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(A,B)- INVARTIANT SUBSPACES AND STABILIZABILITY
SPACES: SOME PROPERTIES AND APPLICATIONS

by

M.L.J. Hautus

1. Introduction

In the present paper a review is given of the important system theoretic
concept of (A,B)-invariant subspace. The concept was introduced (with the
name coatrolled invariant subspace) by Basile and Marro in 1969 [BM]. In 1970
this concept was rediscovered by Wonham and Morse [WM1] The concept turned
out to be of fundamental importance for numerous applications and for many
theoretic investigations. It was the basis of the geometric approach to linear
multivariable systems propagated by Wonham and Morse [WM,Wnl]. Since there is
anothexr important development in linear system theory, the polynomial matrix
approach (see e.g. [Rol,[Wo], WD]) it is useful to cobtain polynomial repre-
sentations, or frequency domain characterizations of (A,B)-invariant subspaces
in oxrdexr to bridge the two divérging branches., Results of this type were ob-
tained in [EH], [FW] [Ha4,5] and some of them will be mentioned here. In
addition some properties and aﬁplipations of stabilizability subspaces, in-
troduced in [HaSl], are discussed. Aiso the relation between strong obser-
vability and strong detectability introduced in [PS], [Mo] (for discrete time)

and (A,B)-invariant subspaces is indicated.

2. A-invarniance
Consider the time invariant linear differential equation
* [+]
(2.1) x(t) = Ax(t)

in X := R". a subspace I € X is called A-invariant if for each initial value

Xy € V we have x(t) ¢ V for t 2 0.
If vl""'vk is a basis of V, the matrix V := [&1,...}vk] is called a

) 4
basis matrix of V. Obviously, x € V iff there exists p € R~ such that x = Vp.

The following result can easily be proved.

(2.2) THEOREM. GZven equation (2.1) and a subspace V < X, the following
statements are equivalent ~~

(iy V 7s a-tmvariant

(ii) AV <cV, Z.e.,ax e V for all x e V



(iii) If v 28 a basis matrix of V, then the matrix equation
AV = VP

has a solution P. a

3. (A,B)-invaniance
Here we consider the controlled system
(3.1) x(t) = Ax(t) + Bu(t) (t 2 0)

with A : X > X, B : U > X, where X= R, Ui= R™, a subspace V c X is

called weakly invariant if for each x, € V, there exists u € § such that

§uﬁtcxo) € V for all t 2 0. Here 2 denotes the set of piecewise continuous

functions u : 1R+ + U and é;u(t,xo) denotes the solution of (3.1) with ini-

tial value x0 and control u.

For a given x € X, the formula

Xx = (sI -A)E(s) - Bmﬁs)?

w

will be called a (§,w)-representation if £(s) and w(s) are strictly proper

rational functions.

Then we have the following resnlt.

(3.2) THEOREM. Given system (3.1) and V c X, the foZZouﬁng statements are
equivalent

(1) (Open loop characterization) V Z8 weakly imvariant.

(ii) (Geometric characterization) V Zs (A,B)-invariant i.e., AV < V + BU.
(iii) (Matrix characterization) If V Zs a basis matrix of V, then there exist
matrices P and Q such that AV = VP + BQ.

{iv) (Feedback characterization) There exists ¥ : X + U such that V Zs
(A + BF)-imvariant, Z.e., (A + BF)V < V.

(v) (Frequency domain characterization) Every x ¢ V has a (E,w)—-representation
with E(s) € V.

PROOF: (i) = (ii) If x(t) e V for t = O then %(0+) = lim t 1 (x(t) - x(0)) e V. Hencc

Axo = 3°c(0+) - Bu(0+) e V + BU. t40



(ii) = (iii) similar as in theorem 2.1.

(iii) = (iv) V is left invertible, say V' V = I. Take F := ~QV'. Then

(A + BF)V = VP.

(iv) = (v) Choose E(s) := (sI - A - BF)-le, w(s) := FE(s).

(V) = (1) Let E(t), E(t) be the time domain functions (inverse Laplace trans-
forms) of £(s), w(sh Then £(t) = AE(t) + Ba(t), E(0) = x, and L(t) € V for all

t = 0. g

Because of the equivalence of (i) and (iv), we may say that, if for every
xo € V there exists a control u such that the trajectory stays in the space,
then there exists a feedback law u = Fx, such that the state stays in V for
all initial values.

4. The Largest weakly invariant subspace contained 4in ker C
In this section we consider the controlled system with output eqguation:

o .
(4.1) X = AX + Bu, y = Cx.
We are interested in a weakly invariant subspace contained in ker C which is

as large as possible. We denote the system (4.1) briefly by (C,A,B) or by I.

(4.2) DEFINITION. Given . = (C,A,B), then UZ denotes the space of points
X, € X such that there exists u € 0 for which yu(t,xo)‘ 3= cau(t,xo) =0
for all £ 2 0.

The following result follows easily from the definition (for a proof

see [Ha51]).

(4.3) THEOREM, V): e the largest (a,B)-invariant subspace contained in ker C
that 1s, Uz ig (A,B)~invariant, VZ c ker C and for every (A,B)-invariant

subepace V ¢ ker C we have V ¢ V. 0

The following result, which is a direct consequence of theorem (3.1),

gives some further properties of Vz:



(4.4) THEOREM, Gtven I, and x € X the following statements are equivalent:
(i) x e Vz

(ii) x has a (&,w)~-repregentation satisfying CE(s) = 0

(iii) These extists a sirictly proper rational function w(s) such that

R(s)u(s) = ~-C(sI - A)-lxon

where R(s) := C(sI - A)-lB 18 the transfer matrix of I.
(iv) There extiets a strictly proper rattonal solution (E,w) oOf

sl - A -B E(s) = b4

C 0 w(s) 0 0

5. Applications of weakly invarniant subspaces

A. Strong observability. A system I is called strongly observable if for

any two points Xy 1%, € X we have: If there exist @, € Q such that

y. (t,x,) =y (t,x)) for t 2 0, then x, = X,. In a strongly observable

system the initial state is uniquely determined from the output alone. The

concept was introduced for example in [PS], where it was termed perfect observabi

By linearity, the following is easily seen: I is strongly observable 1ff
yu(t,xo) = 0 for all t 2 O implies x, = 0. Thus we have the equivalence of

i) and ii) in

0

(5.1) THEOREM. Let rank B = m, Z.e., let B be injective. Then the following

statements are equivalent:

i) L 18 strongly observable,
ii) Uz = 0,
iii) (c,A +BF) is observable for every F,
!;1 ~ A ~B = n + m, for every s ¢ C.
iv) rank

ﬁ_ c 0

PROOF. i) « ii) have been observed before.

ii) = iv). Suppose that for some sy € T we have




rank s.I - A -B < n+m.

Then there exist vectors Xy € X, u, € U not both zero, such that

sOI - A -B xo =0
C 0 uy
1f we define £(s) := (s - so)_lxo, w(s) = (s - so)—lu , then a straight-

forward calculation shows that

Xy = (sI - A)E(s) - Bw(s), C&(s) = 0,

hence that x ¢ Vz. Since Vz = 0 this implies X,

= Q. Because of rank B = m we conclude that u0 = 0 which is a contradiction

0 and u, were not both zero.

iv) = iii) A system is observable iff

-

= (0. Consequently Bu = (sOI - A)x0

to the assumption that x

rank sI - A = n (s € @

Cc

(see [Hall). If iv) is satisfied then we have for every F,

rank sl - A - BF ~-B = rank sl - A -B I 0 = n+m
C 0 C 0} F I
Hence rank sI - A - BF

so that (C,A +BF) is cbservable.
iii) = i) Suppose that Vz # 0 and choose F such that (A + BF) l/z c Vzo Then V):
is an (A + BF)-invariant subspace contained in ker C, which contradicts the

ebservability of (C,A + BF) 0



REMARK. If rank B # m then condition iv) can never be satisfied. However, it

is easily seen that the theorem remains valid if we replace condition iv) by

iv)': rank sl - A -B = n + rank B
C 0

for all s € C. 0

The property of strong observability is important in the following situation:
Suppose we have a system with two types of input, a control u and a distur-
bance ¢ which is completely unknown. Then the following question arises: Is
it possible to determine the state uniquely from u and y? It is easily seen
that this is the case iff I, := (C,A,E) is strongly observable, where we

1
assume that the system equations are

§ AX + Bu + Eq

Y Cx.

The foregoing theorem gives necessary and sufficient conditioms for this to

be the case.

-

B Output null controllability. We denote <A|B> the set of null controllable points

(or equivalently, the set of reachable points) in X. A point x, € X is called

output null controllable if there exists u € Q such that for some T > 0 we

have
t,x =0 for t 27T
. u( ! 0)

Let S denote the space of output null controllable points. The following

results are shown in [Ha4]:

(5.2)THEOREM. (i) S = <a[B> + Vg
(ii) x € 8 <ff there exist rational functions £,w such that x = (sI - A)E - Bw

and CE 18 a polynomial. 0
I is called output null controllable if S = X, i.e., if <A|B> + UZ = X.

(5.3) COROLLARY. I 78 output null controllable iff there exist rational matrices
P and Q satisfying

(sI -~ A)P(s) - BQ(s) = I,
CP(s) te& a polynomial. O



C Left invertibility. I is called left invertible if

yul(.,O) = yuz(.,O) = u1 = u2.

By linearity, an equivalent condition is:

Yu('lo) =0=u=0,.

(5.4) THEOREM. (Compare [Wn.Ex.4.1] and [SPl). The following statements are
equivalent

(i) L 18 left invertible
(ii) rank B = m and UZ n BU

i
(=}

(iii) rank sl - A -B

n+m
C 0

for almost alls e €.

PROOF.(i) = (iii) If the condition of (iii) is not satisfied then there
exist rational functions § and w not both zero, which may be supposed to be

strictly proper, such that

sI -A -Bl[E(s)] =o0
Cc 0 w(s)

Let £(t) and w(t) be the inverse laplace transform of these rational functions.

Then
3 ~e ~ ~
() E(t) = Ag(t) + Bw(t), &£(0) =0
Cg(c) = 0.
By invertibility we must have w(t) = 0. But then &£(t) must be zero because
of (*) contradicting our assumption.

iii) = {i) If iii) holds, then obviously rank B = m. Let %, € Vz n BU'. Then

0
there exist u, ¢ (| and §,w, strictly proper such that

4]
Xg = BuO = (sI ~ A){ - Bw
Hence sl - A -B £ =0
(o4 0 u, + w



Hence, by iii), § = 0, uy tw= 0. Since w is strictly proper this implies
uO = 0 and therefore XO = 0.
ii) = i) Choose F such that (A + BF)VE E-UZ‘ Suppose that yu(t,O) = 0 for

some u € Q. The function v(t) := u(t) - Fgu(t,O), satisfies
Bv(t) = Eu(t,O) - (A + BF)Eu(t,O) € Vz (t 2 0)

sinca Eu(t,O) € Vz and VZ is (A + BF)-invariant. But obviously Bv(t) ¢ Bl

and hence Bv(t) = 0, so that £u(t,0) = (A + BF)Eu(t,O). Because of Eu(0,0) = 0,
this implies u(t,O) = 0. In addition, because of rank B = m, and Bu(t) =

= £ (£,0) - HE (t,0) = 0 we have u(t) = 0. 0

It follows from theorem 5.4 that the (£,w)-representation satisfying C§{ = 0 of
each element X, € Vz is unique iff I is left invertible.

D. Disturbance decoupling. We consider the system
e
X = AX + Bu + Eq, z = Dx

and we ask whether it is possible *to £ind F : X + U such that with the feedback
u = FX the output z is independent of the noise q.

Q
i
" =
F >

o - i
This 1s Yie so-called disturbance decoupling problem (DDP), see [WM]. The
following is proved in [HaS]:

Y

e,

(5.5) THEOREM. The following statements are equivalent
(i) DDP has a solution F.

(i) EQ_Eivz; here Q s the space in which the disturbance q takes its
values and ¢ := (D,A,B).

(iii) There existe a strictly proper rational matrix Q(s) such that

Rz(s) = Rl(s)Q(s),

where R, (s) := D(sI - A)_IB is the control to output transfer matrix

and R,(s) := D(xI - A)_1 ¢ the noise to output transfer matrix.
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(iv) There exists strictly proper X(s),U(s) such that

sl - A -B X(s) E

c 0 U(s) 0 ]

The equivalence (i) @ (ii) is proved in [WM]. See also [Wn, section 4.1].

6. Stabilizability subspaces

We consider stability from a general point of view, i.e., we assume
that we are given a set T < € such that € n IR # ¢ and we denote by mf the
complement of € in @. A rational function will be called stable if it has
no poles in ¢+. A (&,w)~-representation will be called stable if £ and w are
stable rational functions. We consider again the system given by (3.1). A
subspace V of X will be called a stabilizability subspace if there exists
F : X+ U such that (A + BF)V c V and o(a + BF)IV < € . Obviously a sta-

bilizability subspace is weakly invariant. We have the following frequency

domain characterization.

(6.1) THEOREM. V <8 a stabilizability subspace iff each point in V has a
gtable (&,w) representation such that g(s) e V.
For a proof see [Ha5].

Now we assume that we are given a system I = (C,A,B) and we introduce

the stabilizability analogue of VZ'

(6.2) DEFINITION. V; denotes the set of points for which there exists a
stable (E,w)-representation satisfying CE(s) = 0.

(6.3) THEOREM. V. is the largest stabilizability subspace conmtained in ker C.
Obviously, U; E.Vz' We have the following properties: (see [Ha4,5]):

(6.4) THEOREM (i) x « V; iff there exists strictly proper stable E,w such
that —



sI - A -B 3 X
C 0 w 0

- +
(ii) If the system is detectable, (i.e, . rank[%I c A] =n fors € €C), then
X € V2 1ff there exists a strictly proper stable w such that

R(s) w(s) = C(sI - A)“lxo

where

R(s) := C{(sI - A)—IB.

The latter result is no longer true if the detectability condition is

omitted (for an example, see [Ha5]).

7. Applications of V;

A. Strong detectability. A system I is called strongly detectable if for

any u ¢ 2 and for any x_,x., € X we have: Y, (t,xl) =Y, (t,xz) (t 2 0)

Q
1"72 172 1 2

implies Eul(t,xl) -Euz(t,xz) + 0 (t + =),
In the case of a strongly detectable system, it is possible to get based

on the output alone an estimate of the state the error of which tends to zero
ag % - «, By linearity we may say that I is strongly detectable iff y(t) = O
{(t + 0) implies x(t) + 0 (t + »), for each input u and initial value Xg-

(7.1) THEOREM. If rank B = m, the following statements are equivalent
(i) I 18 strongly detectable

(ii) rank [sI - A -B] =n+nm (Res 2 0)
P
(1ii) (C,A +BF) ©8 detectable for all F with respect to the stability set
€ = {s et I Res < 0}

(iv) £ te left tnvertible and V; =V,

PROOF. The equivalence (i) & §ii) is proved in [BH]. The proof of (ii) = (iii)

is completely analogous to the proof of iv) = iii) in Theorem 5.1.

(iii) = (ii) Let rank sOI - A -B| < n+m for some Sg € €. Then there
(o] 0 :
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exist X, € X, Uy

Because of rank B = m this implies X, # 0. Let F be an arbitrary map X +~ U

€ U not both zero such that (sOI - A)xo = Buo, Cx0 = 0.

satisfying Fxo = u,. Then we have (sI, - A - BF)x0 = 0, Cx, = 0. Because

0’ 0 0

of the detectability of (C,A +BF) we must have sy € T .
(ii) = (iv): (ii) obviously implies that I is left invertible. Let x ¢ Vz.

Then there exist strictly proper (£,w) such that
_;I - A -B g = X .
() c 0 w 0
We show that ({,w) is stable. Let s, be a pole of (&,w). Then there exists

kX ¢ IN such that (s - so)k(g,w) = (xo,uo) + (s - so)(E.a) where (xo,uo) #0

and (§,w) are rational functions with no pole at s = s,. Substituting this

into (%) yields:

0

k g ~
(s - so) X = sl - A -B X, + (s - so) E
0 ‘ Qm 0 uy @
For g = so we obtain sOI ~ A -B xo =0
C 0 uo

Because of (ii) we must have s0 e .

Hence %, € Vz.

(iv) = (ii) Suppose that for some s € € there exist (x uo) # 0 such that

OI

- - . - -1 P
(sOI - A)xo = Buo, Cx. = 0. Define £ = (s - so) Xyew = (s so) ug Then

(0]

(sI ~ A)E - Bw is a (§,w) -representation of x, satisfying CE(s) = 0. Since

L is invertible, such a representation is unigue. Also x, € UZ = U;. Hence
(§,w) must be stable and consequently s, € c . d
Ordinary detectability is well kwown to be a necessary and sufficient
condition for the existence of an observer (see, e.g. [Ha2]). Accordingly,
one expects that strong detectability is necessary and sufficient for the
existence of an observer whose input is only the output and not the input
of the original system. This is not the case, however, as follows from the

following example.
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0
(7.2) EXAMPLE. Letn=2,m=r=1,A=[01],B=[ ],C=[1,0].Then

sl - A -B =1|s -1 0
C 0

has full rank for every s ¢ €. Hence I is strongly observable and in particular
strongly detectable. The system equations are

o
¥p =Xy ¥EX

Xo
L]

2 u

An observer with y as input and (il,ﬁz) as output would give an asymptotically
improving estimate of X, = ; based on knowledge of y. That is, the observer
would contain a differentiating element: this is intuitively impossible, and

an exact proof of this can easily be provided (see [BH]). 0

The condition needed for the existence of a "strong observer" is considerably
stronger than strong observability, viz: y + 0 (t + ®) implies x(t) - 0 It + =).
See [BH] for furthexr details. What can be constructed for strongly detectable

system is an integrating strong observer.

(7.3) DEFINITION. 4 system L, 18 called an integrating strong observer of L if
£y fed with the output of I, yields an output % such that for some poly-
nomial p, with zerocee in T only, we have

p(D)XR(t) - x(t) >~ O (t > =)

Here D denotes the differentiation operator, D = d/dt.

This concept is related to the concept of integrating inverse, as in-
troduced by Sain and Massey ([SM]. Also see [Ha3]). It is shown in [SM] that

a system has an integrating left inverse if and only if the system is left

invexrtible. Here an integrating left inverse is a systenm 21 with transfer
matrix Rl(s) such that Rl(s)R(s) = s—kI for some k, where R(s) denotes the
transfer matrix of 21. It turns out that strong detectability is the con-
dition needed for the existence of a stable integrating left inverse; i.e. of
a stable transfer matrix R, satisfying Rl(s)R(s) = p(S)_ll for some poly-

1
nomial p with zeroces in T only.
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(7.4) THEOREM. Let rank B = m. The following statements are equivalent:
(1) & i8 strongly detectable

(ii) There exists a strong integrating observer of I

(iii) There exists a stable integrating left inverse of I

A proof is given in [BH].

B. Disturbance decoupling with internal stability. The problem considered is

the same as DDP (section 5.D.) with the additional requirement that o(A + BF) E_m"

The following result is proved in [Ha5].

(7.5) THEOREM. For the DDP with internal stability to have a solution it is
necessary that I be stabilizable. If I te stabilizable, the following state-
ments are equivalent: '

(1) The DDP with internal stability has a solution

(i1) EQ € V| .
(i1i) There exist stable rational gtrictly proper matrix functions X(s), U(s)
such that
sI ~A -B X = E
c 0 u 0

(iv) (If (D,A) Zs detectable): There existe a stable strictly proper matriz
Q(s) such that

Rz(s) = Rl(s)Q(s)

where R, R, are defined as in theovem 5.5.

2

8. Output stabilization

(8.1) DEFINITION. Rz denotes the set of pointe x € X for which there exists
a (&,w) ~repregentation such that Ct(s) is stable,

RZ is a strongly invariant subspace, i.e. for all u ¢ Q. Xy € RZ we
have g (t,x,) € Rz.
In particular
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R, = <a|B> + U, + X (a) = S, + X (a)

where X (A) denotes the space corresponding to the unstable eigenvalues of

A (see [Ha5]). This subspace can be used for the solution of some problems
connected with output stabilization. We consider the problem of constructing
F : X » U such that with u = Fx, the output will be stable with arbitrary
initial state and zero input. Hence F has to be determined such that

C(sI -~ A - BF)—1 is stable. This problem is called the output stabilization

problem (see [Wn. section 4.4]). The following result is proved in [HaS5]:

(8.2) THEOREM. The following statements are equivalent:

(i)  The output stabilization problem has a solution

(i) Rz: = X

(4i4) Vo + <alB> 2 x*(a)

(iv) There exist rational functions X(s), U(s) such that (sI - A)X + BU = I
and CX(s) is stable.

The equivalence of (i) and (i&i) has been shown in [Wn]. A somewhat moxe

general problem is the disturbance stabilization problem. We start from the same

system as in DDP, but now we want to determine F : X + U such that with u = Fx
the i/omap q P y is stable, i.e. such that C(sI - A - BF)_IE is stable.

We have the following result

(8.3) THEOREM. The following statements are equivalent:

(i) The disturbance stabilization problem has a solution

(i) EQ < Rz

(1ii) There exist rational matrices X and U such that (sI - A)X + BU = E
and cx ig stable

For a proof, see [Ha5].
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