Tubular permanent magnet actuators: cogging forces characterization

Citation for published version (APA):

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 25. Dec. 2019
TUBULAR PERMANENT MAGNET ACTUATORS: COGGING FORCES CHARACTERIZATION

Johannes J.H. Paulides, Member, IEEE, Jeroen L.G. Janssen, Student Member, IEEE, Laurentiu Encica, Member, IEEE and Elena A. Lomonova, Senior Member, IEEE

Abstract: Tubular permanent magnet actuators are evermore used in demanding industrial and automotive applications. However, these actuators can suffer from large cogging forces, which have a destabilizing effect on the servo control system and compromise position and speed control accuracy. This paper focuses on the identification of the cogging forces by means of finite element software, where an approach is introduced within the 2D finite element analysis to model the linear tubular permanent magnet actuator compared to conventional axisymmetrical models. This gives that the contribution of the stator teeth and finite length of the ferromagnetic armature core to the total cogging force can be separately analyzed. The cogging force predictions is characterized and the effectiveness of the new method is verified comparing the results of the tubular structure in both the axisymmetrical model and 2D finite element model, normally used for rotary machines.

Index Terms: cogging force, tubular actuator, linear, permanent magnet, cylindrical, brushless.

I. INTRODUCTION

Linear direct-drive permanent magnet actuators are increasingly applied in industrial and automotive applications, because they can provide forces directly to a payload, i.e. in the absence of gearbox or transmission systems. They offer numerous advantages over rotary-to-linear-motion systems, with regard to their simplicity, efficiency, positioning accuracy and dynamic performance, in terms of their acceleration capability and bandwidth [1]. Comparisons of various linear actuator configurations showed that the tubular permanent magnet actuators (TPMA), as shown in Fig. 1, have the highest efficiency, offer a high power/force density, excellent servo characteristics, no end-windings, and, ideally, zero net attractive force between the stator and translator [2].

Although that the tubular actuator has numerous advantages, still the permanent magnets in the TPMA interact with the slotted armature structure and the finite-length stator core. The translator has a tendency to align in a position which corresponds to maximum magnetic energy, resulting in a cogging force. For many applications, the cogging force should be characterized and mitigated, however, ideally not at the cost of thrust force.

In flat linear and rotary permanent magnet machines numerous methods can be used to minimize the stator slotting cogging force, which are more or less also effective for the tubular structure. For example, permanent magnet length optimization, the use of semi-closed slots or magnetic slot wedges, skewing, varying the length of the air gap, permanent magnet shape optimization, etc. [3-5]. Also, fractional-slot-per-pole modular permanent-magnet-machine topologies can result in a negligible stator slotting cogging force [6]. Further, the end cogging force due to the finite armature length can be reduced by utilizing the counteracting nature of the force components on each end face of the armature core, which act in opposite directions [7]. Therefore, optimizing the armature or stator-core length ensures that the cogging-force components associated with both end faces can cancel each other. Also, shaping or smoothing the axial end corners also can significantly reduce the cogging due to the axial end-effects. However, for actuators that exhibit a relatively small effective airgap, hence increased power/force density, a significant end-effect cogging force could still exist.

![Fig.1 – Cross-section of the 3-phase slotted tubular brushless permanent magnet (PM) actuator.](image-url)
technique is used to investigate both cogging components. However, although that the proposed technique can be applied both to tubular and linear topologies of permanent-magnet actuators, the effectiveness is confirmed by finite-element analysis on the tubular permanent magnet actuator structure. As such, Section II distinguishes various cogging force estimation techniques and Section III provides the results form the commonly used axisymmetrical finite element modelling technique. The newly proposed method is given in Section IV, where the total procedure is explained. This, however, does include the end-effects, which can be eliminated from the analysis as illustrated in Section V by a periodical 2D model which solely includes cogging due to the stator teeth. Section VI introduces a separate model, where the stator teeth are fully connected, that solely provides the end-effect component of the cogging force, which agrees well with the segregation method from section IV. Finally, Section VII presents the conclusions.

II. COGGING FORCE ESTIMATION

The fringing effect, associated with the finite length of the ferromagnetic armature core, produces cogging force. This causes the armature to align in a position that corresponds to maximum stored magnetic energy when unexcited. This component of cogging force results primarily from the normal forces, which are developed on each end face of the armature core. The two components are unidirectional and act in opposite directions. However, in slotted tubular permanent magnet actuators another cogging force component exist, which results from the interaction of the permanent magnet field with the permeance function of the slotted core.

A vast amount of research has been undertaken on the interaction of PMs with ferromagnetic or nonmagnetic slotted or slotless back-irons [3-11]. Commonly a finite-element analysis is used to investigate cogging in complex structures, for example, a tubular axially magnetized PM actuator with slotted pole pieces [8]. Additionally, also finite-element model are used to validate simple analytical techniques, e.g., to synthesize the cogging torque waveform which is associated with the stator slots [9].

However, in tubular actuators the slotting effect and its related cogging force are difficult to be determined in a straightforward way. Therefore, also Schwarz-Christoffel (SC) conformal mapping methods have been applied to the analysis of the tubular PM actuator. This mapping allows for field calculation in a domain where standard field solutions can be used, however assumes the iron to be infinitely permeable [10, 11]. The tubular structure of the machine gives some complications since the SC-mapping technique only applies to two-dimensional Cartesian domains. A mapping based upon 'unrolling' and 'stretching' the tubular machine into a linear machine is used to tackle this problem. Furthermore, the modelling of coils and magnets in the mapping domain is considered and the results are verified with finite element (FE) software of FLUX.

Although all the analytical and mapping methods are very elegant and fast, for a slotted geometry, the slotting effect is difficult to incorporate accurately. Especially in tubular permanent magnet actuators when thin tooth tips, complex tooth shapes, 3D armature end contours, thick laminations or even solid back-irons are used that give significant flux leakage, fringing effects or local magnetic saturation. Further, separation of the cogging forces in tubular machines is difficult and ultimately when skewing has to be investigated complex 3D finite element modeling is necessary [12].
accurate (coarse) models and time expensive, accurate (fine) models. The misalignment between the coarse and fine models is corrected by means of a mapping function, which is iteratively updated.

The algorithm used is detailed in [15], where the geometry of the 245(I) machine of [13] has been used, as shown in Fig. 2a, with the specific sizes summarized in Table 1. This design is obtained by an optimization method applied for a single pole-pair, and extended to five pole-pairs representing the complete tubular actuator, as shown in Fig. 2b. As shown in Fig. 2a this model uses the zero boundary conditions on the model edges.

| Table 1. Actuator sizes in the axisymmetrical model |
|------------------|------------------|------------------|
| h_1 (mm) | 5.0 | h_7 (mm) | 7.8 |
| h_2 (mm) | 23.3 | l_1 (mm) | 3.0 |
| h_3 (mm) | 5.0 | l_2 (mm) | 15.5 |
| h_4 (mm) | 1.0 | l_3 (mm) | 19.1 |
| h_5 (mm) | 2.0 | l_4 (mm) | 64.6 |
| h_6 (mm) | 22.5 | l_{load} (mm) | 323 |

The single pole-pair model, hereafter referred to as model A, assumes a current density of 15 A/mm2, a coil packing factor of 0.5, mildsteel (A11010 steel) and a NdFeB PM with a remanent flux density of 1.23 T and a recoil permeability of 1.1. Fig. 3 shows the used mesh, where the calculated static actuator force for model A, by finite element analysis, is respectively 242 N.

Subsequently, the force is determined for the full-scaled axisymmetrical model of Fig. 2b, hereafter referred to as model B. The static force calculated for this model in the shown position is equal to 1446N, exceeding five times the force value of 242N, calculated for model A, due to the absence of zero flux boundaries between the pole-pairs.

These force amplitudes are valid for fixed position calculations, and hence neither magnetostatic nor transient position dependant force are taken into account. Such a magnetostatic force without considering a current, commonly referred to as a cogging or detent force, is calculated for model B (shown by Fig. 4), where the force, normalized to a movement equivalent to two pole pitches or 360° electrical degrees over the z-axis, is presented.

Fig. 4 clearly illustrates that for this axisymmetrical model the cogging force is rather high (approximately 10% of the rated force). This cogging force is a consequence of using PMs and can be separated into two parts: the first part is due to end effects on both sides of the stator of the tubular machine, and the second part is due to the slot openings in between the stator teeth. The separation of these parts is not applicable in conventional rotary machines, since no end-effects are apparent when modeling in 2D, and therefore all the cogging force is due to the slot openings. Conversely, for the linear actuator, as shown by Fig. 2b, the two parts can be split and investigated by applying periodic boundary conditions. Meanwhile, in axisymmetrical modeling these boundaries are not applicable, thus the separation of the cogging force components is not achievable for axisymmetrical models. Therefore, a distinctive 2D model representation is introduced in the next section, in which the linear actuator is represented as a rotary machine in order to distinguish the two cogging force components.

IV. AXIAL 2D FINITE ELEMENT MODELING

In the proposed method, the tubular actuator is axially unfolded. Subsequently, this flat, single sided, linear machine is transformed into a rotary machine by rotating it around a central axis having a very large radius, which minimizes the curvature of the rotational 2D representation, as illustrated in Fig. 5. The axial length of this 2D model is equal to the airgap circumference of the tubular actuator.

The airgap radius is chosen such that for one pole-pair the non-linearity, the radial deviation, between air gap radius and its tangential, is less than 0.5 mm (measured between the end and middle of the stator inner bore). This corresponds to a pole-pair angle of 3.6° with an airgap radius of approximately 1 m, as
shown in Fig. 6. In case of the full-scale actuator this non-linearity is increased to 12.7 mm, model B of Fig. 2b. Further, the axial geometric parameters from the axisymmetrical model (model A) are linearly transformed into the angles in the 2D rotating model (model C), which, due to the small non-linearity discussed above, is a reasonable assumption.

Fig.5 – Unrolling the axisymmetrical model to enable 2D rotational finite element model.

To compensate for the difference in the distance of the circumference as opposed to using a common axial length, introduced by representing the axisymmetrical model as a rotary machine, the radial sizes of the airgap, tooth tips, magnet and stator and rotor back iron are chosen in such a way that their respective volumes are equal to the volumes of these regions in the tubular model as shown in Table 2.

Table 2. Actuator sizes in the 2D rotating model

<table>
<thead>
<tr>
<th></th>
<th>d₁ (mm)</th>
<th>d₂ (mm)</th>
<th>d₃ (mm)</th>
<th>d₄ (mm)</th>
<th>d₅ (mm)</th>
<th>d₆ (mm)</th>
<th>Rₘₐₜₐₙₐₖ (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d₁ (mm)</td>
<td>5.0</td>
<td>14.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d₂ (mm)</td>
<td>11.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d₃ (mm)</td>
<td>4.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d₄ (mm)</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d₅ (mm)</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d₆ (mm)</td>
<td>22.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This ensures that the change in reluctance is kept at a minimum. However, in order not to impair on the tooth and winding geometry, the radial length of the stator teeth is not adjusted, which has the advantage that current density in the slots does not have to be altered in order to produce the same MMF and changes in slot leakage are minimized. A zero flux boundary condition is imposed on the inner bore of the rotor shaft, since this represents the symmetry axis in the axisymmetrical model, as shown in Fig. 2a and 7a.

Fig.6 – 2D rotational model of the three phase brushless radially magnetized tubular permanent magnet actuator, where illustrating the full geometry and linear actuator.

The comparison, in terms of static force, between the axisymmetrical, model A, and the flat 2D representation, model C, is performed by the periodical model of Fig. 7a, albeit with zero flux boundaries. As Table 3 shows, the difference in produced force between A and this model, from now on referred to as C, is approximately 8%, due to the assumptions and concessions that have been made in the transformation from the axisymmetrical model to the 2D rotating model.

Fig.7 – 2D rotational view (R-θ) of the three phase brushless radially magnetized tubular permanent magnet actuator, where (a) shows topology and design variables (referred to as model C with zero boundary conditions and model E with periodic boundary conditions) and (b) shows the full geometry (model D).
Having verified the magnetostatic equivalence between the model A and model C for the PM tubular actuator, a comparison on cogging forces is made for the full actuator geometry. A new model, referred to as model D and shown in Fig. 7b, is related to the rotating periodical model similar to the manner in which B is related to A in the translating geometry. It exhibits periodic boundary conditions on both rotor sides, thus no end effects due to the magnet array, which is a reasonable assumption since the stator ends remain at a certain distance from the rotor ends in the simulations. Furthermore, zero flux boundaries are applied at the sides of the stator area which includes large volume of air on both sides of the stator.

The calculated magnetostatic force is summarized in Table 3, which shows that the deviation between the two simulations is less than 6%, respectively 1446 N (model B) and 1528 N (model D). The mesh density and mesh size, in each periodical part of the machine, are shown in Fig. 8 and Table 3, respectively.

Fig. 9 shows the resulting cogging force for models B and D, which demonstrates the similarity in force amplitude and shape for both topologies. This validates the use of the 2D rotating model (model D) as shown in Fig. 7b, to investigate the two separate parts of the cogging force for the three phase brushless radially magnetized tubular permanent magnet actuator.

The partial representations, models A and C, as well as the full-model representations, models B and D, have demonstrated their respective similarities, as illustrated by Table 3 and Fig. 9. Therefore, the periodical model shown in Fig. 7a, model E, is used to obtain the cogging force due to the presence of the stator teeth part only, excluding the end effects. This representation assumes that the axial length of the actuator is infinitely long. The magnetostatic force amplitude simulation gives a static force of 300 N for this model, which closely approaches one-fifth of the force calculated for the full actuator, as summarized in Table 3. The resulting cogging force comparison for this model E is shown in Fig. 10.

Fig. 10 – Cogging force calculated for the rotational 2D model E which excludes end effects.

To obtain the cogging force due to stator teeth for the full actuator instead of one pole pair, the calculated force is multiplied by five, since the length of the actuator consists of five pole pairs. Both cogging characteristics are shown in Fig. 11, which demonstrates that the cogging force due to the stator teeth geometry has a strong influence on the total cogging behaviour of the actuator.
VI. COGGING BEHAVIOR DUE TO THE STATOR END EFFECTS

As demonstrated in the previous section, cogging force due to the stator teeth geometry is of significant influence on the total cogging behavior of the actuator, as shown in Fig. 11. This figure provides both the cogging characteristic for the full tubular actuator, including stator end effects and teeth geometry effects, and for the periodical model, including teeth geometry effects and excluding stator end-effects. Taking the difference between those characteristics gives the cogging behavior of the tubular actuator due to the end effects. Fig. 11 shows this end effect cogging, herewith demonstrating that the end effects are of significant influence on the total cogging behavior of the PM.

In order to verify this resulting cogging behavior, the axisymmetrical model B is modified into a new one referred to as F-model to represent a tubular actuator without stator teeth geometry effects. In this model the stator tooth tips are extended in such a way that the inner side of the stator, at the airgap, is represented by a large surface of mild steel without slot openings, as shown in Fig. 12.

Using model F, the cogging force characteristic of the tubular permanent magnet actuator which does not produce any cogging force due to the stator teeth geometry, is established. This is due to the smooth inner stator surface, which exhibits the change in permeability seen by the magnets and thus no preferable positions, causing cogging force, exist. The cogging due to the end effects, however, still is present and can thus be compared to the end effect induced cogging shown in Fig. 11. Both the cogging force calculated with the rotational representation, models D and E, and that with the axial 2D, model F, are shown in Fig. 13. This clearly shows the similarity between the two models.

VII. CONCLUSION

The cogging forces both for contributions due to stator slotting and axial end-effects for the three-phase tubular PM actuator have been established. This has been achieved by comparing axisymmetrical models to single-sided flat rotary models to establish whether the 2D rotary representation is a suitable manner to model the tubular PM actuator geometry in FE analysis. From these models various ways to determine these two parts to the cogging force have been evaluated.

Finally, an axisymmetrical model without the influence of the stator teeth has been investigated, which verified the result of the 2D rotary FE analysis.
method. It has been shown that the cogging due to the end-effects is similar to the stator teeth cogging, for this specific design, by respectively 140N and 120N. However, it should be mentioned that reducing the magnet pole pitch, generally to 0.7, will significantly reduce the cogging due to the stator teeth, albeit at some reduction in force density. Further, smoothing the axial end corners also significantly reduces the cogging due to the axial end-effects.

REFERENCES

