THE INFLUENCE OF Na$_2$O ON THE HYDRATION OF C$_3$A.
I. PASTE HYDRATION

G.A.C.M. Spierings and H.N. Stein
Laboratory of General Chemistry
Technological University, Eindhoven, The Netherlands

(Communicated by H. F. W. Taylor)
(Received Dec. 2, 1975)

ABSTRACT

The influence of Na$_2$O on the hydration of C$_3$A was studied both by following the hydration of xNa$_2$O.(3-x)CaO.Al$_2$O$_3$ (0<x<0.25) in water, and of C$_3$A in solutions of NaOH. Low NaOH concentrations prevent a very early appearance of the second heat evolution peak, indicating a more controlled formation of C$_3$AH$_6$ nuclei. Higher NaOH concentrations advance the second peak; this is ascribed to a decreased stability of the hexagonal hydrates with increasing NaOH concentrations.

Der Einfluss von Na$_2$O auf die Hydratation des C$_3$A wurde untersucht sowohl mittels der Hydratation von xNa$_2$O.(3-x)CaO.Al$_2$O$_3$ (0<x<0.25) in Wasser und von C$_3$A in NaOH-Lösungen. Niedrige NaOH-Konzentration verhindern ein sehr frühes Auftreten des zweiten Wärmeentwicklungspeaks; dieses deutet auf eine besser beherrschte Keimbildung des C$_3$AH$_6$ hin. Höhere NaOH-Konzentrationen verfrühen den zweiten Peak; dieses wird einer abnehmenden Stabilität der hexagonalen Hydrate mit steigender NaOH-Konzentration zugeschrieben.
Introduction

The alkalies in a portland cement clinker have a distinct influence on the strength development of a cement paste prepared from it (1,2). As a first step in understanding this effect the influence of alkalies on the hydration mechanism of portland cement minerals has to be studied.

The alkalies can be incorporated into a number of phases in the clinker. Part of the Na₂O is normally taken up by the C₃A. Recent work (3,4) has shown that there exist several series of solid solutions of general formula xNa₂O.(3-x)CaO.Al₂O₃, of which a cubic one with 0<x<0.08, an orthorhombic one with 0.16<x<0.20 and a monoclinic one with 0.20<x<0.25 are relevant to the present investigation. When 0.08<x<0.16 a mixture of two phases is found.

Some aspects of the influence of Na₂O on the hydration of C₃A have been investigated (5-9) but no detailed study has been reported. The present investigation deals with the paste hydration of C₃A in solutions of NaOH and of xNa₂O.(3-x)CaO.Al₂O₃ in water.

Experimental

Methods

Specific surface was determined by N₂ adsorption in an Areameter ("Ströhlein"). Free lime was determined by the method of Pressler et al. (10). Scanning electron micrographs (SEM) were made using a Cambridge MK-2A instrument.

X-ray analysis was performed using a Philips diffractometer PW1010 with filtered Cu radiation; the quantities of the compounds present were estimated from the intensities of characteristic peaks, which are given in arbitrary units (vw<w<mv<m<s<vs). The peaks used were the same as those used by Corstanje, Stein and Stevels (11) together with the 10.7 Å peak for C₂AH₈.

Isothermal calorimetry was performed at 25°C as described previously (12). The pastes were prepared and the hydration reactions arrested as described by de Jong, Stein and Stevels (13). Calcium was determined by a spectrophotometric titration method (Slanina et al. (15)). Sodium was determined using a sodium ion electrode (Swasey (16)).

Materials

The Na₂O containing C₃A samples were prepared from mixtures of CaCO₃ (p.a. Merck), Al₂O₃ (U.C.B.; loss on ignition 0.57%) and Na₂CO₃ (p.a. Merck). The starting materials were mixed in an agate ball mill, heated three times in platinum crucibles for two hours at 1325°C with intermediate grinding, and sieved. The fractions with particles smaller than 36 μm were used. C₃A was prepared as described by de Jong, Stein and Stevels (13). Table I contains some data for the materials.

According to Regourd and Guinier(3), C₃A and N₀.₉₅C₂₇₅₅A are cubic while N₀.₂₅C₂₇₅₅A is monoclinic, and N₀.₉₅C₂₂₈₅A a mixture of the cubic and orthorhombic phases. The samples were characterized by their X-ray diffractograms which agreed completely with the data given by Regourd and Guinier.

The water used was distilled twice and boiled and cooled to room
temperature shortly before use. The alkali hydroxide solutions were prepared from LiOH·H₂O (Koch light >99%), NaOH and KOH (Titrisol Merck) and RbOH2 (Koch light >99.8%). The NaAl(OH)₄ solutions were prepared by dissolving Al ribbon (p.a. Merck) in aqueous NaOH solution. All preparations were carried out using a glove box with a N₂-atmosphere free from CO₂.

TABLE I

Data on Materials Employed

<table>
<thead>
<tr>
<th>Specific surface cm²/g</th>
<th>Free lime %</th>
<th>Theoretical</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₃A</td>
<td>3210</td>
<td>0.3</td>
<td>--</td>
</tr>
<tr>
<td>Na₀.05C₂.95A</td>
<td>2890</td>
<td><0.1</td>
<td>27.5</td>
</tr>
<tr>
<td>Na₀.15C₂.85A</td>
<td>3060</td>
<td>0.3</td>
<td>9.5</td>
</tr>
<tr>
<td>Na₀.25C₂.75A</td>
<td>2670</td>
<td>0.7</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Hydration of C₃A in Solutions of Alkali Hydroxide or Hydroxaluminate

Results

Fig. 1 gives typical heat evolution curves for pastes (w/s = 1) made with C₃A and water or aqueous NaOH. In Fig. 2, the time

FIG. 1

Heat evolution rates of pastes (w/s = 1) made using water and aqueous NaOH

FIG. 2

Time of second heat evolution peak
of the second heat evolution peak is plotted against NaOH concentration. Heat evolution in the first 15 minutes decreases with increasing NaOH concentration. With water or NaOH less concentrated than about 0.5M, the time of the second peak is not very reproducible. With more concentrated NaOH, the reproducibility is much better, and the occurrence of this peak at very short times is prevented. The time of the second peak falls with concentration above 1M. Mori et al. (6) also found this.

X-ray results (Table II) show that C$_3$AH$_6$ is formed within 10 minutes and that its amount increases with time thereafter. At short times the amount is virtually independent of NaOH concentration. Hexagonal hydrates were only once found (after 20h in 2N NaOH) with X-rays, but the SEM (Figs. 3 and 4) showed the presence after 10 minutes of hydrates other than C$_3$AH$_6$. These had a platey habit reminiscent of that of hexagonal hydrates. The absence of the characteristic X-ray peaks indicates that hexagonal hydrates, if formed, are much disordered.

The effect of varying the alkali cation was studied using 2M solutions. The only observed effect was a small decrease in heat evolution rate over the whole period of hydration when the cation radius was increased.

Fig. 5 shows the effect of adding NaAl(OH)$_4$ as well as NaOH. The second heat evolution peak is depressed and slightly retarded.

Discussion

Addition of NaOH lowers the solubility of Ca(OH)$_2$ and increases that of Al(OH)$_3$. Berger, Kotsupalo and Pushnya kova (16) found that aqueous alkali partly decomposes C$_3$AH$_6$ to give Ca(OH)$_2$, C$_4$AH$_{13}$ and aluminate ions in solution, but Jones (17) found in a study of the C-A-N-H system that C$_3$AH$_6$ is stable in 1% NaOH, even
Table II

X-ray Data on Paste
Hydration of C₃A in
water and NaOH solutions

<table>
<thead>
<tr>
<th>NaOH Hydration (M)</th>
<th>C₃A</th>
<th>C₂AH₈</th>
<th>C₃AH₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>vs</td>
<td>vw</td>
</tr>
<tr>
<td>0</td>
<td>30</td>
<td>vs</td>
<td>m</td>
</tr>
<tr>
<td>0</td>
<td>120</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>0.04</td>
<td>10</td>
<td>vs</td>
<td>vw</td>
</tr>
<tr>
<td>0.2</td>
<td>10</td>
<td>vs</td>
<td>vw</td>
</tr>
<tr>
<td>0.2</td>
<td>50</td>
<td>vs</td>
<td>mw</td>
</tr>
<tr>
<td>0.2</td>
<td>1200</td>
<td>vs</td>
<td>vw</td>
</tr>
</tbody>
</table>

*Neither Ca(OH)₂ nor C₄AHₓ was ever detected.

at low aluminate ion concentrations. The result of Berger, Kotsupalo and Pushnyakova can be ascribed to the initial absence in the solution of Al(OH)₄⁻. It nevertheless seems strange that no solid Ca(OH)₂ could be detected in the present work.

Retardation of the hydration reaction after the first peak is generally attributed to formation of a layer of hydrates, which impedes the passage of Ca²⁺ and aluminate ions into solution. The SEM results (Figs. 3 and 4) confirm that such a layer is formed. However, misfit between C₃A and hexagonal hydrates as regards interatomic distances and habits will make it difficult to obtain a fit on an atomic scale, and some space will exist between the C₃A and the hydrate crystals. Some retardation mechanisms compatible with the existence of such a space will be discussed in a later paper (18).

The existence of the second heat evolution peak is generally attributed to recrystallization of this layer. The effect of alkali in preventing the very early occurrence of this peak can be attributed to retardation of the hydration of the C₃A which could be expected to cause a more controlled growth of C₃AH₆ nuclei.

The fact that the amount of C₃AH₆ formed in the first 10 minutes does not depend on NaOH concentration indicates that the nucleation of C₃AH₆ is not markedly affected by the type of aluminate ion present in the solution. The earlier appearance of the second peak at high alkali concentration might be caused by changes in the nucleus growth rate of C₃A due to higher aluminate concentrations. However, the second peak does not occur sooner when NaAl(OH)₄ is added initially (Fig. 5); therefore the earlier occurrence of the second peak is attributed to changes in the rate at which Al(OH)₄ passes into solution from the hexagonal hydrates.
Hydration of $xNa_2O \cdot (3-x)CaO \cdot Al_2O_3$ Solid Solutions

Figs. 6 and 7 give heat evolution curves for several preparations and mixtures thereof. As with hydration of C_3A in NaOH solutions, Na_2O causes the first peak to occur later though no increase in the effect with Na_2O content was observed beyond $x = 0.05$ despite the variations in crystal structure. Mori et al. (6) found a similar effect. The second peak occurred sooner at high Na_2O contents.

X-ray results (Table III) showed that C_2AH_8 was formed initially. The amount decreased after the second peak and none was found after 48 h. A SEM (Fig. 8) of a preparation with $x = 0.25$ hydrated for 50 minutes showed particles coated with typical hexagonal plates.

When these Na_2O-containing phases hydrate alkali hydroxide accumulates in the solution. The concentration depends on x, the time or degree of hydration, and the amount of water left. At $w/s = 1$ the OH^- concentration could easily reach $0.5-1$ M, for example, if in a paste of $N_{0.25}C_2.75A$ that is 33% hydrated, and assuming no change in volume of the liquid phase, the OH^- concentration is about 1M. The alkali will have similar effects to those found on hydration of pure C_3A in NaOH solutions but the situation is more complex because the alkali hydroxide concentration in solution varies with time.

The fact that the mixture of preparations with $x = 0.05$ and $x = 0.25$ behaves in much the same way as the preparation with $x =$...
TABLE III

<table>
<thead>
<tr>
<th>Hydration time (h)</th>
<th>C(_3)A</th>
<th>C(_2)AH(_8)</th>
<th>C(_3)AH(_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.83</td>
<td>vs</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>2.50</td>
<td>s</td>
<td>w</td>
<td>s</td>
</tr>
<tr>
<td>48</td>
<td>s</td>
<td>-</td>
<td>vs</td>
</tr>
</tbody>
</table>

\(\text{C}_4\text{AH}_x\) was not found.

FIG. 8
SEM of \(\text{N}_0.25\text{C}_2.75\text{A}\) hydrated for 50 min. in water

0.15 indicates that the effects are determined by the alkali hydroxide concentration in solution and not by any particular property of the solid phase; this is consistent with the earlier statements about the second peak.

Acknowledgement

One of the authors (G.A.C.M. Spierings) gratefully acknowledges financial support granted by the "ENCI Jubileumfonds".

References

18. G.A.C.M. Spierings and H.N. Stein, to be published.