

Executable specifications for information systems

Citation for published version (APA):
Hee, van, K. M., Houben, G. J. P. M., Somers, L. J. A. M., & Voorhoeve, M. (1988). Executable specifications for
information systems. (Computing science notes; Vol. 8805). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1988

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 14. Aug. 2022

https://research.tue.nl/en/publications/d5c031c3-d5dc-4d9d-8f32-bd2cbe566b3b

Executable Specifications for
Information Systems

by

K.M. van Hee, G.J. Houben,
L.J .Somers, M. V oorhoeve.

88/05

March 1988

COMPUTING SCIENCE NOTES

'This is a series of notes of the Computing Science Section of the Department

of Mathematics and Computing Science of Eindhoven University of Technol­

ogy.
Since many of these notes are preliminary versions or may be published else­

where. they have a limited distribution only and are not for review.

Copies of these notes are available from the author or the editor.

Eindhoven University of Technology

Department of Mathematics and Computing Science

P.O. Box 513

5600 MB Eindhoven

The Netherlands

All rights reselVed

editor: EA.J. van NeelVen

Executable Specifications for Information Systems

K.M. van Hce, GJ. Houben, LJ. Somers, M. Voorhoevc

Eindhoven University of Technology

ABSTRACT

In this paper we present a survey of a framework for modeling and specifying information systems. Our

method [4. 5) is supported by a software tool for checking and executing specifications. An executable
specification may be considered as a prototype for a target system. The specification language resembles
the language of mathematics; it is related to the Z and VDM methods [1, 3J. However, specifications in

Z and VDM are descriptive (and therefore not executable), whereas ours are constructive. All these

methods share almost the same power and versatility.

In section 1 we give our viewpoint on the engineering of information systems. In section 2 we give an

informal treatment of our framework and design method. In section 3 we survey the specification

language. In section 4 our solution to the inventory control case study [6] is presented and finally in

section 5 we give a full specification of that case study.

1. INTRODUCTION

Software engineering is a branch of systems engineering focussed on the automatic control of tasks in a
system. A system is characterized formally by a state space and some transition mechanism that

transfers the system from one state into another one. Here, we restrict ourselves to discrete dynamic
systems, which means that we describe the behaviour of a system by a (possibly infinite) sequence of
states.

In gencral the state spaces of a system can be considcred as a cartesian product and therefore its states

can be considered as vectors.

The transition mechanism often consists of one or more processors. The behaviour of a processor is
described by a function that has two types of arguments: a trigger and a subvector of the system state.
Its effect may consist of a change of the state subvector and a set of triggers for other processors or
possibly itself. Processors may be implemented by persons, machines or computer systems. A state of a
system may be determined by the presence of sets of physical or abstract objects such as products and
agreements.

When considering a business system in more detail we distinguish a subsystem that executes the pri- •
mary tasks of the business system, called the primary system, and a system that controls the primary
system, called the control system.

Automated information systems playa role in control systems. One of the classical tasks of an

(automated) information system is keeping track of the state of the primary system. A variable, called a

- 2 -

database, contains information about the actual states possibly combined with past states of the primary

system. The case study belongs to this class of information systems.

A more advanced task of an information system is the support of decision makers in control systems.

These subsystems are called expert systems or decision support systems.

In section 2 we sketch a formal framework to model such systems. The necd for such descriptions is

demonstrated by the wide use of dataflow diagram techniques in methods as SADT [9], ISAC [7] and

Yourdon [10]. These techniques lack good semantics and hence are not suitable for the precise

specification of an (information) system, although the diagrams often help to understand more formal
specifications. Another approach to systems description is data modeling. It can be used for describing
the state space of a primary system or its image in an information system. Data modeling techniques

are much more formal, but they are only suitable for modeling state spaces.

Our approach seems to be interesting because it integrates formal modeling of processors and state

spaces, combined with diagramming techniques. In earlier work [4] we used a similar framework, sup­
ported by a logic language.

Main objects to specify are variables, sometimes having a complex structure, and functions. In fact a

database scheme defines a type for a variable called database. What we need is a type system that

allows us to define rather complex types for variables, and a mechanism to define functions.
A typed lambda calculus or functional language seems to be a natural choice. This is the basis of our

language, called EXSPECT. A nice feature of it is that we are able to stick to the relational model but
that it is also possible to work in non-first-normal-form. In the application we have chosen for the last

option.

Our software tool consists of an editor, a type checker and an interpreter. With the type checker one
can test a description for type consistency. With the interpreter one can simulate the behaviour of the
described system. This last facility is essential for validation purposes: for non-experts it is difficult to
understand a formal system description. On the other hand it is relatively easy for future users of a sys­

tem to validate a prototype, generated from an executable specification.

An important difference between an executable specification and a real implementation is that the

designer of the specification is only concerned with the functionality of a system and not with matters
like performance, system load, reliability, concurrency, etc. Therefore a specification language may use

more powerful constructs than an implementation language; so it is much faster to design a specification
than an implementation.

The first step in the lifecycle of an information system is the description of the environment, i.e. the

primary system and possibly parts of the control system of a business system. It is possible to model
this on several levels of detail within our framework.

One usually proceeds with requirements engineering as the next step. Here the tasks of an information

system are defined. Usually the functional and non-functional requirements are written down informally.
We then have a preliminary specification. If it were used as a specification for implementation then

with high probability the resulting implementation would be inadequate. We all know that system

changes are very expensive. Therefore we advocate a third phase of the lifecycle that is devoted to a
formal specification in the way sketched above. We call this conceptual modeling because this phase

produces an abstract system that has the same functionality as the target system. With an executable
specification we already have a primitive implementation of the target system.

- 3 -

2. FRAMEWORK AND DESIGN METHOD

Systems have three main aspects: state structure. data flow and control flow. Many methods are avail­

able for each individual aspect. As said before. state structure can be described by data models, data

flow by data flow diagrams and control flow can be modeled for instance by Petri nets [8] or finite Slale

machines.

Our framework integrates all three aspects. The difference between control flow and data flow in our

framework is that the control flow directs the transport of parameters to processors, triggering the incor­

porated functions. while data flow means transport of parameters between a processor and a (stored)

variable. For a formal treatment we refer to [4J. We call systems that fit into our framework Distri­
buted Event Systems (DES). The term event is used to describe the triggering of a state transition and

discrete means that each state on a process path has a successor. A DES is always a closed system, so a

target system and its environment together form a DES. Of course we will not specify all components

of the environment. We shall treat this subject later in mox:e detail.

A DES is completely determined by a 8-tuple <S ,C ,IC ,DC ,M ,R ,IS ,OS >.
Before we explain the meaning of these components we give two diagrams of a DES. Of course it is

possible to combine the two diagrams into one.

data flow

control flow

Fig. 1

The triangles Pl'" P 4 represent processors. Each processor i consists of two functions: Mj and Rj • The

circles S 1 ••. S 7 represent (stored) variables. They may have simple structures like a calendar date, or

complex like a database. The connections between processors and stores mean that a processor may

acces the variable. If there is an arrow in the direction of the variable then it is an output variable for

the processor, if an arrow points to the processor it is an input variable. Note that there is no direct data

flow between two processors. However, it is possible to transmit data from one processor to another as

indicated in the second diagram. Each processor has one input channel and it may have several output
channels.

For each channel, the type of the values that may pass through it are determined. Channels may split

and join. Processors have a single input channel; they are triggered by the values arriving through that

channel. Note that the type of a channel may allow very complex values. It is easy do deal with cases

where it is intuitively felt natural to have more than one trigger channel. Trigger channels may be con­

sidered as mailboxes. The values passing through a channel are called triggers.

- 4 -

In fig. 1 we have already met four of the components of the 8-tuple:

IC is a function that assigns to each processor one input channel-index, in the picture x ,x ,Y ,z
for respectively PI' P 2,P 3 and P 4·

OC is a function that assigns to each processor a set of output channel- indexes for PI,' X .y • for

P 2 ,'y ,z etc.

An output channel is connected to all input channels with the same index.

IS is a function that assigns to each processor a set of indexes of (stored) variables that are used

as input variables for that processor; for PI,' S 1 for P 2,' S 2 and S 3 for P 3: S 5 etc.

OS is a function similar to IS , it assigns to each processor a set of indexes of output variables;

for PI,' 5 1 ,S2, for P 2 ,' S 3 ,S4, for P3 :84 ,5 s etc.

Now we will explain 5 and V.

5 is a set-valued function, where dom (5) is the set of indexes of stored variables and for such

an index i ,8i is a set that represents the type of the variable with index i.

C is a set-valued function, where dam (C) is the set of channel indexes and for such an index

j ,Cj represents the type of the triggers passing through the channel.

Finally we return to M and R .

M is a function-valued function, where dom (M) is the set of processor indexes. For a proces­

sor k , MI; is a function with input variables with indexes in ISk and ICk and output variables

with indexes in OSk..
MI; is called the manipulator of processor k because it may modify the stored variables.

R is also a function-valued function, where dom (R) is the set of processor indexes. For a pro­

cessor k, Rk. is a function with the same input variables as MI; however its result is a partial func­

tion that assigns a value to zero or more trigger variables with indexes in the set OCl:. Rl; is
called the reactor of processor k because it produces triggers.

The functions MI; and Kl; are specified by means of a typed lambda calculus or functional language.
This is treated in section 3.

We will describe the behaviour of a DES in an informal way. For every input channel there is a muI­

tiset of triggers. At each moment a processor k having a non-empty multiset of triggers may commit a
transition which consists of the following actions:

a. selection of a trigger from the available triggers.

b. simultaneous computation of M/c and Ric with as input parameters the values of the input variables
and the trigger value.

At the same moment, several processors may commit a transition, however no two processors sharing a

stored variable that is an output variable may commit at the same moment. It is required that each pro­

duced trigger value is taken into execution at some moment, so a system must be starvation-free.

Note that we not specify how processors select triggers from their multiset, nor how they control the

exclusive updating of output variables. It is left to the implementers to choose a solution for these

problems. It is easy to find a solution by committing transitions for processors sequentially, however it

is often desired to exploit parallellism. Since for a DES the selection of triggers to be executed is no!
specified. it may be considered a non-deterministic system.

- 5 -

Many systems may be modeled as a DES, for instance many communication protocols between two

systems can be modeled explicitely within the framework. Then we model in fact the communic~ltion at

a higher level, while the implicit way of triggering is the lowest level of communication.

An important modeling issue, in connection with the case study, is the separation of a closed system

into a target system and its environment. The target system is the infonnation system we want to

develop. Many infonnation systems can be modeled at a high level as a reactive system, i.e. the

environment offers a trigger and the system perfonns one transition and a trigger for its environment. In

that case there is no internal triggering in the system. We may model the environment as one or more

processors, possibly with stored variables. However, the specification of these processors is unknown, as

are their stored variables.

The processors are considered as black boxes. their in- and output channels only are known (see fig. 2).

I Y

~ ~
A /~ ,It'"

I x I I Y y y a b c d d e C

target system environment
Fig. 2

Blackbox x may trigger processors 1 ,2,3 and 4, blackbox y 4 ,5 and 6, and every processor is produc­

ing a trigger for the invoker, however processor 4 may trigger both black boxes.

It is also possible to model that a processor in the environment may access stored variables of the target
system.

In the case study most system tasks are of the reactive type. We can model the several access control
classes as different blackbox processors.

We conclude this section with some remarks on a design method based on Ollr framework. We only

consider the conceptual modeling phase. It is quite natural to proceed along the following steps:

1. Identify the processors and stored variables in the target system and identify the blackboxes in the
environment (in fact this is a data flow analysis).

2. Identify the channel structure (control flow analysis).

3. Define types for the stored variables (data modeling).

4. Define constraints on the types of stored variables (database constraints).

5. Define types for the trigger variables.

6. Define the manipulator and reactor functions for each processor.

7 Verify that the processors keep the constraints invariant.

Of course. it is sometimes useful to change the order or to take on two steps simultaneously. However,
if all 7 steps are accomplished the specification is complete.

- 6 -

3. LANGUAGE

In this section we describe a language for specifying systems according to the model defined in section

2. The description is given in an informal way, for a more concise treatment we refer to [5].

A DES is built from processors and stores. A processor repeatedly selects a trigger from the available

triggers, updates the values of the stores it is connected to and sends new triggers to other processors.

The language EXSPECT, of which a subset is treated here, is suited for specifying and executing such

systems.

From now on we call stored variables SlOres and they may be considered as global variables. They are

declared by giving their name and type. For example,

store s: str

declares a store of name s and type str(ing).

Processors are defined by giving their name, the type of the input trigger, and the actions they perform.

For example,

proc pl[i:str] ::= s +- i,

q <= 'store updated'

This processor is named pI and is triggered by a string. When pI reacts upon a certain trigger it stores

the value of this trigger, which is denoted by i, in the store s we have declared above. Furthermore it

sends a trigger with value 'store updated' to processor q. In the present version of EXSPECT, input

channels cannot be shared by processors and therefore we identify a processor and its input channel.

For each store updated there is a line containing a +- and for each trigger sent there is a line with a <=.

In general, processors also transform input values of stores and triggers into other values. This is where

the functional aspect of EXSPECT comes in. At the right hand side of a +- or <= sign we may use any

function of the input trigger of the processor and the stores in the system, which are connected to this

processor as input stores. A function is defined in terms of other functions and so on till we reach the

basic functions of the language. For example, we may define a function to calculate the length of a

string

strlen[x:str] ::= if x =" then 0

else strlen(tail(x») + 1

fi

with the help of already existing functions to add numbers (+) and to take all but the first character of a
string (tail).

This new function in tum can be used for defining other functions.

Assignments to stores and triggers in the definition of a processor can also be done conditionally. A

processor p2 which only updates store s when the length of the trigger is more than 10 is given by

proc p2[i:strJ ::= if strlen(i) > 10 then s +- i,

fi

q <= ' store updated'

else q <= 'store not updated'

- 7 -

Untouched stores, like s in the second alternative of the if, are left invariant.

Up to this point we have dealt only with simple types like "boo}", "num" and "str"; respectively for

boolean values (true/false), rational numbers and strings. For modeling more real-life situations we need

more complex types like sets.

With the help of the type constructors x, $ and -t we can construct compound types of arbitrary com­

plexity.

Cartesian products arc constructed with the help of x, for example pairs of numbers, or triples of

bool,number,string:

num x num

bool x number x string

Sets are constructed with the help of $ and mappings (functions with finite domains, to be interpreted as
sets of pairs) with the help of -t. Examples are

$num

num -t bool

$num x $bool

for a finite set of numbers, a mapping from num to bool and pairs of sels of numbers and booleans.

We are now able to define a processor p3 that updates a store t that holds a set of strings,

store t: Sstr;

proc p3[i:str] ::= if strlen(i) > 10 then t r ins(i,t),

fi

q <= ' store updated'

else q <= 'store not updated'

Here "ins" is a basic function that inserts an element in a sel

New types can also be introduced by giving them a name. We can introduce a type addr(ess), which

holds street, house, town and postal code (all considered to be strings) by

type addr from str x str x str x str

A store (with the name "index") to hold names and addresses can be declared by

type name from str;

store index: name -t addr

We have used a mapping, since for each name there is never more than one address.

A processor p4 that adds a name, which is not yet present, and address to "index" may be written as

proc p4[i:name x addr] ::= if 1tl(i) e dom(index) then index r ins(i,index)

fi

The function 1tl projects upon the first element of a pair. This process can also be written as

proc p5[i:name, j:addrJ::=

if i E dom(index) then index r [x:ins(i,dom(index)) I if x=i then j else index· x fi]

ti

The constructor [x: 01 E(x)] defines a mapping with domain 0 and range E(O). So the example assigns

to (the store) index a new mapping that has the same domain as the old index, but with the new name

added. The values of the mapping are the old ones (index. x means apply index to x) and the new

address.

- 8 -

Yet a third way to represent the above processor is

proc p6[i:name, j:addr]::=

if i ft dom(index) then index ~ fupd(index,[x: [i} I j])

fi

Here{i} is the set with i as only element, [x:[i) I j] is therefore the mapping consisting of only one

pair « ij » and "fupd" (defined formally in section 4.4) is a general function that accepts two map­

pings as parameters and returns the "overwriting" of the first mapping by the second one, it is defined

formally in section 4.4.

In the above we have given enough information about the language to understand the case in the next

section.
It is possible to construct libraries of functions. These libraries will assist in developing a description in

a modular way.
Apart from libraries of functions one can also make toolboxes of parametrized processors or networks

of processors. These can be used to assemble a system from existing parts. The part of the language

that deals with these modular networks is not treated in this paper, since the case of the next chapter is

essentially a flat one.

4. THE INVENTORY COl\'TROL SYSTEM IN EXSPECT

4.1 Control Flow and Data Flow

The first step in designing an EXSPECT prototype for an information system consists of designing the

control and data flow of the various processors of the system. First we must draw a boundary between

the system and its environment.

In the inventory control system of the case study [6], the environment consists of a number of users

who can perform a selection out of several tasks. A dialogue guides the user to the task he wishes to

perform and prompts him for the right parameters for this task. Before even this dialogue starts, the

user must login to the system, whereby his acess control class becomes known.

We have chosen to exclude the dialogue and access control part from our system because it is not typi­

cal for this case. Therefore our environment consists of a number of user agents, who can trigger any of

the task processors. A few background task processors are not triggered by any user agent but by some

of the foreground processors. Our control flow scheme thus becomes as follows.

Fig. 3

user agents

foreground
processors

background
processors

- 9 -

For the data flow, we model our database as a single stored variable. The user agents have no access to

it; some of the processors ("queries") only consult the database, others ("updates") also modify it. The

data flow scheme thus becomes as follows.

queries

Fig. 4

For maximal clarity (since our goal is a prototype) we have reduced the number of user agents to one.

This single-user system can be converted into a multi-user one by extending the trigger of each fore­
ground processor with the user agent index of the caller and adding code to send the response to the
caller.

4.2 Datatypes and Stores

The second step in designing the prototype is to design a structure for the stored database variable. This

step is (for a strongly data-oriented case like this) more important than the preceding one. As mentioned

in the introduction, we can choose to do so in various ways, ranging from many "fiat" parts to few
"structured" ones. To demonstrate the data structuring capabilities of EXSPECT we have chosen for this
last option. To understand the following discussion one must study the case description [6J.

We divide the database into five parts, called respectively the stocked item type file (siU), stock item

file (sil), supplier file (supf), purchase order file (paf) and the calendar (cal). Since we have no need for

the database as a whole, we model these parts as separate stores.

The more or less compound "attributes" of the above stores are often described by defining a special
"derived" datatype for them; these datatypes also serve as a vehicle for triggering processors. Inside the

user agent formatting and checking information could be attached to them.

The stock item type file (sitt) is as specified in the case; it consists of attributes sLock item type code
(site) and description (sitd). Since the site attribute must be unique, we model sitf as a Slore of type

"mapping of site to Sild", where Sild and site are both types derived from "string". We write this for­
mally as follows.

- 10-

type site from str;

type Sild from str;

store sitf: site -7 sild

The value for this variable as given in the case description would be represented as the following set of
pairs.

« 'E' :Office Equipment (capital expense)' » ,

« 'S' :Stationary supplies' » .

« 'K' ,'Kitchen supplies' »

The slock item file (sil) consists of the "flat" attribute structure as specified in the case: stock item code
(sic), stock item type code (site), stock item description (sid), replenishment level (type qty: quantity).
To this is added a "history" component, containing the recorded stock levels (date and qty) together
with the withdrawals (qty and issue) and replenishments (qty and purchase order responsible for it) at
that moment. The date forms a key to a recorded stock level. Our "sif' store thus combines the stock
item, stock on hand, replenishment and withdrawal files in the case description.

We could have added all stock items of a certain type as an attribute to the same stock item type in the

"sitf" store. This would however make the retrieval of a stock item on its code quite cumbersome.
Remodeling the stock item code as a pair « site, n » removes this disadvantage. At the same time it
would be nice to deduce the item type directly from its code without accessing the database. We have
however stuck to the description as given and therefore chosen to model "sir' as a separate store as fol­
lows.

type date from num;

type sic, sid, qty from num;

type sidat from sic x sid x qty;

type ponr from num; -- purchase order nr

type wdr from qty x str;

type repl from qty x ponr;

type history from date -7 (qty x $wdr x $rep!);

store sif: sic -7 (sidat x history)

A possible value for the "sif' variable would be as follows.

« 5632, « « 'E', 'Compaq Plus Computer', 0 » , {} » » ,

«2389,« « 'F', 'Paracetamol', 144 » ,

{ « 87090I,{ « l,'headache' » , « 2:1osL' » }, () » ,

«871111,{« 24,'10st'» },(<< 288, 74324» } »} » »

- 11 -

The supplier file (supf) with key supplicr number (supnr) has a, amihutes the name. address and ph(Ill~'

number of the supplier plus the set of item types he sells. This siorc thus comhines thl~ supplier and

supplier of stock item type files. We model it as follows.

type supnr from num;

type phonc, ad dr, name from str;

tJpe supdat from name x addr x phone;

store : supnr ~ (supdat x $ sitc)

The purchase order file (pof) with key purchase order number (ponr) has as attributes the order dale and

the supplier plus the set of ordered items. This sct is modeled as a mapping (POl) from "sic" to price

(per unit) and quantity. This store thus combines the purchase order and purchase order line files. It is
described as follows.

type podat from date x supnr;

type pol from sic ~ (price x qty);

store pof: ponr ~ (podat x pol)

The calendar (cal) consists of a single date variable.

store cal: date

After defining the stores and auxiliary types, it is helpful to define auxiliary functions based upon these

stores. For instance, the order date of an order x is represented much more nicely by the expression

"date (x)" then by " 1tl (1tl (pof· x)". It does not matter that there exists already a type "dale",

because the parser knows when to expect a type or an expression. Thcrc could cycn bc marc functions

named "date". provided their parameter types do not conflict.

One of the more complicated auxiliary functions computes the stock level of item x at date y. Since we

only rccord stock level changes, this involves searching the history of x to find thc last recorded changc

before or at date y. If item x has no history at or before date y (e.g. at date y it had just been decided

to keep the item in stock and orders had been placed but no supply had arrived yet). the function must
return O. In full the definition reads

qty [x:sic, y:date] :=

if $[t: dates(x) ItS; y] = () then 0

else 1tl (hist(x)· max ($ [1: dates(x)1 t S; y]))

fi

The expression" S[I: dates(x)1 t S; y]" denotes the set of stocklevcl changc dates for the item x that lie
before or at the date y. Taking the maximum of this set gives the last recorded change date before or
at y. Applying the history to this date and taking the first part yields the stock level recorded at that
date.

• 12 •

4.3 Constraints

The next step in the design process is the formulation of constraints. These are computable boolean

expressions depending on the store contents. The designer of the prototype must show that every pro­

cessor changing the store contents leaves the constraints invariant, i.e. assuming that they are true in the

old state, they must be true in the new state too.

In our design for the inventory control case, a lot of constraints as formulated are immediately

guaranteed by the store definition. For instance uniqueness constraints are met by defining stores as

mappings. A lot of referential constraints are met by combining files into a single non-first-normal-form

store. There are some referential constraints left, for instance

"each stocked item has an existing type"

which is represented as

'V [x: dom(sif)1 type(x) E dom(sitf)).

In studying the above formula, one sees how closely EXSPECT text resembles conventional mathemati­
cal notations.

There are some more interesting constraints. not mentioned in the case description; for instance,

"for each replenishment of a certain item, there must exist an order line for the same item; the

replenishment date must not exceed the order date; the sum of all quantities replenished for the

same order may not exceed the quantity ordered."

The EXSPECT formulation of the above constraint (using some earlier defined notions) becomes

'V [x: dom(sif)1 'V [y:dates(x)I'V [z: repls(x,y)1

po(z) e dom(pof) and x e items(po(z» and date(po(z» ~ y

and reporqty(x,po(z» ~ orqty(po(z»,x)]]]

The latter expression may be harder to understand (and to formulate) than the former, its meaning is
uniquely determined. H legal texts were written in EXSPECT, a lot of lawyers would lose their jobs.

-) 3 -

"'.4 Processors

The following step in designing a prototype is to specify the diverse processors in the system. Having

specified the structure of the stores, we must adapt the functionality of the system. The automatic gen­

eration of purchase orders is impossible, since data is lacking (suppliers per item, price per supplier-of­

item). Instead, this processor produces a list of items that have to be ordered.

Now is the moment to go back to step 1; we identify the 25 processors (23 foreground and 2 back­

ground) as given in the case description, and specify their control flow in greater detail; also the data

flow can be specified in more detail. having distinguished 5 stores.

OUf task then becomes to determine the trigger types of each processor and determine its definition. For

the user agent. we define the trigger "report" of type string.

As an example we treat action 4 of (6] (the addition of new items). It requires as input a list of items,
each item consisting of item code, type code, item description and reorder level. Since the item codes

are all different, we model the input type as

sic 4 sidat

To keep our constraints invariant, the item codes must be new and the type codes (included in sidat)

must exist already. If these input requirements are met. the items are added to the "sir' store together
with an empty history. To achieve this we call the input x and define the mapping

f:= [y: dom(x)l« x· y. {} »]

So f is a mapping derived from x; each y in its domain is mapped to the pair formed by the value of x
in y and the empty set. This f is thus the transformation of the input to "sir'-compatible format; the

"sir' store is updated with this f. If the input requirements are not met, a message is sent to the user. In
fuji the specification of action 4 is as follows.

Addltems [x: sic 4 sidat] ::=

if dom(x) n dom(sif) = {}
then if reI (rg(x» c dom (sitf)

then sif +- fupd (sif. [t: dom(x)1 « x' 1, {) »]).
report <= 'ok'

else report <= 'undefined key in sitf fi

else report <= 'key conflict in sif' fi

The generic function fupd used here accepts two mappings f and g of type A 4 B and returns the map­

ping h with as domain the union of the domains of f and g; an element x in the domain of h is mapped
to f·x if x was in the domain of f. otherwise to g ·x. Formally

fupd [f: A 4 B, g: A 4 B] :=

[x: dom(f) u dom(g) I if x E dom(f) then f·x else g·x fi]

In this way. we have modeled each of the 25 actions of [6]. A few concluding remarks have to be
made. Action 13 (adding dates) is altered to setting a new system date. Also we have "sinned" by let­
ting background processors perform checks and report to the user agent.

5. SPECIFICATION TEXT

-- types
type date from num;
type qty from num;
type phone from str;
type addr from str;
type price from nurn;
type sitc from str;
type sitd from str;
type sic from num;
type sid from str;
type sidat from sitc >< sid >< qty;
type supnr from num;
type supdat from str >< addr >< phone;
type pol from sic -> (price><qty>;

type ponr from num;
type podat from date >< supnr;
type wdr from qty >< str;
type repl from qty >< ponr;

14 -

yymmdd
natural numbers only
leading zero's are significant
street + house + town + code
multiples of .01
stock item type code
sit descr
stock item code
si descr
type, descr, replenishlevel
supplier number
name, address, phone
purchase order lines:
si code, unitprice, qty
purchase order nr
po data
qty and issue of withdrawal
qty and purchase order

type hIstory from date -> (qty><$wdr><$repl);

-- stores
store sitf : site -) sitd;
store sif : sic -> (sidat><history);
store supf : supnr -) (supdat><$sitc);
store pof ponr -> (podat><pol)j
store cal : date;

-- auxiliary functions (datal

stock history of item:
moment of change, new qty,
set of withdr. and repl.

stock item type file
stocked item file:
supplier file
purchase order file
curnmt date

data [x:sic) := nl<sif·x); data of x
type [x:slc) := nl(data(x»; type of stocked item x
rlev [x:sic) := n3(data(x»; replenishment level of x
hist [x:sic] := n2(sif·x); stock level history of x
dates [x:sic] := dom(hist(x» change dates for stocklevel of x
qty [x:sic, y:dateJ := if $[t: dates(xll t i yJ = {} then 0 else

rrl (hist(x) • max ($[t: dates(x) I t i yJ)) fij
qty of x in stock at date y

curqty [x:sic] := qty (x, cal); qty of x now in stock
wdrs [x:sic, y: date) := if y E dates(x) then n2(hist(x)'yl else {} fi;

repls [x:sic) := U(n3(rg(hist(x»»j
repls [x:sic, y:dateJ := if y E dates(x)

-- withdrawals of x at date y
-- set of replenishments of x

then n3(hist(x)'Y) else {} fi;
po (x:repIJ := n2(x);
reporset [xlsic, y:ponrJ := $[t:

-- purchase order responsible for x
repls(xll po(t)=yJ;

reporqty [x:sic, y:ponr]
set of repl of x due to order y

:= L(t: reporset(x,y)! n1It)];

orlines [x:ponr) u2(pof'x)j
items (x:ponr] :~ dom(orlines(x»;
orders [x:sicJ := $[t: dom(pof)1 x E items(t)];

qty replenished due to y
order lines in x
items ordered in x

orders for item ~

sup [x:ponrJ := n2(nl(pof'xl);
date [x:ponr) := nl(n1(pof·x»;

- 15 -

orqty [x:ponr, y: sic) := n2(orlines(x)'y);

data (x:supnr) := rrl(supf·x);
types [x:supnr] := n2(supf·x);

-- constraints
,,[x: dom(sif)I type(x) € dom(sitf)];
Y(x: dom(pof) I items(x) c dom(sif)];
Y(x: dom(supf) I types(xl c dom(sitfl);
Y(x: domlpof)1 sup(x) € dom(supf)];

supplier of order x
date of order x

qty orderpd in x of item y
supplier data of x
types supplied by x

Y[x: domlsif)1 Y[y: dates(xll Y[z: repls(x,yl I
po(z) E dom(pof) and x E itemslpo(z» and
date(po(z» S y and reporqty lx, po(z» ~ orqty Ipolz), xl]]];

each replenishment of a stock item has a purchase order responsible
for it; in this purchase order, a line must point to the item in
question; the replenishment date cannot exceed the order date and
the replenished quantities due to this order cannot
exceed the number of items ordered.

,,(x: domlsif)I Y[y: dateslxll y ~ cal]];
Y[x: domlpofll date(x) i cal];

-- system environment
proc report (x:strJ; trigger to user

-- auxilliary functions (general)
convstr (x:T) :: str;
fupd [x:T-)S, y:T->S] :=

(u: dom(x) U domly)1 if u E dom(y) then y·u else x'u fiJi
disjdom [x:T->S, y:T-)U] :: dom(x) n dom(y} : {};
contdom [x:T-)S, y:T-)UJ := dom(x) c dom(y>;

report messages
cl := 'key confl ict in sitf';
c2 := 'key confl iet in si f' ;
e3 := 'key conf! lct in supf' ;
c4 := 'key confl ie t in pof' ;
u1 := 'undefined key in sitf';
u2 := 'undefined key in 5i f' ;
u3 := 'undefined key in supf I;
ul.j := 'undefined key in pof' ;
sh := 'the stock level of the specIfied item is
id := 'illegal date'
ok := 'ok';
s1 := 'the following items have to be ordered:

-- processors
proc AddltemTypes [x: sitc -) sitdJ ::=

if disjdom (x, sitf)
then sitf (- fupd (sitf, xl, report (= ok
else r~port <= cl fi;

proc UpdltemTypes [x: site -) sitdJ ::=
if eontdom (x, sitf)
then sitf (- fupd (sitf, xl, report (= ok
else report (= ul fij

proc SeeltemTypes ::=
report (= eonvstr (sitf);

too low' ;

I • ,

-- action 1

-- action 2

-- action 3

- 16 -

proc Addltems [x: sic > sidat] ::=
if disjdom (x, sif)

action 4

then if nl(rglx) £ dom(sitf)
then sif (- fupd (sif, [t:domlx) I «x·t, (}»)]). repol-t <= OK

else report (= ul fi
else report <= e2 fi;

proc Updltem (x: sic, y: sidat] ::= -- action 5
if x £ domlsif)
then if wIly) e domlsitf)

then sif (- fupd (sif, (t:{x}1 «y, hist(t)>»), report <= ok
else report (= ul fi

else report <= u2 fi;
proc Seeltems ::=

report <= convstr (et: domlsif)1 data(t)]);
proc AddSuppls [x: supnr -) supdat] ::=

if disjdom (x, supf)
then supf <- fupd Isupf, [t:dom(xll «x·t, {}»),
else report <= c3 fi;

proc UpdSuppl [x: supnr, y: supdatJ ::=
if x e dom(supf)
then supf <- fupd (supf, [t:{x)1 «y, types(t)>>]),
else report <= u3 fij

proc SeeSuppls ::=
report (= convstr ([t: dom(supf)1 dataCt)]);

proc AddSupplTvpes [x: supnr, y: $sitcJ ::=
if x e dom(supf)
then if y c dom(sltfl

action 6

action 7

report (= ok

-- action 8

report <;:;: ok

action 9

action 10

then supf (- fupd (supf, [t:{x)1 «data(t), y U types(t'»)I,
report <= ok

else report <= ul fi
else report <= u3 fi;

proc SeeTypeSuppls [x: site) ::= action 11
report (= convstr (ft: $[s: dom(supf)I x e types(s») I datalt)]);

proc SeeSupplTypes [x: supnr] ::= action 12
report <= convstr ([t: types(x) I sitf·tJ);

proc SetDate [x: dateJ ::= action 13
if x) cal then cal <- x, report <= ok else report (= id fi;

proc UpdStock [x: sic, y: $wdr, z: $replJ := -- action 14
if x € domlsif)
then if terrl(y» i curqtylxl + t(rr1(z»

then sif (- fupd (sif, [t: (x}1 «datalt),
fupd (hist(t), [s: (cal}1 «curqty(x) - Elrrlly) + t(rrl(z»,

wdrslt,s) U y, replsCt,s) U zl])

ShowShortage <= {x}
else report <= shortage

else report <= u2 fi;

}} J),

proc RecordMan [x: sic -) qtyJ ::= -- action 15
if contdom lx, sif)
then sif <- fupd (sif, (t: domlxll «data(t),

fupd (histlt), [s:{ca!}1 «x·t, wdrs(t,sl, replslt,s)}}])>>]),
ShowShortage <= dom(x)

else report (;:;: u2 fi;
proc SeeSohProfile [x: sic, y: date, z: date] ::= -- action 16

report (=

if x € domlsif)
then convstr ([5: $[t: dates(x»1 y (t (z]1 qtylx,s»))
else u2 fij

- 17 -

proc SeeSohType [x: date, y: site] ::=
report <= convstr ([t: seleede(yll qty(t,»)
where selcode [x: site] := SEt: demlsif)1 type(t)

proc AddPurchOrder [x: ponr, y: supnr, z: poll ::=
if x € dom(pof)
then report <= c4
else if y € dom(supf)

then if contdom (z, sif)

-- action 17

x] erehw;
-- action 18

th~n pof <- fupd(pof, [t: (xli ««cal,y», z»)), report <= ok
else report <= u2

else report <= u3 fi fi fi;
proc ShowShortage [x: $sic] := -- action 19

report <= if shortitems(x) = {) then ok
else 51 & convstr (shortitem5(x» fi

where shortitem5 [x: $sic] := Set: xl vs(t) i rlev(t)]
andwh vs [x:sic] := -- virtual stock

curqty (x) + ret: orders(xll orqty(t,x) - reporqty(x,tl] erehw;
proc DatePurch (x: date] ::= -- action 20

report <= convstr ([t: $[5: dom(pofll date(s) '" x]1 pof.t]);
proc NumPurch [x: ponr) ::= -- action 21

report <= if x € dom(pofl
then convstr (pof-x)
else u4 fi;

proc WdrStock [x: sic, y: $wdr] ::= action 22
UpdStock <= «x, y, (}»;

proc SeeWdrProfile [x: sic, y: date, z: date] ::= action 23
report <: if x E dom(sif)

then convstr «(s: $[t: date5(x)1 y itS. z] I withdrs(x,s»))
else u2 fij

proc ReplStock [x: sic, y: $replJ ::=
UpdStock <= «x, {}, y»;

proc SeeRpplProfilp [x: sic, y: date,
report <= if x E dom(sif)

then convstr ([5: $[t:
else u2 fi;

acbon 24

z: date] ::= action 25

dates(x)1 y S. t ~ z] I repls(x,s»)i

- 18 -

References

fl] Bj~rner. D. and C.B. Jones

Formal specification and software development

Prentice-Hall, 1982

[2) Dietz. J.L.G. and KM. van Hee

A framwork for modeling of discrete dynamic systems

Proceedings T AIS conference Sophia Antipolis 1987

North-Holland. 1988

[3) Hayes, I. (ed.)

Specification case studies

Prentice-Hall, 1987

[4] van Hee, K.M., GJ. Houben. LJ. Somers and M. Voorhoeve

A formal model for system specification

to appear

[5] van Hee. KM .• LJ. Somers and M. Voorhoeve

The language EXSPECT

to appear

[6] IFIP Working Group 8.1 Conference (Computerized Assistance during the system life cycle)

Example A: Business analysis and system design specifications for an inventory control and pur­

chasing system

[7] Lundberg. M .• G. Goldk:uhl and A. Nilsson

A systematic approach to information systems development

Information systems 4 (1979)

[8] Peterson. J.L.

Petri net theory and the modeling of systems

Prentice-Hall, 1981

[9] Ross. D.T., M.E. Dickover and C. McGowan

Software design using SADT

Auerbach Publishers Portfolio 35-05-03 (1977)

[10] Ward, P.T. and SJ. Mellor

Structured development for real-time systems

Y ourdon Press, 1985

