Combined LEGO-eigencurrent approach for enhanced solution of electrically large 2-D EBG structures

Citation for published version (APA):

Document status and date:
Published: 01/01/2010

Publisher Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Aug. 2019
Abstract—We combine the linear embedding via Green’s operators (LEGO) and the eigencurrent expansion method (EEM) to efficiently deal with 2-D electrically large electromagnetic band-gap (EBG) structures. In LEGO, the composite structure is broken up into elements called “bricks” that are characterized through scattering operators by invoking Love’s equivalence principle. The problem is then formulated through an integral equation involving the total inverse scattering operator S^{-1} of the structure. The resulting equation is solved by the method of moments (MoM) and the EEM, which allows for considerable reduction in the size of the resulting MoM matrix. Therefore, it enables us to handle relatively large structures.

I. INTRODUCTION

Over the past decades electromagnetic band-gap (EBG) structures have drawn significant attention in physics and engineering communities because they allow for more control of the propagation of electromagnetic waves. Several approaches have been used in order to analyse such structures. The plane-wave method has been used extensively for the analysis of fully periodic structures [1]. A variety of transfer-matrix methods have been developed [2], [3]. These methods are more flexible than the plane-wave method, in that periodicity is no longer required in one direction. Nevertheless, transfer-matrix methods are not inherently stable. The scattering matrix method [4] has been used to analyse periodic structures composed of multiple layers of frequency selective surfaces (FSS). The method (originated from that of cascading networks in circuit theory) considerably reduces the computing time as compared to conventional methods which calculate the overall scattering from the structure. The finite difference time domain (FDTD) method is also commonly used to optimize and compute band-gap diagrams for photonic crystals (PhC) and 2-D metal photonic band-gap cavities [5]. On the other hand, when a numerical solution is contemplated either in the spatial, temporal or spectral domain by means of the Finite Element Method (FEM) [6], the FDTD [7] or the method of moments (MoM)[8], the issue of storing and formally inverting the system matrix or refining the FDTD grid may become computationally demanding.

As an alternative to the numerical methods outlined above, in [9] a diakoptic approach [10], called linear embedding via Green’s operators (LEGO) was proposed to analyse 2-D EBG devices. In LEGO, the first step toward the solution is to embed each object forming the EBG device within a bounded domain (dubbed “brick”). Then, each brick is characterized by its scattering operator. Finally, in [9] the scattering operators were combined in a cascade of successive embedding steps to obtain the total scattering operator of the structure. The main drawback of this approach is that the intermediate scattering matrices grow considerably with each iteration step, causing a rapid drain of memory resources and consequently limiting the number of interacting domains that can be handled.

In order to circumvent these difficulties, we combine LEGO with the eigencurrent expansion method (EEM) as in [11]. Among the reasons to support the aforementioned extension to the 2-D instance, we mention:

- Many EBG structures providing band-gap field confinement in the optical or microwave frequency range may be well approximated as 2-D geometries.
- In 2-D geometries, the fields can be decomposed into two orthogonal polarisations, which renders the problem much “cleaner” and easier to analyse.
- EBG structures, especially those encountered in optics, may allow for a 2.5-D analysis which is a natural extension of the 2-D case. In a 2.5-D analysis, many of the 2-D characteristics of the problem are preserved while the excitation is in part extended to the 3-D case, as for example a plane wave at oblique incidence.

This paper is organized as follow: In Section II, we introduce the notion of LEGO brick and we define its scattering operator. In Section III, we formulate the EM problem of an EBG structure in terms of the inverse scattering operator S^{-1}. In Section IV, we describe the EEM and in Section V, we present numerical results for the implemented approach.

II. DEFINITION OF A LEGO BRICK AND ITS SCATTERING OPERATOR

We consider an EBG structure comprised of N_B identical elements which are immersed in a homogeneous background medium. In LEGO [9], [11] we start solving the problem by “tearing apart” the structure into its constituent elements, as also done in [12], [13] for antenna problems. We then embed each element in a bounded domain D_k, $k = 1, \cdots, N_B$, as shown in Fig.1. We refer to D_k as LEGO brick and we characterize it electromagnetically by means of a scattering
operator S_{kk}. Which links equivalent incident currents to equivalent scattered currents. To derive S_{kk}, let us consider the problem of just one brick D_k (see Fig.1). This brick is illuminated by an arbitrary incident fields F^i and, since an object is embedded in it, scattered fields F^s are excited. F^s can be regarded as being produced by equivalent sources q_o on the object surface ∂D_o. More precisely, we define

$$F^i = \begin{bmatrix} E^i \\ H^i \end{bmatrix}, \quad F^s = \begin{bmatrix} E^s \\ H^s \end{bmatrix},$$

where we assume a time-harmonic dependence $\exp(j\omega t)$ throughout. By invoking Love’s equivalence principle [14], an observer inside D_k can not distinguish between the field F^i excited by the actual sources outside D_k and a carefully constructed distribution of equivalent source surfaces q_k^i on ∂D_k^+.

Conversely, an observer outside D_k can not distinguish between the field F^s excited by q_o inside D_k and a carefully constructed distribution of equivalent source surfaces q_k^s on ∂D_k^-. These quantities are defined as

$$q_k^i = \begin{bmatrix} J_k^i \\ M_k^i \end{bmatrix}, \quad q_k^s = \begin{bmatrix} J_k^s \\ M_k^s \end{bmatrix}, \quad q_o = \begin{bmatrix} J_o \\ M_o \end{bmatrix},$$

where J and M are electric and magnetic current densities. Love’s equivalence principle states that the current densities q_k^i are the tangential components of the fields F^i on either side of ∂D_k, viz.

$$q_k^i = \begin{bmatrix} -n_k \times H_k^i \\ -E_k^i \times n_k \end{bmatrix}, \quad q_k^s = \begin{bmatrix} n_k \times H_k^s \\ E_k^s \times n_k \end{bmatrix},$$

which provides a means to compute q_k^s. Nevertheless, we prefer to determine q_k^s through two BIEs posed on ∂D_k using the so called propagators [11], namely

$$P_{kk}q_k^i = \int_{\partial D_k^+} P_{kk}^i(\rho, \rho') q_k^i(\rho') d\mathcal{C}', \quad \rho \in \partial D_k^+,$$

$$P_{kk}q_k^s = \int_{\partial D_k^-} P_{kk}^s(\rho, \rho') q_k^s(\rho') d\mathcal{C}', \quad \rho \in \partial D_k^-,$$

where F_{kk}^i and $P_{kk}^i(\rho, \rho')$ are 2 × 2 matrices whose entries are dyadic integro-differential operators involving the 2-D scalar Green’s function $K_{kk}(|\rho - \rho'|)$. The reason why (4)-(5) are preferred to calculate q_k^s is that, although the identity operator associated with (3) is easy to discretize, in (3) an integral operator with highly singular kernel is also implied, which leads to slow convergence rates in conjunction with the MoM [15].

We are now able to introduce the scattering operator S_{kk} on ∂D_k as

$$q_k = S_{kk}q_k^i = \int_{\partial D_k^+} S_{kk} q_k^i(\rho') d\mathcal{C}', \quad \rho \in \partial D_k^-,$$

where we see that S_{kk} maps equivalent incident currents to equivalent scattered currents on either side of ∂D_k. In order to deduce an expression for S_{kk}, we must solve the scattering problem inside D_k. This calculation implies a BIE of the form

$$X_{oo}q_o = F_{to}^i,$$

where X_{oo} will depend on the adopted formulation (e.g., the EFIE, MFIE or CFIE [16] for perfect electric conductors (PEC) and the PMCHWTs [16] or Müller [17] for homogeneous penetrable objects) and the tangential field F_{to} on ∂D_o is given by

$$F_{ti} = P_{ko}q_o = \int_{\partial D_o^+} P_{ko}(\rho, \rho') q_o(\rho') d\mathcal{C}', \quad \rho \in \partial D_k^-,$$

Similarly, we obtain F_{ts} from q_o by applying a propagator P_{ko} from ∂D_o to ∂D_k^-, viz.,

$$F_{ts} = P_{ko}q_o = \int_{\partial D_o} P_{ko}(\rho, \rho') q_o(\rho') d\mathcal{C}', \quad \rho \in \partial D_k^-.$$

Finally, with (5) and upon eliminating q_o, F_{ti} and F_{ts} from (7), (8) and (9), we find the following expression for S_{kk}

$$S_{kk} = (P_{kk}^s)^{-1}P_{ko}(X_{oo})^{-1}P_{ko}.$$
\[q^i_k = S_{kk} q^i_{k,\text{tot}} = S_{kk} \left(q^i_k + \sum_{n \neq k} q^i_{k(n)} \right), \quad \forall k, \] (11)

where we express the contribution of the other bricks by means of transfer operators \(T_{kn} \) [9]-[11] (see Fig. 1), namely

\[q^i_{k(n)} = T_{kn} q^i_n = \int_{\partial D_n} T_{kn}(\rho, \rho')q^i_n(\rho')dC', \quad \forall k \neq n. \] (12)

The \(N_B \) BIEs implicitly stated in (11) can be formally solved for \(q^i_k \) in order to highlight the total inverse scattering operator, \(S^{-1} \), of the structure, i.e.,

\[S^{-1} q^s = q^i, \] (13)

with

\[S^{-1} = \begin{bmatrix} S_{11}^{-1} & -T_{12} & \cdots & -T_{1N_B} \\ -T_{21} & S_{22}^{-1} & \cdots & -T_{2N_B} \\ \vdots & \vdots & \ddots & \vdots \\ -T_{N_B 1} & -T_{N_B 2} & \cdots & S_{N_B N_B}^{-1} \end{bmatrix}, \] (14)

\[q^s = \begin{bmatrix} q_1^s \\ q_2^s \\ \vdots \\ q_{N_B}^s \end{bmatrix}, \quad q^i = \begin{bmatrix} q_1^i \\ q_2^i \\ \vdots \\ q_{N_B}^i \end{bmatrix}. \] (15)

We see that (13), (14) and (15) constitutes the EM formulation of the problem in Fig. 1. In general we cannot invert (14) in close form, except when the structure is comprised of two bricks [9]. Hence, we apply the MoM and EEM in order to solve (13) efficiently.

IV. THE EIGENCURRENT EXPANSION METHOD

Let us assume that the the currents \(q^i_{k,s} \) on \(\partial D_k \) have been expanded using a set \(B_k \) of \(2N_f \) basis functions on a regular mesh\(^1\). The idea behind the EEM is to expand \(q^i_{k,s} \) in (13) using a set \(\mathcal{E} \) of functions that are approximations to the eigenfunctions of the operator \(S^{-1} \) [11]. We dub these functions eigencurrents because in the light of (13), \(S^{-1} \) maps currents to currents. To figure out what the set \(\mathcal{E} \) should be, we should neglect for a moment the multiple reflections taking place in the structure of Fig. 1. In this ideal case, the eigencurrents \(\{e_m^{(k)}\} \) of \(S^{-1} \) are formed by the juxtaposition of the eigencurrents \(\{u_m^{(k)}\} \) of \(S_{kk} \), viz.

\[e_m^{(k)} = \begin{bmatrix} 0, \cdots, u_m^{(k)}, \cdots, 0 \end{bmatrix}^t, \quad m \in \mathbb{N}, \] (16)

i.e., they are zero over all \(\partial D_n \), except on \(\partial D_k \) where they coincide with \(u_m^{(k)} \).

To apply the EEM to (13), we follow the procedure outlined in [11]. In this way (13) passes over to the following two uncoupled systems

\[\left[S_{cc}^{-1} \right] \left[q^s_c \right] = \left[q^i_c \right], \quad \left[\Lambda_{oo}^{-1} \right] \left[q^s_o \right] = \left[q^i_o \right]. \] (17)

\(^1\)A regular mesh will prevent segments belonging to different boundaries from overlapping partially when any two bricks touch one another.

where \(\left[q^s_{c,o} \right] \) are the coefficients of the incident and scattered current expanded in terms of the coupled (uncoupled) eigencurrents. From (17) we see that we have turned the problem in (13) into the formal inversion of a diagonal matrix \(\left[\Lambda_{oo}^{-1} \right] \) plus the solution of a system whose matrix, \(\left[S_{cc}^{-1} \right] \), is far smaller than \(\left[S \right]^{-1} \). Eventually, upon returning to the original basis \(\bigcup B_k \), we find

\[\left[q^s \right] \approx \left[G\right] \left[P\right] \left[q^s_{c,o} \right]. \] (18)

where \(P \) is a permutation matrix (with \(\left[P\right] \left[P\right]^t = \left[I\right] \)) which order the coefficients in \(\left[q^s_{c,o} \right] \) to form \(\left[q^s \right] \) as in [11] and \(\left[G\right] \) is a Gram matrix to pass from the eigencurrent basis to the original basis [11]. Equations (17), (18) have remarkable numerical features that are mentioned in [11].

V. NUMERICAL RESULTS

We have implemented the LEGO approach together with the EEM in a numerical code to handle arbitrary 2-D brick shapes enclosing either PEC or dielectric objects. To test the code, we first consider the scattering from an aggregate of 16 PEC cylinders (radius \(r \)) arranged in a square lattice, as shown in Fig. 2. Each cylinder is discretized with \(N_o = 80 \) edges and embedded in a square brick discretized with \(N_f = 90 \) edges. The relative size of the cylinders with respect to the bricks is \(r/a = 0.25 \) with \(a = 1 \) m. To represent the unknown current densities, we use triangular pulses as basis and test functions. A cylindric wave with TM polarization with respect to \(z \) and \(f = 300 \) MHz is used to illuminate the array.

Fig. 3 shows the computed bi-RCS obtained using the LEGO-EEM (-) with 21 coupled eigencurrents per brick, and direct MoM (applied to the CFIE(\(\Phi\)),MFIE(\(\Psi\)) and the EFIE(\(\zeta\))). As we can see, the bi-RCS predicted by all the methods are in excellent agreement, thus confirming the correctness of the LEGO-EEM approach. To give an idea of the gain in terms of memory, for the structure of Fig. 2. The size of the system to be solved shrinks down to \(N_B N_o \times N_B N_o = 336 \times 336 \) in comparison to \(N_B N_o \times N_B N_o = 1280 \times 1280 \) when using the MoM on the entire structure.

Next, we consider a more elaborate numerical example, namely, a cylindrical EBG (CEBG) structure composed of concentric layers of metallic wires. Each metallic wire (radius}
is embedded in a square brick as shown in Fig. 4. The cylindrical layers are radially spaced with period \(P_r = C \) and have the same transversal period \(P_t = C P_k^{\phi} \). \(P_k^{\phi} \) is the angular separation between any two neighboring wires in layer \(k, k = 1, \ldots, N_L \). The CEBG is illuminated by a line source with unit current amplitude placed at the center.

We assume \(a = 3.5 \text{ mm}, C = P_r = 45 \text{ mm}, P_k^{\phi} = \pi/6, N_L = 2, N_o = 50 \), and \(N_f = 44 \). We compute the transmission coefficient \(T \) of the CEBG as a function of the frequency \(f \). \(T \) is defined as the radiated transverse electric field outside the cavity at a point \(\rho_o \) normalized by the radiated field of the source alone. Fig. 5 shows the computed \(T \). We observe as many resonances as the number of layers forming the CEBG [18],[19]. The reason why \(|T| \) is greater than one at resonances is that the cavity improves the matching to free-space of the initially mismatched line source.

In order to study the focusing characteristics of the CEBG structure, we introduce defects in the CEBG by removing selected wires. Then, we compute the radiation pattern of the resulting structure using the same parameters as before.

Two defective configuration with \(N_L \in \{4, 6, 8, 10, 12, 14\} \) and \(N_B \in \{1036, 826\} \) are considered, as illustrated in Figs. 6(a), 6(c). Figs. 6(b) and 6(d) show the radiation pattern in the H-plane at 2 GHz.

The directivity increases with the number of layers and the side-lobes level decreases correspondingly. The increase in the directivity can be explained by the widening of the effective area of the CEBG and the decrease in the side-lobes by the decrease in the magnitude of \(|T| \) in the stop-band (band-gap) of the CEBG when the number of layers increases [18],[19].

Finally, to discuss the complexity of LEGO-EEM, in Table I we list the characteristic sizes of the problem in Fig. 6(a). If we compare the size \(N_o N_B \times N_o N_B \) of \([S_{cc}]^{-1} \) with the size \(N_o N_B \times N_o N_B \) of the problem solved using the MoM, then the efficiency of LEGO-EEM to handle large structures becomes evident.

VI. CONCLUSIONS

We have combined the LEGO with the EEM for dealing with 2-D electrically large EBG structures. We have carried out two numerical examples in order to test the correctness and the efficiency of LEGO-EEM. In the first test, the computation of the bi-RCS shows that the LEGO-EEM is accurate when a small number of coupled eigencurrents is used to solve the electromagnetic problem. The second test has been carried out to verify the capabilities of LEGO-EEM to handle large structures.

ACKNOWLEDGMENTS

This research was supported by the MEMPHIS project under contract No 10006758.

Figure 6. Geometry of the CEBG with defects and (a) CEBG with \(N_L = 14, N_B = 1036 \) LEGO bricks and defects by removing 3, 5, 7, 9, \(\cdots \) wires in each layer. (b) Computed radiation pattern in the H-plane at 2 GHz as a function of the number of layer \(N_L \).

(c) CEBG with \(N_L = 14, N_B = 826 \) LEGO bricks and defects by removing 5, 9, 13, 17, \(\cdots \) wires in each layer. (d) Computed radiation pattern in the H-plane at 2 GHz as a function of the number of layer \(N_L \).

REFERENCES

