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consisting of two four-state trellises. To this point, though, no new
codes comparable to, for example, the rate4=5 and the rate8=9
MTR codes in [10] for the(1�D) (1+D)3 and(1�D) (1+D)4

channels have been found. For future work, an interesting research
problem would be to relax the trellis-matching constraint to enlarge
the constellations, thus obtaining higher-rate codes. Of course this
would come with an increase in decoding complexity.
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Error Propagation Assessment
of Enumerative Coding Schemes

Kees A. Schouhamer Immink,Fellow, IEEE, and
Augustus J. E. M. Janssen,Senior Member, IEEE

Abstract—Enumerative coding is an attractive algorithmic procedure
for translating long source words into codewords andvice versa. The
usage of long codewords makes it possible to approach a code rate which
is as close as desired to Shannon’s noiseless capacity of the constrained
channel. Enumerative encoding is prone to massive error propagation as
a single bit error could ruin entire decoded words. This contribution will
evaluate the effects of error propagation of the enumerative coding of
runlength-limited sequences.

Index Terms—Enumerative coding, error propagation, RLL.

I. INTRODUCTION

The technique of enumerative coding [1] makes it possible to
translate source words into codewords andvice versaby invoking
an algorithmic procedure rather than performing the translation with
a look-up table. The usage of long codewords makes it possible
to approach a code rate which is arbitrarily close to Shannon’s
noiseless capacity of the constrained channel. The risk of extreme
error propagation precluded its usage in practical systems. Single
channel bit errors may result in error propagation that could corrupt
the entire data in the decoded word, and, of course, the longer the
codeword the greater the number of data symbols affected.

This correspondence will evaluate the effects of error propagation
of enumerative coding, where it is assumed that the constrained code
is used in the conventional code configuration. It will be shown that
when certain measures are taken, the average error propagation can be
controlled to a level which is quite acceptable for many applications.
We start with a basic outline of the enumeration algorithm followed
by the error propagation assessment of enumerative schemes applied
to the coding of runlength-limited sequences.

II. ENUMERATIVE ENCODING

Let f0; 1gn denote the set of binary sequences of lengthn and
let S be any (constrained) subset off0; 1gn: The setS can be
ordered lexicographically as follows: ifxxx = (x1; � � � ; xn) 2 S
and yyy = (y1; � � � ; yn) 2 S; then yyy is called less thanxxx, in short,
yyy < xxx; if there exists ani; 1 � i � n; such thatyi < xi and
xj = yj ; 1 � j < i: For example, “00101” < “01010.” The position
of xxx in the lexicographical ordering ofS is defined to be therank
of xxx, denoted byiS(xxx), i.e., iS(xxx) is the number of allyyy in S with
yyy < xxx:

Let ns(x1; x2; � � � ; xu) be the number of elements inS for which
the firstu coordinates are(x1; x2; � � � ; xu): Cover [1] showed that
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the rank ofxxx 2 S can be obtained by

iS(xxx) =

n

j=1

xjns(x1; x2; � � � ; xj�1; 0): (1)

In Section III, we will evaluate error propagation effects. It is not
a simple matter to analyze the effects of error propagation for a
large class of constrained codes. We will focus on the enumeration
of the set of runlength-limited (RLL) or(d; k)-constrained sequences,
i.e., sequences that have at leastd and at mostk “zeros” between
consecutive “ones.” For(d;1)-constrained sequences (1) simplifies
to

iS(xxx) =

n

j=1

xjN(n� j) (2)

whereN(i) denotes the number of(d;1)-constrained sequences of
lengthi: Clearly, the rankiS(xxx) can be found by simply forming the
inner product of the receivedn-vectorxxx and then-vector of weights
(N(n � 1); � � � ; N(0)): Similar simple enumerative schemes have
been derived for(0; k) [4] and (d; k) sequences [5]. The number of
(d;1)-constrained sequences of lengthn can be found with

i) N(n) =n+ 1; 0 � n � d+ 1

ii) N(n) =N(n� 1) +N(n� d� 1); n > d+ 1: (3)

Note that if d = 0, i.e., S is the set of unconstrained sequences
f0; 1gn, (2) reduces to the familiar binary-to-decimal conversion
algorithm

iS(xxx) =

n

j=1

xj2
n�j

:

For d > 0, we haven weights of approximatelyn bits, so that the
amount of storage required for storing the weights is proportional to
n2: If we use a floating-point representation of the weights, each
weight is represented by a fixed number of bitss: As a result,
the hardware required for storage grows linearly with the codeword
lengthn: The finite-precision representation of the weights will entail
a (small) loss in code rate [2]. Floating-point arithmetic employs a
two-part radix-2 representationI = (m; e) to express the weight
I = m � 2e, whereI, m, ande are nonnegative integers. The two
componentsm and e are usually calledmantissaand exponentof
the integerI, respectively. The translation of a weight into(m; e) is
easily accomplished with the following procedure which ensures that
the mantissam is represented by a specified number of bits, denoted
by q: Let I be a positive integer, and let

u = blog2 Ic

then theq-bit truncation ofI, denoted bybIcq

bIcq = b2�(u+1�q)Ic2u+1�q (4)

can be represented in binary floating-point representation whose
mantissa requires at mostq nonzero bits.

If the above finite-precision arithmetic is used in the enumeration
algorithms we must modify the set of weights,fN(i)g, developed
above. To that end, let̂N(i) denote the number of(d) sequences of
lengthi that can be encoded with aq-bit mantissa representation, then

N̂(i) =
i+ 1; 1 � i � d+ 1
bN̂(i� 1) + N̂(i� 1� d)cq; i > d+ 1:

(5)

It is tacitly assumed thatN(i), 1 < i � d + 1, can be represented
by a mantissa ofq bits, i.e.,d+ 2 < 2q: The enumeration algorithm
itself remains unchanged, that is,

iS(xxx) =

n

j=1

xjN̂(n� j): (6)

Note that, though we have not explicitly written down the enumera-
tion algorithms of the general(d; k) case, it can be observed from the
results in [2] that the analysis of the error propagation effects given
below can be used to this general case.

III. ERROR PROPAGATION

In this section, we will investigate the effects of error propagation.
It is assumed that a binary source word,bbb is translated into a binary
codewordxxx using the enumeration algorithm. During transmission of
xxx a single error is made, i.e., we receivexxx0, dH(xxx; xxx0) = 1, where
dH(xxx; yyy) denotes Hamming distance betweenxxx and yyy: Translation
using (2) or (6) will result in the wordbbb0 = iS(xxx

0) 6= bbb = iS(xxx),
wherebbb0 and bbb are the binary representations ofiS(xxx0) and iS(xxx),
respectively. In particular, we are interested indH(bbb; bbb

0) and the
error burst length distribution. Theerror burst lengthb is defined
by b = nmax � nmin +1, wherenmin andnmax denote the smallest
and largest positions wherebbb0 and bbb differ.

If an error is made at positionk of the codeword, then the decoder
will invoke (6) and form the inner product

iS(xxx
0) =

n

j=1

xjN̂(n� j) + aN̂(n� k)

= iS(xxx) + aN̂(n� k);

= bbb+ aN̂(n� k) (7)

wherea = 1 if xk = 0 or a = �1 if xk = 1: All additions (or
subtractions) are in binary notation. Clearly, severe error propagation
can only occur if the binary addition (or subtraction) ofbbb = iS(xxx)
and N̂(n � k) results in a long carry.

An analysis of the error statistics can be made if we make some
assumptions. It is assumed that the source wordbbb is a random binary
vector of doubly infinite length. Secondly, the mantissa of a weight
N̂(n � k) is the binaryq-vectoryyy = (yq�1 � � � ; y0): By definition
yq�1 = 1 and the remaining(q � 1) elements are assumed to be
random. If the above assumptions hold, the next theorem provides
the error burst length distribution.

Theorem 1: With the above assumptions on the randomness ofbbb

andyyy the error burst length distributionp(b) is given by

p(b) =

( 1
2
)q; b = 1

( 1
2
)q�b+2; 2 � b � q

( 12 )
b�q+1; b > q

(8)

and p(b) = 0 for b � 0:
Proof: We may assume that we have an addition error (i.e.,

a = 1 in (7)). There holds

p(b = l) =
k

p(nmax = l+ k � 1; nmin = k)

=
k

p(nmax = l+ k � 1jnmin = k)p(nmin = k): (9)

We compute fork = 0; 1; � � � ; q � 1

p(nmin = k) = p(y0 = y1 = � � � = yk�1 = 0; yk = 1)

=
1

2

min (k+1;q�1)

(10)
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Fig. 1. Comparison of error burst distribution ford = 2 and q = 9:

while p(nmin = k) = 0 for other values ofk: Furthermore, again
for k = 0; 1; � � � ; q � 1

p(nmax = q�1jnmin = k) = 1�p(carry atq�1jnmin = k) (11)

while for m > q � 1 there holds

p(nmax = mjnmin = k)

= p (carry atq � 1jnmin = k)

� p(bq = � � � = bm�1 = 1; bm = 0)

=
1

2

m�q+1

p (carry atq � 1jnmin = k): (12)

It thus follows that we only need to compute

p (carry atq � 1jnmin = k); for k = 0; 1; � � � ; q � 1:

To do so, we define more generally fork = 0; 1; � � � ; q � 1 and
j = k; � � � ; q � 1

rjk = p (carry atjjnmin = k): (13)

Now rq�1;q�1 = 1
2
; and it is not hard to show fork =

0; 1; � � � ; q � 2 there holds

rkk =1=2

rq�1;k =1=2 + (1=2)rq�2;k

rjk =1=4 + (1=2)rj�1;k; j = k + 1; � � � ; q � 2: (14)

It thus follows that fork = 0; 1; � � � ; q � 2

rkk = rk+1;k = � � � = rq�2;k =
1

2
and rq�1;k =

3

4
: (15)

Finally, using (9)–(12), (15), andrq�1;q�1 = 1
2
, we get

p(b = 1) = p(nmax = nmin = q � 1) =
1

2

q

(16)

p(b = q � p) =
1

4

1

2

p+1

+
1

2

2q�p�1

+
3

4

q�2

k=p+1

1

2

k�p
1

2

min (k+1;q�1)

(17)

for p = 0; 1; � � � ; q � 2 and

p(b = q + p) =
1

2

2q+p�1

+
3

4

q�2

k=0

1

2

k+p
1

2

min(k+1;q�1)

(18)

for p = 1; 2; � � � : Working out (17) and (18) we find

p(b) =

1
2

q
; b = 1

1
2

q�b+2
; 2 � b � q

1
2

b�q+1
; b > q;

(19)

while p(b) = 0 for b � 0: This concludes the proof.

From Theorem 1 it is clear that the most likely burst has a length
of q, q + 1 bits with probability p(q) � p(q + 1) � 1=4: Error
bursts longer or shorter thanq or q + 1 have an exponentially
decaying probability. Fig. 1 compares results of a typical example
of computer simulations and computations using (8). The outcomes
of the simulations show a reasonable agreement with the theory
developed for the longer bursts and that there is a discrepancy for
shorter bursts. In [2], it has been shown that the coefficients are
periodic in nature. It has been found that the period lengths for
selected values ofd, k, andp can be very short and that, therefore, the
assumption of randomness of the coefficients, which is essential for
the validity of the theorem, is not valid. However, for the majority of
parameters the period length is quite long, and the coefficients show
a reasonable “randomness.”

Thus we can control the error propagation by a proper choice of
q: The choice ofq has an effect on the maximum achievable code
rate which can simply be approximated by (see [2])

Ĉ(d; k) � C(d; k)� 2�(q+2) (20)

whereC(d; k) is the capacity of the(d; k)-constrained channel and
Ĉ(d; k) is the capacity of the same channel using enumerative
encoding with floating arithmetic. With (8) and (20) a tradeoff has
to be made between, on the one hand, the error propagation effects,
which has a bearing on the required capability of the error control
code, and on the other hand, the rate of the constrained code. This is
a very subtle tradeoff requiring a detailed specification of the various
coding layers, and has therefore not been pursued.

We present some results that follow from Theorem 1, or the proofs
of which are of a similar nature as that of Theorem 1.

1) For the expectationE(b) and variance�2(b) of b we have

E(b) = q �
1

2
+

1

2

q

�2(b) = 2q +
17

4
� 2q

1

2

q

�
1

2

2q

: (21)

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 02,2010 at 10:38:00 EST from IEEE Xplore.  Restrictions apply. 



2594 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 7, NOVEMBER 1999

Furthermore, for the number of errors made, denoted byn, i.e.,
the number of positionsk wherex0

k 6= xk, we have

E(n) =
1

2
(q + 3)

�
2(n) =

1

6
(q + 3) +

10

9
+

8

9

1

2

q

: (22)

2) For the damage done by a fixed additiveyyy = (yq�1; � � � ; y0)
we have the following. Letk be the minimum indexi such
that yi = 1: Then

p(b = q � kjyyy) = 1�

q�1

j=0

1

2

q�j

yj (23)

and

p(b = ljyyy) =

q�1

j=0

1

2

l+k�j

yj ; l = q � k + 1; � � � : (24)

The above was observed by L. M. G. M. Tolhuizen. Consequently,

E(bjyyy) = q � k + T

�
2(bjyyy) =

9

4
� T �

3

2

2

(25)

where

T =

q�1

j=0

1

2

q�1�j

yj 2 [1; 2): (26)

Similar, though slightly more complex, expressions involving the
correlation function ofyyy can be derived forE(njyyy) and�2(njyyy):

IV. CONCLUSIONS

We have investigated error propagation effects of enumerative
schemes used for the coding of runlength-limited sequences. We have
given a theoretical expression for the error burst length distribution.
The most likely burst has a length ofq, q+1 bits. Error bursts longer
or shorter thanq or q+1 have an exponentially decaying probability.
It has been shown that computer simulations compare fairly well
with the theoretical results.
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On Efficient High-Order Spectral-Null Codes

Luca G. Tallini and Bella Bose,Fellow, IEEE

Abstract—Let S (N; q) be the set of all words of lengthN over the
bipolar alphabet f�1; +1g, having a qth-order spectral-null at zero
frequency. Any subset ofS (N; q) is a spectral-null code of lengthN
and order q. This correspondence gives an equivalent formulation of
S (N; q) in terms of codes over the binary alphabetf0; 1g, shows that
S (N; 2) is equivalent to a well-known class of single-error correcting and
all unidirectional-error detecting (SEC-AUED) codes, derives an explicit
expression for the redundancy ofS (N; 2), and presents new efficient
recursive design methods for second-order spectral-null codes which are
less redundant than the codes found in the literature.

Index Terms—Balanced codes, digital recording, group-theoretic bal-
anced codes, high-order spectral-null codes, line codes, partial-response
channels.

I. INTRODUCTION

The set of words in aqth-order spectral-null code

S(N; q) � f�1; +1gN
def
= �N

satisfies the following condition [7], [10](Y = y1y2 � � � yN ):

S (N; q) = Y 2 �N :

N

j=1

yjj
i = 0; 8 i = 0; 1; � � � ; q � 1 (1)

where the sum and product are over the real numbers. Any word in
S (N; q) is calledqth-order spectral-null word. A binary codeC is
a qth-order spectral-null code withk information bits and lengthN
(briefly, a q-OSN(N; k) code) if, and only if

1) C is a subset ofS (N; q) and
2) C has, say exactly,2k codewords.

One of the problems is to find suchC and a one-to-one function
(encoding function)

E : f0; 1gk �! C

which, together with its inverse (decoding function), is very easy to
compute. It is also required that the redundancy of the codeN � k

is as small as possible.
When q = 1, these codes coincide with the so-called balanced

or DC-free block codes [1], [2], [4], [6], [7], [9], [10], [13], [14],
[16]. For values ofq greater than1, the q-OSN(N; k) codes have
been recently considered for digital recording; these codes are useful
in achieving a better rejection of the low-frequency components of
the transmitted signal and enhancing the error correction capability
of codes used in partial-response channels [6]–[8], [10]. Recently,
Roth, Siegel, and Vardy, in [10], have presented many results in
the area of high-order spectral-null codes. In this correspondence,
some of the results given in [10] are improved. In particular, a new
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