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Abstract
The high confinement mode (H-mode) is the preferred operational regime in current and future
tokamaks as it roughly doubles the confinement time compared to the low confinement mode. With
the H-mode, however, comes the emergence of edge localized modes (ELMs) which periodically
expel a significant fraction of the particle and thermal energy content of the plasma and pose
a serious threat to plasma facing components in future machines. Several ELM-free H-mode
regimes exist which can nevertheless maintain good energy confinement, one promising regime is
the quiescent H-mode (QH-mode). In QH-mode, a so called edge harmonic oscillation (EHO),
which is thought to be a saturated kink-peeling mode (KPM), causes additional transport across
the pedestal. Thereby the pedestal cannot grow beyond the ELM stability limit and the plasma
enters a quiescent, quasi-stationary state.

In this thesis, the emergence, characteristics and loss of QH-mode is investigated on the basis of a
metal-wall ASDEX Upgrade discharge using the non-linear MHD code JOREK. In the simulation,
a saturated KPM evolves which enhances the particle and heat transport across the pedestal,
similar to the experiment, and enables the pedestal to stay in a quasi-stationary state throughout
the full simulation time of 20 ms. The pedestal oscillations caused by the mode rotation in the
simulation are reminiscent of the experimental observations of EHOs and agree qualitatively well.
A scan in q95 was carried out which indicates the existence of a window in q95, within which KPMs
are destabilized with the right growth rates, such that QH-mode can be accessed. It was further
seen that regardless of the initial value of q95, during the saturation of the KPM its value converges
towards a common value for all cases where QH-mode can be accessed, possibly being a mechanism
responsible for saturation. Possibly, this dependency on q95 and its effect on the EHO amplitude
could also be used to optimise the transport across the pedestal and prolong the QH-mode phase.
By increasing the particle source, the experimental evolution of rising density was accelerated.
The increasing pedestal density reduces the stabilizing radial electric field, while the destabilizing
pedestal current and pressure gradients increase moderately. Eventually, at the same critical
density as observed in the experiment, QH-mode is lost and an ELM crash is triggered, showing
for the first time that such a QH-ELM regime transition can be computationally reproduced. The
good agreement between the QH-mode experiment and the simulations suggest that the access
and maintenance conditions of the QH-mode regime can be predicted with the used resistive MHD
model including self-consistent diamagnetic flows.
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Preface

In a potential magnetic confinement fusion power plant, the hydrogen isotopes deuterium and
tritium are fused together by heating them up to temperatures of 15 keV. At such temperatures the
hydrogen is fully ionized and forms a plasma which is confined in a device called tokamak, making
use of a ring shaped, helical magnetic field which is generated by external magnets and a toroidal
current driven in the plasma [1]. The performance of a tokamak can be greatly enhanced in an
operational scenario called H-mode. Above a certain input power threshold, the plasma transitions
into H-mode by forming a region of reduced particle and heat transport near the edge of the plasma
leading to steep density and temperature gradients called the pedestal. Along with the onset of
H-mode comes the occurrence of edge localized modes (ELMs) which are magnetohydrodynamic
instabilities that are triggered by high pressure gradients and current densities and periodically
expel a significant fraction of the plasma particles and thermal energy in a very short time which
is harmful for the plasma-facing components [2].

A number of ELM-free regimes are known, among them is the quiescent H-mode (QH-mode)
which is a steady, naturally ELM-free state that can still maintain good confinement. QH-mode
is characterized by the onset of an edge harmonic oscillation (EHO) which increases the heat and
particle transport across the pedestal such that the pedestal gradients remain below the ELM
stability limit and a quasi stationary state is formed. The EHO is conjectured to be a saturated
kink/peeling mode which is a mode that also plays an important role in ELMs [3].

QH-mode has been experimentally observed in many carbon wall devices in a low density and low
collisionality regime, however in a metal wall machine it is harder to obtain as particle densities
tend to be higher. Recent experiments in ASDEX Upgrade demonstrated access to QH-mode also
in a metal wall device, however it was not yet possible to reach a fully stationary state[4].

In this thesis, the access conditions, maintenance and loss of QH-mode in metal wall ASDEX
Upgrade are investigated by non-linear magnetohydrodynamic simulations with the JOREK code.
JOREK has previously been used to study QH-mode in various devices[5, 6], where it was shown
that the emergence of a kink/peeling mode can lead to a quasi stationary QH-mode state. So far
however, no clear physics mechanism has been identified which determines the development of a
plasma into a ELMy H-mode or a QH-mode.

This thesis aims to contribute to the understanding of QH-mode by investigating the access
conditions for QH-mode in metal wall ASDEX Upgrade and attempts to reproduce the access
conditions quantitatively in a numerical simulation. JOREK is used to model the emergence of
QH-mode at more realistic parameters than previously possible and for the first time for a tungsten
wall ASDEX Upgrade discharge. The investigations are in particular focussed on the effect the
edge safety factor has on the access of QH-mode, as well as on transitions between QH-mode and
an ELMy regime, which can give insights on the limits of the QH-mode regime.
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Chapter 1

Introduction

As an introduction to the topic of this thesis, the fundamentals of plasma physics and nuclear fusion
research are introduced in this chapter. It covers the basics of nuclear fusion reactions, magnetic
confinement and tokamaks and introduces the problematic phenomenon of edge localized modes
in these devices.

1.1 Nuclear Fusion
Nuclear fusion is the process in which two atomic nuclei, if coming close enough to each other,
fuse and result in a new, heavier nucleus. If the binding energy per nucleon of the newly formed
nucleus is higher than the binding energy per nucleon of the two initial nuclei, which is the case
for nuclei lighter than 56

26Fe, the mass difference is released as energy from the process. In order to
fuse two nuclei however, a considerable amount of energy has to be provided in order to overcome
the repulsive Coulomb barrier and bring the nuclei close enough together for the strong nuclear
force to become dominant and bind the nucleons together to form a new nucleus [7].

The most relevant reaction for a fusion reactor is the reaction of a deuterium and a tritium nucleus
fusing into a helium nucleus while releasing a neutron and 17.59 MeV in form of kinetic energy of
the fusion products:

2
1H + 3

1H ! 4
2He + 1

0n (1.1)

The majority of the energy, 14.03 MeV is carried by the neutron while the helium nucleus carries
a kinetic energy of 3.56 MeV [7].

This reaction is seen as the most promising reaction since it has the highest reaction cross-section
σ at lower energies compared to similar reactions as displayed in figure 1.1. It further releases a
significantly higher amount of energy than the deuterium-deuterium reaction.

The order of magnitude of these cross-sections however also makes clear that nuclear fusion by
accelerating isotopes and shooting them at a target cannot lead to a net energy gain as most
accelerated nuclei would simply scatter and heat up the target while only a small fraction would
undergo a fusion reaction and release additional energy. If, on the other hand, the isotopes are
heated to a temperature where the energies of the hot tail of the Maxwellian distribution are
high enough for a significant fusion cross-section and the isotopes are sufficiently well confined, the
particles can undergo many scattering events before a successful fusion reaction without being lost.
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Figure 1.1: Fusion cross-section σ as function of the center of mass energy Ecm for a deuterium-
deuterium (D-D), deuterium-tritium (D-T) and deuterium-helium3 (D-He3) reaction. Calculations
according to [8].

At temperatures which reach the energies required to enable the nuclear fusion reaction (1.1) at a
useful rate, the energy of the hydrogen particles is orders of magnitude higher than their ionization
energy, thus the particles are almost completely ionized and form a plasma [7].

Since not all particles in a plasma have the same energy but follow a distribution, the fusion
reaction rate has to be averaged over the whole particle ensemble resulting in a reaction rate of
hσvi for a velocity distribution v. When assuming uniform densities, the total generated fusion
power can be obtained by multiplying the reaction rate with the particle densities for deuterium
and tritium, nD and nT respectively, the energy per fusion reaction and the appropriate volume
which leads to:

Pfusion = V nD nT hσvi Efusion (1.2)

Clearly the reaction rate is maximized if both fuel species have the same number density. If the
number of helium nuclei and other impurities in the plasma is small, the number of electrons must
match the total number of hydrogen isotopes: nD + nT = ne. Thus the fusion power for the
optimal mixture is given by:

Pfusion =
1

4
V n2

e hσvi Efusion (1.3)

The condition to have a net power gain by this fusion reaction is naturally that the fusion power
generated is larger than the external heating power needed to heat the plasma. Since most often
not the direct heating power and output power are of interest but the electrical power that is
needed or that can be generated, the conversion efficiencies from electric energy to heating power
ηH , as well as the conversion efficiency of heat extracted from the reactor back to electrical energy
ηE have to be taken into account. This can be written as [1]:

3



Pheat < ηE ηH Pfusion (1.4)

This equation can be rewritten by introducing the energy confinement time which is in steady state
defined as the plasma stored energy over the heating power:

τE =
W

Pheat
=

V � 3 kB ne T

Pheat
(1.5)

This gives the condition for net energy generation:

neτE >
12 kB T

ηEηHEfusionhσvi
(1.6)

The right hand side of this equation is a function of temperature only as the fusion energy and
efficiencies are constant and the average hσvi is energy respectively temperature dependent as seen
in figure 1.1. It can be found that the temperature minimizing the right hand size is Tmin = 15keV
[7], which imposes a direct condition on the product of density and energy confinement time on
the left hand side.

1.2 Magnetic Confinement
In the previous section, it was established that, in order to allow fusion reactions to take place at
an appreciable rate, a plasma of approximately 15 keV fulfilling equation (1.6) is needed. Since no
material would allow to maintain physical contact with a plasma at those temperatures without
eroding and cooling down the plasma, the confinement of the plasma has to be accomplished by
other means.

One promising way to confine the hot plasma is to use strong magnetic fields, hence called magnetic
confinement, which attempts to fulfil equation (1.6) by providing good confinement at a lower
density.

The equation of motion of a charged particle with charge qe and mass m subject to an electric field
E and a magnetic field B is given by:

m
dv
dt

= qe(E + v � B) (1.7)

When the electric field is zero and the magnetic field is homogenous, this constrains the particles
motion perpendicular to the magnetic field and forces them to move on a circular orbit with an
angular frequency Ω = qeB

m and a radius rΩ = mv?
jqejB in the plane perpendicular to the magnetic field

lines. If the particle has an additional parallel velocity, this results in a helical orbit approximately
following the magnetic field line called the Larmor motion. The center of this motion, which is
moving along the field line, is called the guiding center [1].

Thereby the particle is confined perpendicular to the magnetic field but is still free to move along
the field lines. In order to avoid end losses, the field lines can be bent into a torus to close in
themselves, such that even though a particle can still move along the field line, they do not get
lost.

Such a configuration with a purely toroidal field would however still not properly confine the
charged particles because the bending of the field creates a gradient in the magnetic field from

4



Figure 1.2: Illustration of the nested flux surfaces of a simple MHD equilibrium with circular
cross-section. Some sections of the nested magnetic flux surfaces are shown, together with the
magnetic field lines making them up. The magnetic axis is shown in blue.

the inward to the outward side of the torus. In such an inhomogeneous magnetic field, a charged
particle will still undergo a Larmor motion, however the guiding center will not strictly move along
the field lines, but undergoes a drift [1]:

vrB = �
m

2qe

v2
?rB
B2

�
B
B

(1.8)

As it can be seen, this drift is in opposite directions for electros and ions, thus the drift builds up
an electric field, which in turn induces another drift of the guiding center which leads to a collective
movement of both electrons and ions radially outwards:

vE�B =
E � B

B2
(1.9)

Confinement of a plasma by a purely toroidal magnetic field is thus not possible [1]. In order
to counteract this drift, a poloidal magnetic field can be added, such that a magnetic field line
connects the upper and lower region of the torus, which allows the charged particles to compensate
the electric field as they move along the field line [1]. The superposition of the original toroidal
field and the newly added poloidal field results in a helical magnetic field, illustrated in figure 1.2.
Such a magnetic topology consisting of helical field lines can be generated in two different ways:

On one hand, this can be achieved by breaking the axisymmetry of the setup and arranging the
coils in such a way that they generate the helical magnetic field which is the underlying principle
of a stellarator. The disadvantage of this direct approach is that either helical coils or coils with a
complex geometry are needed [7].

A helical magnetic field can also be generated by driving a toroidal current in the plasma which
produces a poloidal magnetic field, while only the toroidal field is generated by external coils. Such
a device is called a tokamak [7].

5



Figure 1.3: Schematic illustration of a tokamak. The toroidal magnetic field is produced by
external toroidal field coils, while the poloidal magnetic field is generated by the toroidal plasma
current which is generated by the transformer coil. The poloidal field coils are needed for positioning
and shaping the plasma. Adapted from [9].

1.3 The Tokamak
A tokamak is a magnetic confinement device which generates the magnetic topology consisting of
helical field lines needed for effective confinement of a plasma by a set of coils generating a toroidal
magnetic field and a toroidal plasma current generating a poloidal magnetic field.

1.3.1 The tokamak coil system
An illustration of a tokamak can be found in figure 1.3 in which all important components of a
tokamak are shown, in particular the three sets of coils needed in a tokamak:

� The toroidal field of a tokamak is generated by the toroidal field coils which are a set of
"simple" planar coils, located in poloidal planes surrounding the vacuum vessel.

� The toroidal current flowing in the plasma is mainly generated by a central solenoid that
acts as the primary winding of a transformer while the plasma itself acts as the secondary
winding. In order to induce the current in the plasma, the current in the transformer coil
has to be ramped up over the duration of a plasma discharge which limits its maximal
duration. Additional current can be driven non-inductively by injecting neutral beams or
electromagnetic waves which can allow for a longer duration of the discharge. Additionally,
the bootstrap current driven by the pressure gradient can contribute (see 1.3.3).

� Additionally, a set of poloidal field coils is needed to balance the hoop force, stabilize vertical
displacements of the plasma and control its shape and position.

The relative strength of the toroidal and poloidal magnetic field in a tokamak define a very
important quantity for a tokamak plasma. The number of toroidal turns made by a field line
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Figure 1.4: Illustration of the flux surfaces of a poloidal cross-section of a tokamak equilibrium
close to double null configuration. The closed flux surface region is shown in purple, the separatrix
in red and the open flux-surface region in orange. In this case, the upper X-point is the active one.

per poloidal turn is defined as the safety factor q. The name safety factor comes from the property
that it needs to be above 2 at the edge in order for the plasma to be stable to violent external
kink modes [2]. This imposes an upper limit on the plasma current, which must not be too large
to avoid the excitation of external kink modes, but cannot be too small either for confinement
reasons.

Using the poloidal field coils and dedicated shaping coils, it is possible to modify the simple
circular cross-section and shape the plasma. An example illustration of a shaped poloidal cross-
section is shown in figure 1.4. By changing the elongation (k = b/a) or triangularity (δlower = dl/a,
δupper = du/a) of the plasma, it is possible to improve the performance and stability of the plasma.
It is further possible to create a so called X-point where the poloidal field is locally zero, as also
shown in figure 1.4. In an X-point plasma, the inner core region, where the field lines are closed,
is separated from the outer region called the scrape off layer (SOL) where the field lines intersect
with the wall by the so called last closed flux surface or separatrix. When a second X-point exists,
the X-point of the inner separatrix is called the active X-point. In this case, the configuration may
be a upper single null (active upper X-point), a lower single null (active lower X-point) or a double
null where the X-points lie on the same flux surface and thus share the separatrix.

X-point configurations improve the isolation of wall and core plasma and reduce the back flow of
impurities into the main plasma which enhances the performance compared to a limited tokamak
[7]. The magnetic field lines of the SOL intersect with the wall in a special region called the
divertor. Due to the fast transport along field lines, the divertor has to withstand particularly high
incident heat and particles fluxes.

1.3.2 Transport mechanisms
In a tokamak, a variety of heat and particle transport mechanisms are present despite the good
confinement provided by the helical magnetic field. As already seen before, the particles are free
to move along the magnetic field lines, but are highly restricted in their motion perpendicular to
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the field lines which makes the transport highly anisotropic.

The following three mechanisms can be identified to drive the radial transport of heat and particles:

� Classical transport describes the diffusion of heat and particles by Coulomb collision in a
cylindrical approximation. It is only responsible for a minor fraction of the total transport.

� Neoclassical transport, just like classical transport, considers Coulomb collisions among the
particles, however the effects of the toroidal geometry are taken into account. As the magnetic
field is stronger on the inward side of the torus than on the outboard side, there exists a
fraction of particles which do not have sufficient parallel velocity to reach the high field side
of their flux surface but are reflected by the strong magnetic fields. Due to curvature and
rB drifts, the particles do not move on a circular arc on a single flux surface but drift in
and outwards over the course of an orbit and follow a so called banana trajectory. Coulomb
collisions lead to displacements by the width of the banana orbit instead of the gyro orbit in
a torus, which can enhance the particle and heat transport by nearly two orders of magnitude
compared to classical transport [7].

� Turbulent transport makes up most of the radial heat and particle transport in tokamaks.
It is caused by turbulent plasma micro-instabilities which are driven by gradients in the
temperature and density [7].

1.3.3 H-mode
The high confinement mode (H-mode) is a tokamak operational regime with particularly good
confinement that greatly increases the energy confinement time τE as well as the core temperature
and density compared to the low confinement mode (L-mode). Upon a sufficient amount of heating,
a transport barrier forms around the separatrix (hence called the edge transport barrier) which
reduces the turbulent transport and results in the density and temperature increasing just inside
of the edge transport barrier. Thereby a region with steep density and temperature gradients is
formed close to the separatrix which is called the pedestal and that is characteristic for the H-mode.

The exact mechanism responsible for the emergence of this transport barrier is not yet fully
understood, yet the sheared rotation in the plasma edge, driven by a radial electric field seems to
have a crucial influence by distorting turbulent eddies which suppresses the turbulent transport in
that region.[2, 10]

In H-mode, a strong additional current is driven in the edge region of the plasma. This so called
bootstrap current arises independently of the current induced by the transformer coil due to a
neoclassical effect and is proportional to the pressure gradient. It is thus particularly large and
localised in the pedestal region[7, 2]. The steep pressure gradient and the large bootstrap current
density in the pedestal drive macroscopic instabilities called peeling modes and ballooning modes,
which will be explained in section 1.7.

1.4 Magnetohydrodynamics
Magnetohydrodynamics (MHD) is a way of modelling a plasma as an electrically conducting fluid
instead of as the collection of a large number of individual particles[11]. The description of a
plasma by means of solving the equation of motion of all individual particles which are all coupled
by the electromagnetic force is unfeasible for any system with a large number of particles. Thus
simplifications have to be made in order to approach the problem computationally.

In this section only the fundamentals of the MHD equations will be discussed. Details of the
particular model used in this thesis will be discussed in section 3.2.1. Furthermore, not the whole
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derivation of the MHD equations will be given here, a detailed derivation can be found in [2, 12].

As a starting point of the derivation of the MHD equations, the kinetic equation can be used
which already makes some simplifications to the original many body problem, namely assuming
macroscopic forces and describing the particles of species α by a distribution function f�(r, v, t)
as a function in the six dimensional real and velocity space dr3dv3 which is given by 1.10. It was
assumed that the only acting force is the Lorentz force and the direct interactions between the
particles are expressed in the collision term on the right hand side [2].

∂f�
∂t

+ v � rf� +
qe;�
m�

(E + v � B) � rvf� =

�
∂f�
∂t

�

coll
(1.10)

The second and third term on the left hand side of this equation describe the particle convection
and the forces acting on the particles, respectively. The electric and magnetic fields need to be
calculated from Maxwell’s equations using the current and charge density derived by averaging the
distribution function in the appropriate way.

Such a treatment of the plasma is computationally still very expensive thus another step can be
taken to simplify the equations if f� is close to a Maxwellian by integrating over velocity space.
This can be done by taking the moments of f� where the ith moment is given by:

Z
vif�d3v (1.11)

To close the system of equations at a given order, an additional relation is needed, e.g. the adiabatic
equation

d

dt

�
p�
ρ�
�

�
= 0 (1.12)

imposing a constraint on the pressure with γ� the adiabatic coefficient.

In a plasma, at least two different species α, namely the electrons and ions, have to be considered.
It is though possible to further simplify the equations by reducing them to single fluid equations.
For this the large difference between the electron mass me and ion mass mi is taken advantage of.
By assuming mi � me and charge neutrality n = ne = ni, the mass density, the velocity and the
current density of the single fluid can be approximated for a hydrogen plasma by:

ρ = nimi + neme � nmi (1.13)

v =
1

ρ
(minivi + meneve) � vi (1.14)

j = enivi � eneve = en(vi � ve) (1.15)

By neglecting terms of the order me/mi, assuming quasineutrality and isotropic pressure one
arrives at the resistive MHD equations:
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∂ρ

∂t
+ r � (ρv) = 0 continuity equation (1.16)

ρ

�
∂v
∂t

+ v � rv
�

= j � B � rp + µr2v momentum equation (1.17)

d

dt

�
p

ρ

�
= 0 adiabatic equation (1.18)

E + v � B = ηj Ohm’s law (1.19)
r � B = 0 magnetic Gauss’s law (1.20)

r � B = µ0j Ampère’s law (1.21)

r � E = �
∂B
∂t

Faraday’s law (1.22)

In the limit of negligible resistivity η ! 0 and negligible viscosity µ ! 0, the set of ideal MHD
equations is obtained.

The JOREK code [13] used in this thesis uses a strongly extended form of the MHD equations
which is further described in chapter 3.

1.4.1 Validity of the single fluid MHD equations
The following two main conditions have to be satisfied in order to justify the usage of the MHD
equations stated above for the description of a plasma.

� In order to describe a plasma by a continuum formulation, the Larmor radius should be far
smaller than the system length L:

p
mikBTi

eB
� L (1.23)

� Assuming a local temperature requires a distribution function f� close to the Maxwellian,
which is usually satisfied if the considered time is far larger than the collision time:

τcoll � τ (1.24)

This condition is not necessarily well satisfied in fusion plasmas.

In order to justify a single temperature treatment, the energy exchange between electron and ions
further has to be sufficiently fast.

1.5 MHD Equilibrium
The previously derived MHD equations can be used to find equilibrium configurations by setting
all time derivatives to zero. It is often further assumed that the equilibrium is static, that is v = 0.
In this case the MHD equilibrium force balance reduces to:

rp = j � B (1.25)

Using Ampère’s law (equation (1.21)), the current density can be replaced and the equilibrium
force balance can be rewritten [2]:
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rp = �r
B2

2µ0
+

B2

µ0
� (1.26)

Where the curvature � was introduced:

� =
B
B

� r
�

B
B

�
(1.27)

The first term in equation (1.26) corresponds to the magnetic pressure producing a restoring force
when the field lines are compressed, while the second term corresponds to the field line tension
which exerts a force to straighten bent field lines [2].

1.5.1 Toroidal configurations
For a toroidal configuration, one can take the dot product of the current and the magnetic field
with the pressure gradient and apply equation (1.25).

B � rp = B � (j � B) = 0 (1.28)
j � rp = j � (j � B) = 0 (1.29)

This shows that vectors of j and B lie on surfaces of constant pressure. These surfaces form a
topology of nested toroids like the one displayed in figure 1.2.

There exist two different closed curves in such a topology which are closed poloidally or toroidally.
When integrating along such curves, the poloidal and the toroidal magnetic flux can be defined.

Φ =

Z

Stor

B � dS Toroidal magnetic flux (1.30)

Ψ =

Z

Spol

B � dS Poloidal magnetic flux (1.31)

As j and B lie on constant pressure surfaces, the flux integrals on an isobaric surface vanish, thus
the surfaces of constant pressure are also surfaces of constant flux which can be labelled by either
the toroidal or poloidal flux and are consequently called flux surfaces [2].

For practical use of the poloidal flux as a radial coordinate, it is often normalised such that it runs
from ψN = 0 at the magnetic axis to ψN = 1 at the separatrix:

ψN =
Ψ � Ψaxis

Ψsep � Ψaxis
(1.32)

Having the poloidal and toroidal flux defined also allows to refine the definition of the safety factor
given in 1.3 as

q = �
dΦ

dΨ
(1.33)
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1.6 MHD stability
An equilibrium as it was described in 1.5 guarantees that the plasma does not evolve in time at
that exact plasma state. It is however not guaranteed that a small perturbation to the system will
not lead to loss of the equilibrium, that is to say it is not guaranteed that the equilibrium is stable
[2].

The linear stability of an equilibrium plasma state can be determined by its response to a small
perturbation. If the equilibrium is stable, the perturbation will cause a restoring force that reduces
the perturbation and drives the system back towards the equilibrium state. If it is unstable, the
force caused by the perturbation will amplify and drive the plasma away from its equilibrium state.
It is important to note however that linear stability analysis does not provide answers regarding
dynamics at large perturbation amplitudes where linear approximations are no longer sufficient.

Linear stability can be assessed by using a local Taylor expansion around the equilibrium state for
the MHD equations (1.16) - (1.22), taking a Fourier transform and solving the resulting system
of equation for eigenfunctions and eigenvalues [2]. This problem is however complex and makes
it hard to gain a physical understanding thus another method, the energy principle, giving more
physical insight into the stability of plasma equilibria is presented here.

1.6.1 The energy principle
The underlying idea of the energy principle is to apply a small displacement � to the plasma
equilibrium and assessing its effect on the potential energy. If the potential energy increases
(δW > 0), energy needs to be added to the equilibrium to arrive at the perturbed state and the
equilibrium is stable. If the potential energy decreases however (δW > 0), the equilibrium is
unstable as a small displacement will grow and release more and more energy. To compute δW ,
the MHD equations are linearized around an equilibrium with respect to a small displacement �
while assuming the plasma is surrounded by a vacuum that is surrounded by a conducting wall.
The work done by applying a displacement ξ to a given equilibrium can then be decomposed into
a plasma, an interface and a vacuum contribution [2]:

δW = δWVacuum + δWSurface + δWPlasma (1.34)

One can generally make a distinction between internal and external instabilities where internal
instabilities only affect the internal structure, i.e. δWSurface = 0 and δWVacuum = 0. The only
contribution of the energy principle is δWPlasma [12], which is given by:

δWPlasma =
1

2

Z

Plasma

� jB1?j2

2µ0
+

B2
0?

2µ0
jr � �? + 2�? � �j2 + γp0jr � �j+

� 2(�? � rp0)(� � ��
?) �

j0k

B0
(��

? � B0) � B1

�
dV (1.35)

where ? and k represent the perpendicular and parallel component of a vector to the magnetic
field lines, the asterisk denotes the complex conjugate, n is the normal vector of the surface and
the indices 0 and 1 indicate the equilibrium and 1st order perturbation, respectively.

It can be seen that in equation (1.35) all terms in the first line are positive and hence stabilizing
while the terms in the second line can be positive or negative and can possibly be a driver of
instabilities. The stabilising terms in the first line describe the energy required to bend magnetic
field lines related to shear Alfvén waves, the energy required to compress the magnetic field lines
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related to compression Alfvén waves and the energy required to compress the plasma related to
sound waves, respectively [2].

The term 2(�?�rp0)(���?) describes instabilities driven by the pressure gradient such as ballooning
modes. The sign of this term depends on the orientation of the pressure gradient and the magnetic
curvature. For a toroidal system, on the inner, high field side (HFS) of the torus the two vectors
are typically antiparallel and thus stabilizing whereas they typically are parallel for the outer, low
field side (LFS) of the torus and thus destabilizing [2]. This destabilizing region is called bad
curvature region.

The term j0k
B0

(��
? �B0) �B1 describes instabilities driven by the current density such as kink modes

and tearing modes [2]. The most important instability for the work presented in this thesis is the
kink/peeling mode which is described in section 1.6.2. Details regarding other MHD modes can
be found in [2].

1.6.2 Kink/peeling modes
Kink/peeling modes (KPMs) are current driven MHD modes in the plasma edge which have
typically low toroidal mode number (n � 5). KPMs are destabilized by the plasma current,
in particular by the pressure gradient driven bootstrap current density in the edge of an H-mode
plasma, while the pressure gradient has a stabilising effect. They have characteristically long
wavelengths in the poloidal direction (low poloidal mode number) and are poloidally localised to
the top and bottom of the confined plasma, close to the X-points [2, 14].

KPMs can couple with ballooning modes at intermediary toroidal mode numbers to peeling-
ballooning modes, which are thought to be the main instability for type I ELMs [15] described in
section 1.7.

1.6.3 Flow stabilisation
In section 1.5 MHD equilibria were introduced which assume a static equilibrium, that is v = 0.
To assess the stability of an MHD equilibrium more realistically, it is relevant to look at the plasma
flows and their effect onto MHD stability as well. In an H-mode pedestal plasma there are two
main effects that drive plasma flows:

� A neoclassical radial electric field can form which is determined by the radial force balance
and is in the edge of an H-mode plasma mainly dependent on the ion pressure gradient:
Er � rpi

eZini
[16]. This makes the radial electric field particularly large in the pedestal, where

the gradient is largest. As outlied in section 1.2, an electric field induces an E � B drift
which, for a radial electric field and a predominantly toroidal magnetic field, results in a
poloidal plasma rotation.

� The diamagnetic drift is a fluid drift which originates from the pressure gradient perpendicular
to the magnetic field. Since in a given volume element, more particles gyrate in one direction
than its opposite if a pressure gradient is present, this causes a net flow perpendicular to the
pressure gradient and the magnetic field. In case of a tokamak with a mostly toroidal field
and a radial pressure gradient, this results in a poloidal rotation which can be estimated by
vdia = � rp�B

enB2 [17]. Due to the dependency on the charge of the particle, electrons and ions
have opposite velocities.

Both the diamagnetic and the E � B flows have been observed to have a stabilising effects on
ballooning and kink/peeling modes [16, 18].
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1.7 Edge Localized Modes
Edge localized modes (ELMs) are a class of plasma instabilities that can occur in the edge of
H-mode plasmas. ELMs are characterized by periodic spikes in the particle flux arriving at the
divertor which originates from a periodic collapse of the H-mode pedestal [19]. Thereby the plasma
thermal energy and particle content of the plasma may decrease by roughly 5 to 10 % within a
time scale < 1 ms [20].

Starting from a flattened pedestal, the edge transport barrier causes the pedestal to build up over
a time scale of several milliseconds until it reaches a critical value. This induces an ELM crash
which expels a significant fraction of the plasma particle and energy content within a short time
and flattens the pedestal, reducing its gradient again below the stability threshold. Thereafter,
the cycle starts again, making an ELMy H-mode quasi stationary if a long enough time scale
is considered. The time scales over which the pedestal recovers determines the frequency of the
ELMs, it thus depends on the loss of energy and particles during the crash and the particle and
energy source and transport during the build up phase [19].

Various types of ELMs have been identified based on their phenomenology since a complete
theoretical understanding of the different types is still lacking. The largest among the various
types of ELMs are the so called type I ELMs that have a large magnitude and increase their
frequency upon an increase of the power crossing the separatrix. Due to their large size, they are
the most problematic ones for future devices [10].

The short timescale of ELM crashes leads to large incident heat and particle fluxes on plasma
facing components and the divertor, posing a potential threat to future large tokamaks such as
ITER and DEMO [10]. It is thus crucial to develop a precise understanding of ELM physics and
ELM control mechanisms.

Despite their potentially harmful effect on the plasma facing materials, ELMs do have the advantage
of periodically flushing out impurities from the inner parts of the plasma, avoiding the accumulation
of impurities in the core which can radiate away a significant amount of energy.[2]

There is currently no comprehensive model for understanding the phenomenon of ELMs, however
many important aspects of them can be explained by the peeling-ballooning model [15, 21]. The
pedestal region features a large pressure gradient as well as a strong bootstrap current which drive
two edge instabilities: Ballooning modes with short wavelengths in the poloidal direction which
are driven by the pressure in unfavourable curvature regions on the outboard side of the torus
and peeling modes with longe wavelengths in the poloidal direction which are driven by the edge
current. It is thought that the coupling of these two instabilities is responsible for an ELM crash
[19]. More recent work emphasizes the role of plasma resistivity and flows, leading to a complicated
interplay of stabilising and destabilising effects which eventually lead to an ELM crash [22].

An illustration of the evolution of an ELM cycle is shown in figure 1.5. As indicated the ELM cycle
starts at an initially stable state by first building up the pressure pedestal which in turn increases
the bootstrap current in the edge. Eventually the plasma reaches the peeling-ballooning unstable
region and an ELM crash is induced which brings the plasma back to the initial state.

While linear stability analysis allows estimating the stability of peeling-ballooning modes and
thereby the onset of an ELM, for the description of the further evolution of an ELM, its exhausted
energy or duration, either non-linear simulations or experimental scaling laws can be applied.

Such scalings indicate that a significant reduction of the ELM size of particle and heat flux is
needed compared to natural type I ELMs to avoid damage on the ITER divertor [10].

To reduce the harmful effects of ELMs, a variety of methods have been developed to suppress
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Figure 1.5: Schematic linear stability diagram of a peeling ballooning mode. The stable region
is indicated in pink, the high pressure region is ballooning unstable while the low pressure region
is peeling unstable. The ELM cycle - building up of the pedestal, building up of the bootstrap
current and ELM crash - is displayed in blue. Redrawn from [2].

or mitigate ELMs. Most of them have in common that they aim at providing additional energy
transport over the pedestal to avoid reaching the ELM stability limit or increase the ELM frequency
to reduce their size:

� The impact of ELMs may be reduced by triggering ELMs more frequently than they would
occur naturally and thereby reducing their size. There are various possibilities to trigger
ELMs, e.g. by injecting pellets, vertical kicks or oscillating magnetic fields [10].

� By applying non-axisymmetric magnetic perturbations to the plasma, the transport across
the pedestal can be enhanced to maintain a pressure profile below the ELM instability limit
[10].

� Various regimes are known which are characterized by a small energy loss per ELM which is
typically compensated by a high ELM frequency, such as type II or grassy ELMs [23].

� A number of operational regimes exist which are naturally ELM-free and remain stable
against peeling-ballooning modes. The naturally ELM free regimes include the I-mode[23,
24], the EDA H-mode [25] as well as the QH-mode[26].

These naturally ELM free regimes have an improved energy confinement time and performance
compared to the L-mode but do not feature ELMs and emerge naturally without directly applying
active external ELM control techniques such as RMPs or pellet injection. All of these regimes have
in common that some mechanism modifies the transport over the pedestal such that it remains
stable against peeling-ballooning modes.

The QH-mode, which is one of these ELM-free regimes, is the subject of this thesis and is being
introduced in chapter 2.
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Chapter 2

Quiescent H-mode

The quiescent H-mode (QH-mode) is a quasi stationary, naturally ELM-free regime that can still
maintain good H-mode confinement without periodical ELM crashes [26]. It is characterized by
the onset of an edge harmonic oscillation (EHO) which increases the heat and particle transport in
the pedestal. Thereby the pedestal cannot grow to gradients at which it would trigger ELMs and
remains in a quasi stationary state instead. Thus the EHO is thought to keep the edge gradient
below the ELM stability limit in the stable region [3].

QH-mode has been experimentally observed in many carbon wall devices such as ASDEX Upgrade,
DIII-D, JET-C, JT-60U [23] however in a metal wall machine it is harder to obtain [4]. It is
observed to emerge in a broad range in parameter space, however it usually requires operation in
a low density and low collisionality regime [23].

The EHO seems to emerge above a critical E�B threshold and is experimentally observed to have
low toroidal mode numbers and multiple higher harmonics. It has a typical frequency in the order
of 10s of kHz, rotating in the electron diamagnetic direction [23]. The EHO is conjectured to be
a saturated kink/peeling mode (KPM) driven unstable by the large edge current densities [3]. It
is thought that the E � B shear plays a key role in the saturation of the KPM by stabilizing the
high-n modes [3, 27].

The wide pedestal QH-mode is a regime similar to standard QH-mode which, instead of an EHO,
is characterized by a broadband MHD activity. It features a higher and wider pedestal and has low
external torque requirements, making it a potentially attractive high-performance regime [28, 29].
The wide pedestal QH-mode is however not subject of this thesis and when referring to QH-mode
in the following, the standard QH-mode featuring an edge harmonic oscillation is meant.

In the following, the QH-mode is described in more detail from an experimental a theoretical, as
well as a simulations point of view. In the end of this chapter, the accessibility of QH-mode in
future machines is discussed and the research question of this thesis is introduced.

2.1 Experimental Observations of QH-mode
QH mode was originally discovered in DIII-D [26, 30] and has since been accessed as well in ASDEX
Upgrade [31, 32], JET-C [33], JT-60U [34], EAST [35] and KSTAR [36]. QH-mode access in those
experimental setups is typically obtained in conditions of low pedestal density/collisionality, strong
plasma shaping and a pedestal operating point just inside the kink/peeling stability boundary [37].
The operation point of QH-mode is indicated in figure 2.1. A fresh boronisation (covering the inner
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Figure 2.1: Stability diagram for QH-mode, indicating its location close to but inside the kink-
peeling stability boundary at low toroidal mode number. Adapted from [23].

wall with a thin layer of boron) of the wall seems to facilitate the access to QH-mode, probably
because it lowers the recycling rate and because it reduces the influx of tungsten impurities into
the plasma [38, 23]. It is further thought that the shear in the edge rotation needs to be sufficiently
large. This is achieved by intrinsic E � B rotation and torque input by neutral beam injection
(NBI). Counter current NBI resulting in a counter current torque seems to facilitate the access to
QH-mode although also certain co-current NBI scenarios were able to access QH-mode [23].

An advantage of ELMs which is lost when operating in QH-mode is the large particle transport
across the pedestal during an ELM which flushes out impurities and therefore avoids the impurity
accumulation in the core which could eventually lead to a radiative collapse [2]. The QH-mode
however enhances the particle transport as well, such that accumulation of impurities was not
typically observed to be a major problem although the typical effective atomic number (Zeff ) is
higher than in comparable ELMy discharges[32].

The shaping of the plasma is an important parameter for access to QH-mode regimes as it can
influence the edge stability and extend the type I ELM stability boundary towards higher values of
the edge current density and the edge pressure gradient [23, 39]. QH-mode was originally obtained
in regimes with strong edge toroidal rotation which was thought to be an important ingredient
to accessing QH-mode. It was however later shown that QH-mode could also be accessed with
net-zero NBI torque [40]. It was shown both experimentally and theoretically that a critical E�B
threshold exists above which QH-mode emerges and below which a standard ELMy regime is
obtained [27]

In carbon wall ASDEX Upgrade, the QH-mode was typically accompanied by a high frequency
oscillation [33]. The EHO itself has usually been found to have the fundamental mode number
n = 1, thus matching observations in other devices. The edge radial electric field measured in a
QH-mode plasma is about twice as large as in an ELMy regime [33].

Only recently QH-mode has been observed in a metal wall machine, namely in the all metal-wall
ASDEX Upgrade [4]. It was possible to sustain QH-mode for several confinement times up to
500ms, however it was not possible to reach a fully stationary state. The access conditions in this
case were similar to earlier experiments, namely operation at low density, high temperature, in
vicinity to the kink-peeling boundary, shortly after a fresh boronisation.
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2.2 Theoretical explanations of QH-mode
The main line of explaining the phenomenon of the QH-mode is using the peeling-ballooning model
which is also being applied to ELMs and other phenomena in the pedestal region.

The EHO is conjectured to be a saturated kink/peeling mode which is driven unstable by the
large bootstrap current density in the edge [3]. In fully stationary QH-mode, the EHO is thought
to drive enough transport across the pedestal which limits the pressure gradient and thereby the
pedestal height, such that no ELMs are triggered and the plasma remains in a quasi stationary
state. This conjecture is supported both experimentally [3] as well as with simulations [5] and
it has been confirmed that the usual experimental conditions under which QH-mode occurs in
experiments lie close to the ideal MHD kink-peeling stability boundary[3].

The condition for low density to access QH-mode found in experiments is explained by the different
collisionality influencing the bootstrap current. Higher collisionality reduces the bootstrap current
which in turn affects the stability of the mode. Further the density affects the rotation profiles
which influences the mode stability as well. The maximal allowable density is expected to depend
on the shaping of the plasma since the kink/peeling mode stability strongly depends on the shaping
[3].

Flow shear profiles in the pedestal are crucial for the emergence of the EHO. The occurrence of
a radial electric field, as well as the diamagnetic drift leads to a rotation in the poloidal plane,
additionally there is a toroidal rotation which is largely driven by the momentum transfer of neutral
beam injection.

Toroidal rotational shear stabilizes high-n modes but may have a destabilizing effect on low-n
modes, thus the dominant low-n modes in QH-mode may be initially destabilized [3]. Since however
the growth of the mode damps the sheared toroidal flow in the edge, the low-n modes get more
stable and may eventually saturate. In this way toroidal flows may act as a saturation mechanism
for QH-mode. The coupling with the wall is further suspected to reduce the rotation and aid the
saturation [3]. It was shown that E � B flow shear is required above a certain threshold to obtain
an EHO [3, 27].

Despite these theoretical explanations and models, it is still not fully understood what causes a
plasma to develop either into a QH-mode regime or into an ELMy H-mode regime.

2.3 MHD Simulations of QH-mode

2.3.1 Linear MHD
Ideal MHD stability limits of peeling-ballooning modes have been studied using linear MHD codes
such as MISHKA [5] and ELITE [3, 41]. These calculations show that experimental equilibria are
in the stable region however closer to the current driven kink/peeling stability boundary than the
pressure driven ballooning boundary [5, 3, 41, 6].

In these configurations, the equilibrium stability is sensitive to the current density in the separatrix
[5].The high rotational shear in QH-mode was found to be destabilizing to the kink mode which
supports the interpretation of the EHO as a non-linearly saturated kink/peeling mode that prevents
the triggering of ELMs [3].

The M3D-C1 code was used to investigate the effect of E � B rotation and rotational shear on
the EHO. It was found that the rotation and/or rotational shear destabilizes the low n = 1, n = 2
modes while stabilizing high n modes, supporting theoretical predictions and highlighting the
importance of E � B rotational shear on the emergence and sustainment of the EHO [41].
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2.3.2 Non linear MHD
A variety of non linear MHD simulations of QH-mode have been carried out with the MHD codes
JOREK [13] and NIMROD [42], investigating the QH-mode regime in different machines.

JOREK has been used to simulate QH-mode in DIII-D [5], carbon wall ASDEX Upgrade [43]
and ITER [6, 44]. It was possible to show the emergence of QH-mode under conditions similar
to the experiment, however no clear physics mechanism has been identified which determines the
development of a plasma into a ELMy H-mode or a QH-mode plasma [5]. Simulations showed
initially a linear growth phase where high-n modes have the largest growth rate, followed by a
saturation phase where the low-n (1 and 2) modes grow while the high n modes decay. In the
saturation phase the low n modes eventually reach a 3D quasi-stationary state and enhance the
particle transport across the pedestal.

The JOREK Simulation results showed a rotating saturated kink/peeling mode which leads to an
oscillation of the plasma boundary [5, 6]. The spectrum of the oscillations at the outer midplane
shows an equal spaced frequency band corresponding to the toroidal harmonics which indicates a
coupling of the modes, forming a rigid, rotating, toroidally localized structure. The non-sinusoidal
signal from the plasma edge obtained in the simulations is in good agreement with typical EHOs
observed in DIII-D QH-mode discharges [5] which could be sustained over a long time in a quasi
stationary way [6]. The saturated KPM leads to a strong density loss at the pedestal due to
E � B convection which causes a loss of pedestal top density while the temperature profile is not
significantly reduced by the KPM [5, 44]. All these simulations of this saturated KPM are in good
agreement with the experimentally observed behaviour of the EHO, supporting the conjecture of
the EHO being a KPM driven unstable by the large edge current densities.

Nimrod was used to simulate wide pedestal QH-mode which showed similar behaviour to the
JOREK simulations, however in contrast to the JOREK simulations, the E � B rotation was a
necessary component to achieve QH-mode [45, 46]. For these cases with broadband MHD activity,
simulations have produced a quasi-turbulent MHD state dominated by low n perturbations which
may be a candidate to explain the observed broadband MHD in these discharges [45, 46].

More recently NIMROD was also used to investigate QH-mode discharges with an emergent EHO.
Based on an EFIT reconstruction of a DIII-D discharge an equilibrium was generated that is
linearly unstable with n = 5 being the most unstable mode. After the linearly unstable phase
however the non-linear NIMROD simulations showed a saturation of the perturbation with n = 1
as the dominant mode number. This may suggest that the access window to QH-mode can be
larger than what a purely linear analysis would suggest as an equilibrium can yield a non-linear
saturated state with n = 1 being dominant even if it is not the linearly dominant mode [47].

Both codes were used to investigate the influence of a number of factors on the access or characteristics
of the QH-mode, including poloidal and toroidal rotation, resistivity and viscosity or the effect of
a resistive wall.

Simulations were performed which included the toroidal rotation profiles from the experiment in
JOREK and were compared to the simulations not featuring such a toroidal rotation source [6].
It was seen that neither the linear growth rates nor the non-linear saturation were significantly
changed, the temperature and density pedestal top values were neither influenced strongly, indicating
that the toroidal rotation did not play an important role in the saturation process [5, 6]. A scan
in resistivity showed that a reduction of the resistivity leads to a reduction of the linear growth
rate while the amplitude of the magnetic energy perturbation slightly increases, making the MHD
affected transport only weakly dependent on the resistivity. Changing the viscosity was not seen
to have a noticeable effect on the growth or saturation of the KPM [5].

Through variation of the pedestal pressure and edge current, the access of QH-mode or a type I
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ELM regime was assessed in a series of JOREK simulations. Although no clear boundary of the
two regimes or mechanism of saturation could be identified, it was possible to show that pedestal
configuration showing QH-mode like behaviour could be modified by reducing the current and
increasing the pedestal height to show an ELM like burst followed by a stationary phase with a
ballooning mode instead [44, 6]. It was shown that a sufficiently high edge current density is needed
to develop a saturated KPM and let it grow to a sufficient amplitude for causing enough transport
across the pedestal for entering a stationary state [44]. Simulations with NIMROD further showed
the relevance of plasma rotation, on the access of QH-mode. If the rotation of a case which could
access QH-mode was excluded, no saturation occurs and the evolution is dominated by high n
modes which show an ELM-like behaviour, highlighting again the importance of the rotational
shear on the saturation [45].

By introducing an artificial component of the poloidal rotation, the influence of the E�B rotation
was investigated. It was shown that the introduction of a higher poloidal rotation suppresses the
linear growth of the high n modes and results in the low n modes dominating the linear growth
phase as well as the non-linearly saturated state.[6] It was seen that the E � B rotation strongly
stabilises the linear growth of the toroidal modes n > 2 while the linear growth rates of n =
{1,2} increase with increasing rotation at first, but decrease again at higher rotation. This is in
good agreement with linear simulations done with M3D-C1, mentioned in 2.3.2 that also show the
stabilizing effect of the rotational shear on the high-n modes.

In simulations performed using the coupled JOREK-STARWALL codes it was shown that the
inclusion of a resistive wall has only a minor effect on the KPM growth and saturation in most
cases except a case that was done for an ITER discharge [5, 6]. In this case, JOREK-STARWALL
was used to simulate the ITER baseline scenario Q = 10 with a plasma current of 15 MA, a
magnetic field of 5.3 T and investigate its possible suitability for QH-mode. A saturated KPM was
observed, which had a higher saturation energy of the largest mode number when the resistive
wall was included than in a free boundary case.[43] The growth rate of the KPM increases with
increasing resistivity. In this case the resistive wall was more important than in other considered
cases as the initial equilibrium is MHD stable with an ideally conducting wall [6]. The saturation
amplitude of the KPM is however relatively small and it remains unclear whether the presence of
such a mode would cause sufficient transport for the onset of a QH-mode [6].

The non-linear simulations with these two codes both supported the theory of the EHO being
a saturated, rotating KPM driven unstable by the large edge current densities and investigated
the influence of various parameters on the access of QH-mode. Possible effects that may play an
important role in the access of QH-mode which have not or only to a limited degree been considered
so far are diamagnetic flows, neoclassical flows as well as resistive walls. Also the distinction of
electron and ion temperature in the simulations could have an effect on the onset of the mode
due to its effect on the E � B rotation. Moreover, the focus of these simulations was usually
on the linear growth and the non-linear saturation phase of the QH-mode, but not on the further
evolution after the onset of QH-mode or its eventual termination. Approaching these aspects could
contribute to answer the not fully understood but most important question of identifying which
physical parameters or mechanism is responsible for determining whether the plasma develops into
and ELMy H-mode or ELM free QH-mode.

2.4 Accessibility of QH-mode in future machines
For any ELM-free regime, it is of high relevance to assess the possibility of accessing these regimes in
future machines, in particular in ITER. Since a complete physical understanding of the mechanisms
behind the QH-mode is missing, an extrapolation of this regime to future machines is still uncertain.

The compatibility of a certain operational regime with ITER can be assessed by comparing the
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Figure 2.2: Existence diagram of the QH-mode regime in terms of pedestal collisionality ν�,
triangularity δ, safety factor at ψN = 0.95 q95, poloidal beta βpol and the pedestal fraction of the
Greenwald density limit fGW;ped. Note that the limits of these parameters are extremal values and
cannot necessarily be achieved simultaneously in present day machines. The gray line indicates
the ITER target values. Adapted from [23].

relevant parameters in parameter space with the ones obtained in current day machines. This is in
particular the pedestal collisionality (ν?ped), the triangularity (δ), safety factor at ψN = 0.95 (q95),
poloidal beta (βpol = p

Bpol=2�0
, the ratio of plasma pressure to poloidal magnetic pressure) and the

pedestal fraction of the Greenwald density limit (fGW;ped) [48] which is shown in figure 2.2. QH-
mode can be obtained in a wide range of collisionality, triangularity, q95 and Greenwald fraction,
steady state operation at high Greenwald fraction has however not yet been shown. Parameter
ranges are compatible to the ITER target values in terms of collisionality, q95 and βpol while the
ITER target Greenwald fraction was not reached so far [23]. It should be noted however that
in current day tokamaks it is not possible to reach all parameters at ITER target values at the
same time. In particular the density and collisionality are linked in current day tokamaks and low
collisionality operation as required for QH-mode usually means low density operation, ITER on
the other hand will operate at low collisionality but high density at the same time [23].

Although QH-mode was originally discovered in with high external torque input, its operational
window was broadened up to a point where the input torque required for the sustainment of QH-
mode is below the ITER equivalent value [24]. It has been shown that the torque provided by
neutral beam injection could be almost completely replaced by the torque generated by static,
non-axisymmetric, nonresonant magnetic fields [49]. This could be a possibility to obtain QH-
mode in machines with little neutral beam torque available as well as in mostly self-heated burning
plasma scenarios with small external toroidal torque from neutral beam injection [40, 24]. The
direct access to QH-mode has however not yet been shown with low, ITER compatible, torque
input. QH-mode has so far only been accessed with higher torque which was reduced only after
the QH-mode onset to ITER compatible values [24].

The low separatrix density requirement for QH-mode may be a challenge for the compatibility of
QH-mode with divertor detachment as it usually requires a high separatrix density. In a detached
plasma, the divertor region has a high density and high impurity concentration which radiate away
a large amount of power and significantly reduce the power flux arriving at the divertor targets [50].
It may be that detachment and QH-mode are compatible in a future machine where low pedestal
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collisionality can be maintained at high density in the separatrix, however divertor detachment has
so far not been shown to be simultaneously achieved with QH-mode [51, 52].

Finally, in discharges featuring a QH-mode phase, often also a short ELMing phase is preceding
or following the QH-mode phase, possibly making the QH-mode inaccessible without accepting
ELMs in some phase of the discharge. This would be problematic for a machine which does not
only need to reduce the duration of the ELM phase but cannot tolerate any ELMs at all [53].

Although the operational space scaling indicates that QH-mode might be accessible in ITER, it
remains unclear how the EHO will scale to ITER. The onset conditions for QH-mode are not fully
understood and need further research to assess their applicability for ITER [24]. It is moreover
unclear if the provided additional transport is sufficient to prevent the build up of the pedestal
and the triggering of ELMs [54].

2.5 Research Question
As outlied above, a number of non-linear simulations of QH-mode have been done, giving some
insight to the physical mechanisms behind the QH-mode. Based on recent QH-mode experiments
in tungsten wall ASDEX Upgrade, this thesis aims to contribute to the understanding of QH-mode
by addressing the following research question:

Can the access conditions for QH-mode in metal wall ASDEX Upgrade be reproduced
quantitatively in a simulation with JOREK?

Further the following subquestions can be formulated:

� Can QH mode be obtained in a JOREK simulation of metal-wall ASDEX Upgrade?

� Can a transition from QH-mode to an ELMy regime be observed? Under which conditions?

� How does the density affect access to QH mode?

In order to address these questions, in this thesis simulations using the non-linear extended
MHD code JOREK were done for a metal-wall ASDEX Upgrade QH-mode discharge, in order
to realistically model the emergence of QH-mode and reproduce its access plasma conditions. A
particular focus lies on the simulation of a transition between QH-mode and an ELMy regime
which has not been done before, to assess the boundary of the QH-mode regime. Furthermore, the
validation against experiments carried out here is essential to gain confidence in future predictive
studies of fully realistic parameters.
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Chapter 3

JOREK

JOREK is a three dimensional, non-linear, massively parallel, extended MHD code applied in
particular to large scale plasma instabilities such as disruptions and disruption mitigation, ELMs
and ELM control [13, 55]. It uses a finite element method with a fully implicit time stepping
scheme to solve the non-linear visco-resistive MHD equations in realistically shaped tokamak
geometries in a limited, single or double X-point configuration for both open and closed flux surface
regions. JOREK has reduced and full MHD models which may include or exclude various effects
and variables such as parallel flows, diamagnetic flows, separate electron and ion temperatures,
neutral/impurity densities or free and fixed boundaries.

This chapter highlights aspects of JOREK relevant for the work done in this thesis. Further details
can be found in a recent overview article about the JOREK code and its applications [13].

3.1 A typical JOREK simulation
A JOREK simulation is started from initial conditions describing the state of the plasma. Most
importantly, this contains temperature and density as a function of ψN , as well as the toroidal
plasma current which defines the poloidal magnetic field. The velocity is initialized to zero and
plasma flows only establish during the time stepping. For this thesis, an ideally conducting wall
is considered, which means that the poloidal flux at the boundary of the computational domain
remains constant. The poloidal flux values on the boundary are thus also given as an input.

After the initialisation, the Grad-Shafranov equation is solved on a poloidal grid. From the resulting
equilibrium, a flux-aligned finite element grid is constructed. On this grid, the equilibrium is solved
again to refine the accuracy before starting the time evolution which uses the flux-aligned grid as
well.

The simulation is then usually started axisymmetrically (n = 0) which allows the plasma flows
to establish into a new steady state/equilibrium. Only thereafter the non-axisymmetric (n > 0)
toroidal harmonics are added, allowing the emergence of MHD instabilities. The grid resolution
and the number of toroidal harmonics need to be sufficiently large for convergence of the considered
instabilities.
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3.2 Physical model

3.2.1 Reduced MHD
In this section, the single temperature, reduced MHD model with diamagnetic effects of JOREK is
described which is the model that is used in this thesis. Reduced MHD is a simplified form of full
MHD which eliminates fast magnetosonic waves and reduces the number of variables. This allows
simulations to use larger time steps and reduces computational costs and memory requirements.
More details on the reduced MHD model of JOREK can be found in section 2.3.1 of Ref. [13].

The reduced MHD equations used in JOREK are based on two assumptions for the magnetic
field and the velocity. The magnetic field is decomposed into a time invariant toroidal component
B� / 1

Re� and a time varying poloidal component B� originating from the toroidal current:

B = B� + B� = B0
R0

R
e�

| {z }
B�

+
1

R
rψ � e�

| {z }
B�

(3.1)

where B0 is the magnetic field strength at the magnetic axis, ψ is the poloidal magnetic flux,
defined as ψ = � Ψ

2� and e� is the toroidal unit vector.

The velocity is decomposed into a component parallel to the magnetic field, a poloidal E � B
component and a diamagnetic component:

v = vE�B + vdia + vk = �Rru � e�| {z }
vE�B

+ �(δ�R/ρ)rp � e�| {z }
vdia

+ vkB
|{z}

vk

(3.2)

where u = Φ/(B0R0) is the velocity stream function with Φ the electrostatic potential and the
diamagnetic coefficient δ� = mi/(eB0R0) with mi the ion mass and e the elementary electric
charge.

These two ansatzes reduce the magnetic field to be described by a single scalar function ψ while
the velocity field is described by two scalar functions u and vk. With these ansatzes, the set of
reduced MHD equations can be derived from the set of resistive MHD equations (1.16) - (1.22).
This results in a system of five evolution equations for the poloidal magnetic flux ψ, the velocity
stream function u, the mass density ρ, the single Temperature T and the parallel velocity vk that
have to be solved. Two definition equations for the vorticity ω and the toroidal current density j
are also solved in each time step for numerical stability reasons. The full derivation of the reduced
MHD model in JOREK can be found in [56].

By using a fluid based model, it is neither possible to capture the temperature and density gradient
driven micro instabilities which make up the main heat and particle transport mechanism across
closed flux surfaces nor can the neoclassical transport mechanisms be captured this way. It
is therefore necessary to include ad-hoc diffusion coefficients for the diffusive particle and heat
transport across flux surfaces which represent the turbulent and neoclassical transport.

These diffusion coefficients are given here as a function of ψN . In particular in H-mode plasmas,
both the particle and heat diffusion coefficients feature a well in the diffusion coefficient profile at
the location of the pedestal, representing the edge transport barrier where the turbulent transport
is largely suppressed.

Another neoclassical effect which is not captured by the fluid model is the emergence of a bootstrap
current as described briefly in 1.3.3. Therefore, the time-evolving bootstrap current density can be
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incorporated by introducing a current source term that is calculated by an analytical expression
[57].

To improve the numerical stability of the simulations, numerical viscosity, numerical resistivity
and numerical diffusivity terms can be included in the equations.

3.2.2 Boundary Conditions
The boundary conditions implemented in JOREK usually distinguish between boundaries that are
aligned to the flux surfaces and boundaries that intersect with the magnetic field lines such as the
divertor.

On boundaries which lie on flux surfaces, Dirichlet boundary conditions are applied where all
variables are fixed in time. The Dirichlet boundary conditions for the poloidal flux and the plasma
current represent fixed boundary condition, that is an ideally conducting wall.

On boundaries with intersecting flux surfaces, Mach-one sheath boundary conditions are applied,
i.e. the field line parallel velocity is set to the local sound speed. ψ, u, j and ω remain constant in
time at the boundary. For the density no boundary condition is enforced, resulting in perpendicular
ion flux to the boundary being purely convective. The temperature gradient is constrained by a
condition relating the sheath heat flux to the velocity by a sheath transmission factor.

Details regarding the boundary conditions can be found in section 2.3.2 of Ref. [13].

3.3 Numerical methods

3.3.1 Spatial discretisation
In JOREK, the reduced MHD equations are solved in weak form on a 2D bi-cubic Bézier finite
element grid in the poloidal plane combined with a toroidal Fourier expansion.

The poloidal plane is discretized in real space with bi-cubic Bézier finite elements which are
used both for the spatial discretisation in the poloidal plane as well as the representation of the
physical variables [58]. Continuity for both the physical variables and their derivatives is ensured
within the finite elements and across the finite element boundaries. The finite element grid is
usually constructed such that the elements are aligned with the equilibrium flux surfaces. The
large anisotropy between heat transport parallel to the magnetic field and perpendicular to it are
numerically easier to capture if the finite elements are aligned to the flux surfaces of the initial
equilibrium.

The size of the elements can be refined, such that e.g. the high gradient pedestal region is populated
with smaller elements than regions with smaller gradients.

The computational domain is delimited at a wall coinciding with a given flux surface outside
the separatrix and a simplified divertor region where the flux surfaces intersect with the wall.
Optionally the grid can also be extended to the true first wall of a given tokamak.

In the toroidal direction, the discretisation is not done in real space but in Fourier space, using
a Fourier expansion with up to ntor harmonics. This exploits the periodicity of the toroidal
configuration and the long characteristic length scales in the toroidal direction which reduces the
computational requirements.

A physical variable X can in summary be described by
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X(s, t, ϕ) =

ntor�1X
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3X
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(Xi;j;tB
3
i (s)B3

j (t)cos(nϕ) + Xi;j;sB
3
i (s)B3

j (t)sin(nϕ)) (3.3)

where 0 � s � 1 and 0 � t � 1 are the local coordinates of the element, B3
i and B3

j are the
Bernstein polynomials of degree 3 and Xi;j are the sine and cosine components of the physical
variable X at the control point (i, j).

Details of the spatial discretisation and the used Bézier elements can be found in [58] or section
3.1 of Ref. [13].

3.3.2 Time Stepping
To evolve the variables in time, the MHD equations are discretised in time by a fully implicit
Crank-Nicholson or Gears scheme which are both second order accurate. In this thesis, the Gears
scheme is used.

The reduced MHD equations can be expressed in a generic form in terms of the functions A and
C :

∂A(u)

∂t
= C(u, t) (3.4)

where u denotes the vector of the physical variables. These equations are discretized with the
Gears scheme:
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�n
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where the superscript n denotes the time step and δun = un+1 � un denotes the change in the
variables over a time step. The time discretisation schemes are described in further detail in section
3.2 of Ref. [13].

This implicit time stepping schemes require to solve a sparse system of equations which is iteratively
solved with a GMRES or BICGSTAB method. A physics based preconditioner is used which solves
the block diagonal matrices of each harmonic individually with a direct sparse matrix solver.
Further information on the solver can be found in [13] section 3.4 and 3.5.
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Chapter 4

Experimental Overview &
Simulation Setup

4.1 ASDEX Upgrade discharge #39279
As a basis for the simulations presented in this thesis, the ASDEX Upgrade shot #39279 was
used which features a QH-mode phase of 150 ms from 3.44 s to 3.59 s in tungsten wall ASDEX
Upgrade. This shot features a toroidal magnetic field of Bt = 2.522T and a plasma current of
IP = 0.619MA and was operated in an upper single null plasma configuration, close to a double
null configuration with an elongation of k = 1.77, an upper triangularity of δupper = 0.53 and a
lower triangularity of δlower = 0.41. The discharge was carried out in the unfavourable rB drift
configuration which means that the orientation of the plasma current and the toroidal magnetic
field are chosen such that the ion rB drift is away from the active X-point, which raises the L to
H-mode power threshold, which allows the H-mode phase to be started at low density and high
rotation[4].

An overview plot of this discharge is given in figure 4.1 which displays the evolution of thermal
energy and density, as well as the applied heating power and a Mirnov coil spectrogram which
allows to identify the EHO. A more detailed analysis of the mode spectrum can be found in figure
4.2 which shows the emergence, mode number and frequency of the EHO during the QH-mode
phase.

During the QH-mode phase, the total thermal energy as well as the particle content increase,
mainly through the rise of the density pedestal height, despite the emergence of the EHO. A
singular ELM at 3.51 s briefly interrupts the QH-mode phase, which is re-established shortly after
the ELM crash. The EHO frequency shifts over time, likely due to the change in electric field well
depth which shifts from �65 kV/m at 3.475 s to �110 kV/m at 3.565 s. The QH-mode phase is
not stationary, but terminates due to the density increase. The continuously increasing density
pedestal height eventually leads to the triggering of an ELM and the plasma transitions to a type
I ELM regime.

4.1.1 Linear MHD Analysis
A linear stability analysis was done for the equilibrium reconstructed from the experimental
discharge at 3.475 s [59] using the linear MHD code MISHKA-1 [60]. The analysis shows that
the equilibrium is very close to the kink-peeling stability boundary, at toroidal mode numbers of
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(a) Overview of the ASDEX Upgrade shot #39279. The QH-mode phase
lasting from 3:44 s to 3:59 s is shaded in gray. The first panel indicates
the NBI and ECRH heating power, the second panel shows the total
stored thermal energy, the third panel shows the line integrated density
of two interferometer chords, one in the core and one on the edge. The
fourth panel displays the spectrogram of an outer midplane Mirnov coil,
showing the emergence of the EHO with a dominant n=1 mode number
and multiple higher harmonics. In the ELMy H-mode phase following
the QH-mode phase, the periodic loss of stored thermal energy due to
ELMs is visible.

(b) Reconstructed
equilibrium of AUG #39279
including PFCs and vacuum
vessel. The inner separatrix
is indicated in red, the
outer in orange while the
interferometer chords H1 and
H5 are indicated in purple
and blue, respectively.

Figure 4.1: Overview of ASDEX Upgrade discharge #39279

Figure 4.2: Cross-phaseogram of several magnetic signals of the QH-mode phase from 3.43 s to
3.59 s and part of the subsequent ELM phase, indicating the toroidal mode numbers. The multiple
harmonics of the EHO can be seen to emerge in the QH-mode phase during which, despite the onset
of the EHO, a small ELM occurs at 3.51 s. The QH-mode phase is terminated with a significantly
larger ELM. A n = 1 core mode, unrelated to the QH-mode can further be seen in the spectrum.
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Figure 4.3: Linear stability analysis of AUG #39279 at 3.475 s. The stability boundary is
indicated in the j - α diagram, where α denotes the normalized pressure gradient α = � 2�0R0

B2 q2 dp
dr

and hjtori the flux surface averaged toroidal current density. In the unstable region, the dominant
toroidal mode number is indicated. Further the plasma operational point and its uncertainty is
indicated. It can be seen that the reconstructed equilibrium is very close to the stability boundary
while being closer to the kink-peeling boundary than the ballooning boundary as it is commonly
observed for QH-mode plasmas (see section 2.3.1) Adapted from [59].

1 - 2, matching well what would be expected for a QH-mode regime. The stability diagram and
the operational point of the reconstructed equilibrium can be found in figure 4.3.

4.2 Simulation Setup
Most of the simulations covered in this thesis are based on the experimental ASDEX Upgrade
discharge #39279 described in section 4.1. As a starting point, an equilibrium from the QH-mode
phase at t = 3.475s, obtained with the equilibrium reconstruction code CLISTE [61] is being used.
The initial profiles for temperature and density, as well as the q-profile are displayed in figure 4.4.
The foot of the density pedestal of the profile obtained form the equilibrium reconstruction reached
unrealistically far outside the separatrix which makes it challenging to keep the profiles roughly
constant over the time scale of the simulation due to emerging plasma flows outside the separatrix.
Thus the outer part of the density pedestal was clipped, resulting in a higher SOL density which
makes it easier to maintain the profile constant.

The total heating power applied in the simulation is chosen to match the applied heating power
in the experiment at the selected point in time which is approximately 6.6 MW. It is neglected
that a fraction of this power is not leaving the plasma via the separatrix but is radiated away. In
the experiment, the radiated power fluctuates strongly and would be roughly 1 MW at the chosen
point in time. The detailed deposition location of the heat sources cannot be easily obtained,
thus for simplicity, it is assumed that the heating is only applied to the core of the plasma inside
ψn = 0.64. A particle source is chosen which deposits the majority of the particles around the
separatrix in order to maintain the pedestal shoulder, while the particle source in the core is only
very small. The particle source and the heat and particle diffusion coefficient profiles were chosen
such that the profiles roughly follow the evolution of the profiles in the experiment. In particular
the evolution of the density pedestal height is ensured to take place over a similar time scale as
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(a) Electron density as obtained
in the equilibrium reconstruction
in blue and the modified electron
density as used in the simulation
in red.

(b) Temperature profile used in
the simulations, assuming equal
ion and electron temperature,
Te = Ti = T .

(c) The q-profile with q95 = 7:1

Figure 4.4: The input profiles used in the standard simulation

in the experiment. The input torque form the neutral beam injections is not considered for this
simulation.

The resistivity used in the simulations is specified in the core and follows the Spitzer η / T �3=2

temperature dependency. The experimental resistivity can be determined by the Spitzer expression
plus a correction from neoclassical effects and effective atomic number (Zeff ) [62]. For ψN = 0.95
this leads to an experimental resistivity of 2.1 � 10�7Ω m while the resistivity in the simulation
at that point is 1.0 � 10�6Ω m, making the used resistivity roughly a factor 5 too large. Further
outwards up to the separatrix, this factor increases to a factor of roughly 10.

The bootstrap current is self-consistently evolved in time as described in 3.2.1 in all simulations
presented here. This is an important contribution to the current, particularly relevant in edge
physic phenomena as the bootstrap current in the pedestal is particularly large due to the large
pressure gradient. Similarly, the diamagnetic drift terms are included self-consistently in all the
simulations unless noted otherwise as they are crucial for capturing pedestal stability accurately.

In order to achieve adequate numerical stability of the simulations, Taylor-Galerkin stabilisation
is used, as well as hyper-diffusion, -viscosity and -resistivity. To cope with numerical instabilities
emerging from the magnetic axis, the hyper-resistivity and hyper-viscosity are locally enhanced
close to the magnetic axis. This treatment does potentially affect the physics in the core but not in
the pedestal which is the region of interest for these simulations. Details regarding the numerical
stabilisation on the magnetic axis can be found in appendix A.

The flux aligned finite-element grid is constructed to have 161 elements in poloidal direction, 105
elements in radial direction inside the separatrix, 18 radial elements outside the separatrix at the
high field side and 20 radial elements outside the separatrix at the low field side. The size of the
elements is not uniform but is adjusted such that the pedestal region, where the MHD activity is
expected, has the highest resolution with a radial finite-element width of 1 to 2 mm.

After the initial equilibrium is solved and all variables are initialized on the grid, the simulation
is carried out axisymmetrically at first for 0.2 ms to establish the flows in the plasma. Thereafter,
the non-axisymmetric modes are included. For the majority of the simulations in this thesis, 6
toroidal harmonics are used.

For the number of toroidal harmonics, the time step size and the poloidal resolution of the grid,
convergence scans were performed to confirm that the used parameters are appropriate and the
solution is converged.
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Chapter 5

Access of QH-mode

In this chapter the results of the first part of the simulations carried out in this thesis are presented.
Namely, the simulations regarding the emergence, sustainment and characterisation of the EHO
and QH-mode are presented. In section 5.1, a simulation is presented which shows the emergence
of a saturated KPM that is reminiscent of the EHO and enters a QH-mode like state. This state is
characterised and compared to the theoretical expectations as well as the experimental observations
of QH-mode and the EHO. Thereafter, in section 5.2 the effect of the diamagnetic drift on the
access of QH-mode is discussed. In Section 5.3, a scan of the edge safety factor q95 is presented
which shows the existence of a window within which QH-mode may emerge and the possible role
of the evolution of q95 for the saturation is described.

5.1 Simulations of QH-mode at experimental conditions
Using the non-linear MHD code JOREK, simulations of the ASDEX Upgrade discharge #39279,
which features a 150 ms long QH-mode phase, have been performed with parameters as outlied
in section 4.2. As already mentioned in this section, the heat and particle diffusion coefficient
profiles must be provided to JOREK as an input. In order to do so, initially diffusion coefficients
were chosen which keep the profiles during the axisymmetric evolution roughly constant. With
this, a non-axisymmetric simulation was started which showed the emergence of a kink/peeling
mode in the pedestal which grows in the linear phase and eventually saturates non-linearly. This
saturated non-linear state is qualitatively consistent with the characteristics of an EHO which
caused additional transport across the pedestal.

To match experimental profile evolutions, the sources and the diffusion profiles were adapted
iteratively such that the non-axisymmetric evolution follows the experimental evolution of the
pedestal more closely. All simulations share similar characteristics of the MHD activity, but differ
in the evolution of the pedestal profiles over longer time scales. The most realistic case which
matches the experimental evolution the best is presented in the following.

The magnetic energies, as well as the particle content and the thermal energy of this simulation,
compared to an axisymmetric simulation (where no mode can emerge) are shown in figure 5.1.
The simulation showed that initially n = 2 and n = 1 KPMs are linearly unstable and grow,
consistently with the predictions by the linear stability analysis shown in figure 4.3. In the linear
phase, the n = 2 mode has a larger growth rate than the n = 1 mode. Trough three wave coupling
[63], the n = 2 mode eventually starts to couple to the n = 4 and n = 6 mode harmonics and drive
them to grow as well at approximately 2 ms. Shortly thereafter, the n = 2 mode group saturates
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Figure 5.1: Evolution of the magnetic energies, the particle content in the plasma and the
thermal energy in the plasma for an axisymmetric and a three dimensional simulation with six
toroidal harmonics included. The n=1 and n=2 modes are linearly unstable and grow initially.
After 2 ms the modes n = {3..6} are being driven by n=1 and n=2 and start growing as well,
eventually leading to a saturation of the n=2 mode at 3 ms and n=1 at 7.5 ms. Thereafter, the
magnetic energies remain stationary for at least 20 ms. It can be seen that the onset of the mode
has a major influence on the heat transport and thereby on the thermal energy, however only a
minor influence on the particle transport.

at 3 ms while the n = 1 mode with a smaller growth rate continues to grow after the saturation
of n = 2 while driving the n = 3 and n = 5 mode harmonics. Eventually it saturates as well at
7.5 ms at a slightly higher magnetic energy than n = 2 and becomes and remains dominant for
the rest of the simulation. After the saturation of the KPM, the plasma enters a quasi stationary
state, where the magnetic energies remain relatively constant for at least 20 ms.

The growth of the mode has an influence on both the particle content and the thermal energy
content by causing additional transport across the pedestal. It is observed that the mode causes
additional transport at both saturation events, however only the heat transport is significantly
changed in the saturated state. The particle transport, measured by the particle flux at the
computational boundary, is increased by approximately 3.5 % after the saturation while the energy
transport, also measured by the energy flux at the computational boundary, is enhanced by
approximately 30 %. The additional heat transport by the mode is caused by parallel transport
along the stochastic field lines in the ergodic region that forms just inside the separatrix. After the
saturation, both the pedestal top pressure, as well as the pedestal top temperature is about 10 %
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Figure 5.2: Oscillations at the outer midplane pedestal top reminiscent of the EHO. The
spectrogram shows the characteristic multipeaked spectrum with decreasing amplitude with
increasing frequency, indicating a coupling between the individual modes to form a single toroidally
localized mode structure.

lower compared to the axisymmetric case without MHD activity, the pedestal top density however
is only slightly reduced.

In order to characterise the mode activity observed when the magnetic energy of the n = 1
perturbation saturates, the time evolution of a point in the pedestal is analysed. Fluctuations
can be observed in all simulated local quantities, in particular in the local temperature, density
and pressure which are caused by the rotation of the saturated KPM. The oscillations for the
density at ψN = 0.95 in the outer midplane and its spectrogram is displayed in figure 5.2. The
oscillations show a clearly non-sinusoidal structure, reminiscent of experimental signals that are
identified as an EHO. Therefore, in the following the saturated KPM will be dubbed EHO. In the
saturated state, the n = 1 mode dominates the spectrum while multiple higher harmonics with a
constant frequency spacing and decaying amplitude are visible. In this figure only four harmonics
are visible, however there are a total of six harmonics corresponding to the six toroidal modes used
in this simulation. The conserved shape of the oscillations over time and the structure of multiple
higher harmonics indicates the existence of a single toroidally localized mode structure of coupled
modes. The structure has contributions from all harmonics with n = 1 being clearly dominant. By
determining the frequency of the EHO from the density oscillations at various radial position, it
was confirmed that the frequency of the EHO is independent of the radial location, which indicates
that the mode structure is rigid.

Consistently with the experiment, the mode rotates in the electron diamagnetic direction. It
has a base frequency of the n = 1 mode of approximately 26 kHz while the higher modes have
frequencies of a multiple thereof. Qualitatively, these fluctuations are in good agreement with
the experimentally observed signals of an EHO and its frequency is within the typical range of
frequencies EHOs are observed to have experimentally [53], however the frequency is too large by
about a factor 2 compared to the EHO measured in this particular discharge. This is possibly
caused by the single-temperature treatment that is used in this thesis which does not distinct
ion and electron temperature. Since only the ion pressure gradient but not the electron pressure
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Figure 5.3: Oscillations in the density and temperature pedestal reminiscent of the EHO. Iso
lines in density and temperature are indicated for better visibility. The non-sinusoidal structure
of the oscillations can be seen both in the density and in the temperature.

gradient influences the radial electric field, distinct temperatures could result in a lower electric
field well which results in a slower E�B rotation. Despite the high frequency, the mode is in good
qualitative agreement with experimental observation such as given in figure 4.2.

Figure 5.3 shows the same oscillations in the entire pedestal by tracing iso lines in density and
temperature over time. It is possible to see that the non-sinusoidal structure of these oscillations
is more pronounced in the density than in the temperature. The reason for this is that the
temperature follows flux surfaces more strictly due to the high heat diffusion anisotropy while the
density is influenced more strongly by the KPM.

The mode structure can also be analysed not by looking at the fluctuations over time but by
inspecting it spatially. The toroidal shape of the mode structure can be investigated by plotting
the fluctuations along the toroidal direction in the outer midplane as shown in figure 5.4b. It can
be seen that the structure is dominated by the n = 1 mode number but also includes multiple
higher harmonics as indicated by the Fourier decomposition given in figure 5.4c. In figure 5.4a,
the density profiles are shown for toroidal angles of 0.8π and 1.4π, showing the maximal radial
displacement of the pedestal over the course of one EHO period which is in this case approximately
0.5 cm. In figure 5.5, the n 6= 0 components of density, temperature and poloidal flux are shown
in a poloidal plane. This mode structure can be identified as a KPM with a maximal amplitude
at the flux surface at around ψN = 0.97.

In figure 5.6, the evolution of the pedestal density, temperature, pressure and radial electric field
is displayed. During the linear growth and saturation phase from 0 ms to 7 ms, the profiles evolve
strongly, in particular Er adapts to the new saturated state while the temperature pedestal sightly
drops and the density increases while keeping the pressure profile almost stationary. After the
saturation, the density in the pedestal increases, as it is observed in the experiment, while the
pedestal temperature slowly decreases due to the mode activity and due to the decreasing heating
power per particle. Over the entire evolution, the pressure profile and gradient remains remarkably
constant. The radial electric field is particularly deep in this case due to the low density in the
pedestal and is in good agreement with the experimentally measured depth of the Er well of
�65 � 10kV/m, even tough it is slightly radially displaced, having its minimum at ψN = 0.99
experimentally while in the simulations it is at ψN = 0.96. Possibly also this discrepancy could
be the result of the single temperature model as it was seen in experimental measurements that
the maximal ion temperature gradient (which influences the ion pressure pedestal and thereby the
electric field well) is located at ψN = 0.985 whereas the maximal electron temperature gradient is
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(a) (b) (c)

Figure 5.4: Variation of the density in the toroidal direction at 20 ms. (a) profiles at toroidal
angles 0.8π and 1.4π show a maximal displacement of the profile by approximately 0.5 cm caused
by the emerged mode. At the location of the mode on the pedestal top the profile can be seen to
be dented in. (b) shows the variation of the density along the toroidal angle in the outer midplane
at ΨN = 0.95, indicating the toroidal localisation of the mode. (c) Fourier decomposition of the
density fluctuation of (b), clearly dominated by n=1 with exponential decaying amplitudes of the
higher mode numbers.

(a) The perturbed
poloidal magnetic flux  

(b) The perturbed density
ne

(c) The perturbed
Temperature T

Figure 5.5: Magnetic flux, density and temperature non-axisymmetric perturbations (including
only n 6= 0 components) at 12 ms. The KPM mode structure around ψ � 0.97 can be seen. The
flux surfaces ψN = f0.95, 0.97, 0.99g are indicated in black.
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Figure 5.6: Evolution of the toroidally averaged pressure, density, temperature and radial electric
field profiles. Before the saturation of the n=1 mode, the profiles still evolve strongly, after the
saturation only a moderate evolution of the profiles is seen except for the density. The density
source was chosen such that the evolution of the experimental discharge is roughly matched, that
is the density pedestal grows while the pressure pedestal keeps approximately constant. The Er
well observed in the simulation is particularly deep as it is also seen in the experiment.

located further inwards at ψN = 0.965.

Figure 5.7 shows Poincaré plots of the magnetic field structure for four points in time (2, 4, 6 and
8ms) over the course of the growth and saturation of the mode. It can be seen that in the stationary
state after the saturation of n = 1, the magnetic surfaces remain intact up to a flux surface of
approximately ψN = 0.987. Outside this radius, an ergodic layer forms, leading to energy losses
via parallel transport along the stochastic field lines.

After the saturation, the mode structure remains stationary for the entire simulated timescale of
up to 30 ms with only minor oscillations in the mode amplitude. After 35 ms, the simulation was
halted because of the computational expense, and because an unrelated m = 2, n = 1 tearing
mode emerged in the core. The QH-mode is thus shown to remain stable for more than 20 ms after
the saturation.

For the exact same initial conditions, a simulation has been carried out which did not only include
n = f0..6g modes but n = f0..12g, such that also high n ballooning modes could emerge if they
were destabilised in this simulation. The linear mode spectrum did not change however as only
n = 1 and n = 2 are linearly unstable. Barely any difference between the two simulations could be
observed, the dominant n = 1 magnetic energy was reduced by 0.15 % while the n = 6 magnetic
energy reduced by 5.2 %. This shows that the inclusion of only n = f0..6g modes delivers converged
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Figure 5.7: Poincaré plots before (a) and after (b) the saturation of the n = 2 mode and before
(c) and after (d) the saturation of the n = 1 mode.

results and justifies this choice for the simulation of the onset of the EHO.

5.2 Effect of diamagnetic drift
The diamagnetic drift effects have shown to be a very important ingredient in this kind of QH-mode
simulation but were neglected or not included self-consistently in previously published simulations
of QH-mode[6, 5, 47]. In order to highlight this difference, two additional simulations were carried
out where the diamagnetic drift was either completely turned off or reduced to half of its nominal
value. The linear growth rates for these simulations can be found in figure 5.8.

If the diamagnetic terms are excluded, the growth rate of the fastest growing n = 2 mode in the
linear phase is about four times larger compared to the growth rate of the n = 2 mode in the linear
phase when the diamagnetic drift are included. Non-linearly, the n = 2 mode stops growing in
amplitude in a burst like event that reaches a maximal magnetic energy 6.5 times larger than the
maximal magnetic energy with diamagnetic drift and causes significantly more transport across
the pedestal. Shortly thereafter the two cases are no longer comparable in a meaningful way as the
case without diamagnetic drift develops into a situation that rather resembles a disruptive scenario
with large islands inside the core and rapidly looses large parts of its energy content. This shows
that the inclusion, respectively the non-physical exclusion, of the diamagnetic drift makes a very
significant difference in the simulations and that the inclusion of diamagnetic drifts is necessary
for a realistic description of the plasma.

When the diamagnetic drift is half of the nominal value, the growth rate of the fastest growing
n = 2 mode barely changes but the non-linear evolution is more violent than with the nominal
value but less violent than without diamagnetic drift. The KPM can grow to an amplitude more
than three times larger compared to the case with nominal diamagnetic drift which causes more
transport across the pedestal since the stabilizing effects of the diamagnetic drifts are reduced.

The cases without or with reduced diamagnetic drift are more closely comparable to QH-mode
simulations in JOREK that were done before also without inclusion of the diamagnetic drift [5, 6]
that showed a burst like behaviour when the mode saturated, similarly to the one observed here.
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Figure 5.8: Linear growth rates of the n = f1..6g modes for simulations without diamagnetic
drift (purple), with half of the nominal diamagnetic drift (blue) and with nominal diamagnetic
drift (red).

In these publications it was also seen by modifying the E � B velocity that the rotation has strong
effect on the growth and saturation of the KPM.

From the large differences in the evolution of the cases with and without diamagnetic drift, it can
be seen clearly that the inclusion of diamagnetic effects and their influence on the electric field and
the flow stabilisation is relevant for this type of regime and should not be neglected in realistic
simulations.

5.3 Variation of the q-profile
To assess the influence of the edge safety factor q95 on the access to QH-mode, a scan is done by
scaling the toroidal magnetic field, which rigidly scales the full q profile up and down. This way
a scan is done from q95 = 6.4 (where the q profile in the core is just above 1) up to q95 = 8.15,
scanning a window of �10% to +15% around the experimental value of q95 = 7.1.

In this range of q95, the linear growth rates γ of the KPM vary for the different mode numbers.
Over the entire scanned range, only the n = 1 and n = 2 modes are linearly unstable, all modes
with higher mode number remain stable in the linear phase and are only driven in the non-linear
phase. In figure 5.9, the linear growth rates are plotted as a function of initial q95 for the scanned
window, with black stars representing the nominal experimental simulations already presented in
5.1. Since the value of q95 evolves during a simulation, also the q95 in the linear phase is indicated
which evolves similar in the axisymmetric and linear phase for all cases to be approximately 0.15
lower than the initial q95. Only in the non-linear phase the evolution of q95 starts to deviate
between the different cases. For clarity, the different cases are labelled in the following by the
initial safety factor denoted q95;init.

For the cases between q95;init = 6.7 and q95;init = 7.0, numerical issues occurred in the simulations
in the n = 1 harmonic, hence this mode is excluded from the plot. For the linear phase, during
which the individual modes do not strongly interact yet, the n = 2 mode is not affected by the
numerical issues and can be included in this range, however in the non-linear phase also the n 6= 1
harmonics are affected and the non-linear simulation cannot be used. From the general trends of
the growth rates for surrounding q95 values, it can be suspected however that the growth rates of
the n = 1 mode would be small in that range.

Figure 5.9 shows a roughly periodic pattern of growth rates in q95 with a period of 1 for the n = 1
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Figure 5.9: Linear growth rates of the n = 1 and n = 2 modes as a function of initial q95 (lower
x-axis) and q95 in the linear phase (upper x-axis). Note that between q95 = 6.7 to q95 = 7.0,
numerical issues occurred in the simulations for n = 1, thus this parameter range is excluded from
the plot. It can be suspected however that the growth rate for = 1 modes would be small in that
range. The black stars represents the nominal experimental conditions.

mode and of 1/2 for the n = 2 mode as it is expected for kink modes [14, 64]. There is at least
one region around q95;init = 7.8 and possibly another around q95;init = 6.8, where the growth rates
are so small that no mode can emerge.

For the case of q95;init = 7.81, no mode emerges, the plasma is stable and the transport across
the pedestal remains unchanged such that an ELM would occur once the pedestal has built up
sufficiently. In the case of q95;init = 7.88 and q95;init = 7.95 the growth rates are small and the cases
saturate at a low amplitude. Therefore too little particle or energy transport is caused, such that
both the particle, as well as the energy content continue to grow after the saturation. Most likely,
due to the quickly growing pedestal this state could probably not be sustained for a long time and
the triggering of an ELM can also be anticipated. None of these three cases shows a QH-mode like
behaviour.

However not only the cases with very small growth rates, but also cases with high growth rates
may not necessarily develop into a saturated QH-mode state. In particular in the range from
q95;init = 7.45 to q95;init = 7.67, as well as from q95;init = 6.46 to q95;init = 6.67, the developing
KPM grows to very large amplitudes with the magnetic energy of the n = 1 mode reaching up
to six times the value of the case at experimental parameters. The associated losses of thermal
energy can get to ELM-like values above 1 %. As such violent cases are numerically challenging
and would require a very long run time, within this thesis they were not continued to the point
where it can be said with certainty if these losses are just part of an ELM-like burst after which a
QH-mode like regime establishes or if a particular case develops into a full scale ELM. It can be
said however that these cases rather resemble an ELM burst than a smooth roll over to QH-mode
as it was seen eg. in 5.1 as far as they were carried out.
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Figure 5.10: Evolution of the edge safety factor q95 over time for various initial values (right)
and n = 1 linear growth rates as function of q95 in the linear phase (at approximately 1 ms) (left).
The color of the time traces indicates the total perturbed magnetic energy. The characteristic
of each case is indicated by the color of the marker at the end point of each trace (or the cut-
off at 5.2 ms). The cases marked red develop into a quasi stationary, QH-mode like state, blue
indicates an ELM-like evolution with significant particle and energy losses while green indicates
the cases where KPMs are not initially destabilized. The cases in purple were not terminated
due to numerical problems. It can be seen that in all the cases that, once a certain energy of
approximately 10�6 is reached, the cases begin to saturate and the edge safety factor decreases.
In the n = 1 growth rate diagram the approximate ELM and QH-mode windows are indicated.

In the range of q95;init = 7.03 to q95;init = 7.38, which includes the case at nominal experimental
parameters, all the cases can be identified to enter a stationary QH-mode state with only moderate
differences in mode amplitude and transport. For the three cases with q95;init > 8.0 and the single
case at q95;init = 6.4, the same holds.

In summary, there exists a region of large n = 1 growth rate between q95;init = 7.0 and q95;init = 7.8
(in the following called lobe) adjacent to regions of small or zero growth rates, where the lower
half of the lobe tends to develop in a QH-mode like regime while the upper half tends to develop
into an ELM-like state. Two more lobes only partially included in the scan (q95;init < 7.75 and
q95;init > 8.0) behave consistently with this.

A possible explanation for this observation may be the evolution of q95 in the non-linear phase
which is depicted in figure 5.10, where also the just described characterisation of the different cases
in the liner growth rater diagram is given. All cases have strong initial drop of q95 for the first
0.05 ms where the flows establish and a slower decrease in the linear phase which is similar for all
cases, regardless of how large the MHD activity is. For all cases that develop a KPM, q95 drops in
the non-linear phase, however there is a large variation of how fast and how much q95 changes.

All cases which develop into a QH-mode like state seem to converge to a common value of q95

at the lower end of the respective growth rate lobe, i.e. approximately q95 = 6.8 for the lobe
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Figure 5.11: Evolution of the magnetic energy, thermal energy content and particle content for
the case with an initial q95 = 7.31. The particle content and thermal energy is additionally shown
for the axisymmetric simulation for the same q95, as well as the non-axisymmetric simulation of the
nominal experimental case. This case features an enhanced heat and particle transport compared
to the nominal case due to its large mode amplitude.

from q95;init = 7.0 to 7.8 and q95 = 7.75 for the lobe with q95;init > 7.9. These values lie in a
region of small or zero linear growth rate. Thus, the non-linear q95 evolution towards a linearly
weakly unstable state might contribute considerably to the saturation. Also the cases which show
a significant heat and particle loss and are more ELM-like show a decrease of q95 and evolve in the
same direction towards that common value of q95. However, due to the larger q95 gap they have
to overcome to reach the region of q95 which would possibly stabilize the mode, they can grow
over a longer time and reach larger mode amplitudes, which are responsible for the large heat and
particle losses.

The observation that the ELM like cases lie at q95 above the maximum growth rate of n = 1 and
the QH-mode like cases lie below the maximum may be explained by the effect a dropping q95 has
on the growth rate. Below the maximum, a dropping q95 results in a smaller growth rate, i.e. a
deceleration, whereas above the maximum a dropping q95 leads to a larger growth rate, i.e. an
acceleration of the growth of the mode. Instead of saturating as the QH-mode like cases do, the
ELM-like case continue to grow in the non-linear phase.

It can thus be suspected that the decisive criterion whether a particular initial value of q95 allows
the access of QH-mode is not the particular linear growth rate of the considered case, but rather if
the q95 of the initial state is just below or on above a minimum of the linear n = 1 growth rate in
figure 5.9. Initial values of q95 above a growth rate minimum and below a growth rate maximum
tend to develop into a QH-mode like state, initial values below a minimum and above a maximum
tend to develop an ELM like crash.
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The case at q95;init = 7.31 is particularly interesting since it has a high linear growth rate and
a high saturation amplitude, while clearly entering a QH-mode like state and not showing any
ELM-like behaviour. The evolution of the magnetic energies, particle and thermal energy content
of this simulation is displayed in figure 5.11.

In contrast to the case at nominal experimental parameters, this case has a large linear n = 1
growth rate which is larger than the linear n = 2 growth rate so the mode saturates with only a
single saturation event for n = 1 and all other modes with it. The saturation amplitude of this
case is 1.5 times higher than the original case which is responsible for increased particle and heat
transport. It can be seen that the particle content is reduced during the saturation but keeps
growing again thereafter, however at a lower rate compared to the axisymmetric case or the non-
axisymmetric case with nominal q95. Similarly, the thermal energy transport increases which leads
to a loss of thermal energy over time in this case. The particle transport is in this case increased
by 5 % (compared to the 3.5 % in the original case), while the heat transport is increased by 50 %
(compared to the 30 % in the original case).

As illustrated by this case at q95;init = 7.31, the choice of the initial q95 value, or rather of the
toroidal magnetic field which determines it, can influence the EHO induced transport. It can thus
be speculated that q95 could be used as a control parameter to optimise the transport across the
pedestal in QH-mode discharges.
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Chapter 6

Loss of QH-mode

In this chapter, the results of the second part of the simulations carried out in this thesis are
presented. It is investigated how the plasma transitions out of the QH-mode regime that was
found in the previous chapter. In the experiment, it is observed that the established QH-mode
is lost and transitions to an ELMy H-mode regime when the pedestal density increases, hence a
similar pedestal density increase is attained in the simulation. By increasing the particle source,
the experimentally observed rise of the pedestal density is accelerated to reach the pedestal top
density at which QH-mode is lost in the experiment within a computationally feasible time scale.
Indeed, like in the experiment, the increase of the pedestal to this density triggers an ELM crash
which is investigated and described in section 6.1. Furthermore, the appearance of a global pedestal
oscillation emerging close to the transition of QH-mode to ELM crash is reported in section 6.2.

6.1 QH-mode to ELM regime transition
To characterize the QH-mode regime not only the access conditions under the variation of various
parameters need to be studied like in chapter 5 and existing work in literature (see chapter 2.3),
but also the termination of QH-mode upon changing plasma parameters is of high relevance.
In particular, it has been observed experimentally that the QH-mode regime exists only at low
densities and collisionalities which makes it an interesting approach to increase the pedestal
density of an established QH-mode and observe the effect this has on the saturated KPM. In
the experimental discharge considered in this thesis, a similar evolution is observed where the QH-
mode is not fully steady-state, but the pedestal density continuously increases until the QH-mode
is eventually terminated by transitioning into an ELMy regime.

Although it is not entirely unfeasible to carry out simulations over the time frame of the length of
the QH-mode phase in this discharge, it would be very costly, both in computational time and real
time. In order to nevertheless reach pedestal top density values similar to those at the end of the
QH-mode phase within a computationally feasible time scale, the particle source can be increased,
which accelerates the build up of the pedestal.

Therefore, the case at nominal experimental parameters, presented in section 5.1, is modified by
doubling the edge particle source located at ψN = 1.0 (resulting in a 80 % increase of the particle
source inside the separatrix) at 20 ms, that is about 13 ms after the saturation in the stationary
QH-mode phase. The evolution of the magnetic energies, thermal energy and particle content of
this case is displayed in figure 6.1 in comparison with the case at nominal experimental values. It
can be seen that before the change of the source, the plasma is in a quiescent, steady state where
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Figure 6.1: Dynamics after increasing the particle source by a factor two at 20 ms compared to the
reference scenario at experimental parameters. The magnetic energies, thermal energy and particle
content are displayed compared to the evolution of the unchanged case. The additional particles
immediately result in a growth of the particle content until the crash occurs at approximately
23 ms which causes a large loss of particles and heat. Over the course of the ELM crash, around
9 % of the thermal energy is lost.

the magnetic energy fluctuates only slightly and the particle content increases slowly while the
thermal energy stays roughly constant. When the particle source is increased, the particle content
starts to increase right away. At the same time, the magnetic energies, in particular for higher
toroidal mode numbers, grow slowly at first until at approximately 23 ms, an ELM-like crash is
induced, which removes about 9 % of the thermal energy and brings the growth of the particle
content to halt.

Over the course of the crash most of the pressure pedestal collapses as depicted in figure 6.2, which
also includes the power flux from the plasma to the wall. Starting from the change in the density
source, the pressure gradient increases slightly up to the point right before the onset of the crash
at 23 ms. Thereafter, in the first phase of the crash until 24.5 ms, the lost power increases while
the pressure gradient slightly reduces and shifts inwards. Following on that first, smaller crash, at
24.5 ms most of the pedestal pressure gradient is flattened within less than 0.2 ms, accompanied
by a peak heat flux of more than 50 MW.

Figure 6.3 shows the evolution of the pedestal density and the radial electric field before (6.3a) and
after (6.3b) the start of the ELM crash. From 18 ms to 20 ms, before the change of the source in
the steady QH-mode phase, both the pedestal density and the electric field evolve on a slow time
scale. After the particle source is doubled, the density pedestal builds up quickly and the pedestal
shoulder shifts inwards. The radial electric field gets reduced due to its inverse dependency on
the local density. During the ELM crash which is shown in 6.3b, the density pedestal height and
gradient are barely reduced, contrary to what is usually observed in an ELM crash. This is due
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Figure 6.2: Collapse of the pedestal over the course of the ELM crash. The upper panel shows
the evolution of the outboard midplane pressure gradient profile in the pedestal over time, the
lower panel shows the boundary heat flux Pbnd, as well as the boundary surface-integrated particle
flux Jbnd. The pedestal pressure gradient is greatly reduced during the ELM crash while the heat
flux out of the plasma is significantly increases. The particle flux already increases when the source
is increased but still rises during the ELM crash.

to the very large particle source chosen for this case which replaces most of the lost density right
away. However, when comparing to the evolution of the density pedestal before the ELM crash
in figure 6.3a, it becomes clear that there is a large additional particle transport (which is also
displayed in figure 6.2) due to the ELM which prevents the pedestal from growing further.

Figure 6.4 shows Poincaré plots for times right before the change of the source, after the change
of the source but before the crash and during the ELM crash. The first and second panel show
that the change of the source does not have an immediate effect on the ergodisation of the field
close to the separatrix. In the early phase of the crash however, before the maximum power loss,
shown in the third panel, the field becomes significantly more ergodised and the last intact flux
surface shifts in to approximately ψN = 0.975. The field gets even more distorted in the phase of
the ELM crash with the highest power losses, shown in the fourth panel where the last intact flux
surface is at approximately ψN = 0.955, coherent with the large additional power flux to the wall
that is depicted in figure 6.2.

In figure 6.5, the magnetic energy evolution is shown again (in a non-logarithmic plot), together
with the most important quantities that play a role in the stability of the pedestal, namely
the electric field, the current and the pressure gradient. For all three quantities the maximal
(respectively minimal) values are given as an indicator of the overall contribution to the pedestal
stability by that quantity.

It can be seen that the electric field well depth is being reduced right away when the particle source
is turned on, most likely due to the inverse dependence of the electric field on the density. The
pedestal itself is built up more slowly and the pressure gradient, as well as the pedestal current
only increase moderately. Up to 23 ms, the destabilizing factors, pressure gradient and current,
increase by 10 % and 13 % respectively, while the stabilizing radial electric field well depth reduces
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(a) (b)

Figure 6.3: Evolution of density (top) and radial electric field (bottom) before (a) and during
(b) the ELM crash induced by the change in particle source.

Figure 6.4: Poincaré plots before the change of the source (a) after the change of the source but
before the onset of the crash (b), as well as during the early phase (c) and the peak of the ELM-like
crash(d).

46



Figure 6.5: Evolution of the magnetic energy before and during the ELM crash. The stabilizing
radial electric field Er) and destabilizing pressure gradient rp contributions are indicated by their
extremal values in the toroidally averaged outer midplane. For the destabilizing current j is the
maximum of the flux-surface averaged profile in the pedestal is shown.

significantly by 20 %, resulting in an overall less stable pedestal. This reduces in particular also
the stability to ballooning modes and allows the growth in all mode numbers, but in particular the
higher n modes before and in the early phase of the crash and first leads to a significant growth
of the n � 2 modes at 23 ms. Thereby the contributions of the higher n modes become more
important, e.g. the n = 6 mode increases in amplitude by more than three orders of magnitude
while the dominant n = 1 mode even decreases in the early phase of the crash and only increases by
a factor 5 in the most violent phase, which indicates the transition from a KPM to a coupled peeling-
ballooning mode, for which both pressure gradient and current act destabilizing. Eventually, the
n = 1 mode also grows again at 24.25 ms, leading to the abrupt collapse of the pedestal and a large
peak in the boundary heat flux.

In the first part of the crash at approximately 23 ms, both the pressure gradient and the pedestal
current drop back below the value before the change of the source. The radial electric field on
the other hand remains lower than the value before the change of the source and drops even
further. That the crash continues despite the smaller current and pressure gradient suggests that
the reduction in the electric field is the determining factor for the loss of QH-mode.

Figure 6.6 shows the evolution of the density and temperature at the pedestal top (ψN = 0.95).
The experimental data is shown for part of the QH-mode phase and the first two ELMs after
its termination. For better comparability, the trace of the simulation is shown twice. On the
left side it is aligned such that the start of the simulation matches the time of the equilibrium
reconstruction, there the evolution of density and temperature before the change of the source
approximately matches the experimental one. On the right, the simulation is shifted in time
such that the time of the crash coincides with the time of the first ELM in the experiment. The
black dashed line indicates the density at which the ELM crash is triggered, which matches the
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Figure 6.6: Evolution of the density and temperature at the pedestal top (ψN = 0.95) in the
simulation and experiment. The simulation trace is shown twice with alignment to its starting
point(left) and with alignment of the ELM crash (right). The dashed black line indicates the
density value at which QH-mode is lost in the simulations which is within the error bar of the
experimental value.

experimentally observed density within error bars.

Slightly delayed with respect to the drop in temperature, the experimental density can be seen to
rise substantially, which is a feature not captured by the simulation. Likely this sudden increase
of the pedestal density is due to the ionisation of neutrals in the SOL, caused by the large power
flux of the ELM. As the model used in this thesis does not feature neutrals, this effect cannot be
captured and the pedestal density remains clamped at the value which triggered the crash.

With a second case, which has an edge particle source increased by only 88 %, it was confirmed
that the critical density is not determined by the change in particle source. This second case also
evolves into an ELM crash, of which only the very beginning was simulated, occurring at a 4 %
lower pedestal top density than the case with a doubled source which is still well within the error
bars of the experimental measurement.

The simulation for this crash was carried out with 6 toroidal harmonics, however, this is likely not
sufficient to fully resolve the dynamics of the ELM crash. Therefore, a simulation with a better
toroidal resolution including n = f0..12g harmonics that also allows higher n ballooning modes was
carried out from 22.1 ms to 23 ms, which confirmed the onset of the crash at the same point in time
and at the same pedestal top density. However, while the dynamics during the onset of the crash
is qualitatively similar, the time scale is faster in the simulation with higher resolution. This is
consistent to dedicated simulations of type-I ELM cycles, which found high resolution requirements
to fully resolve the fast time scales associated to the ELM crashes [22]. Since the simulation of
the ELM crash at increased toroidal resolution is numerically very challenging and not necessarily
necessary for answering the questions of this thesis, it was not continued further but only used to
confirm that the onset of an ELM like crash occurs at the same point in time and at the same
critical density as in the case with 6 harmonics. The simulation presented here should thus not be
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Figure 6.7: Magnetic energy oscillations during the onset of the limit cycle.

taken as a fully realistic simulation after 23 ms, both the time scale of the dynamics as well as the
total energy loss might not be fully accurate.

These simulations show for the first time that it is possible to reproduce the transition from QH-
mode into an ELMy regime as a result of a density increase. The effect of the density on the electric
field was shown to be an important contribution to the destabilisation of the pedestal, which lead
to the onset of an ELM crash. Despite the shortcomings in terms of the simulation of the ELM
crash itself, the important feature, namely the critical pedestal top density, could be well resolved
and gives confidence that the access and loss conditions of QH-mode can be predicted with the
MHD model used here.

6.2 Limit Cycle oscillations
In section 6.1, the QH-mode regime was left by doubling the particle source. Thereby the pedestal
became sufficiently unstable such that an ELM crash was triggered. In this section, a phenomenon
is described that occurs when the particle source is increased more moderately, such that the
pedestal becomes only slightly more unstable, but does not trigger an ELM crash right away.
Instead, an oscillation in the pedestal (next to the already present edge harmonic oscillation) can
be observed to emerge.

Similar to the case presented in section 6.1, the edge particle source was increased at 20 ms, however
it was only increased by 22 % instead of doubling it, which results in a 20 % increase of the particle
source inside the separatrix. After about 6 ms, a global oscillation emerges, where the entire
pedestal flow periodically accelerates and decelerates. At the same time, also the mode amplitude
of the saturated KPM starts to oscillate, periodically growing and shrinking the mode which can
be seen in the magnetic energies in figure 6.7. With a frequency of 6 kHz, this oscillation is about
a factor four slower than the EHO, which continues to exist also after the onset of the oscillation.
The oscillations are not only visible in magnetic and kinetic energies, but also in the pedestal radial
electric field, current, pressure, density and temperature which all fluctuate in the order of 5 %.

The oscillations of the background kinetic energy is phase inverted compared to the n > 0 kinetic
energy contributions, as well as to the n > 0 magnetic energy oscillations, which can be interpreted
as the KPM and the background pedestal flows exchanging energy back and forth over the course
of an oscillation period.

As an indicator for the stability of the pedestal, the extremal values of radial electric field, current
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(a) (b)

Figure 6.8: Limit cycle oscillations in the Er - rp phase space, colored by time (6.8a) and colored
by the normalized magnetic energy of the n = 1 mode (6.8b). From 20 ms to 25 ms, the pedestal
drifts to a higher pedestal with a lower radial electric field, that is towards a more unstable state.
From 25 ms, the cycle starts to establish and reaches its full size at 28 ms. Thereafter the limit
cycle maintains its size, but drifts slowly over time due to the sourcing of the pedestal. It can be
seen that the oscillations of the magnetic energy is in phase with the limit cycle.

and pressure gradient profiles can be investigated for this case. The quantities can be plotted
in phase space to indicate the stability of the pedestal such as it is done for radial electric field
and pressure gradient in figure 6.8, which is deemed to be the most relevant set of parameters.
The remaining phase space plots can be found in appendix B.1. In 6.8a, it is visible that already
initially after the change of the source, small oscillations were present in the pedestal. After about
6 ms though, the far larger pedestal oscillation emerges that almost makes a closed loop in phase
space. The return to the same point in phase space as a period earlier is only avoided by the slow
build up of the pedestal, making it drift over a slower time scale than the oscillation towards a
higher pressure gradient and electric field. By coloring the limit cycle oscillation in phase space
by the amplitude of the magnetic energy of the dominant n = 1 mode in 6.8b, it can be seen
that the mode grows and shrinks in phase with the oscillation. As the mode grows and shrinks in
amplitude, it is thought that the stabilizing and destabilizing factors change in relative magnitude
over the course of an oscillation cycle.

During the onset phase of the oscillation, the oscillation amplitudes of current, pressure gradient
and radial electric field grow and seem to converge towards an almost closed cycle in phase space
with a particular amplitude. Thereafter, the oscillation amplitudes stop growing and the oscillation
remains on almost the same path in phase space, only overlaid with a small drift due to the build
up of the pedestal. This behaviour is observed for this particular choice of the particle source, but
also for case with an edge particle source increased by 44 % (resulting in a 40 % increase of the
particle source inside the separatrix) compared to the nominal case. Due to this observation of
convergence to a certain oscillation amplitude, the whole phenomenon was dubbed to be a limit
cycle.

The maximal amplitude of the established oscillation in magnetic energy is about 10 % larger for
the case with 44 % particle source increase compared to the previously mentioned case, thus it
can be suspected that a stronger drive increases the magnitude of the cycle. When reducing the
particle source again after the limit cycle has established, it can further be seen that the magnitude
of the oscillations begins to shrink just after the change of the source, likely because thereby the
drive of the oscillation was at least partially removed.
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This kind of oscillation was seen in all cases where the particle source was increased after the QH-
mode had established. However, the larger the particle source, the faster the pedestal evolves. This
leads to a situation in which, unlike the case presented here, the background drift of the pedestal
occurs at a similar time scale as the one of the limit cycle which prevents the establishment of
a clean cycle in phase space that almost closes up to itself. For the cases of 44 % only the drift
becomes faster but the limit cycle can still establish. For the cases with 66 %, 88 % or 100 % edge
particle source increase, however only a small number of cycles occur before the pedestal already
becomes sufficiently unstable to trigger a crash. Over these few cycles, the oscillation amplitude
is still growing and cannot reach its full size before the crash is induced.

In the steady state phase of some of the QH-mode simulations that were presented in 5.1 and 5.3,
oscillations resembling the limit cycle were observed as well. In these cases however, the oscillations
showed to be more noisy and always remain at a small amplitude of at most half of the amplitude
observed when being triggered by increasing the particle source. The frequency of the oscillations
was seen to be only around 2 kHz. Over the course of the evolution of the steady-state QH-mode
phase, the oscillations emerged, changed considerably in size and also disappeared again without
being directly triggered externally. Part of these oscillations can be seen in figure 6.7 before 20 ms.

Although the exact mechanism of the emergence of this limit cycle is not known, it can be said that
the pedestal periodically becomes more and less stable, decreasing and increasing the mode size
respectively. The mode amplitude influences the transport across the pedestal which determines
whether the pedestal height increases or decreases. This likewise influences the current, electric
field and pressure gradient which determine the mode stability and decide on its growth or decay.
It is thus suspected that, in this particular situation, the pedestal is in a state close to the stability
boundary where, after crossing the stability boundary and growing, the mode removes its own
drive. Thereby it crosses the stability boundary again, which forces it to shrink, such that the
drive is established again and the cycle repeats, hence the mode oscillate back and forth over the
stability boundary.
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Chapter 7

Summary & Conclusion

In this thesis, realistic numerical simulations of the access and loss of QH-mode in tungsten-
wall ASDEX Upgrade were carried out for physics interpretation and validation. The MHD
code JOREK was used for this purpose, making use of a reduced MHD, single temperature,
fixed boundary model including self-consistent bootstrap current and diamagnetic flows. As an
experimental basis for the simulations carried out, an equilibrium reconstruction of the 150 ms long
QH-mode phase of ASDEX Upgrade discharge #39279 was used.

It was shown that QH-mode and its associated EHO can be obtained in simulations with initial
conditions based on an experimentally reconstructed equilibrium. The obtained saturated QH-
mode state remains steady over the simulated time scale of more than twenty milliseconds with
only minor fluctuations in the mode amplitude or transport across the pedestal. The dominant
mode in this phase is a saturated n = 1 KPM at the pedestal, which is toroidally localized and
shows the characteristic multipeaked spectrum of an EHO, supporting the hypothesis of the EHO
being a saturated KPM. The frequency of the EHO observed in the simulation is within the typical
range of EHO frequencies, it is however roughly a factor 2 too large compared to the EHO frequency
of this specific discharge, likely due to the single-temperature assumption taken in the simulation.

Comparisons of simulations with and without inclusion of self-consistent diamagnetic flows have
shown that the inclusion of diamagnetic effects has a strong influence on the saturation and
transport properties of QH-mode and should thus not be neglected in future simulations that
aspire a realistic reproduction of QH-mode.

In the saturated phase, the particle transport induced by the saturated KPM is small compared
to the background particle transport present in the axisymmetric case without MHD instabilities.
This results in a continuously increasing density pedestal despite the onset of the mode. Conversely,
the heat transport is significantly enhanced by an ergodic layer that forms just inside the separatrix
when the MHD mode emerges. This can be seen to be in qualitative agreement with the experiment,
where, despite entering the QH-mode phase, the pedestal top density continues to increase while
the pedestal top temperature remains approximately constant.

By scanning over a range of q95 values, a set of windows were identified within which the QH-mode
can be observed to emerge and outside of which, either no MHD mode emerges or the emerging
KPM has a large growth rate, resulting rather in an ELM-like event than the onset of a QH-mode
like state. The non-linear evolutions of cases with different initial q95 show a tendency to converge
towards the next smaller q95 value that is linearly stable or has only a small growth rate. The small
growth rate at these values might be part of the saturation mechanism of QH-mode. Cases which
lie too far away from said q95 value tend to develop large mode amplitudes on the convergence path
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and resemble and ELM, while cases with initial q95 close to the saturated value tend to develop
into a QH-mode like state.

In the relevant experimental discharge the pedestal density was increasing throughout the QH-
mode phase, which eventually lead to an ELM crash and the plasma transitioned into an ELMy
regime. To mimic that behaviour and to assess the limits of the QH-mode regime, the particle
source at the edge has been increased, such that the pedestal density values for which the QH-
mode is lost in the experiment are achieved within a computationally feasible time scale (<10 ms
compared to approximately 125 ms in the experiment). When doubling the edge particle source
compared to its steady-state value, the pedestal becomes gradually more and more unstable due to
the increasing pedestal pressure and current while the stabilizing electric field well shrinks due to
its inverse density dependence which eventually leads to an ELM crash, terminating the QH-mode
phase. It was shown this way for the first time that it is possible to reproduce a QH-mode to ELM
regime transition with an MHD simulation. Notably, the transition from QH-mode to an ELMy
regime occurs in the simulation at pedestal densities which are within the error of the experimental
measurements.

If the edge particle source is not doubled but is only increased more moderately, the pedestal enters
a regime with a strong limit cycle oscillation where the destabilizing current and pressure gradient,
the stabilizing radial electric field and the mode amplitude oscillate with a specific phase relation
with respect to each other. Possibly, the emergence of this limit cycle oscillation (given that it
can be measured experimentally) could be used in QH-mode experiments as an indicator that the
ELM stability limit is being approached and could be used to anticipate and possibly avoid the
termination of QH-mode.

The good agreement between the QH-mode experiment and the simulations presented in this thesis,
in particular the density condition for the transition of the QH-mode regime to an ELMy regime,
suggest that the access and maintenance conditions of the QH-mode regime can be predicted with a
resistive MHD model including self-consistent diamagnetic flows such as the one used in this thesis.
Possible further effects that could be taken into account for an even more complete description
of the entry into QH-mode and the transition out of it, is a two temperature treatment, which
might reduce the discrepancy between the experimentally observed and the simulated frequency
of the EHO. If two temperatures are considered, the Er well and the E � B rotation might
significantly change. The electric field well, which is dependent on the ion pressure gradient but
not the electron pressure gradient, might become less deep, which reduces the stabilising effect
on the pedestal, possibly allowing the mode to grow to a larger amplitude. This could enhance
the particle transport across the pedestal to higher levels than what has been observed in the
simulations presented here. Moreover, the reduced Er well reduces the poloidal rotation, which
could reduce the simulated EHO frequency and bring it closer to the experimentally measured
value. A radial shift between electron and ion pressure gradient could also shift the location of
the minimum of the Er well which influences the mode rotation. Possibly a more sophisticated
SOL model, in particular including neutrals and impurities could allow to capture the post-ELM
evolution more closely, in particular the rise of pedestal density after the ELM which is thought
to be due to ionisation of neutrals could be captured with such a model.

Another topic worth to further investigate would be the behaviour of simulations with different
initial q95 values, in order to identify the governing factor of whether a particular case shows the
emergence of QH-mode like state. The simulations carried out in this thesis on that topic could be
extended by including a broader range of q-profiles or by carrying the simulations on for a longer
time, such that the QH-mode and ELM regimes can be identified more precisely. Also filling in the
gaps that were left by numerical problems in this investigation could help to complete the picture.
Eventually, although more demanding, a simulation could be carried out which does not start with
different initial q95 values but only changes it after QH-mode has been established, which could
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give further insights if QH-mode cannot exist at certain q95 values or if it can only not be directly
accessed.

Ideally, the found influence of q95 on the access of QH-mode, but also on the mode amplitude
and thereby the additional transport across the pedestal, would be investigated experimentally.
Since individual discharges for different configurations for that sole purpose would likely be too
expensive, the toroidal magnetic field could be ramped over time to modify the q-profile. The
effect thereof on the amplitude of the EHO could be measured e.g. by the radial displacement of
the pedestal. If successful, q95 might be used to optimize the transport across the pedestal, such
that the increase of the density is decelerated or even stopped and could prolong the QH-mode
phase.

Finally, it could be attempted to develop a simple, zero dimensional model for the pedestal that can
describe the limit cycle oscillations that were observed, as well as possibly other pedestal dynamics
close to regime transitions.
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