
 Eindhoven University of Technology

MASTER

Dynamic quantization for remote state estimation with reachable sets using Zonotopes

Li, Yaodong

Award date:
2023

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/7c0c03e6-68c4-4b4e-a0bf-3445f69878ee


Department of Mechanical Engineering

Dynamic quantization for remote state estimation with
reachable sets using Zonotopes

by

Y. Li

MSC Graduation Project

Assessment committee
Chair: Prof dr. ir. W.P.M.H Heemels
Member 1: Dr. M.S.T. Chong
Member 2: Dr. Z. Sun

Graduation
Program: Mechanical Engineering (ME)

Control Systems Technology
System & Control (S&C)

Capacity group: Control Systems Technology
Supervisor: Dr. M.S.T Chong

Ir. K.Scheres
Date of defense: 23-01-2023
Student ID: 1536532
Course code: 4SC98
Study load (ECTS): 45

This report was made in accordance with the TU/e Code of Scientific Conduct for the Master thesis.



Acknowledgement

This thesis was completed under the guidance of my supervisor Michelle. I
would like to express my gratitude to her rigorous scienti�c literacy and teaching
attitude, which have cultivated my academic learning and writing skills. Also,
I would like to thank another supervisor Koen for his guidance and help during
the project. Many new ideas and solutions were inspired in discussions with
both of them.

Besides, I want to thank all the teachers I met at the university for their
educating and mentoring. I am also grateful to my colleagues Canye, David,
Paul, Caner, Bram, etc. for their care and help during my master’s study.
Thanks should also go to my friends Junqiang, Ruohan, Barry, and Haoyue for
their support and companionship. Lastly, I want to thank my family, especially
my parents for believing in me.



Abstract

We study dynamic quantization for remote state estimation with unknown
inputs and disturbance over a bandwidth-limited communication network. We
use set propagation techniques employing zonotopes to construct an estimate of
the reachable set to adjust the quantization parameters. We compare the zono-
topic approximations to a norm-based approximation employing hypercubes.
Su�cient conditions for the bitrate and the inter-transmission interval are given
for an ultimate upper bound on the quantization error and the reconstruction er-
ror. A simulation of a 2-dimensional system illustrates the comparison between
the set-based dynamic quantization scheme using zonotopes and the norm-based
scheme using hypercubes.
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Abstract—We study dynamic quantization for remote state esti-
mation with unknown inputs and disturbance over a bandwidth-
limited communication network. We use set propagation tech-
niques employing zonotopes to construct an estimate of the
reachable set to adjust the quantization parameters. We compare
the zonotopic approximations to a norm-based approximation
employing hypercubes. Sufficient conditions for the bitrate and
the inter-transmission interval are given for an ultimate upper
bound on the quantization error and the reconstruction error.
A simulation of a 2-dimensional system illustrates the compar-
ison between the set-based dynamic quantization scheme using
zonotopes and the norm-based scheme using hypercubes.

Index Terms—Dynamic Quantization, Reachable Set, Remote
State Estimator, Input-to-State Stability, Zonotope, Set Propaga-
tion, constrained bandwidth.

I. INTRODUCTION

In recent years, with the development of sensors and
communication techniques, the study of the remote state
estimation has attracted significant research interest within the
control community. In Cyber-Physical Systems (CPS) with the
integration of multiple agents and their sensing devices, the
remote estimator is responsible for reconstructing the state
information based on the sensor’s data transmitted over a
communication channel. It is commonly used in e.g., con-
trol systems including autonomous vehicles, smart grids, and
industrial automation [1]. For systems requiring signal com-
munication via a bandwidth-limited network, the analog signal
must be converted into discrete-valued digital symbols before
being transmitted. This operation inevitably causes an error,
called the quantization error. Furthermore, the total amount of
information that may be transmitted per unit of time is often
limited due to bandwidth constraints of the digital channels,
which further degrades the precision of the information that
is exchanged over the network. There are results that show
that the quantization error does not behave like, e.g., white
noise [2]. Hence, the existing observer design tools such as
Kalman filters may not be capable to handle the “unknown
noise” caused by the quantization process. Therefore, novel
approaches for remote state estimation over communication
channels with bandwidth constraints are needed.

First, to minimize or even eliminate the effect of the quanti-
zation error, many studies of quantizer design have been done
in the past decades. A quantizer is a mathematical mapping
from a continuous region called the quantization region to a
finite discrete set of indexes called the quantization levels. A
quantizer with fixed parameters is called a static (or memory-
less) quantizer. In the earliest studies, the quantization error is

traditionally modeled as an extra additive white noise signal,
so that standard stochastic control techniques can be applied
[3]. In e.g., [4], an optimal quantizer design method is first
studied for the closed-loop dynamical system by optimizing
the controller, estimator, and quantizer separately, which is
later proved to be incorrect by [5], whose counterexample
shows that the quantization error of a static quantizer depends
on the past controls. In e.g., [2], another example proves
that the white-noise model fails to support the behaviors of
a linear noiseless and unstable plant. These results underline
the connection between the design of the controller and
estimator for a quantization feedback system. In, e.g., [6],
[7], a minimal bitrate for obtaining a bounded quadratic-
mean estimation error based on a stochastic process with a
prior known distribution is studied. Moreover, in [8], it is
shown that there exists a critical bitrate, below which there
is no quantization and control scheme that can stabilize an
unstable plant. In [9], [10], the minimum bitrate is studied for
asymptotically stabilizing the origin of the plant with a known
control law and bounded input disturbance. In [11], a “smart”
sensor is collocated to the plant with a built-in Kalman filter
[12] for pre-estimating the state before it is transmitted to the
remote state estimator.

However, all papers mentioned above consider static quan-
tization with fixed quantization parameters. In this case, a
low bitrate has a strong negative effect on the resolution of
quantization. Another strategy for improving the resolution
under a fixed bandwidth constraint is dynamic quantization
[13], where the quantization parameters are dynamically ad-
justed based on the received data and knowledge of the
plant dynamics. In [14], [15], the robustness of dynamic
quantization against external disturbances is studied based on
the notion of input-to-state stability [16]. The surveys [17],
[18] give recent developments of dynamic quantization for the
linear and nonlinear systems, respectively.

So far, stabilization problems with controller and quantizer
designs are the main focus of the above papers, where the
origin is often assumed to be a stable fixed point under the
designed closed-loop controllers. In this case, the logarithmic
quantizer is the most efficient for obtaining the stability of LTI
systems with respect to a quadratic Lyapunov function [19],
since the resolution improves when the state approaches the
origin.

On the other hand, in, e.g., safety-critical systems and fault
detection [20], the input is unknown and can not be chosen
freely. Instead of focusing on the resolution of the origin, like



stabilization problems, abnormal behaviors of the state such
as blowing-ups and dead zones are more crucial to observe,
in order to detect and prevent damage or loss of controls. The
existing remote state estimation techniques rely heavily on the
stability of the closed-loop system, in which the quantization
error can be eliminated as the state approaches the origin.
Without knowledge of the (control) inputs, the constructions of
the quantization region can no longer asymptotically approach
the real region of the state. When the inputs and/or the control
laws are unknown to the remote state estimator, a conservative
prediction for all the reachable states based on a constrained
input is more reliable for adjusting the quantization parameters
and resolution. In [21]–[23], a set-based observer that prop-
agates the set of all possible states is studied with bounded
inputs using reachability analysis based on zonotopes [24]. We
will use this result to propagate a conservative approximation
of the quantization region for dynamic quantization. In this
case, we choose uniform quantizer [25] so that the resolutions
are evenly distributed across the set of all possible states.

Hence, in this paper, we aim to design a remote state
estimator with a dynamic quantization scheme, based on
reachability analysis for continuous-time linear time-invariant
(LTI) dynamical systems with external disturbances. Similar to
[11], we employ a pre-estimator before transmission to avoid
the remote estimation based on the outputs. We assume the
input signal is known to the pre-estimator before transmission,
but the remote state estimator has no access to either the inputs
or the control laws. Under the aforementioned setup and its
corresponding properties, several objectives can be achieved:

1) No overflow occurs during the dynamic quantization
scheme.

2) Conditions for the transmission bitrate and inter-
transmission interval are given to ensure the boundedness
of the quantization error.

3) The set-based dynamic quantization scheme provides
a better estimation result compared to the norm-based
scheme, due to a less strict requirement on the transmis-
sion bitrate and inter-transmission interval.

4) An upper bound is given for the state reconstruction error
with respect to the quantization error, the input bound,
and the disturbance bound.

A. Organization of this paper

The next section presents the notation and other necessary
preliminaries, definitions, and properties. In Section III, we
introduce the remote state estimation setup as well as its indi-
vidual components separately and proceed to state the overall
objective for this paper. In Section IV, we present two dynamic
quantization schemes which both achieve zero overflow based
on different propagation techniques. Section V contains the
main results of this paper including the comparison of the
two schemes. Lastly, in Section VI, numerical simulations and
comparisons are presented to support the main results.

II. PRELIMINARIES

A. Notations

• Rn denotes the n-dimensional space of real numbers,
• R+ represents the set of non-negative real numbers,
• Z+ represents the set of non-negative integers,
• AT denotes the transpose of matrix A,
• Ai represents the row vector of the i-th row of matrix A,
• Ai|j represents the element of the i-th row and the j-th

column of matrix A,
• λi(A) denotes the i-th eigenvalue of matrix A,

λmax(A), λmin(A) denote the maximum and the mini-
mum eigenvalues, respectively,

• In denotes the identity matrix of size n × n,
• In denotes a set of integer from 1 to n, i.e. In :=

{1, 2, ..., n},
• 0n denotes the n-dimensional vector [0, 0, ..., 0]T ,
• σn,i is the n-dimensional vector with 1 as its i-th element

and 0 otherwise. We write σi when its dimension is clear
from context,

• the infinity norm of a vector x ∈ Rn is denoted by
|x| := max

i∈In

|xi|. For a matrix A ∈ Rn×n, |A| :=

max
j∈In

Pn
i=1 |Ai|j |,

• A ⊕ B stands for the Minkowski sum of set A and B,

A ⊕ B = {a + b | a ∈ A, b ∈ B}, (1)

• ⌊b⌋ denotes the floor function that returns the greatest
integer that is less than or equal to b ∈ R, which has the
following property,

b − ⌊b⌋ ∈ [0, 1), (2)

• a continuous function γ : R+ → R+ is a class-K
function, if it is strictly increasing and γ(0) = 0,

• a continuous function α : R+ × R+ → R+ is a class-KL
function, if α(·, s) is a class-K for all s ≥ 0, α(r, ·) is
non-increasing and α(r, s) → 0 as s → ∞ for all r ≥ 0.

B. Terminal Reachable Set and its Over-approximation

In this section, we first define the terminal reachable set:

Definition 1. Consider a general dynamical system ẋ =
f(x, u), for a finite time horizon [0, τ ], the terminal reachable
set Rτ (X , U) is defined as the set of all states that are
reachable at time τ with x(0) ∈ X , with u(t) ∈ U for all
t ∈ [0, τ ], i.e.,

Rτ(X , U)={x(τ) :∀x(0)∈X,u(t)∈U, ẋ=f(x, u), ∀t∈ [0, τ ]}.
(3)

The terminal reachable set can be used to update the
quantization region and further improve the resolution of the
quantization. [25] uses the Lipschitz condition to upper-bound
the terminal state, but it only provides the norm bound instead
of each individual state, thereby not precisely for our cases.
Polytope-based over-approximation of the reachable set can
provide better results but the dramatic increase of vertices
and surfaces makes it difficult to propagate. To that end, [24]



uses zonotopes to over-approximate the terminal reachable
set of a LTI system by exploiting the properties of these
zonotopes. The propagation of zonotopes relies on the centroid
and generators, which are easy to compute and store. Although
the number of generators increases linearly with time, in the
dynamic quantization scheme, we only over-approximate the
terminal set in one singular inter-transmission interval, by
which the issue is avoided.

Therefore, we recall, from [24], what zonotopes are and the
corresponding properties that are used to over-approximate the
terminal reachable set of a linear time-invariant system, see
Section IV.

Definition 2. A zonotope Z ⊂ Rn is a set that satisfies

Z :=

(
x ∈ Rn

����x = c +

pX
i=1

xigi, ∀xi ∈ [−1, 1]

)
(4)

where c ∈ Rn is the geometric center of the zonotope and
the line segments gi ∈ Rn are called the generators of the
zonotope. We denote Z = (c, ⟨g1, ..., gp⟩).

□
Zonotopes possess the following properties [24, p. 293]:
1) Minkowski Sum: The Minkowski sum of two zonotopes

Za and Zb ⊂ Rn remains a zonotope Zc ⊂ Rn with

Zc : = Za ⊕ Zb

= (ca, ⟨g1, ..., gp⟩) ⊕ (cb, ⟨h1, ..., hq⟩)
= (ca + cb, ⟨g1, ..., gp, h1, ..., hq⟩);

(5)

2) Linear Transformation: Zonotopes are closed under lin-
ear transformation. Let K be a n × n matrix. For a zonotope
Z = (c, ⟨g1, ..., gp⟩),

KZ : =

Kx

����x = c +
X
i∈Ip

xigi, ∀xi ∈ [−1, 1]


= (Kc, ⟨Kg1, ..., Kgp⟩);

(6)

3) Element-wise bounds and Hyperrectangle: For any x ∈
Z = (c, ⟨g1, ..., gp⟩), its j-th element xj is bounded in abso-
lute value by

Pp
i=1 |σT

j gi| , called the element-wise bound.
Therefore, one can derive the smallest interval hull of Z as a
hyperrectangle [24, p. 297],"

c1 −
pX

i=1

|σT
1 gi|, c1 +

pX
i=1

|σT
1 gi|

#
× ...×"

cn −
pX

i=1

|σT
n gi|, cn +

pX
i=1

|σT
n gi|

#
,

(7)

where σi is defined in Section II-A and ci is the i-th element
of the zonotope center c. □

For notational convenience, a hyperrectangle is denoted by
H(c, h), where c ∈ Rn is the center vector and h ∈ Rn is

the length vector for each dimension. A hyperrectangle is a
zonotope where

H(c, h) := (c, ⟨h1σ1, ..., hnσn⟩), (8)

with hi the i-th element of h.
Furthermore, we use the notation □(Z) for (7), such that

Z ⊆ □(Z) := H(c, h)

= (c, ⟨h1σ1, ..., hnσn⟩) ,
(9)

where

hi =

pX
j=1

|σT
i gj |, ∀i ∈ In. (10)

When the length vector h of a hyperrectangle H(c, h) is
h = l1n, with l ∈ R+, it is called a hypercube. We use B(c, l)
to denote a hypercube with center c and length l.

Next, we recall the first Lemma in [24] as the crucial step of
the zonotope propagation in the dynamic quantization scheme.

Lemma 1. [24, Lemma 1] For a LTI system given by

ẋ = Ax + Bu (11)

with x(0) ∈ X , Bu(t) ∈ U , ∀t ∈ [0, τ ], where X and U are
zonotopes, the terminal reachable set Rτ (X , U) satisfies

Rτ (X , U) ⊆ eτAX ⊕ B(0n, β(τ, µ)), (12)

where µ := supu∈U |Bu|, and

β(τ, µ) :=
eτ |A| − 1

|A|
µ. (13)

III. PROBLEM FORMULATION

A. Setup and Plant

We consider the problem of remote state estimation over a
finite data rate channel as depicted in Figure 1. The plant has
dynamics

ẋ = Ax + Bu + Ed,

y = Hx,
(14)

with state x ∈ Rn input u ∈ Rm, output y ∈ Rny , and
unknown disturbance d ∈ Ro.The system matrices A, B, H, E
are known, real matrices with appropriate dimensions.

Fig. 1: Remote state estimation setup

The overall objective for the paper is to design a dy-
namic quantization scheme for the encoder/decoder, and a
reconstructor that converts the discrete-time decoder data into
continuous-time reconstructed state xr(t) ∈ Rn, such that the



quantization error is ultimately upper-bounded by a K function
with respect to the bounds on the input u and disturbance
d, and the state reconstruction error er := x − xr is upper-
bounded with respect to the quantization error, input u, and
the unknown disturbance d.

Assumption 1. The initial states x(0) and the input signals
Bu(t) reside in two known hypercubes X ⊂ Rn and U ⊂ Rn,
respectively, defined as

X := B(xc, xb),

U := B(0n, ub),
(15)

i.e.,

x(0) ∈ X ,

Bu(t) ∈ U , ∀t ≥ 0.
(16)

where xc ∈ Rn is the center of the initial set X , and xb, ub ∈
R+.

Remark 1. Assumption 1 requires the initial state of the
system and the input to be bounded, which is reasonable in
most physical applications. It also requires that the center of
the input set is the origin to simplify the computation. This is
always possible by selecting ub sufficiently large.

B. Local observer

The local observer has access to the model of the plant
A, B, H, E, the input u(t) and output y(t). It is responsible
for producing a state estimate of the plant (14). We assume
that the following assumptions are satisfied.

Assumption 2. |Ed(t)| ≤ db ∈ R+, for all t ≥ 0, which
further implies

Ed(t) ∈ D := B(0n, db), ∀t ≥ 0, (17)

Assumption 3. The pair (A, H) is observable.

Assumption 3 indicates that there exists an n-by-ny ob-
server matrix K, such that A + KH is Hurwitz, Hence, the
local observer can be designed as follows,

˙̂x = Ax̂ + Bu + K(Hx̂ − y), (18)

where x̂ ∈ Rn is the local state estimate. The local observer
matrix K can be designed according to the following condi-
tions.

Assumption 4. There exist an n-by-n positive-definite matrix
P = P T , an n-by-nny

matrix Q and two scalars ν1 > 0, ν2 >
0 such that

�
AT P + P A + HQT + QH + ν1In P

P −ν2In

�
≤ 0. (19)

Remark 2. The above inequality (19) is a linear matrix
inequality (LMI). In this report, the LMI is solved by MATLAB
LMI toolbox.

The local observer matrix K is then designed as K =
P −1Q, Hence, the dynamics of the local estimation error
ê := x − x̂ satisfies, for all t ∈ R+,

˙̂e = (A + KH)ê + Ed, (20)

We assume that the local state estimate is initialized at xc

(recall that xc ∈ RncomesfromAssumption1), i.e.,

x̂(0) = xc. (21)

Therefore, the initial local estimation error resides in the
hypercube X from Assumption 1, i.e., ê(0) = x(0) − xc ∈ X .

Lemma 2. Suppose Assumptions 1 - 4 hold for the plant (14).
Then, the local state estimate error ê(t) = x(t) − x̂(t) of the
local observer (18) satisfies

|ê(t)| ≤ β̂(xb, t) + γ̂(db), ∀t ∈ R+, (22)

where xc, xb come from (15), β̂(r, s) :=
q

nλmax(P )
λmin(P ) e− λes

2 r

and γ̂(r) :=
q

nν2

λmin(P )λe
r, with λe := ν1

nλmax(P ) ; ν1 and ν2

come from (19).

Corollary 1. The set Et of all the possible state estimate errors
ê(t) is given by

ê(t) ∈ Et := B(0n, βd(t)) (23)

for all t ∈ R+ with βd(t) := β̂(xb, t)+ γ̂(db), β̂, γ̂ are defined
in (22).

The proof of Lemma 2 and Corollary 1 can be found in
Appendix A.

C. Transmission and Quantization

The encoder is responsible for transmitting a packet of data
with only a finite bitrate to the decoder at each transmission
instant via a digital communication channel. Hence, there
should be a quantization mechanism for transmitting an analog
output signal as a digital signal with finite precision.

In this paper, we assume that the inter-transmission time
is periodic with period T > 0, i.e., the time at the k-th
transmission satisfies

tk = kT, k ∈ Z+ (24)

The result of the quantization is inaccurate if the state
is outside a compact region called the quantization region,
denoted by SQ ⊂ Rn which we choose to be a hyperrectangle,
i.e.,

SQ := H(C, L), (25)

where C ∈ Rn is the center vector of the quantization region,
which is called the centroid, and L ∈ Rn is its segment length
vector, called the quantization range.

During the quantization process, the quantization region is
uniformly divided into Nn hyperrectangles, called subregions,
where N ∈ R+ is the quantization level that satisfies

N = 2Br/n, (26)



with Br ∈ Z+ being the number of bits available to the
communication channel. Each subregion has an associated
(unique) n-dimensional index vector Pe ∈ Zn

+ where each
element of the vector Pe ranges from 0 to N − 1.

For a communication setup with quantization level N and
a given raw data P ∈ Rn, the encoding/decoding operation is
defined as follows, with the mapping Qe : R×R×R×Z+ →
Z+ and Qd : Z+ × R × R × Z+ → R.

Pe,i = Qe(Pi, Ci, Li, N)

=

�
(Pi + Li − Ci)

N

2Li

�
∈ {0, 1, ..., N − 1},

(27a)

Pd,i = Qd(Pe,i, Ci, Li, N)

= Ci − Li + Pe,i
2Li

N
+

Li

N

∈ {Ci} ⊕
�

Li

�
2j + 1 − N

N

��
j∈IN−1

(27b)

for all i ∈ In, where Pe,i, Pd,i is the i-th element of
the encoded state Pe ∈ Rn and decoded state Pd ∈ Rn,
respectively, and Li, Ci are the i-th element of the vector L, C,
respectively.

Remark 3. The vectors C, L appearing in the encoding (27a)
and decoding (27b) equations are constant under a static
quantization scheme. In this paper, we employ a dynamic
quantization scheme by updating C and L over time, see Sec-
tion III-D for details. When dynamic quantization is applied,
a superscript k is added to indicate the values of C and L as
well as Pd, Pe at the corresponding transmission time tk.

If the true state x resides in the quantization region SQ,
the quantization error eq := x̂ − Pd ∈ Rn will be upper-
bounded by the maximum quantization error, which is defined
as ēq ∈ Rn

+ and satisfies,

eq,i ≤ ēq,i :=
Li

N
, ∀i ∈ In. (28)

To decrease the quantization error, we can either increase
the bitrate or dynamically enlarge or shrink the quantization
region. The former is not always possible, since the bitrate
may be capped. However, we can select the quantization range
L arbitrarily large, with the trade-off that we lose accuracy.
This technique that adjusts the region and, consequently, the
accuracy is called dynamic quantization [25] [26]. It consists
of two adjustments called “zooming in” and “zooming out”.
When “zooming out”, the quantization region is expanded to
ensure no overflow occurs, while in the “zooming in” stage,
the quantization region is shrunk to decrease the quantization
error.

In this work, the quantization region is adjusted by updating
the quantization parameters C and L after each transmission.
The parameters are updated based on the approximated reach-
able set in a finite time window, which will be discussed later
in Section IV.

Example 1. Figure 2 depicts a 2-dimensional example for
the quantization process, where the raw data P = [1.6, 5.8]T

(the blue dot) is quantized inside a quantization region SQ =
H([2.5, 5]T , [2.5, 5]T ), with bitrate Br = 4 bits. Hence, 16
distinct regions can be represented, and the red region SQ is
uniformly divided into 16 subregions (drawn in dashed boxes
) as shown in Figure 2. Each subregion will is represented by
a green dot at the centroid of the subregion and the associated
index vector lies in the set {0, 1, . . . , N − 1}2 with N = 4.

As the figure shows, the raw data P belongs to the region
with index Pe = [1, 2]T . Hence, after the encoding operation
Qe in (27a), a binary packet that represents Pe will be
transmitted to the decoder, and decoded to the quantized data
Pd = [1.875, 6.25]T (the red dot) by the decoding operation
Qd in (27b).

In this example, the quantization error is eq =
[0.275, 0.45]T , which is upper bounded by the maximum
quantization error ēq = [0.625, 1.25]T , as defined in (28).

Remark 4. We assume that the quantization parameters C
and L are not transmitted over the communication channel.
Instead, they are updated on both the encoder and the de-
coder sides simultaneously and therefore do not occupy any
bandwidth.

Remark 5. The bandwidth is uniformly assigned to each
dimension. However, if a specific dimension requires a more
accurate representation, the number of bits assigned to this
dimension can be increased at the expense of the accuracy of
other quantized state components.

After introducing the quantization process, we can now
formulate the detailed behavior of the encoder and the decoder.

D. Encoder and Decoder

The encoder quantizes the local state estimate x̂ generated
by the local observer and transmits the encoded packet Pe ∈
Rn to the decoder. It is assumed that the encoding and the
decoding process as well as the transmission over the network
takes a negligible amount of time. Based on (27a), The encoder
encodes the local state estimate x̂(tk) at the k-th transmission
time with tk = kT , k ∈ Z+ as follows.

P k
e,i = Qe(x̂i(tk), Ck

i , Lk
i , N), ∀i ∈ In, (29)

where P k
e,i is the i-th element of the encoded packet P k

e ∈ Rn.
CK , Ck are updated every transmission, the dynamic quan-
tization scheme and the updated law are presented later in
Section IV. After receiving the encoded packet Pe, the decoder
decodes the index Pe into the quantized state thereby inducing
a quantization error. This quantized state will be used to
reconstruct the state trajectory and update the quantization
range. Based on (27b), the decoder’s behavior is

P k
d,i = Qd(P k

e,i, Ck
i , Lk

i , N), ∀i ∈ In. (30)

where P k
d,i is the i-th element of the decoded packet P k

d ∈ Rn.
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Fig. 2: 2-dimensional example for quantization process

After the encoding/decoding operation, any local state es-
timate x̂(tk) that belongs to the same subregion will be
represented by one of the subregion’s centroid ck ∈ Rn that
equals to P k

d . Hence, the continuous state space is discretized
into a finite set of points in the n-dimensional space. With the
quantization range lk ∈ Rn of the subregion, the hyperrectan-
gle subregion is defined as

Sk
q := H(ck, lk), (31)

where ck = P k
d , lk = Lk

N .
In order to prevent overflow at the first quantization step (k

= 0), the initial quantization parameters satisfy the following
Assumption.

Assumption 5. The initial quantization region is chosen as
S0

Q = H(C0, L0) with

C0 = xc, L0 = 1nl0, (32)

where xc comes from Assumption 1, l0 ∈ R+

Remark 6. Assumption 5 guarantees that the initial local
state estimate x̂(0) ∈ S0

Q with arbitrary l0. Moreover, We
will show in Section IV that by updating Ck and Lk for
k ∈ Z+ appropriately, we can always prevent overflow, i.e.,
x(tk) ∈ Sk

Q.

E. Reconstructor

The reconstructor is responsible for producing a continuous
prediction of the state x, based on the information received at



discrete instances in time tk. The dynamics of reconstructed
state xr ∈ Rn satisfies, for all k ∈ Z+,

ẋr = Axr + Kr(Hxr − HP k
d ), ∀t ∈ [tk, tk+1),

xr(tk) = P k
d ,

(33)

with xr(0) = x̂(0) = xc, where xc ∈ Rn comes from
Assumption 1, and the n-by-ny reconstructor matrix Kr is
chosen such that A + KrH is Hurwitz based on Assumption
3. P k

d is the decoded state at k-th transmission. x̂(0) is the
initial estimate state for the local observer, which is assumed
to be known to the reconstructor.

IV. PROPOSED SOLUTION

This report considers two different over-approximations of
the terminal reachable sets of the local state estimate x̂(tk)
in the dynamic quantization schemes, which are described in
Section III-C and III-D, respectively. Recall that a primary
property of the quantization schemes is to ensure that no
overflow occurs, this means that, after successfully obtaining
the decoded data P k

d of the local state estimate x̂(tk) at some
time tk, the local state estimate x̂(t) at that transmission time
tk resides in a known subregion Sk

q as defined in (31), which
is a subset of the quantization region Sk

Q, i.e.,

x̂(tk) ∈ Sk
q ⊂ Sk

Q. (34)

Then, in the next two subsections, we first propose the set-
based dynamic quantization using zonotopes in containing
the terminal reachable set. This is then compared with the
norm-based scheme using hypercubes. Each method results
in its own quantization update law which guarantees that no
overflow occurs at the next transmission time t = tk+1, i.e,
given that x̂(tk) ∈ Sk

Q, we guarantee that

x̂(tk+1) ∈ Sk+1
Q . (35)

A. Set-based Dynamic Quantization using Zonotopes

Recall that the dynamics of the local observer (20) is

˙̂x = Ax̂ + Bu + K(Hx̂ − y)

= Ax̂ + Bu + K(Hx̂ − Hx)

= Ax̂ + Bu − KHê.

(36)

We can propagate the terminal reachable set of the local
state estimate x̂ based on the dynamics (36) by treating the
term KHê as an additional input. Since

KHê(t) ∈ KHEt ⊆ KHEtk
, ∀t ∈ [tk, tk+1], (37)

where Et = B(0n, βd(t)) is defined in (23), and βd satisfies
βd(t1) ≥ βd(t2), for all t2 ≥ t1 ≥ 0. Then we can obtain that

Bu(t) − KHê(t) ∈ U ⊕ KHEtk
, ∀t ∈ [tk, tk+1]. (38)

Finally, the terminal reachable set of the local state estimate
x̂ at the next transmission time tk+1 can be deduced by Lemma
1 as follows.

x̂(tk+1) ∈ RT (Sk
q , U ⊕ KHEtk

)

⊆ ΛSk
q ⊕ B(0n, βk

ue),
(39)

where Λ := eAT . Recall that T > 0 is the inter-transmission
interval defined in (24), and βk

ue is defined as

βk
ue := β(T, ub + |KH|βd(tk)), (40)

where ub comes from (15), βd is defined in (22). βk
ue is the

upper bound of the input term (Bu − KHê) of the local
observer dynamics (36) for all t ∈ [tk, tk+1].

We then over-approximate the terminal reachable set of the
state estimate with a hyperrectangle such that the quantization
region Sk+1

Q at the next transmission is as follows,

Sk+1
Q = □

�
ΛSk

q ⊕ B(0n, βk
ue)

�
. (41)

Hence, the dynamic quantization update law can be formu-
lated as

Ck+1 = Λck,

Lk+1
i = βk

ue +

nX
j=1

|σT
i Λσj |lk

j ,
(42)

where we recall that βk
ue is defined in (40) and lk

j = Lk
j /N .

Remark 7. Notice that, after we propagate the terminal
reachable set of the local state estimate using zonotopes,
we over-approximate the set by a hyperrectangle. This is
because in order to quantize the individual local state estimate
without overflow, we need the bounds of each element. By
over-approximating the zonotopes with hyperrectangle, we can
directly obtain the element-wise bound thereby updating each
element of the quantization range individually as (42).

B. Norm-based Dynamic Quantization using Hypercubes

In this subsection, we introduce the second method for the
comparison between set-based and norm-based quantization
schemes. The norm-based scheme uses hypercubes to repre-
sent the reachable set as the hypercube is constructed based
on the norm of the expected error which we will explain in
this section.

We first recall the dynamic quantization scheme in [25].
The quantization region is defined as a hypercube Sk

Q :=

B(C(tk), Lk) with the centroid C(tk) ∈ Rn and the range
Lk ∈ R+. The subregion Sk

q := B(ck, lk) is defined similarly
as (31) with ck = P k

d , lk = Lk/N .

Assumption 6. The initial quantization region is chosen as
S0

Q = B(C0, L0) with

C0 = xc, L0 = l0 (43)

where xc comes from Assumption 1, l0 ∈ R+.
The update law of the centroid C(t) between the inter-

transmission time t ∈ [tk, tk+1) is

C(tk) = ck = P k
d ,

Ċ(t) = AC(t), ∀t ∈ [tk, tk+1).
(44)

We define ec as the error between the local state estimate
x̂ and the centroid C , i.e.,

ec(t) := x̂(t) − C(t). (45)



Then, the dynamics of ec is

ėc = Ax̂ + Bu − KHê − AC(t)

= Aec + Bu − KHê, ∀t ∈ [tk, tk+1).
(46)

Moreover,

ec(t−
k+1) = eAT ec(tk)+

Z tk+1

tk

e(T −s)A(Bu(s)−KHê(s))ds,

(47)
since |ec(tk)| = |x̂(tk)−P k

e | ≤ lk = Lk/N , the infinity-norm
of ec(t) satisfies

|ec(t−
k+1)| ≤ e|A|T |ec(tk)| +

Z tk+1

tk

e(T −s)|A||Bu − KHê|ds

≤ e|A|T |ec(tk)| +
e|A|T − 1

|A|
(ub + |KH|βd(tk))

≤ e|A|T Lk

N
+ βk

ue,

(48)

where βd is defined in (23) and βk
ue is defined in (40).

Hence, the quantization region at the next transmission time
t = tk+1 can be designed as

Sk+1
Q = B(C(tk+1), Lk+1), (49)

with the quantization centroid and range update law

C(tk+1) = Λck,

Lk+1 =
e|A|T

N
Lk + βk

ue.
(50)

Remark 8. The norm-based quantization method using hyper-
cubes is inspired by [25], where a nonlinear plant with system
dynamics f(x, u) that is Lipschitz and a known control law
u = k(x) based on a stabilization scheme. Hence, the input
and disturbance term βk

ue shown in (50) is eliminated in [25]
thus providing an asymptotic stabilization result. In Section
V, we will show that the sufficient condition for the inter-
transmission and quantization level for a convergent quantiza-
tion error is consistent with the condition shown in [25], where
the Lipschitz constant is |A| for linear dynamical systems.
Moreover, when comparing the two methods in Section V and
VI, we will show that the set-based method designed in this
report provides better performance compared to the norm-
based method in [25] for linear systems.

Next, we will show in Lemma 3 that if x̂(tk) ∈ Sk
Q for

some k ∈ Z+, then x̂(tk+1) ∈ Sk+1
Q according to the above

two dynamic quantization procedures with their corresponding
update law (42) and (50), respectively.

Lemma 3. Consider the communication setup shown in Figure
1 with the plant (14) and the local observer (18). Under
Assumptions 1, 2 and 3, if the state estimate x̂(tk) resides
inside the quantization region Sk

Q at the k-th transmission
for some k ∈ Z+, and the dynamic quantization scheme
satisfies one of the above two dynamic quantization schemes
with the corresponding update law (42) and (50), then the
state estimate at the next transmission x̂(tk+1) ∈ Sk+1

Q .

The proof of Lemma 3 can be found in Appendix B.
Lemma 3 guarantees that no overflow occurs for both

quantization schemes. In the proof of Lemma 3, we first show
how (34) is obtained with the encoding/decoding operation
defined in (27). Then, we prove no overflow occurs at the
next transmission time t = tk+1. Combining this result with
Assumption 5 or 6, i.e., if the initial local state estimate x̂(0)
resides in the initial quantization region, we can guarantee that
no overflow occurs for all k ∈ Z+.

V. MAIN RESULT

We now show that both set-based and norm-based dynamic
quantization schemes result in abounded quantization error in
the steady state. Furthermore, we compare the sufficient condi-
tions on the bitrate/quantization levels and inter-transmission
interval for the two quantization schemes. Finally, we show
that the state reconstruction error is bounded.

A. Bounds on the Quantization Error

First, we recall from (28) that the quantization error is
always upper-bounded element-wise by the maximum quanti-
zation error ēq,i, i.e., ek

q,i = x̂(tk)i − P k
d,i ≤ ēq,i. Moreover,

the maximum quantization error is ultimately bounded by a
convergent limit, which we define as follows.

Definition 3. For the maximum quantization error ēq , if given
any real positive number ϵ > 0, there exists an integer nL,
such that

|ēk
q − Lq| < ϵ, ∀k ≥ nL, (51)

where Lq ∈ Rn is the convergent limit. Then ēk
q with k → ∞

is the steady-state maximum quantization error with respect
to the convergent limit Lq .

Under the update law (42) of the dynamic quantization
scheme using zonotopes, the maximum quantization error
ēk

q defined in (28) satisfies the following dynamics at each
transmission time tk, for all k ∈ Z+, where we recall that
lk
j ∈ R+ and lk

j = Lk
j /N = ēk

q,j ,

ēk+1
q,i =

Lk+1
i

N

=
βk

ue +
Pn

j=1

��σT
i Λσj

�� lk
j

N

=
βk

ue

N
+

1

N

nX
j=1

Λ̄i|j ēk
q,j ,

(52)

where ēk
q,i is the i-th element of the maximum quantization

error ēk
q at tk, and Λ̄ represents the matrix Λ with every

element equal to its absolute value denoted as Λ̄i|j . Moreover,
we can further deduce that, for all k ∈ Z+,

ēk+1
q =

Λ̄

N
ēk

q +
1n

N
βk

ue. (53)



Similarly, under the update law (50) of the dynamic quan-
tization scheme using hypercubes, the maximum quantization
error ēk

q satisfies, for all k ∈ Z+,

|ēk+1
q | =

Lk+1

N

=
e|A|T

N

Lk

N
+

βk
ue

N

=
e|A|T

N
|ēk

q | +
βk

ue

N
.

(54)

where we recall that Lk ∈ R+.
We are now ready to provide the convergent limit of the

maximum quantization error ēq for both schemes in Theorem
1 and 2, respectively.

Theorem 1. Under Assumptions 1 - 5, consider the commu-
nication setup shown in Figure 1 with the plant (14), the local
observer (18), and the set-based dynamic quantization scheme
(34) - (41) using zonotopes. suppose the conditions below hold,

(i) the dynamic quantization update law for Ck, Lk satisfies,
for all k ∈ Z+,

Ck+1 = Λck,

Lk+1
i = βk

ue +

nX
j=1

|σT
i Λσj |lk

j ,
(55)

where βk
ue is defined in (40),

(ii) the quantization level N and the inter-transmission in-
terval T are chosen such that Λ̄/N is Schur, i.e.,

|λi(Λ̄/N)| < 1, ∀i ∈ In, (56)

where Λ̄ represents the matrix Λ := eAT with every
element equal to its absolute value,

Then, by choosing the observer matrix K = P −1Q with
P, Q from Assumption 4, the maximum quantization error ēq

converges to a fixed value Lq ∈ Rn asymptotically, i.e., as
k → ∞,

ēk
q → Lq =

�
In − Λ̄

N

�−1 1n

N
β(T, ub + |KH|γ̂(db)), (57)

where the function β is defined in (13), ub, db come from
Assumption 1 and 2 respectively, and γ̂(r) :=

q
nν2

λmin(P )λe
r,

with λe := ν1

nλmax(P ) ; ν1 and ν2 come from (19).

Theorem 1 provides sufficient conditions on the inter-
transmission interval T and the quantization level N of
the dynamic quantization scheme using zonotopes, such that
the maximum quantization error is ultimately bounded by a
convergent limit Lq in the sense of (51).

Theorem 2. Under Assumptions 1 - 4 and 6, consider the com-
munication setup shown in Figure 1 with the plant (14), the
local observer (18), and the norm-based dynamic quantization
scheme (44)-(49) using hypercubes. Suppose the conditions
below hold,

(i) the dynamic quantization update law for C(tk), Lk sat-
isfies, for all k ∈ Z+,

C(tk+1) = eAT C(tk),

Lk+1 = e|A|T Lk

N
+ βk

ue,
(58)

where βk
ue is defined in (40),

(ii) the quantization level N and the inter-transmission in-
terval T are chosen such that

e|A|T

N
< 1. (59)

Then, by choosing the observer matrix K = P −1Q, the
infinity-norm of the maximum quantization error |êq| con-
verges to a fixed value L̄q ∈ R+ asymptotically, i.e., as
k → ∞,

|ēk
q | → L̄q =

β(T, ub + |KH|γ̂(db))

N − e|A|T (60)

where the function β is defined in (13), ub, db come from
Assumption 1 and 2 respectively, and γ̂(r) :=

q
nν2

λmin(P )λe
r,

with λe := ν1

nλmax(P ) ; ν1 and ν2 come from (19).

Theorem 2 shows the ultimate upper bound on the infinity
norm of the maximum quantization based on the second
method. Notice that the convergent limit Lq and L̄q are both
class K functions with respect to the input bound ub and
disturbance bound db, i.e., when the input signal is known (for
example a known control law based on the state feedback) and
disturbance is zero, the maximum quantization error in both
methods converges to zero asymptotically.

The proof of Theorem 1 and 2 can be found in Appendix
C and D, respectively.

B. Comparison

The difference between the first and second dynamic quanti-
zation methods lies in how they over-approximate the ’size’ of
the terminal reachable set, which translates to the quantization
range. The first method propagates the zonotope thereby
providing the upper bounds for each individual element in
the state, while the second one only considers the evolution
of the vector norm so that the quantization region is a
hypercube. Hence, in the next two Propositions, by comparing
the component-wise vector norm of eAT and the matrix norm
|eAT | as well as its upper bound e|A|T , we further exploit the
performance of the two methods with respect to the condition
on T, N and convergent limit Lq, L̄q .

Proposition 1. Consider the plant (14) and local observer
(18) with the same quantization level N and inter-transmission
interval T . The requirement (59) of the dynamic quantization
scheme using hypercubes is a sufficient condition for the
requirement (56) of the dynamic quantization scheme using
zonotopes, i.e.,

|λi(Λ̄/N)| ≤ e|A|T

N
, ∀i ∈ In. (61)



Proposition 1 shows that the dynamic quantization scheme
using hypercubes has a stricter requirement (59) compared to
the requirement (56) in the dynamic quantization scheme using
zonotopes. When designing the dynamic quantization scheme,
one can check the inter-transmission time and the quantization
level by requirement (59) first to determine if both methods
can be applied. If not, one can check the requirement (56) for
applying the set-based quantization scheme using zonotopes.

Proposition 2. Consider the plant (14) and local observer
(18) with the same quantization level N and inter-transmission
interval T . If the initial quantization region for both dynamic
quantization schemes is designed with the same l0, then the
infinity norm of the convergent limit |Lq| (defined in (57)) for
the dynamic quantization scheme using zonotopes is upper-
bounded by the convergent limit L̄q (defined in (60)) for the
dynamic quantization scheme using hypercubes, i.e.,

|Lq| ≤ L̄q. (62)

The proof of Proposition 1 and 2 can be found in Appendix
E and F, respectively.

Proposition 1 and 2 together show that the dynamic quanti-
zation scheme using zonotopes outperforms the scheme using
hypercubes by requiring a less strict condition on T, N and
providing a tighter ultimate bound on the maximum quanti-
zation error. In Section VI, a simulation is made to further
support this result with different inter-transmission time T .

C. Bound on the Reconstruction Error

Proposition 3. Under Assumption 1 - 5. consider the com-
munication setup shown in Figure 1 with the plant (14),
the local observer (18), the reconstructor (33), and the dy-
namic quantization scheme (34) - (41) using zonotopes with
the update law (42). By choosing the reconstructor matrix
Kr = K, the reconstruction error er = x − xr satisfies, for
all t ∈ [tk, tk+1), k ∈ Z+,

|er(t)| ≤ β̂(t−tk, βd(tk)+ ēk
q )+ γ̂(ub +db +|KrH|ēk

q ). (63)

where ub, db come from Assumption 1 2, respectively. β̂, γ̂ are
defined in (22), βd is defined in (23).

The proof of Proposition 3 can be found in Appendix G.

Remark 9. We intentionally choose the reconstructor matrix
Kr = K to be equal to the local observer matrix since the
Lyapunov-function-based analysis of estimating the bound of
reconstruction error has the same LMI as the procedures for
the local observer.

Proposition 3 provides an upper-bound for the reconstruc-
tion error with respect to a class K function of the bounds
on ēk

q , ub, and db, where the maximum quantization error ēk
q

is ultimately upper-bounded by another K function of ub, db.
Hence, we can conclude that the reconstruction error is also
ultimately upper-bounded by a class K function with respect to
the bounds ub and db of the input and disturbance, respectively,
which means, when the input signal is known (for example a
known control law of the state feedback) and the disturbance

is zero, the reconstructed state converges to the true state
asymptotically.

VI. NUMERICAL SIMULATION

A simulation result of a 2-dimensional LTI system is
proposed in Section VI to compare two dynamic quantization
schemes.

A. Plant and Initialization

Consider a dynamical system in the form of (14), where the
matrices A, B, H, and E are given by

A =

�
−1 −4
4 −1

�
, B = E =

�
1
1

�
, H =

�
1 0

�
, (64)

with the initial state x(0) ∈ X = B([10, −5]T , 1) = [9, 11] ×
[−6, −4], the input u(t) = 0.5 sin(t) ∈ B(0, 0.5), ∀t ≥ 0, and
the disturbance d(t) is a random noise that is upper-bounded
by 0.05, i.e., |d(t)| ≤ 0.05, ∀t > 0. Hence, Assumption 1
and 2 are satisfied with xc = [10, 05]T , xb = 1, ub = 0.5 and
db = 0.05.

In this simulation, the quantization level is N = 4, the
bitrate is Br = 4, the inter-transmission interval is T = 0.1.
The state is initialized at x(0) = [10.5, −5.5]T and the
initial local state estimate x̂(0) = xc = [10, 05]T . The state
trajectories are shown in Figure 3.
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Fig. 3: Simulated state trajectories x(t), ∀t ∈ [0, 20].

B. Local Observer

First, we solve (19) by LMI toolbox in Matlab to obtain

P =

�
2.0648 0.9237
0.9237 1.9195

�
, Q =

�
−7.7353
−0.0248

�
,

ν1 = 8.2561, ν2 = 7.2571,

(65)

Hence, the observer matrix

K = P −1Q =

�
−4.7666
2.2808

�
, (66)



such that A + KH is Hurwitz. By Lemma 2, the local state
estimate error |ê(t)| is bounded by, for all t > 0,

|ê(t)| ≤ βd(t) = β̂(xb, t) + γ̂(db)

= 2.3405 exp(−0.7072t) + 0.1552
(67)

The local estimate error ê(t) and the upper bound βd(t) is
presented in Figure 4.
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Fig. 4: local estimate error ê(t) and the upper bound
βd(t), ∀t ∈ [0, 6].

C. Dynamic Quantization

The initial quantization region is set to be the same as X ,
i.e., S0

Q = X with C0 = xc, l0 = 1. At each transmission
time tk, the local state estimate x̂ is encoded and decoded
through (27) with Ck, Lk, resulting in a decoded packet P k+1

d

for updating the next quantization region. As an example, by
using the update law (42) of the zonotopes-based method, the
numerical updating process of Ck and Lk are formulated as
follows, for all k ∈ Z+,

Ck+1 = Λck = ΛP k+1
d ,

Lk+1
1 = |Λ1,1|L

k
1

4
+ |Λ1,2|L

k
2

4
+ βk

ue,

Lk+1
2 = |Λ2,1|L

k
1

4
+ |Λ2,2|L

k
2

4
+ βk

ue,

(68)

where

Λ = eAT =

�
0.8334 −0.3524
0.3524 0.8334

�
βk

ue = β(T, ub + |KH|βd(tk))

= 1.4358 exp(−0.07072k) + 0.0850

(69)

Figure 5 shows the quantization region for each state at
the transmission time: The red lines represent the quantization

regions that are divided into 4 subregions, and the blue dot
represents the decoded state (centroid of the subregion) at the
transmission time. It can be seen that each trajectory falls into
one of the quantization subregions without overflow.

D. Comparison of the two methods

Figure 6 and 7 show the dynamic quantization scheme for
the plant (64) using zonotopes and the hypercube, respectively.
where the green line is the local state estimate trajectory, the
black dots are the terminal state at each transmission time
t ∈ {tk}k∈Z+

, the blue zonotopes are the over-approximated
terminal reachable set obtained by Lemma 1, the red rectangles
are the quantization regions obtained by operation (9) from
the corresponding blue zonotopes and the red dash smaller
rectangles are the quantization subregion defined in (31). It can
be seen that all the terminal states lie inside the red rectangle
which means no overflow occurs during this simulation.

Moreover, Figure 8 and 9 depict the maximum and actual
quantization error ēq, eq of the first one hundred transmissions
corresponding to the set-based and norm-based methods, re-
spectively. Simulation shows that the convergent limit for the
set-based method is Lq = [0.0571, 0.0571]T , while the conver-
gent limit for the norm-based method is L̄q = 0.0684, which
both match the analytical convergent limit of the maximum
quantization error in (57) and (60), respectively.

In order to give a further comparison of these two methods.
We change the inter-transmission time to T = 0.3 and redo
the simulation. Figure 10 and 11 depict the maximum and
actual quantization error using Zonotopes and Hypercubes,
respectively. It can be seen that the maximum quantization
error of the norm-based method is divergent while the set-
based method remains converging. This result also matches
the second condition in Theorem 1 and 2, where for the set-
based method,

Λ̄/N =

�
0.0671 0.1726
0.1726 0.0671

�
is Schur. (70)

And for the norm-based method,

e|A|T

N
= 1.1204 > 1. (71)

E. Reconstructor and reconstruction error

The reconstructor is designed with (33) with the reconstruc-

tion matrix Kr = K =

�
−4.7666
2.2808

�
and the decoded packet P k

d

obtained from the simulation of dynamic quantization scheme
using zonotopes.

The comparison of the reconstructed state xr and the true
state x for all t ∈ [0, 10] is presented in Figure 12, where the
blue lines and the red lines are the reconstructed state and the
true state for each element, respectively. Besides, Figure 13
depicts the corresponding reconstruction error er = x − xr.



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

-10

-5

0

5

10

15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

-4

-2

0

2

4

6

8

10

Fig. 5: The quantization regions and subregions for each state at the first ten transmissions with respect to the dynamic
quantization scheme using zonotopes.
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Fig. 6: Simulation showing the dynamic quantization scheme using zonotopes for plant (64) with N = 4, Br = 4, inter-
transmission interval T = 0.1. For clarity, the quantization scheme is only plotted for the 1st, 2nd, 4th, 6th, and 8th transmission
instants.
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Fig. 7: Simulation showing the dynamic quantization scheme using hypercubes for plant (64) with N = 4, Br = 4, inter-
transmission interval T = 0.1. For clarity, the quantization scheme is only plotted for the 1st, 2nd, 4th, 6th, and 8th transmission
instants.
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Fig. 8: Simulation showing the first one hundred maximum quantization error ēq and actual quantization error eq during the
dynamic quantization scheme using zonotopes for plant (64) with N = 4, Br = 4, inter-transmission interval T = 0.1.
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Fig. 9: Simulation showing the first one hundred maximum quantization error ēq and actual quantization error eq during the
dynamic quantization scheme using hypercubes for plant (64) with N = 4, Br = 4, inter-transmission interval T = 0.1.
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Fig. 10: Simulation showing the first fifty maximum quantization error ēq and actual quantization error eq during the dynamic
quantization scheme using zonotopes for plant (64) with N = 4, Br = 4, inter-transmission nterval T = 0.3.
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Fig. 11: Simulation showing the first fifty maximum quantization error ēq and actual quantization error eq during the dynamic
quantization scheme using hypercubes for plant (64) with N = 4, Br = 4, inter-transmission interval T = 0.3.
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Fig. 12: Simulation showing the reconstructed state xr,1, xr,2 and actual state x1, x2 during the dynamic quantization scheme
using zonotopes for plant (64) with N = 4, Br = 4, inter-transmission interval T = 0.1.
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Fig. 13: Simulation showing the reconstruction error er,1, er,2 during the dynamic quantization scheme using zonotopes for
plant (64) with N = 4, Br = 4, inter-transmission interval T = 0.1.



F. Discussion

In this simulation study, we first provide empirical evidence
for Lemma 3 in Figure 4. Next, in Figure 6 and 7, we show
that the convergent condition and convergent limit hold for
Theorem 1 and 2, respectively. Furthermore, in the comparison
section, we show that the set-based method also requires a
less strict condition on the inter-transmission time T and
quantization level N compared to the norm-based method,
which matches Proposition 1. Besides, the performance of the
set-based method surpasses the norm-based method by proving
a smaller maximum estimate error during the simulation,
which matches Proposition 2.

The simulation files can be found in [27].

VII. CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

We introduced a dynamic quantization scheme by prop-
agating the reachable set using zonotopes for remote state
estimation. A systematic way for designing a Luenberger-
based observer local observer is proposed for the state pre-
estimation. The update law of quantization parameters and
sufficient condition on the inter-transmission interval and
quantization level is provided for a boundary quantization error
without overflow. A comparison is made which shows that
the zonotope-based method outperforms the hypercube-based
method with a smaller maximum quantization error and a less
strict requirement on the inter-transmission interval and quan-
tization level. Finally, we show the state reconstruction error
is upper-bounded with respect to the input and disturbance
bounds.

B. Recommendations

1) In the dynamic quantization scheme using zonotopes,
we over-approximate the zonotopes with hyperrectangle
thereby further enlarging the approximation error. One
may find a method to split the zonotope region into
several non-overlapping sub-zonotopes so that the over-
approximation of the reachable set is less conservative.
Besides, a more general type of zonotopes called Con-
strained zonotopes [22] can be further studied for the
dynamic quantization scheme for a better approximation
of the irregular set.

2) The performance of the quantization scheme relies heav-
ily on the local estimation error. The estimated error
upper bound obtained from the Lyapunov-function-based
analysis is much larger than the actual estimation of the
error bound in the simulation. One can find a better way
to estimate the error bound of the Luenberer-based local
observer.

3) One can design different reconstructors’ dynamics with
respect to one’s own requirement on the input such as the
Lipschitz constant or periodical input. Moreover, it is also
possible to transmit the input signal to the reconstructor
for an additional feed-in.

4) The set-based dynamic quantization scheme can be
extended to nonlinear cases by exploiting the over-
approximation of the terminal reachable set of nonlin-
ear dynamical systems. Besides, one can transform the
nonlinear systems into piece-wise linear systems using
Hybridazation [28] so that the propagation techniques for
the linear cases can still be applied.
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APPENDIX

A. Proof of Lemma 2

Proof. First, we show that the observer (18) satisfies (22)
by choosing the observer matrix K = P −1Q and using
a candidate Lyapunov function V (ê) = êT P ê, where the
positive-definite matrix P = P T and normal matrix Q satisfies
(19). The time derivative of V (ê) along the trajectories of the
state estimation error system (20) is

V̇ (ê) = ÊT

�
(A + KH)T P + P (A + KH) P

P 0In

�
Ê

= ÊT

�
AT P + P A + HT Q + QH P

P 0In

�
Ê,

(72)

where Ê := [êT , EdT ]T . Then, due to (19), we can further
deduce that

V̇ (ê)= ÊT ·
�
AT P + P A + HT Q + QH + ν1In P

P −ν2In

�
·Ê

− êT Inν1ê + (Ed)T Inν2Ed

≤ −ν1|ê|2 + ν2n|Ed|2.
(73)

Besides, V (ê) can be bounded as [29, Theorem 10.13]

λmin(P )|ê|2 ≤ V (ê) ≤ nλmax(P )|ê|2. (74)

By applying the right inequality of (74), we can obtain that
V̇ (ê) satisfies

V̇ (ê) ≤ − ν1

nλmax(P )
V (ê) + ν2n|Ed|2. (75)

Next, let λe = µ1

nλmax(P ) by multiplying an integrating factor
eλet to both sides, we have that

eλetV̇ (ê) + eλetλeV (ê) ≤ eλetν2n|Ed|2

d

dt

�
eλetV (ê(s))

�
≤ eλetν2n|Ed(t)|2Z t

0

d

ds

�
eλesV (ê(s))

�
ds ≤

Z t

0

eλesν2n|Ed(s)|2ds

eλetV (ê(t)) − V (ê(0)) ≤
Z t

0

eλesν2n|Ed(s)|2ds,

(76)

Then, by rearranging the result, the solution to (73) satisfies
that

V (ê(t)) ≤ e−λetV (ê(0)) + e−λet

Z t

0

eλesν2n|Ed(s)|2ds

≤ e−λetV (ê(0)) +

Z t

0

e−λe(t−s)ν2n|Ed(s)|2ds

≤ e−λetV (ê(0)) +
1 − e−λet

λe
ν2nd2

b

≤ e−λetV (ê(0)) +
ν2nd2

b

λe

≤ e−λetnλmax(P )|ê(0)|2 +
ν2nd2

b

λe
,

(77)

where db comes from Assumption 2 and satisfies that
|Ed(s)|2 ≤ d2

b for all s ∈ R+. The inequality holds sinceR t

0
e−λe(t−s)ds = (1 − e−λet)/λe ≤ 1/λe.
Finally, by applying the left inequality of (74), |ê|2 can be

bounded as

|ê|2 ≤ V (ê(t))

λmin(P )
=

nλmax(P )

λmin(P )
e−λet|ê(0)|2 +

ν2nd2
b

λmin(P )λe
.

(78)
Since

√
a + b ≤

√
a +

√
b for all a, b ≥ 0, and the local

state estimate x̂(0) is initialized at xc, it can be deduced that
|ê(0)| = |x(0) − x̂(0)| = |x(0) − xc| ≤ xb,

|ê(t)| ≤

s
nλmax(P )

λmin(P )
e− λet

2 |ê(0)| +

r
ν2n

λmin(P )λe
db

= β̂(|ê(0)|, t) + γ̂(db)

≤ β̂(xb, t) + γ̂(db)

∈ B(0n, β̂(xb, t) + γ̂(db))

= Et,

(79)

where β̂(r, s) :=
q

nλmax(P )
λmin(P ) e− λes

2 r and γ̂(r) :=q
nν2

λmin(P )λe
r.

B. Proof of Lemma 3

Proof. First, we have that x̂(tk) ∈ Sk
Q for some k ∈ Z+. After

encoding/decoding the local state estimate with (29) and (30),
respectively, each i-th component of the encoded and decoded
packets satisfy the followings for all i ∈ In, k ∈ Z+,

https://github.com/YLi32498/Simulation-of-remote-state-estimation
https://github.com/YLi32498/Simulation-of-remote-state-estimation


P k
e,i =

�
(x̂i(tk) + Lk

i − Ck
i )

N

2Lk
i

�
,

P k
d,i = Ck

i − Lk
i + P k

e,i

2Lk
i

N
+

Lk
i

N
.

(80)

Based on the property (2) of the floor function, we get

(x̂i(tk) + Lk
i − Ck

i )
N

2Lk
i

− P k
e,i

= (x̂i(tk) + Lk
i − Ck

i )
N

2Lk
i

− (P k
d,i−

Lk
i

N
+Lk

i −Ck
i )

N

2Lk
i

=

�
x̂i(tk) − P k

d,i +
Lk

i

N

�
N

2Lk
i

∈ [0, 1).
(81)

Furthermore,

(x̂i(tk)−P k
d,i) ∈

�
−Lk

i

N
,

2Lk
i

N
− Lk

i

N

�
=

�
−Lk

i

N
,

Lk
i

N

�
, (82)

and we obtain

x̂i(tk) ∈ [P k
d,i − lk

i , P k
d,i + lk

i ). (83)

Then, we can further determine that

x̂(tk) ∈ [P k
d,1 − lk

1 , P k
d,1 + lk

1) × ... × [P k
d,n − lk

n, P k
d,n + lk

n),

⊂ [P k
d,1 − lk

1 , P k
d,1 + lk

1 ] × ... × [P k
d,n − lk

n, P k
d,n + lk

n],

= H(P k
d , lk),

= Sk
q .

(84)

So far we have proved x̂(tk) ∈ Sk
q = H(P k

d , lk). Next, we
conclude the proof for the two different schemes individually.

1) Zonotope-based scheme:
Following the first dynamic quantization procedure (34)

- (41), the local state estimate x̂(tk+1) at the k + 1-th
transmission time satisfies

x̂(tk+1) ∈ ΛSk
q ⊕ B(0n, βk

ue)

⊆ □
�
ΛSk

q ⊕ B(0n, βk
ue)

� (85)

where βk
ue is defined in (40).

We elaborate the square operation below

□(...) = □
�
ΛH(ck, lk) ⊕ B(0n, βk

ue)
�

= □

� �
Λck,



Λσ1lk

1 , ..., Λσnlk
n, σ1βk

ue, ..., σnβk
ue

�� �
= H(Λck, hk)

(86)

where the i-th element of hk satisfies

hk
i =

nX
j=1

|σT
i (Λσj lk

j )| + |σT
i (σjβk

ue)|

= βk
ue +

nX
j=1

|σT
i (Λσj lk

j )|

= Lk+1
i ,

(87)

where the last equality comes from (42). Hence,

x̂(tk+1) ∈ □(. . . ) = H
�
Λck, hk

�
= H

�
ck+1, Lk+1

�
= Sk+1

Q .

(88)

2) Hypercube-based scheme:
First, following the procedure (80) - (84) for the hypercube

quantization region Sk
Q = B(C(tk), Lk), we can obtain the

similar result

x̂(tk) ∈ Sk
q = B(P k

d , lk), (89)

where we recall that lk = Lk/N . Then, at the next transmis-
sion time t = tk+1, the local estimate state x̂(tk+1) satisfies

|x̂(tk+1) − C(tk+1)| = |ec(tk+1)|

≤ e|A|T Lk

N
+ e|A|T βk

ue,
(90)

where ec(t) = x̂(t)−C(t) is defined in (45), and the inequality
is obtained from (45). Hence, the local state estimate x̂(tk+1)
at the next transmission time t = tk+1 resides in a hypercube
with C(tk+1) being the centroid, i.e.,

|x̂(tk+1)| ∈ B(C(tk+1), e|A|T Lk

N
+ βk

ue)

= B(C(tk+1), Lk)

= Sk+1
Q ,

(91)

C. Proof of Theorem 1

Proof. First, at the end of Section IV, we show that, by
applying Lemma 3 with Assumption 5, we can guarantee that
no overflow occurs for quantizing the local state estimate x̂,
i.e.,

x̂(tk) ∈ Sk
Q, ∀k ∈ Z+. (92)

Therefore, the maximum quantization error ēk
q for the set-

based dynamic quantization scheme satisfies the dynamics (53)
corresponding to the update law (55). Since β̂(r, s) is a class
KL function, as k → ∞, tk → ∞, βk

ue = ub+|KH|βd(tk) →
ub + |KH|γ̂(db). Hence, when k → ∞, the maximum
quantization error dynamics (54) becomes

ēk+1
q =

Λ̄

N
ēk

q +
1n

N
(ub + |KH|γ̂(db)). (93)

where βd, β̂ and γ̂ comes from (23), db comes from Assump-
tion 2, and βk

ue is defined in (40). Let

zk = ēk
q − Lq

β̄ =
1n

N
(ub + |KH|γ̂(db)) ,

Lq =

�
In − Λ̄

N

�−1

β̄

(94)



then, the right-hand side of (93) can be rewritten as

Λ̄

N
(zk + Lq) + β̄

=
Λ̄

N

 
zk +

�
In − Λ̄

N

�−1

β̄

!
+ β̄

=
Λ̄

N
zk +

Λ̄

N

�
In − Λ̄

N

�−1

β̄ + β̄

=
Λ̄

N
zk +

 
Λ̄

N

�
In − Λ̄

N

�−1

+ In

!
β̄

=
Λ̄

N
zk+

 
Λ̄

N

�
In − Λ̄

N

�−1

+

�
In − Λ̄

N

��
In − Λ̄

N

�−1
!

β̄

=
Λ̄

N
zk +

 �
Λ̄

N
+ In − Λ̄

N

� �
In − Λ̄

N

�−1
!

β̄

=
Λ̄

N
zk +

�
In − Λ̄

N

�−1

β̄

=
Λ̄

N
zk + Lq.

(95)

Combined with the left-hand side of (93), we can obtain that

zk+1 + Lq =
Λ̄

N
zk + Lq

zk+1 =
Λ̄

N
zk

(96)

Hence, if Λ̄/N is Schur, the origin of (96) is a stable fixed
point, i.e., ēk

q → Lq as k → ∞.

D. Proof of Theorem 2

Proof. By applying Lemma 3 with Assumption 6, it can be
indicated that,

x̂(tk) ∈ Sk
Q, ∀k ∈ Z+. (97)

Hence, the maximum quantization error ēk
q of for the norm-

based dynamic quantization scheme satisfies the dynamics (54)
corresponding to the update law (58). As k → ∞, tk →
∞, βk

ue = ub + |KH|βd(tk) → ub + |KH|γ̂(db). Hence,
when k → ∞, the maximum quantization error dynamics (54)
becomes

|ēk+1
q | =

e|A|T

N
|ēk

q | +
ub + |KH|γ̂(db)

N
. (98)

Noticed that (98) is essentially a one-dimensional discrete-time
linear dynamic system with fixed offset term ub + |KH|γ̂(db).
The state |ēk

q | in system (98) is convergent if and only if
e|A|T

N < 1 with the convergent limit L̄q being

L̄q =
ub+|KH|γ̂(db)

N

1 − e|A|T

N

=
ub + |KH|γ̂(db)

N − e|A|T . (99)

E. Proof of Proposition 1

Proof. By applying Theorem 5.6.9 in [30], we obtain that

λi(Λ̄/N) ≤ ρ(Λ̄/N) ≤ |Λ̄/N | = |Λ/N | ≤ e|A|T

N
, (100)

where ρ(A) is the spectral radius of the matrix A which
satisfies ρ(A) = max

i∈In

|λi(A)| ≤ |A|.

F. Proof of Proposition 2

Proof. First, in order to distinguish the parameters in dynamic
quantization schemes, we use Lk

st, Lk
nd to denote the quanti-

zation range and ēk
st, ēk

nd to denote the maximum quantization
error for the set-based and norm-based dynamic quantization
schemes at k-th transmission, respectively. For the initial
maximum quantization error, we have that

|e0
st| = |L

0
st

N
| =

����1nl0
N

���� =
l0
N

=
L0

nd

N
= e0

nd. (101)

Then, for all k ∈ Z+, the norm of the maximum quantization
error dynamics (53) for the set-based scheme can be upper-
bounded by

|ek+1
st | =

���� Λ̄

N
ek

st +
1n

N
βk

ue

����
≤

���� Λ̄

N

���� |ek
st| + βk

ue

≤ e|A|T

N
ek

nd + βk
ue

= ek+1
nd ,

(102)

where the second inequality holds based on (61), and the last
equality is obtained from the maximum quantization dynamics
(54) for the norm-based scheme. Hence, when k → ∞, |Lq| ≤
L̄q .

G. Proof of Proposition 3

Proof. First, the dynamics of the reconstructed state can be
re-organized as, for all t ∈ [tk, tk+1), k ∈ Z+,

ẋr = Axr + Kr(Hxr − HP k
d )

= Axr − Kr(H(x − xr) − H(x − P k
d ))

= Axr − KrH(er − ek
q )

(103)

By choosing the reconstructor matrix Kr = K, the dynam-
ics of the reconstruction error er = x − xr satisfies, for all
t ∈ [tk, tk+1), k ∈ Z+,

ėr = (A + KH)er + Bu + Ed − KHek
q

er(tk+1) = x − P k
d

(104)

Since the reconstructor and the local observer share the same
matrix A+KH , follow the procedures (72) - (79) in Appendix
A with Ê = [eT

r , (Bu + Ed − KHek
q )T ]T , we can obtain

the similar upper-bound as the local estimation error, for all
t ∈ [tk, tk+1), k ∈ Z+,

|er(t)| ≤ β̂(t − tk, |er(tk)|) + γ̂(ub + db + |KrH|ēk
q ), (105)



where ub, db come from Assumption 1 2, respectively. β̂, γ̂
are defined in (22). We recall that

|er(tk)| = |x(tk) − xr(tk)| = |x(tk) − P k
d |

= |ê(tk) + x̂(tk) − P k
d |

≤ |ê(tk) + ēk
q |

≤ βd(tk) + ēk
q

(106)

where βd is defined in (23). Apply this bound into (105), we
can get

|er(t)| ≤ β̂(t−tk, βd(tk)+ēk
q )+γ̂(ub+db+|KrH|ēk

q ). (107)
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