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Left Invariant Evolution Equations on Gabor
Transforms

Remco Duits and Hartmut Führ and Bart Janssen

Abstract By means of the unitary Gabor transform one can relate operators on sig-
nals to operators on the space of Gabor transforms. In order to obtain a translation
and modulation invariant operator on the space of signals, the corresponding opera-
tor on the reproducing kernel space of Gabor transforms must be left invariant, i.e.
it should commute with the left regular action of the reduced Heisenberg group Hr.
By using the left invariant vector fields on Hr and the corresponding left-invariant
vector fields on on phase space in the generators of our transport and diffusion equa-
tions on Gabor transforms we naturally employ the essential group structure on the
domain of a Gabor transform. Here we mainly restrict ourselves to non-linear adap-
tive left-invariant convection (reassignment), while maintaining the original signal.

1 Introduction

The Gabor transform of a signal f ∈ L2(Rd) is a function Gψ [ f ] : Rd×Rd→C that
can be roughly understood as a musical score of f , with Gψ [ f ](p,q) describing the
contribution of frequency q to the behaviour of f near p [19, 22]. This interpretation
is necessarily of limited precision, due to the various uncertainty principles, but it
has nonetheless turned out to be a very rich source of mathematical theory as well
as practical signal processing algorithms.
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2 Remco Duits and Hartmut Führ and Bart Janssen

The use of a window function for the Gabor transform results in a smooth, and
to some extent blurred, time-frequency representation; though keep in mind that by
the uncertainty principle, there is no such thing as a “true time-frequency represen-
tation”. For purposes of signal analysis, say for the extraction of instantaneous fre-
quencies, various authors tried to improve the resolution of the Gabor transform, lit-
erally in order to sharpen the time-frequency picture of the signal; this type of proce-
dure is often called “reassignment” in the literature. For instance, Kodera et al. [26]
studied techniques for the enhancement of the spectrogram, i.e. the squared modulus
of the short-time Fourier transform. Since the phase of the Gabor transform is ne-
glected, the original signal is not easily recovered from the reassigned spectrogram.
Since then, various authors developed reassignment methods that were intended to
allow (approximate) signal recovery [2, 5, 7]. We claim that a proper treatment of
phase may be understood as phase-covariance, rather than phase-invariance, as ad-
vocated previously. An illustration of this claim is contained in Figure 1.
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Fig. 1 Top row from left to right, (1) the Gabor transform of original signal f , (2) processed
Gabor transform Φt(Wψ f ) where Φt denotes a phase invariant shift (for more elaborate adaptive
convection/reassignment operators see Section 6 where we operationalize the theory in [7]) using
a discrete Heisenberg group, where l represents discrete spatial shift and m denotes discrete local
frequency, (3) processed Gabor transform Φt(Wψ f ) where Φt denotes a phase covariant diffusion
operator on Gabor transforms with stopping time t > 0. For details on phase covariant diffusions
on Gabor transforms, see [14, ch:7] and [25, ch:6]. Note that phase-covariance is preferable over
phase invariance. For example restoration of the old phase in the phase invariant shift (the same
holds for the adaptive phase-invariant convection) creates noisy artificial patterns (middle image) in
the phase of the transported strong responses in the Gabor domain. Bottom row, from left to right:
(1) Original complex-valued signal f , (2) output signal ϒψ f = W ∗

ψ ΦtWψ f where Φt denotes a
phase-invariant spatial shift (due to phase invariance the output signal looks bad and clearly phase
invariant spatial shifts in the Gabor domain do not correspond to spatial shifts in the signal domain),
(3) Output signal ϒψ f = W ∗

ψ ΦtWψ f where Φt denotes phase-covariant adaptive diffusion in the
Gabor domain with stopping time t > 0.
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We adapt the group theoretical approach developed for the Euclidean motion
groups in the recent works [9, 18, 12, 13, 15, 11], thus illustrating the scope of
the methods devised for general Lie groups in [10] in signal and image processing.
Reassignment will be seen to be a special case of left-invariant convection. A useful
source of ideas specific to Gabor analysis and reassignment was the paper [7].

The chapter is structured as follows: Section 2 collects basic facts concerning
the Gabor transform and its relation to the Heisenberg group. Section 3 contains the
formulation of the convection-diffusion schemes. We explain the rationale behind
these schemes, and comment on their interpretation in differential-geometric terms.
Section 4 is concerned with a transfer of the schemes from the full Heisenberg group
to phase space, resulting in a dimension reduction that is beneficial for implementa-
tion. The resulting scheme on phase space is described in Section 5. For a suitable
choice of Gaussian window, it is possible to exploit Cauchy-Riemann equations for
the analysis of the algorithms, and the design of more efficient alternatives. Section
6 describes a discrete implementation, and presents some experiments.

2 Gabor transforms and the reduced Heisenberg group

Throughout the paper, we fix integers d ∈N and n∈Z\{0}. The continuous Gabor-
transform Gψ [ f ] : Rd ×Rd → C of a square integrable signal f : Rd → C is com-
monly defined as

Gψ [ f ](p,q) =
∫
Rd

f (ξ )ψ(ξ − p)e−2πni(ξ−p)·q dξ , (1)

where ψ ∈ L2(Rd) is a suitable window function. For window functions centered
around zero both in space and frequency, the Gabor coefficient Gψ [ f ](p,q) ex-
presses the contribution of the frequency nq to the behaviour of f near p.

This interpretation is suggested by the Parseval formula associated to the Gabor
transform, which reads∫

Rd

∫
Rd
|Gψ [ f ](p,q)|2 dpdq = Cψ

∫
Rd
| f (p)|2 dp, where Cψ =

1
n
‖ψ‖2

L2(Rd) (2)

for all f ,ψ ∈ L2(Rd). This property can be rephrased as an inversion formula:

f (ξ ) =
1

Cψ

∫
Rd

∫
Rd

Gψ [ f ](p,q)ei2πn(ξ−p)·q
ψ(ξ − p)dpdq , (3)

to be read in the weak sense. The inversion formula is commonly understood as the
decomposition of f into building blocks, indexed by a time and a frequency param-
eter; most applications of Gabor analysis are based on this heuristic interpretation.
For many such applications, the phase of the Gabor transform is of secondary impor-
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tance (see, e.g., the characterization of function spaces via Gabor coefficient decay
[20]). However, since the Gabor transform uses highly oscillatory complex-valued
functions, its phase information is often crucial, a fact that has been specifically
acknowledged in the context of reassignment for Gabor transforms [7].

For this aspect of Gabor transform, as for many others, the group-theoretic view-
point becomes particularly beneficial. The underlying group is the reduced Heisen-
berg group Hr. As a set, Hr = R2d×R/Z, with the group product

(p,q,s+Z)(p′,q′,s′+Z) = (p+ p′,q+q′,s+ s′+
1
2
(q · p′− p ·q′)+Z) .

This makes Hr a connected (nonabelian) nilpotent Lie group. The Lie algebra is
spanned by vectors A1, . . . ,A2d+1 with Lie brackets [Ai,Ai+d ] = −A2d+1, and all
other brackets vanishing.

Hr acts on L2(Rd) via the Schrödinger representations U n : Hr→B(L2(R)),

U n
g=(p,q,s+Z)ψ(ξ ) = e2πin(s+qξ− pq

2 )
ψ(ξ − p), ψ ∈ L2(R). (4)

The associated matrix coefficients are defined as

W n
ψ f (p,q,s+Z) = (U n

(p,q,s+Z)ψ, f )L2(Rd). (5)

In the following, we will often omit the superscript n from U and Wψ , implicitly
assuming that we use the same choice of n as in the definition of Gψ . Then a simple
comparison of (5) with (1) reveals that

Gψ [ f ](p,q) = Wψ f (p,q,s =− pq
2

). (6)

Since Wψ f (p,q,s +Z) = e2πinsWψ f (p,q,0 +Z) , the phase variable s does not af-
fect the modulus, and (2) can be rephrased as∫ 1

0

∫
Rd

∫
Rd
|Wψ [ f ](p,q,s+Z)|2 dpdqds = Cψ

∫
Rd
| f (p)|2 dp. (7)

Just as before, this induces a weak-sense inversion formula, which reads

f =
1

Cψ

∫ 1

0

∫
Rd

∫
Rd

Wψ [ f ](p,q,s+Z)U n
(p,q,s+Z)ψ dpdqds .

As a byproduct of (7), we note that the Schrödinger representation is irreducible.
Furthermore, the orthogonal projection Pψ of L2(Hr) onto the range R(Wψ) turns
out to be right convolution with a suitable (reproducing) kernel function,

(PψU)(h) = U ∗K(h) =
∫

Hr

U(g)K(g−1h)dg ,
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with dg denoting the left Haar measure (which is just the Lebesgue measure on
R2d×R/Z) and K(p,q,s) = 1

Cψ
Wψ ψ(p,q,s) = 1

Cψ
(U(p,q,s)ψ,ψ).

The chief reason for choosing the somewhat more redundant function Wψ f over
Gψ [ f ] is that Wψ translates time-frequency shifts acting on the signal f to shifts in
the argument. If L and R denote the left and right regular representation, i.e., for
all g,h ∈ Hr and F ∈ L2(Hr),

(LgF)(h) = F(g−1h) , (RgF)(h) = F(hg) ,

then Wψ intertwines U and L ,

Wψ ◦U n
g = Lg ◦Wψ . (8)

Thus the additional group parameter s in Hr keeps track of the phase shifts induced
by the noncommutativity of time-frequency shifts. By contrast, right shifts on the
Gabor transform corresponds to changing the window:

Rg(W n
ψ(h)) = (Uhgψ, f ) = WUgψ f (h) . (9)

3 Left Invariant Evolutions on Gabor Transforms

We relate operators Φ : R(Wψ)→ L2(Hr) on Gabor transforms, which actually use
and change the relevant phase information of a Gabor transform, in a well-posed
manner to operators ϒψ : L2(Rd)→ L2(Rd) on signals via

(ϒψ f )(ξ ) = (W ∗
ψ ◦Φ ◦Wψ f )(ξ )

= 1
Cψ

∫
[0,1]

∫
Rd

∫
Rd

(Φ(Wψ f ))(p,q,s)ei2πn[(ξ ,q)+(s)−(1/2)(p,q)]ψ(ξ − p) dpdqds. (10)

Our aim is to design operators ϒψ that address signal processing problems such as
denoising or detection.

3.1 Design principles

We now formulate a few desirable properties of ϒψ , and sufficient conditions for Φ

to guarantee that ϒψ meets these requirements.

1. Covariance with respect to time-frequency-shifts: The operator ϒψ should com-
mute with time-frequency shifts. This requires a proper treatment of the phase.
One easy way of guaranteeing covariance of ϒψ is to ensure left invariance of Φ :
If Φ commutes with Lg, for all g ∈ Hr, it follows from (8) that

ϒψ ◦U n
g = W ∗

ψ ◦Φ ◦Wψ ◦U n
g = W ∗

ψ ◦Φ ◦Lg ◦Wψ = U n
g ◦ϒψ .
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Generally speaking, left invariance of Φ is not a necessary condition for in-
variance of ϒψ : Note that W ∗

ψ = W ∗
ψ ◦ Pψ . Thus if Φ is left-invariant, and

A : L2(Hr)→ R(W n
ψ )⊥ an arbitrary operator, then Φ + A cannot be expected

to be left-invariant, but the resulting operator on the signal side will be the same
as for Φ , thus covariant with respect to time-frequency shifts.
The authors [7] studied reassignment procedures that leave the phase invariant,
whereas we shall put emphasis on phase-covariance. Note however that the two
properties are not mutually exclusive; convection along equiphase lines fulfills
both. (See also the discussion in Subsection 3.4.)

2. Nonlinearity: The requirement that ϒψ commute with U n immediately rules out
linear operators Φ . Recall that U n is irreducible, and by Schur’s lemma [8], any
linear intertwining operator is a scalar multiple of the identity operator.

3. By contrast to left invariance, right invariance of Φ is undesirable. By a similar
argument as for left-invariance, it would provide that ϒψ = ϒU n

g ψ .

We stress that one cannot expect that the processed Gabor transform Φ(Wψ f ) is
again the Gabor transform of some function constructed by the same kernel ψ , i.e.
we do not expect that Φ(R(W n

ψ ))⊂R(W n
ψ ).

3.2 Invariant differential operators on Hr

The basic building blocks for the evolution equations are the left-invariant differen-
tial operators on Hr of degree one. These operators are conveniently obtained by dif-
ferentiating the right regular representation, restricted to one-parameter subgroups
through the generators {A1, . . . ,A2d+1}= {∂p1 , . . . ,∂pd ,∂q1 , . . . ,∂qd ,∂s} ⊂ Te(Hr),

dR(Ai)U(g) = lim
ε→0

U(geεAi)−U(g)
ε

for all g∈Hr and smooth U ∈C ∞(Hr), (11)

The resulting differential operators {dR(A1), . . . ,dR(A2d+1)} =: {A1, . . . ,A2d+1}
denote the left-invariant vector fields on Hr, and brief computation of (11) yields:

Ai = ∂pi +
qi

2
∂s, Ad+i = ∂qi −

pi

2
∂s, A2d+1 = ∂s, for i = 1, . . . ,d. ,

The differential operators obey the same commutation relations as their Lie algebra
counterparts A1, . . . ,A2d+1

[Ai,Ad+i] := AiAd+i−Ad+iAi =−A2d+1, (12)

and all other commutators are zero. I.e. dR is a Lie algebra isomorphism.
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3.3 Setting up the equations

For the effective operator Φ , we will choose left-invariant evolution operators
with stopping time t > 0. To stress the dependence on the stopping time we shall
write Φt rather than Φ . Typically, such operators are defined by W (p,q,s, t) =
Φt(Wψ f )(p,q,s) where W is the solution of{

∂tW (p,q,s, t) = Q(|Wψ f |,A1, . . . ,A2d)W (p,q,s, t),
W (p,q,s,0) = Wψ f (p,q,s). (13)

where we note that the left-invariant vector fields {Ai}2d+1
i=1 on Hr are given by

Ai = ∂pi +
qi
2 ∂s,Ad+i = ∂qi − pi

2 ∂s,A2d+1 = ∂s, for i = 1, . . . ,d, ,

with left-invariant quadratic differential form

Q(|Wψ f |,A1, . . . ,A2d) =−
2d

∑
i=1

ai(|Wψ f |)(p,q)Ai +
2d

∑
i=1

2d

∑
j=1

Ai Di j(|Wψ f |)(p,q) A j. (14)

Here ai(|Wψ f |) and Di j(|Wψ f |) are functions such that (p,q) 7→ ai(|Wψ f |)(p,q) ∈
R and (p,q) 7→ ai(|Wψ f |)(p,q) ∈ R are smooth and either D = 0 (pure convection)
or DT = D > 0 holds pointwise (with D = [Di j]) for all i = 1, . . . ,2d, j = 1, . . .2d.
Moreover, in order to guarantee left-invariance, the mappings ai : Wψ f 7→ ai(|Wψ f |)
need to fulfill the covariance relation

ai(|LhWψ f |)(g) = ai(|Wψ f |)(p− p′,q−q′), (15)

for all f ∈ L2(R), and all g = (p,q,s+Z),h = (p′,q′,s′+Z) ∈ Hr.
For a1 = . . .= a2d+1 = 0, the equation is a diffusion equation, whereas if D = 0,

the equation describes a convection. We note that existence, uniqueness and square-
integrability of the solutions (and thus well-definedness of ϒ ) are issues that will
have to be decided separately for each particular choice of ai and D. In general
existence and uniqueness are guaranteed, see Section 7.

This definition of Φt satisfies the criteria we set up above:

1. Since the evolution equation is left-invariant (and provided uniqueness of the
solutions), it follows that Φt is left-invariant. Thus the associated ϒψ is invariant
under time-frequency shifts.

2. In order to ensure non-linearity, not all of the functions ai, Di j should be constant,
i.e. the schemes should be adaptive convection and/or adaptive diffusion, via
adaptive choices of convection vectors (a1, . . . ,a2d)T and/or conductivity matrix
D. We will use ideas similar to our previous work on adaptive diffusions on
invertible orientation scores [17], [12], [11], [13] (where we employed evolution
equations for the 2D-Euclidean motion group). We use the absolute value to adapt
the diffusion and convection to avoid oscillations.
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3. The two-sided invariant differential operators of degree one correspond to the
center of the Lie algebra, which is precisely the span of A2d+1. Both in the
cases of diffusion and convection, we consistently removed the A2d+1 = ∂s-
direction, and we removed the s-dependence in the coefficients ai(|Wψ f |)(p,q),
Di j(|Wψ f |)(p,q) of the generator Q(|Wψ f |,A1, . . . ,A2d) by taking the absolute
value |Wψ f |, which is independent of s. A more complete discussion of the role
of the s-variable is contained in the following subsection.

3.4 Convection and Diffusion along Horizontal Curves

So far our motivation for (13) has been group theoretical. There is one issue we did
not address yet, namely the omission of ∂s = A2d+1 in (13). Here we first moti-
vate this omission and then consider the differential geometrical consequence that
(adaptive) convection and diffusion takes place along so-called horizontal curves.

The reason for the removal of the A2d+1 direction in our diffusions and convec-
tions is simply that this direction leads to a scalar multiplication operator mapping
the space of Gabor transform to itself, since ∂sWψ f = −2πinWψ f . Moreover, we
adaptively steer the convections and diffusions by the modulus of a Gabor trans-
form |Wψ f (p,q,s)| = |Gψ f (p,q)|, which is independent of s, and clearly a vector
field (p,q,s) 7→ F(p,q)∂s is left-invariant iff F is constant. Consequently it does not
make sense to include the separate ∂s in our convection-diffusion equations, as it
can only yield a scalar multiplication, as for all constant α > 0,β ∈ R we have

[∂s,Q(|Wψ f |,A1, . . . ,A2d)] = 0 and ∂sWψ f =−2πinWψ f ⇒

et((α∂ 2
s +β∂s)+Q(|Wψ f |,A1,...,A2d)) = e−tα(2πn)2−tβ2πin etQ(|Wψ f |,A1,...,A2d).

In other words ∂s is a redundant direction in each tangent space Tg(Hr), g ∈ Hr.
This however does not imply that it is a redundant direction in the group manifold
Hr itself, since clearly the s-axis represents the relevant phase and stores the non-
commutative nature between position and frequency, [14, ch:1].

The omission of the redundant direction ∂s in T (Hr) has an important geometrical
consequence. Akin to our framework of linear evolutions on orientation scores, cf.
[13, 17], this means that we enforce horizontal diffusion and convection, i.e. trans-
port and diffusion only takes place along so-called horizontal curves in Hr which
are curves t 7→ (p(t),q(t),s(t)) ∈ Hr, with s(t) ∈ (0,1), along which

s(t) =
1
2

t∫
0

d

∑
i=1

qi(τ)p′i(τ)− pi(τ)q′i(τ)dτ ,

see Theorem 1. This gives a nice geometric interpretation to the phase variable s(t),
since by the Stokes theorem it represents the net surface area between a straight line
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connection between (p(0),q(0),s(0)) and (p(t),q(t),s(t)) and the actual horizontal
curve connection [0, t] 3 τ 7→ (p(τ),q(τ),s(τ)). For details, see [14].

In order to explain why the omission of the redundant direction ∂s from the tan-
gent bundle T (Hr) implies a restriction to horizontal curves, we consider the dual
frame associated to our frame of reference {A1, . . . ,A2d+1}. We will denote this
dual frame by {dA 1, . . . ,dA 2d+1} and it is uniquely determined by 〈dA i,A j〉= δ i

j,
i, j = 1,2,3 where δ i

j denotes the Kronecker delta. A brief computation yields

dA i
∣∣
g=(p,q,s) = dpi , dA d+i

∣∣
g=(p,q,s) = dqi , i = 1, . . . ,d

dA 2d+1
∣∣
g=(p,q,s) = ds+ 1

2 (p ·dq−q ·dp),
(16)

Consequently a smooth curve t 7→ γ(t) = (p(t),q(t),s(t)) is horizontal iff

〈dA 2d+1
∣∣∣
γ(s)

,γ ′(s)〉= 0⇔ s′(t) =
1
2
(q(t) · p′(t)− p(t) ·q′(t)).

Theorem 1. Let f ∈ L2(R) be a signal and Wψ f be its Gabor transform associated
to the Schwartz function ψ . If we just consider convection and no diffusion (i.e.
D = 0) then the solution of (13) is given by

W (g, t) = Wψ f (γg
f (t)) , g = (p,q,s) ∈ Hr,

where the characteristic horizontal curve t 7→ γ
g0
f (t) = (p(t),q(t),s(t)) for each

g0 = (p0,q0,s0) ∈ Hr is given by the unique solution of the following ODE:
ṗ(t) =−a1(|Wψ f |)(p(t),q(t)), p(0) = p0,
q̇(t) =−a2(|Wψ f |)(p(t),q(t)), q(0) = q0,

ṡ(t) = q(t)
2 ṗ(t)− p(t)

2 q̇(t), s(0) = s0,

Consequently, the operator Wψ f 7→W (·, t) is phase covariant (the phase moves
along with the characteristic curves of transport):

arg{W (g, t)}= arg{Wψ f}(γg
f ) for all t > 0.

Proof. For proof see [14, p.30, p.31].

Also for the (degenerate) diffusion case with D = DT = [Di j]i, j=1,...,d > 0, the
omission of the 2d + 1-th direction ∂s = A2d+1 implies that diffusion takes place
along horizontal curves. Moreover, the omission does not affect the smoothness and
uniqueness of the solutions of (13), since the initial condition is infinitely differen-
tiable (if ψ is a Schwarz function) and the Hörmander condition [23], [10] is by (12)
still satisfied.

The removal of the ∂s direction from the tangent space does not imply that one
can entirely ignore the ∂s-axis in the domain of a (processed) Gabor transform.
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The domain of a (processed) Gabor transform Φt(Wψ f ) should not1 be considered
as R2d ≡ Hr/Θ . Simply, because [∂p,∂q] = 0 whereas we should have (12). For
further differential geometrical details see the appendices of [14], analogous to the
differential geometry on orientation scores, [13], [14, App. D , App. C.1 ].

4 Towards Phase Space and Back

As pointed out in the introduction it is very important to keep track of the phase
variable s > 0. The first concern that arises here is whether this results in slower
algorithms. In this section we will show that this is not the case. As we will ex-
plain next, one can use an invertible mapping S from the space Hn of Gabor
transforms to phase space (the space of Gabor transforms restricted to the plane
s = pq

2 ). As a result by means of conjugation with S we can map our diffusions
on Hn ⊂ L2(R2× [0,1]) uniquely to diffusions on L2(R2) simply by conjugation
with S . From a geometrical point of view it is better/easier to consider the diffu-
sions on Hn ⊂ L2(R2d × [0,1]) than on L2(R2d), even though all our numerical
PDE-Algorithms take place in phase space in order to gain speed.

Definition 1. Let Hn denote the space of all complex-valued functions F on Hr such
that F(p,q,s+Z) = e−2πinsF(p,q,1) and F(·, ·,s+Z)∈L2(R2d) for all s∈R, then
clearly Wψ f ∈Hn for all f ,ψ ∈Hn.

In fact Hn is the closure of the space {W n
ψ f | ψ, f ∈ L2(R)} in L2(Hr). The space

Hn is bi-invariant, since:

W n
ψ ◦U n

g = Lg ◦W n
ψ and W n

U n
g ψ

= Rg ◦W n
ψ , (17)

where again R denotes the right regular representation on L2(Hr) and L denotes
the left regular representation of Hr on L2(Hr). We can identify Hn with L2(R2d)
by means of the following operator S : Hn→ L2(R2d) given by

(S F)(p,q) = F(p,q,
pq
2

+Z) = eiπnpqF(p,q,0+Z).

Clearly, this operator is invertible and its inverse is given by

(S −1F)(p,q,s+Z) = e−2πisne−iπnpqF(p,q)

The operator S simply corresponds to taking the section s(p,q) = − pq
2 in the left

cosets Hr/Θ where Θ = {(0,0,s + Z) | s ∈ R} of Hr. Furthermore we recall the
common Gabor transform G n

ψ given by (1) and its relation (6) to the full Gabor
transform. This relation is simply G n

ψ = S ◦W n
ψ .

1 As we explain in [14, App. B and App. C ] the Gabor domain is a principal fiber bundle PT =
(Hr,T,π,R) equipped with the Cartan connection form ωg(Xg) = 〈ds + 1

2 (pdq− qdp),Xg〉, or
equivalently, it is a contact manifold, cf. [3, p.6], [14, App. B, def. B.14] , (Hr,dA 2d+1)).
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Theorem 2. Let the operator Φ map the closure Hn, n ∈ Z, of the space of Gabor
transforms into itself, i.e. Φ : Hn →Hn. Define the left and right-regular rep’s of
Hr on Hn by restriction

R
(n)
g = Rg

∣∣
Hn

and L
(n)

g = Lg
∣∣
Hn

for all g ∈ Hr. (18)

Define the corresponding left and right-regular rep’s of Hr on phase space by

R̃
(n)
g := S ◦R(n)

g ◦S −1, L̃
(n)

g := S ◦L (n)
g ◦S −1.

For explicit formulas see [14, p.9]. Let Φ̃ := S ◦Φ ◦S −1 be the corresponding
operator on L2(R2d) and

ϒψ = (W n
ψ )∗ ◦Φ ◦W n

ψ = (S W n
ψ )−1 ◦ Φ̃ ◦S W n

ψ = (G n
ψ)∗ ◦ Φ̃ ◦G n

ψ .

Then one has the following correspondence:

ϒψ ◦U n = U n ◦ϒψ ⇐Φ ◦L n = L n ◦Φ ⇔ Φ̃ ◦ L̃ n = L̃ n ◦ Φ̃ . (19)

If moreover Φ(R(Wψ)) ⊂R(Wψ) then the left implication may be replaced by an
equivalence. If Φ does not satisfy this property then one may replace Φ→WψW ∗

ψ Φ

in (19) to obtain full equivalence. Note that ϒψ = W ∗
ψ ΦWψ = W ∗

ψ (WψW ∗
ψ Φ)Wψ .

Proof. For details see our technical report [14, Thm 2.2].

5 Left-invariant Evolutions on Phase Space

For the remainder of the paper, for the sake of simplicity, we fix d = 1.
Now we would like to apply Theorem 2 to our left invariant evolutions (13) to

obtain the left-invariant diffusions on phase space (where we reduce 1 dimension
in the domain). To this end we first compute the left-invariant vector fields { ˜Ai} :=
{S AiS −1}3

i=1 on phase space. The left-invariant vector fields on phase space are

˜A1U(p′,q′) = S A1S
−1U(p′,q′) = ((∂p′−2nπiq′)U)(p′,q′),

˜A2U(p′,q′) = S A2S
−1U(p′,q′) = (∂q′U)(p′,q′),

˜A3U(p′,q′) = S A3S
−1U(p′,q′) =−2inπU(p′,q′) ,

(20)

for all (p,q) ∈ R and all locally defined smooth functions U : Ω(p,q) ⊂ R2→ C.
Now that we have computed the left-invariant vector fields on phase space, we

can express our left-invariant evolution equations (13) on phase space{
∂tW̃ (p,q, t) = Q̃(|Gψ f |, ˜A1, ˜A2)W̃ (p,q, t),
W̃ (p,q,0) = Gψ f (p,q). (21)

with left-invariant quadratic differential form
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Q̃(|Gψ f |, ˜A1, ˜A2) =−
2

∑
i=1

ai(|Gψ f |)(p,q) ˜Ai +
2

∑
i=1

2

∑
j=1

˜Ai Di j(|Gψ f |)(p,q) ˜A j. (22)

Similar to the group case, the ai and Di j are functions such that (p,q) 7→ ai(|Gψ f |)(p,q)∈
R and (p,q) 7→ ai(|Gψ f |)(p,q) ∈ R are smooth and either D = 0 (pure convection)
or DT = D > 0 (with D = [Di j] i, j = 1, . . . ,2d), so Hörmander’s condition [23]
(which guarantees smooth solutions W̃ , provided the initial condition W̃ (·, ·,0) is
smooth) is satisfied because of (12).

Theorem 3. The unique solution W̃ of (21) is obtained from the unique solution W
of (13) by means of

W̃ (p,q, t) = (S W (·, ·, ·, t))(p,q) , for all t ≥ 0 and for all (p,q) ∈ R2,

with in particular W̃ (p,q,0) = Gψ(p,q) = (S Wψ)(p,q) = (SW (·, ·, ·,0))(p,q) .

Proof. This follows by the fact that the evolutions (13) leave the function space
Hn invariant and the fact that the evolutions (21) leave the space invariant L2(R2)
invariant, so that we can apply direct conjugation with the invertible operator S to
relate the unique solutions, where we have

W̃ (p,q, t) = (etQ̃(|Gψ f |, ˜A1, ˜A2)Gψ f )(p,q)
= (etQ̃(|Gψ f |,S A1S −1,S A2S −1)S Wψ f )(p,q)
= (eS ◦ t Q(|Wψ f |,A1,A2)◦S −1

S Wψ f )(p,q)
= (S ◦ et Q(|Wψ f |,A1,A2) ◦S −1S ◦Wψ f )(p,q)
= (S W (·, ·, ·, t))(p,q)

(23)

for all t > 0 on densely defined domains. For every ψ ∈ L2(R)∩S(R), the space of
Gabor transforms is a reproducing kernel space with a bounded and smooth repro-
ducing kernel, so that Wψ f (and thereby |Wψ f |= |Gψ f |=

√
(ℜGψ f )2 +(ℑGψ f )2)

is uniformly bounded and continuous and equality (23) holds for all p,q ∈ R2.

5.1 The Cauchy Riemann Equations on Gabor Transforms

As previously observed in [7], the Gabor transforms associated to Gaussian win-
dows obey Cauchy-Riemann equations which are particularly useful for the analysis
of convection schemes, as well as for the design of more efficient algorithms.

More precisely, if ψ(ξ ) = ψa(ξ ) := e−πn (ξ−c)2

a2 and f is some arbitrary signal in
L2(R) then we have

(a−1A2 + iaA1)Wψ( f ) = 0⇔ (a−1 ˜A2 + ia ˜A1)Gψ( f ) = 0
(a−1A2 + iaA1) logWψ( f ) = 0⇔ (a−1 ˜A2 + ia ˜A1) logGψ( f ) = 0

(24)
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where we recall that Gψ( f ) = S Wψ( f ) and Ai = S −1 ˜AiS for i = 1,2,3. For
details see [14], [25, ch:5], where the essential observation is that we can write

Gψa f (p,q) =
√

aGD 1
a

ψ( f )(p,q) =
√

aGψD 1
a

f (
p
a
,aq)

with ψ = ψa=1 and where the unitary dilation operator Da : L2(R)→L2(R) is given
by Da(ψ)(x) = a−

1
2 f (x/a), a > 0. For the case a = 1, equation (24) was noted in

[7]. As a direct consequence of (24) we have

|Ũa|∂qΩ̃ a =−a2∂p|Ũa| and |Ũa|∂pΩ̃ a = a−2∂q|Ũa| + 2πq.
A2Ω a = a2A1|Ua| and A1Ω a = a−2A1|Ua| . (25)

where Ũa resp. Ua is short notation for Ũa =Gψa( f ), Ua=Wψa( f ), Ω̃ a=arg{Gψa( f )}
and Ω a =arg{Wψa( f )}.

If one equips the contact-manifold ( for general definition see cf. [3, p.6] or [14,
App. B, def. B.14] ), given by the pair (Hr,dA 3), recall (16) with the following
non-degenerate 2 left-invariant metric tensor

Gβ = gi jdA i⊗dA j = β
4dA 1⊗dA 1 +dA 2⊗dA 2, (26)

which is bijectively related to the linear operator G : H→H′, where H = span{A1,A2}
denotes the horizontal part of the tangent space, that maps A1 to β 4dA 1 and A2 to
dA 2. The inverse operator of G is bijectively related to

G−1
β

= gi jAi⊗A j = β
−4A1⊗A1 +A2⊗A2 .

Here the fundamental positive parameter β−1 has physical dimension length, so
that this first fundamental form is consistent with respect to physical dimensions.
Intuitively, the parameter β sets a global balance between changes in frequency
space and changes in position space. The Cauchy-Riemann relations (25) that hold
between local phase and local amplitude can be written in geometrical form:

G−1
β= 1

a
(dlog |U |,PH∗dΩ) = 0, (27)

where U = Wψa f = |U |eiΩ and where the left-invariant gradient equals dΩ =
3
∑

i=1
AiΩ dA i whose horizontal part equals PH∗dΩ =

2
∑

i=1
AiΩ dA i. This gives us

a geometric understanding. The horizontal part PH∗ dΩ |g0
of the normal co-vector

dΩ |g0
to the surface {(p,q,s) ∈ Hr | Ω(p,q,s) = Ω(g0)} is Gβ -orthogonal to the

normal co-vector d|U ||g0
to the surfaces {(p,q,s) ∈ Hr | |U |(p,q,s) = |U |(g0)}.

2 The metric tensor is degenerate on Hr , but we consider a contact manifold (H3,dA 3) where
tangent vectors along horizontal curves do not have an A3-component.
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6 Phase Invariant Convection on Gabor Transforms

First we derive left-invariant and phase-invariant differential operators on Gabor
transforms U := Wψ( f ), which will serve as generators of left-invariant phase-
invariant convection (i.e. set D = 0 in (13) and (21)) equations on Gabor transforms.
This type of convection is also known as differential reassignment, cf. [7, 5], where
the practical goal is to sharpen Gabor distributions towards lines (close to minimal
energy curves [14, App.D]) in Hr, while maintaining the signal as much as possible.

On the group Hr it directly follows by the product rule for differentiation that the
following differential operators C : Hn→Hn given by

C (U) = M (|U |)(−A2ΩA1U +A1ΩA2U), where Ω = arg{U},

are phase invariant, where M (|U |) denotes a multiplication operator on Hn with
the modulus of U naturally associated to a bounded monotonically increasing dif-
ferentiable function µ : [0,max(U)] → [0,µ(max(U))] ⊂ R with µ(0) = 0, i.e.
(M (|U |)V )(p,q) = µ(|U |(p,q)) V (p,q) for all V ∈Hn,(p,q) ∈ R2.

The absolute value of Gabor transform is almost everywhere smooth (if ψ is
a Schwarz function) bounded and C can be considered as an unbounded operator
from Hn into Hn, as the bi-invariant space Hn is invariant under bounded multi-
plication operators which do not depend on z = e2πis. Concerning phase invariance,
direct computation yields: C (eiΩ |U |) = M (|U |)eiΩ (−A2ΩA1|U |+A1ΩA2|U |).
For Gaussian kernels ψa(ξ ) = e−a−2ξ 2nπ we may apply the Cauchy Riemann rela-
tions (24) which simplifies for the special case M (|U |) = |U | to

C (eiΩ |U |) = (a2(∂p|U |)2 +a−2(∂q|U |)2) eiΩ . (28)

Now consider the following phase-invariant adaptive convection equation on Hr,{
∂tW (g, t) =−C (W (·, t))(g),
W (g,0) = U(g) (29)

with either

1. C (W (·, t)) = M (|U |)(−A2Ω ,A1Ω) · (A1W (·, t),A2W (·, t)) or

2. C (W (·, t)) = eiΩ
(

a2 (∂p|W (·,t)|)2

|W (·,t)| +a−2 (∂q|W (·,t)|)2

|W (·,t)|

)
.

(30)

In the first choice we stress that arg(W (·, t)) = arg(W (·,0)) = Ω , since transport
only takes place along iso-phase surfaces. Initially, in case M (|U |) = 1 the two
approaches are the same since at t = 0 the Cauchy Riemann relations (25) hold, but
as time increases the Cauchy-Riemann equations are violated (this directly follows
by the preservation of phase and non-preservation of amplitude), which has been
more or less overlooked in the single step convection schemes in [7, 5].
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The second choice in (30) in (29) is just a phase-invariant inverse Hamilton
Jakobi equation on Hr, with a Gabor transform as initial solution. Rather than com-
puting the viscosity solution of this non-linear PDE, we may as well store the phase
and apply an inverse Hamilton Jakobi system on R2 with the amplitude |U | as initial
condition and multiply with the stored phase factor afterwards.

With respect to the first choice in (30) in (29), which is much more cumbersome
to implement, the authors in [7] considered the equivalent equation on phase space:{

∂tW̃ (p,q, t) =−C̃ (W̃ (·, t))(p,q),
W̃ (p,q,0) = Gψ f (p,q) =: Ũ(p,q) = eiΩ̃(p,q)|Ũ(p,q)|= eiΩ̃(p,q)|U |(p,q)

(31)

with C̃(W̃ (·, t)) = M (|U |)
(
− ˜A2Ω̃ ˜A1W̃ (·, t)+(∂qΩ̃ −2πq) ˜A2W̃ (·, t)

)
, where we

recall Gψ = S Wψ and Ai = S −1 ˜AiS for i = 1,2,3. Note that the authors in [7]
consider the case M = 1. However the case M = 1 and the earlier mentioned case
M (|U |) = |U | are equivalent :

∂

∂ t
|U |= a2 (∂p|U |)2

|U | +a−2 (∂q|U |)2

|U | ⇔ ∂

∂ t
log |U |= a2(∂p log |U |)2 +a−2(∂q log |U |)2.

Although the approach in [7] is highly plausible, the authors did not provide an
explicit computational scheme like we provide in the next section.

On the other hand with the second approach in (30) one does not need the techni-
calities of the previous section, since here the viscosity solution of the system (31)
is given by a basic inverse convolution over the (max,+) algebra, [4], (also known
as erosion operator in image analysis)

W̃ (p,q, t) = (Kt 	|U |)(p,q)eiΩ(p,q,t) , (32)

with the kernel

Kt(p,q) =−a−2 p2 +a2q2

4t
(33)

where ( f 	g)(p,q) = inf(p′,q′)∈R2 [g(p′,q′)− f (p− p′,q−q′)]. Here the homomor-
phism between dilation/erosion and diffusion/inverse diffusion is given by the
Cramer transform C = F ◦ log◦L , [4], [1], which is a concatenation of the multi-
variate Laplace transform, logarithm and Fenchel transform. The Fenchel transform
maps a convex function c : R2→ R onto x 7→ [Fc](x) = sup{y ·x− c(y) | y ∈ R2}.
The isomorphic property of the Cramer transform is

C ( f ∗g) = F logL ( f ∗g) = F(logL f + logL g) = C f ⊕C g,

with convolution on the (max,+)-algebra given by f ⊕g(x) = sup
y∈Rd

[ f (x−y)+g(y)].
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6.1 Algorithm for the PDE-approach to Differential Reassignment

Here we provide an explicit algorithm on the discrete Gabor transform GD
ψ f of the

discrete signal f, that consistently corresponds to the theoretical PDE’s on the con-
tinuous case as proposed in [7], i.e. convection equation (29) where we apply the
first choice (30). Although that the PDE by [7] is not as simple as the second ap-
proach in (30) (which corresponds to a standard erosion step on the absolute value
|Gψ f | followed by a restoration of the phase afterwards) we do provide an explicit
numerical scheme of this PDE, where we stay entirely in the discrete phase space.

It should be stressed that taking straightforward central differences of the con-
tinuous differential operators of section 6 does not work. For details and non-trivial
motivation of left-invariant differences on discrete Heisenberg groups see [14].

Explicit upwind scheme with left-invariant finite differences in pseudo-code for M = 1

For l = 1, . . . ,K−1, m = 1, . . .M−1 set W̃ [l,m,0] := GD
ψ f[l,m].

For t = 1, . . . ,T
For l = 0, . . . ,K−1, for m = 1, . . . ,M−1 set
ṽ1[l,m] :=− aK

2 (log |W̃ |[l +1,m, t = 0]− log |W̃ |[l−1,m, t = 0])
ṽ2[l,m] :=− aM

2 (log |W̃ |[l,m+1, t = 0]|− log |W̃ |[l,m−1, t = 0])

W̃ [l,m, t] := W̃ [l,m, t−1]+K ∆ t
(

z+(ṽ1)[l,m] [ ˜A D−
1 W̃ ][l,m, t]+ z−(ṽ1)[l,m] [ ˜A D+

1 W̃ ][l,m, t]
)

+

M∆ t
(

z+(ṽ2)[l,m] [ ˜A D−
2 W̃ ][l,m, t]+ z−(ṽ2)[l,m] [ ˜A D+

2 W̃ ][l,m, t]
)

.

Explanation of all involved variables:

l discrete position variable l = 0, . . . ,K−1.
m discrete frequency variable m = 1, . . . ,M−1.
t discrete time t = 1, . . .T , where T is the stopping time.
ψ discrete kernel ψ = ψC

a = {ψa(nN−1)}N−1
n=−(N−1) or ψ = {ψD

a [n]}N−1
n=−(N−1)see below.

GD
ψ f[l,m] discrete Gabor transform computed by diagonalization via Zak transform [24].

W̃ [l,m, t] discrete evolving Gabor transform evaluated at position l, frequency m and time t.
˜A D±
i forward (+), backward (-) left-invariant position (i = 1) and frequency (i = 2) shifts.

z± z+(φ)[l,m, t] = max{φ(l,m, t),0},z−(φ)[l,m, t] = min{φ(l,m, t),0} for upwind.

The discrete left-invariant shifts on discrete phase space are given by

( ˜A D+

1 Φ̃)[l,m] = K(e−
2πiLm

M Φ̃ [l +1,m]− Φ̃ [l,m]), ( ˜A D−
1 Φ̃)[l,m] = K(Φ̃ [l,m]− e

2πiLm
M Φ̃ [l,m]),

( ˜A D+

2 Φ̃)[l,m] = MN−1(Φ̃ [l,m+1]− Φ̃ [l,m]), ( ˜A D−
2 Φ̃)[l,m] = MN−1(Φ̃ [l,m]− Φ̃ [l,m−1]),

(34)

The discrete Gabor transform equals GD
ψ f[l,m] = 1

N

N−1
∑

n=0
ψ[n− lL] f [n]e−

2πin(n−lL)
M ,

where M/L denotes the (integer) oversampling factor and N = KL. The discrete
Cauchy Riemann kernel ψD

a is derived in [14] and satisfies the system

∀l=0,...,K−1∀m=0,...,M−1∀f∈`2(I) : 1
a ( ˜A D+

2 + ˜A D−
2 )+ ia( ˜A D+

1 + ˜A D−
1 )(GD

ψD
a

f)[l,m] = 0 , (35)

which has a unique solution in case of extreme oversampling K = M = N, L = 1.
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6.2 Evaluation of Reassignment

We distinguished between two approaches to apply left-invariant adaptive convec-
tion on discrete Gabor-transforms.3 Either we apply the numerical upwind PDE-
scheme described in subsection 6.1 using the discrete left-invariant vector fields
(34), or we apply erosion (32) on the modulus and restore the phase afterwards.
Within each of the two approaches, we can use the discrete Cauchy-Riemann kernel
ψD

a or the sampled continuous Cauchy-Riemann kernel ψC
a .

To evaluate these 4 methods we apply the reassignment scheme to the reassign-
ment of a linear chirp that is multiplied by a modulated Gaussian and is sampled
using N = 128 samples. The input signal is an analytic signal so it suffices to show
its Gabor transform from 0 to π . A visualization of this complex valued signal can
be found Fig. 3 (top). The other signals in this figure are the reconstructions from the
reassigned Gabor transforms that are given in Fig. 5. Here the topmost image shows
the Gabor transform of the original signal. One can also find the reconstructions
and reassigned Gabor transforms respectively using the four methods of reassign-
ment. The parameters involved in generating these figures are N = 128, K = 128,
M = 128, L = 1. Furthermore a = 1/6 and the time step for the PDE based method is
set to ∆ t = 10−3. All images show a snapshot of the reassignment method stopped
at t = 0.1. The signals are scaled such that their energy equals the energy of the
input signal. This is needed to correct for the numerical diffusion the discretiza-
tion scheme suffers from. Clearly the reassigned signals resemble the input signal
quite well. The PDE scheme that uses the sampled continuous window shows some
defects. In contrast, the PDE scheme that uses ψD

a resembles the modulus of the
original signal the most. Table 6.2 shows the relative `2-errors for all 4 experiments.
Advantages of the erosion scheme (32) over the PDE-scheme of Section 6.1 are :

1. The erosion scheme does not produce numerical approximation-errors in the
phase, which is evident since the phase is not used in the computations.

Input signal
ξ 7→ f(ξ) = <f(ξ) + i=f(ξ)

=f<f

Absolute value of             
Gabor transform

Absolute value of re-assigned
Gabor transform

|W̃ (p, q, t)| ≡ |Φt(Wψf)(p, q, s)|

p↔ lp↔ l

q

m

↔

q

m

↔

|Gψf(p, q)| ≡ |Wψf(p, q, s)|

Fig. 2 Illustration of reassignment by adaptive phase-invariant convection explained in Section 6,
using the upwind scheme of Subsection 6.1 applied on a Gabor transform.

3 The induced frame operator can be efficiently diagonalized by Zak-transform, [24], boiling down
to diagonalization of inverse Fourier transform on Hr , [14, ch:2.3]. We used this in our algorithms.
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ε1 ε2 t
Erosion continuous window 2.4110−2 8.3810−3 0.1
Erosion discrete window 8.2510−2 7.8910−2 0.1
PDE continuous window 2.1610−2 2.2110−3 0.1
PDE discrete window 1.4710−2 3.3210−4 0.1
PDE discrete window 2.4310−2 6.4310−3 0.16

Table 1 The first column shows ε1 = (‖ f− f̃‖`2(I))‖f‖−1
`2

, the relative error of the complex valued
reconstructed signal compared to the input signal. In the second column ε2 = (‖|f|−|f̃|‖`2(I))‖f‖−1

`2
can be found which represents the relative error of the modulus of the signals. Parameters involved
are K = M = N = 128, window scale a = 1

8 and convection time t = 0.1, with times step ∆ t = 10−3

if applicable. PDE stand for the upwind scheme presented in Subsection 6.1 and erosion means
the morphological erosion method given by eq. (32).

2. The erosion scheme does not involve numerical diffusion as it does not suffer
from finite step-sizes.

3. The separable erosion scheme is much faster from a computational point of view.

The convection time in the erosion scheme is different than the convection time in
the upwind-scheme, due to violation of the Cauchy-Riemann equations. Typically,
to get similar visual sharpening of the re-assigned Gabor transforms, the convection
time of the PDE-scheme should be taken larger than the convection time of the
erosion scheme (due to numerical blur in the PDE-scheme). For example t = 1.6 for
the PDE-scheme roughly corresponds to t = 1 in the sense that the `2-errors nearly
coincide, see Table 6.2. The method that uses a sampled version of the continuous
window shows large errors. in Fig. 5 the defects are clearly visible. This shows
the importance of the window selection, i.e. in the PDE-schemes it is better to use
window ψD

a rather than window ψC
a . However, Fig. 4 and Table 6.2 clearly indicate

that in the erosion schemes it is better to choose window ψC
a than ψD

a .

7 Existence and Uniqueness of the Evolution Solutions

The convection diffusion systems (13) have unique solutions, since the coefficients
ai and Di j depend smoothly on the modulus of the initial condition |Wψ f |= |Gψ f |.
So for a given initial condition Wψ f the left-invariant convection diffusion generator
Q(|Wψ f |,A1, . . . ,A2d) is of the type

Q(|Wψ f |,A1, . . . ,A2d) =
d

∑
i=1

αiAi +
d

∑
i, j=1

Aiβi jA j.

Such hypo-elliptic operators with almost everywhere smooth coefficients given by
αi(p,q) = ai(|Gψ f |)(p,q) and βi j(p,q) = Di j(|Gψ f |)(p,q) generate strongly con-
tinuous, semigroups on L2(R2), as long as we keep the functions αi and βi j fixed,
[21], yielding unique solutions where at least formally we may write
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Figure 5.4: On top a chirp signal that is multiplied by a modulated Gaussian
is shown. The bottom image shows the modulus of the Gabor transform of the
complex valued signal that is shown on top. Parameters for the transform are
K = M = N = 128 and a = 1

6 . As a window �ψd
a was used.
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Figure 5.5: Reconstructions of the reassigned Gabor transforms of the signal that
is depicted in Figure 5.4. The left column is produced using �ψc

a as window and the
right column is produced using �ψd

a as window. The top row was produced using
the PDE based method and the bottom row was produced using the erosion based
method. Parameters involved are grid constants K = M = N = 128, window
scale a = 1

6 time step τ = 10−3 and the convection time t = 0.1.
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Fig. 3 Reconstructions of the reassigned Gabor transforms of the original signal that is depicted
on the top left whose absolute value of the Gabor transform is depicted on bottom left. In the right:
1st row corresponds to reassignment by the upwind scheme (M = 1) of Subsection 6.1, where
again left we used ψC

a and right we used ψD
a . Parameters involved are grid constants K = M = N =

128, window scale a = 1/6, time step ∆ t = 10−3 and time t = 0.1. 2nd row to reassignment by
morphological erosion where in the left we used kernel ψC

a and in the right we used ψD
a . The goal

of reassignment is achieved; all reconstructed signals are close to the original signal, whereas their
corresponding Gabor transforms depicted in Fig. 5 are much sharper than the absolute value of the
Gabor transform of the original depicted on the bottom left of this figure.
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Fig. 4 The modulus of the signals in the bottom row of Fig. 3. For erosion (32) ψC

a performs better
than erosion applied on a Gabor transform constructed by ψD

a .
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Fig. 5 Absolute value of reassigned Gabor transforms of the signals depicted in the right of Fig. 3.
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W (p,q,s, t) = Φt(Wψ f )(p,q,s) = e
t

(
d
∑

i=1
αiAi+

d
∑

i, j=1
Ai βi j A j

)
Wψ f (p,q,s)

with limt↓0 W (·, t) = Wψ f in L2-sense. Note that if ψ is a Gaussian kernel and f 6= 0
the Gabor transform Gψ f 6= 0 is real analytic on R2d , so it can not vanish on a set
with positive measure, so that αi : R2→ R are almost everywhere smooth.

This applies in particular to the first reassignment approach in (30) (mapping ev-
erything consistently into phase space using Theorem 3), where we have set D = 0,
a1(|Gψ f |)=M (|Gψ f |)|Gψ f |−1∂p|Gψ f | and a2(|Gψ f |)=M (|Gψ f |)|Gψ f |−1∂q|Gψ f |.

Now we have to be careful with the second approach in (30), as here the op-
erator Ũ 7→ C̃ (Ũ) is non-linear and we are not allowed to apply the general the-
ory. Nevertheless the operator Ũ 7→ C̃ (Ũ) is left-invariant and maps the space
L+

2 (R2) = { f ∈ L2(R2) | f ≥ 0} into itself again. In these cases the erosion so-
lutions (32) are the unique viscosity solutions, of (29), see [6].
Remark: For the diffusion case, [14, ch:7], [25, ch:6], we have D = [Di j]i, j=1,...,2d > 0,
in which case the (horizontal) diffusion generator Q(|Wψ f |,A1, . . . ,A2d) on the
group is hypo-elliptic, whereas the corresponding generator Q̃(|Gψ f |, ˜A1, . . . , ˜A2d)
on phase space is elliptic. By the results [16, ch:7.1.1] and [27] we conclude that
there exists a unique weak solution W̃ = SW ∈L2(R+,H1(R2))∩H1(R+,L2(R2))
and thereby we can apply continuous point evaluation in time and operator
L2(R2) 3 Gψ f 7→ Φ̃t(Gψ f ) := W̃ (·, ·, t) ∈ L2(R2) is well-defined, for all t > 0.
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