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consisting of two four-state trellises. To this point, though, no new Error Propagation Assessment
codes comparable to, for example, the raf@ and the rate3/9 of Enumerative Coding Schemes
MTR codes in [10] for thg1 — D) (14 D) and(1 — D) (14 D)*

channels have been found. For future work, an interesting research Kees A. Schouhamer Imminkellow, IEEE and
problem would be to relax the trellis-matching constraint to enlarge Augustus J. E. M. Jansse8enior Member, IEEE

the constellations, thus obtaining higher-rate codes. Of course this
would come with an increase in decoding complexity.
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for high-density saturation recording channellgEE J. Select. Areas channel. Enumerative encoding is prone to massive error propagation as
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the rank ofz € S can be obtained by Note that, though we have not explicitly written down the enumera-
n tion algorithms of the generdll, k) case, it can be observed from the
is(z) = Z xjns (@1, 22, -, xj—1,0). (1) results in [2] that the analysis of the error propagation effects given
j=1 below can be used to this general case.

In Section 1ll, we will evaluate error propagation effects. It is not

a simple matter to analyze the effects of error propagation for a

large class of constrained codes. We will focus on the enumeration 1. ERROR PROPAGATION
of the set of runlength-limited (RLL) dfd, %)-constrained sequences,
i.e., sequences that have at ledsand at most: “zeros” between
consecutive “ones.” Fofd, co)-constrained sequences (1) simplifie
to

In this section, we will investigate the effects of error propagation.
It is assumed that a binary source wobds translated into a binary
Todeworde using the enumeration algorithm. During transmission of
. x a single error is made, i.e., we receivg dy (z,z') = 1, where
is(z) = Z @i N(n = j) @) dH.(a:, y) denotes Hamming distance tzetwgem?d Y. Tran§lati0n
using (2) or (6) will result in the word' = is(z') # b = is(x),
o ) whered’ andb are the binary representations @f(z’') andis(z),
where N (i) denotes the number @fl, ~)-constrained sequences Ofrespectively. In particular, we are interested dm (b,5') and the

lengthi. Clearly, the ranks(z) can be found by simply forming the g1 pyrst length distribution. Therror burst lengthb is defined
inner product of the received-vectora and then-vector of weights 1, — N — omin - 1, Wherenmin andnmax denote the smallest

(N(n —1),---,N(0)). Similar simple enumerative schemes have 4 largest positions wheié andb differ.

been derived fox0, k) [4] and (d, k) sequences [S]. The number of ¢ oy error is made at positioh of the codeword, then the decoder
(d, oc)-constrained sequences of lengtttan be found with will invoke (6) and form the inner product

i) Nn)y=n+10<n<d+1
i) Nn)=N(n—-1)+N(n-d-1), n>d+1. (3)

j=1

n

is(x) = Z 2;N(n—j)+aN(n - k)

Note that ifd = 0, i.e., S is the set of unconstrained sequences j=1
{0,1}", (2) reduces to the familiar binary-to-decimal conversion =is(x) .1_(1_&7(77 — k),
algorithm —b+aN(n—k) )

n

is(®) =S x;2" 7.
j; ’ wherea = 1 if @, = 0 ora = —1if a, = 1. All additions (or

For d > 0, we haven weights of approximately: bits, so that the subtractions) are in b‘“‘f"ry notatic_)r.L Clearly, SEevere error p.ropagation

amount of storage required for storing the weights is proportional ‘f\c%g :T}I/ SC;S;Jrrgsmg ?:,n:r?/o?ddég?rn (or subtraction)iof= i ()

n?. If we use a floating-point representation of the weights, eac AR =B g carry. .

weight is represented by a fixed number of bitsAs a result An analysis of the error statistics can be made if we make some

the hardware required for storage grows linearly with the codewo?éit‘or?%tflodn;ﬁ Isir?fisriltjen}i(rj\ Tha t ;Zisgglr ceﬂ\f; Oﬁzr::ggg?fb:;z ht

lengthr. The finite-precision representation of the weights will entai ¥ (0 — k) is th()e/ binar -vegto; - y’... ). By definition 9

a (small) loss in code rate [2]. Floating-point arithmetic employs T Y4 ¥ = (yg-1--",y0). By

A ! X yq—1 = 1 and the remainindg — 1) elements are assumed to be

two-part radix2 representatiol = (m,e) to express the weight . .
e A random. If the above assumptions hold, the next theorem provides
I =m x 2°, wherel, m, ande are nonnegative integers. The two R
. the error burst length distribution.

componentsn and e are usually callednantissaand exponentof
the integerl, respectively. The translation of a weight inta, e) is Theorem 1: With the above assumptions on the randomness of
easily accomplished with the following procedure which ensures thady the error burst length distribution(b) is given by
the mantissan is represented by a specified number of bits, denoted

by ¢. Let I be a positive integer, and let 1\q b—=1
2/ -
u = [log, I p(b) =1 (1)"" 2<b<yq ®)
("7 >y

then theg-bit truncation ofI, denoted by(I |,

_ —(u+1—q) r1outl—gq
1), = 2 12 @) andpb) = 0 for b < 0.

can be represented in binary floating-point representation whose Proof: We may assume that we have an addition error (i.e.,
mantissa requires at mogtnonzero bits. a = 1 in (7). There holds
If the above finite-precision arithmetic is used in the enumeration
algorithms we must modify the set of weightsy (i)}, developed
0 p b=1)= ] max:l k_]-a'min:k
above. To that end, le¥ (i) denote the number df!) sequences of p( ) ; p(n + o )

lengthi that can be encoded withgabit mantissa representation, then
= Z p(nlﬂa.‘( =1 + k — 1|77nﬁn = k)p(nlﬂin = k) (9)
T

NG) = { ZLTT(IL— D+ NG —1—d)),. S e
It is tacitly assumed thal (i), 1 < i < d + 1, can be represented We compute fork = 0,1,---,¢q — 1
by a mantissa of bits, i.e.,d + 2 < 2. The enumeration algorithm
itself remains unchanged, that is, Plrmin = k) =p(yo = y1 = - = yoer = 0,1 = 1)
is(z) = Z a;N(n - j). (6) = G)mm e (10)
J=1
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Fig. 1. Comparison of error burst distribution fdr = 2 and ¢ = 9.
while p(nmin = k) = 0 for other values oft. Furthermore, again for p = 1,2,---. Working out (17) and (18) we find
for k =0,1,---.¢—1 (%)ﬂﬁ b=1
P(Mmax = ¢ — Lnmin = k) = 1 = p(carry atq—1|nmin = k) (11) p(b) = i q_h+27 2<b<gq (19)
, 1\b—gq+1 b
while for m > ¢ — 1 there holds (3) ) > q,

p(n]nax = m|nn1in = k)

= p(carry atg — 1|nmin = k)

'p(bq == bnz—l = 1vbwL = 0)
1 m—q+1
- <§> p(carry atg — 1|nmin = k). (12)

It thus follows that we only need to compute
p(carry atg — 1|nmin = k), fork=0,1,---,¢— 1.

To do so, we define more generally fér= 0,1,---,¢ — 1 and
jg=k-q-1
r;r = p(carry atj|nmin = k). (13)

Now rq_i,—1 = %, and it is not hard to show fok =
0,1,---,¢9 — 2 there holds

rek =1/2
Tg—1k = 1/2 + (1/2)1’4_2‘,@,

Tjk =1/4+(1/2)rj-1,k. j=k+1--,9—2. (14)
It thus follows that fork = 0,1,---,¢q — 2
3
Thk = Tkti,k = " =Tq—2k = 3 and 74—k = 1 (15)
Finally, using (9)—(12), (15), antl,—1 4—1 = é we get
1 q
[J(b = 1) :p(nmax = Nmin = ¢ — 1) = <§) (16)
1/1 p+1 1 2qg—p—1
p(b—q—p)—1<§> +<§>
3 q—2 1 k—p 1 min (k+1,q—1)
22 G) G an
k=p+1
forp = 0,1 ,q¢ —2 and
1 2q+p—1
pb=q+p)= <§>
3 q—2 1 k+p 1 min(k+1,q—1)
+12() () (e
k=0

while p(b) = 0 for b < 0. This concludes the proof.

From Theorem 1 it is clear that the most likely burst has a length
of ¢, ¢ + 1 bits with probability p(q) =~ p(¢ + 1) = 1/4. Error
bursts longer or shorter thap or ¢ + 1 have an exponentially
decaying probability. Fig. 1 compares results of a typical example
of computer simulations and computations using (8). The outcomes
of the simulations show a reasonable agreement with the theory
developed for the longer bursts and that there is a discrepancy for
shorter bursts. In [2], it has been shown that the coefficients are
periodic in nature. It has been found that the period lengths for
selected values af, k, andp can be very short and that, therefore, the
assumption of randomness of the coefficients, which is essential for
the validity of the theorem, is not valid. However, for the majority of
parameters the period length is quite long, and the coefficients show
a reasonable “randomness.”

Thus we can control the error propagation by a proper choice of
g. The choice ofy has an effect on the maximum achievable code
rate which can simply be approximated by (see [2])

Cd, k) = C(d, k) — 2~ (7t (20)
whereC(d, k) is the capacity of théd, k)-constrained channel and
C(d, k) is the capacity of the same channel using enumerative
encoding with floating arithmetic. With (8) and (20) a tradeoff has
to be made between, on the one hand, the error propagation effects,
which has a bearing on the required capability of the error control
code, and on the other hand, the rate of the constrained code. This is
a very subtle tradeoff requiring a detailed specification of the various
coding layers, and has therefore not been pursued.

We present some results that follow from Theorem 1, or the proofs
of which are of a similar nature as that of Theorem 1.

1) For the expectatio?(h) and variancer?(b) of b we have
1 1\
E()=q- 3 + <§)

200 17 . (1\? 1\%
U(b)—?q+z—2q<§> _<§) .
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Furthermore, for the number of errors made, denoted hye.,
the number of positiong wherez), # =i, we have

B(n) = 5(a+3)

q
o’ (n) :1(q+3)+ £+ §<1> .

6 9 " o\2 22)

2) For the damage done by a fixed additwe= (yg—1.---,v0)
we have the following. Let be the minimum index such
thaty, = 1. Then

g—1 1\ 97
P(b=q—kly)=1—z<§) vi

7=0

(23)

and

q—1 1 I+k—j
p(b=1ly) = <§> ¥, l=g—k+1---. (24)
5=0

=
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On Efficient High-Order Spectral-Null Codes

Luca G. Tallini and Bella Bosesellow, IEEE

Abstract—Let S (NN, ¢) be the set of all words of lengthV' over the
bipolar alphabet {—1, +1}, having a gth-order spectral-null at zero
frequency. Any subset ofS (N, ¢) is a spectral-null code of lengthV
and order ¢. This correspondence gives an equivalent formulation of
S (N, q) in terms of codes over the binary alphabet{0, 1}, shows that
S (N, 2) is equivalent to a well-known class of single-error correcting and
all unidirectional-error detecting (SEC-AUED) codes, derives an explicit
expression for the redundancy ofS (N, 2), and presents new efficient
recursive design methods for second-order spectral-null codes which are
less redundant than the codes found in the literature.

Index Terms—Balanced codes, digital recording, group-theoretic bal-
anced codes, high-order spectral-null codes, line codes, partial-response
channels.

I. INTRODUCTION
The set of words in @th-order spectral-null code

The above was observed by L. M. G. M. Tolhuizen. Consequently,

E(ly) =¢—k+T
o =5 - (7-3)

g—1 1 q—1—j
T= = ; 1,2).
> (3) wen>

(25)
where

(26)

Similar, though slightly more complex, expressions involving th

correlation function ofy can be derived foF(nly) ande?(nly).

IV. CONCLUSIONS

We have investigated error propagation effects of enumerative
schemes used for the coding of runlength-limited sequences. We have

S(N.g) € {-1. +1)" = 2

satisfies the following condition [7], [1O]Y = y1y2 -+ yn~):

N
S(N.q) = {Y€<I>N= Syt =0.Vi=0,1, ...,q_l} (1)

=1

where the sum and product are over the real numbers. Any word in
S (N, q) is calledgth-order spectral-null word. A binary codgis
a ¢th-order spectral-null code with information bits and lengtiv
gbrieﬂy, a¢-OSNN, k) code) if, and only if

1) C is a subset ofS (N, ¢q) and

2) C has, say exactly2" codewords.
One of the problems is to find suah and a one-to-one function
(encoding function)

{0, 1}f —¢

given a theoretical expression for the error burst length distributiofyhich, together with its inverse (decoding function), is very easy to
The most likely burst has a length @f¢ + 1 bits. Error bursts longer compute. It is also required that the redundancy of the c¥de &
or shorter thary or ¢+ 1 have an exponentially decaying probability js as small as possible.
It has been shown that computer simulations compare fairly We”Whenq — 1, these codes coincide with the so-called balanced
with the theoretical results. or DC-free block codes [1], [2], [4], [6], [7], [9], [10], [13], [14],
[16]. For values ofg greater tharl, the g-OSN(N, %) codes have
been recently considered for digital recording; these codes are useful
in achieving a better rejection of the low-frequency components of
We would like to thank L. Tolhuizen for his comments on earliefhe transmitted signal and enhancing the error correction capability
versions of this correspondence. of codes used in partial-response channels [6]-[8], [10]. Recently,
Roth, Siegel, and Vardy, in [10], have presented many results in
the area of high-order spectral-null codes. In this correspondence,

ACKNOWLEDGMENT

REFERENCES

[1] T.M. Cover, ‘Enumerative source codindPEE Trans. Inform. Theory

vol. IT-19, pp. 73-77, Jan. 1973.

some of the results given in [10] are improved. In particular, a hew

Manuscript received March 8, 1998; revised September 23, 1998. This work

[2] K. A. S. Immink, “A practical method for approaching the channelvas supported by the National Science Foundation under Grant MIP-9705738.

capacity of constrained channel$ZEE Trans. Inform. Theorwol. 43,
pp. 1389-1399, Sept. 1997.

The material in this correspondence was presented in part at the 1995 IEEE
International Symposium on Information Theory, Whistler, BC, Canada, Sept.

[3] D. T. Tang and L. R. Bahl, “Block codes for a class of constrained995.

noiseless channels|iform. Contro| vol. 17, pp. 436-461, 1970.
[4] W. H. Kautz, “Fibonacci codes for synchronization controlEEE
Trans. Inform. Theoryvol. IT-11, pp. 284-292, 1965.

L. G. Tallini is with the Dipartimento Di. Tec., Politecnico di Milano, 20133
Milano, Italy (e-mail: luca.tallini@polimi.it).
B. Bose is with the Department of Computer Science, Oregon State

[5] L. Patrovics and K. A. S. Immink, “Encoding efklr-sequences using University, Corvallis, OR 97331 USA (e-mail: bose@cs.orst.edu).

one weight set,1EEE Trans. Inform. Theoryol. 42, pp. 1553-1554,

Sept. 1996.

Communicated by A. Vardy, Editor-in-Chief.
Publisher Item Identifier S 0018-9448(99)07309-5.

0018-9448/99$10.00 1999 IEEE

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 02,2010 at 10:38:00 EST from IEEE Xplore. Restrictions apply.



