a 8tabiUzabiUty sub8pace iff each point in V has a

stabL~ (t3W) ~ep~esentation such that ~(s) € V.
For a proof see U1aS].

Now we assume that we are given a system E = (C,A,B) and we introduce

the stabilizability analogue of V
E

•

(6.2) DEFINITION. V~ denote8 the set of points fo~ which the~e e~sts a

stabZs (~3 w) -~ep~e8entation sati8fying c~ (s) == o.

(6.3) THEOREM. V~ i8 the Z~ge8t 8tabiUzabiUty sub8paae aontained in ker C.

Obvio~sly, V~ ~ VEe We have the following properties: (see [Ha4,S]):

(6.4) THEOREM (i) x € V~ iffthe~e e~sts stnatZy p~ope~ stabLe ~"w 8uch

that
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lSI : A -:] [:] =[ :]

(ii) If the system is detectable~(i.e,. rank [51 ~ AJ = n for 5 € ~+), then

x € V1: iff there exists a strictly proper stable III such that

-1
R(s)w(s) = C(s1 - A) Xo

-1
R(s) := C(sI - A) B.

The latter result is no longer true if the detectability condition is

omitted (for an example, see [HaS]).

A. Strong detectability. A system I: 15 called strongly detectable if for

any U
1

'U
2

€ (1 and for any x
1

,x
2

€ X we have: YU

1
(t,x

1
) = YU

2
(t,x2) (t ~ 0)

implies F; (t'~l) -F; (t,x
2

) + 0 (t + 011).
\,11 u 2 -"

J:n the case of a strongly detectable system, 1 t is possible to get based

on the output alone an estimate of the state the error of which tends to zero

as t -l- CIIl. By linearity we. may say that I: is strongly detectable iff y(t) .. 0

(t -l- 0) implies x(t) + 0 (t + GO), for each input u and initial value xO.

~ 0)(Res

THEOREM. If rank B = m, the folLowing statements are equivaZent

t is strongly detectabZe

rank e:A -:] = n + m

(C,A +BF) is detectabZe for aU F with respect to the stability set

~ - := {s € ~ I Res < o}

t is left invertible and V~ = VI:

(ii)

(iv)

(7.1 )

(i)

(iii)

PROOF. The equ1valence (i) .. Hi) is proved in [BRL The proof of (ii) .. (iii)

is completely analogous to the proof of iv) • iii) in The~rem 5.1.

(iii) ~ (ii) Let rank < n + m for some So € ~. Then there
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exist Xo € X, Uo € U not both zero such that (SOl - A)XO = BUO' cxO = O.

Because of rank B = m this implies xo t- O. Let F be an arbitrary map X -+ U

satisfying FX
O

= u
O

• Then we have (SI
O

- A - BF)XO = 0, cxO = O. Because

of the detectability of (C,A +BF) we must have So € a: •
(ii) .. (iv): (ii) obviously implies that I: is left invertible. Let x E: VI:.

Then there exist strictly proper (~,w) such that

k 6 IN such that (s -
........

and (',w) are rational

is stable. Let So be a pole of (~,w). Then there exists

sO)k(~,W) = (xO,uo) + (s - so) (~,;) where (xO,uO) , 0

functions with no pole at s = sO. Substituting this

into (*) yields:

We show that (~,w)

For s ... So

Because of (ii) we must have So € a: •
Hence Xo E V~.

(iv) .. (ii) Suppose that for some s € a: there exist (xO,uO) , 0 such that
-1 -1

(sOl - A}xO = BUO' cxO = O. Define ~ = (s - so) xo ' w:= (s - sO) uO • Then

(sl - A)~ - BW is a (~,w)-representation of X
o

satisfying C~(s) = O. Since

L is invertible, such a representation is unique. Also Xo E: VI: = V~. Hence

(~,w) must be stable and consequently So € a: • o

Ordinary detectability is Well kwown to be a necessary and sufficient

condition for the existence of an observer (see, e.g. [Ha2]). Accordingly,

one expects that strong detectability is necessary and sufficient for the

existe-nce of an observer whose input is only the output and not the input

of the original system. This is not the case, however, as follows from the

following example.
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(7.2) EXAMPLE. Let n =2, ::: I, A =[ 0 ~J ' B =[~l c ::: [l,OJ. Thenm =r a

[S1 : A -:] =[:
-1 js

a

has full rank for every s € 0:. Hence 1: is strongly observable and in particular

strongly detectable. The system equations are

An observer with y as input and (x
1
,x

2
) as output would give an asymptotically

o
improving estimate of x

2
::: y based on knowledge of y. That is, the observer

would contain a differentiating element: this is intuitively impossible, and

an Qxact proof of this can easily be provided (see [BH]). 0

The condition needed for the e;xistence of a "strong observer" is considerably

stronger than strong observabilitY;., viz: y -+ a (t -+ CD) implies x(t) -+ a ~t -+ CD) •
...

See [BH] for further details. What can be constructed for strongly detectable

system is an integrating strong observer.

(7.3) DEFINITION. A system 1: 1 is caUed an intefll'ating stl'ong obsel'Vel' of 1: if

1: 1" f(jjd with the output of 1:." yieLds an output x such that fol' some poly

nomial, Pol with zel'oes in o:-onLy" we have

p(D)x(t) - x(t) -+ 0 (t -+ CD)

H(jjl'(jj D denotes the diffel'entiation opel'atol'" D = d/dt.

This concept is related to the concept of integrating inverse, as in

troduced by Sain and Massey ([SMJ. Also see [Ha3J). It is shown in [SM] that

a system has an integrating left inverse if and only if the system is left

invertible. Here an integrating left inverse is a system 1:
1

with transfer
-kmatrix R1 (S) such that R

1
(S)R(S) ::: s I for some k, where R(s) denotes the

transfer matrix of 1: • It turns out that strong detectability is the con
I

dition needed for the existence of a stabLe integrating left inverse; i.e. of
-1

a stable transfer matrix R
1

satisfying R1 (s)R(s) = pes) I for some poly-

nomial p with zeroes in 0:- only.
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(7.4) TlmOREM. Let rank B = m. The foUowing statements are equivalent:

(1) 1: is stl'ongly deteatable

(ii) Thel'e e:dsts a stl'ong integl'ating obse1'Vel' of E

(iii) Th~l'e e:dsts a stable integ1'ating left invel'se of E

A proof is given in [BB].

S. Disturbance decoupling with internal stability. The problem considered is

tllc same as ODP (section 5.0.) with the additional requirement that a (A + BF) c II:

The following result is proved in ~a5].

(7.5) TlmOREM. For the ODP 'With internal stabiUty to have a solution it is

n6aessar"Jj that 1: be stabiZiaabZe. If 1: is stabiUaabZ.e~ the fol1,OIJJing state

ments a1'e equivalent:

(1) The DOP with internal stability has a solution

(ii) Eo.. =. V~

(iii) Thel'e e:dst stable l'auonal ttt1'ictly pl'opel' mat1'i:x; functions x (s), U (5)

Buoh that

(iv) (If (O~A) is detectable): There e:x:ists a stabZe st1'iotZy proper mat1'i:x;

Q(s) such that

lJJhere R
1
~ R

2
are defined as in theorem 5.5.

(8.1) DEFINITION. RI: denotes the set of points x E: X fOl' which thel'e e:x:ists

a (t~~)-representation such that C~(s) is stable.

RI; 1s a strongly invariant subspace, i.e. for all u E n, Xo E RI; we

have 'u(t,xo) ERE.

In particular
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R
E

= <AlB> + V
E

+ X-(A) = SE + X-(A)

where X-(A) denotes the space corresponding to the unstable eigenvalues of

A (see [HaS]). ~his subspace can be used for the solution of some problems

connected with output stabilization. We consider the problem of constructing

F : X .... U such that with u = FX, the output will be stable with arbitrary

initial state and zero input. Hence F has to be determined such that

C(sI - A - BF)-l is stable. This problem is called the output stabilization

problem (see [Wn. section 4.4]). The following result is proved in [HaS]:

(8.2)

(1)

(ii)

(iii)

(iv)

THEOREM. The foUowing statements are equival,ent:

The output stabiUzation probl,em has a sol,ution

RI; = X

VI: + <Ala> ~ X+(A)

There e:x:ist rational, functions X(s), U (s) such that (sl - A)X + BU = I

and CX(s) is stabl,e.

The eqUivalence of (i) and (Mi) has been shown in [Wn]. A somewhat more

general problem is the disturbance stabilization problem. We start from the same

system as in DDP, but now we want to determine F : X -+ U such that with u = Fx
-1

the i/o map q 1+ Y is stable, i.e. such that C(sl - A - BF) E is stable.

We have the following result

(8.3)

(1)

(i1)

(iii)

T~OREM. The foUowing statements are equival,ent:

The distU:l'bance stabiUzation probl,em has a sol,ution

EQ. ~ RE
There e:x:ist rational, matrices X and U such that (sl - A) X + BU = E

and cx is stabl,e

For a proof, see [HaS].
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