One-dimensional simulation of a stirling three-stage pulse-tube refrigerator

Citation for published version (APA):

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 19. Sep. 2020
One-dimensional simulation of a stirling three-stage pulse-tube refrigerator

by

ONE-DIMENSIONAL SIMULATION OF A STIRLING THREE-STAGE PULSE-TUBE REFRIGERATOR

M.A. Etaati
Department of Mathematics and Computer Science
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Email: m.a.etaati@tue.nl

R.M.M. Mattheij
Department of Mathematics and Computer Science
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Email: r.m.m.mattheij@tue.nl

A.S. Tijsseling
Department of Mathematics and Computer Science
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Email: a.s.tijsseling@tue.nl

A.T.A.M. de Waele
Department of Applied Physics
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Email: a.t.a.m.de.waele@tue.nl

ABSTRACT
A one-dimensional mathematical model is derived for a three-stage pulse-tube refrigerator (PTR) that is based on the conservation laws and the ideal gas law. The three-stage PTR is regarded as three separate single-stage PTRs that are coupled via proper junction conditions. At the junctions there are six fluid flow possibilities each defining its own boundary conditions for the adjacent domains. Each single stage cools down the gas in the regenerator to a lower temperature such that the system reaches its lowest temperature at the cold end of the third stage. The velocity and pressure amplitudes are decreasing towards the higher stages and there is an essential phase difference between them at different positions. The system of coupled PTRs is solved simultaneously first for the temperatures and then for the velocities and the regenerator pressures. The final result is a robust and accurate simulation tool for the analysis of multi-stage PTR performance.

INTRODUCTION
An innovative technology for cooling down to low temperatures is the so-called pulse-tube refrigerator (PTR). It is applied in medicine and space technology, for example to liquefy nitrogen and to facilitate superconductivity. A typical Stirling single-stage PTR is shown in Fig. 1. The PTR consists of a piston (or compressor) with after-cooler, a regenerator, a cold heat exchanger, a pulse tube, a hot heat exchanger, an orifice and a reservoir, in this sequence. The piston maintains an oscillating helium flow in the regenerator-tube system. The temperature of the helium increases when the flow is compressed and moving towards the hot heat exchanger (HHX) into the reservoir. The gas cools down when the flow is decompressed and moving back towards the cold heat exchanger (CHX) into the regenerator. The heat absorbing features of the regenerator, which is a porous medium with large heat capacity and large heat-exchanging surface, results in net cooling power per cycle. The cooling takes place at the cold heat exchanger, which is placed in a vacuum chamber. See [1, 2] for more explanation and analysis.

For reaching temperatures below 30 K a multi-stage PTR can be useful. Several single PTR are placed in series, such that the cold end of one stage is cooling the helium that enters the regenerator of the next stage. Each single PTR has dimensions and materials fitted for its intended temperature range. The studied three-stage pulse-tube refrigerator is sketched in Fig. 2. Its dimensions and properties are listed in the Appendix.

In this paper we derive a mathematical model that will be the basis for numerical simulation of the PTR. All parts of the system are coupled together in a physically correct way. The study is based on previous work [3, 4], but now extended to modelling the regenerator and multi-staging.
MATHEMATICAL MODEL

To analyse the fluid flow and heat transfer inside a single-stage PTR, we consider the fluid as a continuum. The heat exchangers are assumed ideal. The basic equations are the three laws of conservation and the equation of state of an ideal gas. The material properties are taken constant herein.

The Tube Model

Consider a one-dimensional region $0 < x < L_t$, where L_t is the length of the tube. The four basis equations for the tube have the following dimensional form [4]

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho u) = 0, \quad (1)$$

$$\rho \frac{\partial u}{\partial t} + \frac{\partial}{\partial x}(\rho u^2) = -\frac{\partial p}{\partial x} + \frac{4}{3 \mu} \frac{\partial^2 u}{\partial x^2}, \quad (2)$$

$$\rho c_v \left(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} \right) = \frac{\partial p}{\partial x} + \frac{u}{\partial x} + k \frac{\partial^2 T}{\partial x^2} + \frac{4}{3 \mu} (\frac{\partial u}{\partial x})^2, \quad (3)$$

$$p = \rho_t R_m T_g. \quad (4)$$

The symbols are defined in the Appendix. The equations are made non-dimensional by proper scaling parameters [5]. Employing asymptotic analysis, we see that the pressure p_t in the tube is uniform and we set it equal to the pressure at the interface with the regenerator. By eliminating the density, the following simplified continuity equation for the dimensionless velocity u_t and energy equation for the dimensionless temperature T_{g0} are obtained

$$\frac{\partial u_t}{\partial x} = \frac{a_1}{p_t} \frac{\partial^2 T_{g0}}{\partial x^2} - \frac{1}{\gamma \mu_t} \frac{\partial p_t}{\partial t}, \quad (5)$$

$$\frac{\partial T_{g0}}{\partial t} = \frac{a_2}{p_t} \frac{\partial^2 T_{g0}}{\partial x^2} - u_t \frac{\partial T_{g0}}{\partial x} + (1 - \gamma) \frac{\partial u_t}{\partial x} T_{g0}, \quad (6)$$

where $a_1 = 1/B Pe_g$ and $a_2 = \gamma/B Pe_g$. The temperature equation (6) is a nonlinear convection-diffusion equation. The coefficient of the diffusion term is very small, $a_2 \ll 1$, so that the flow is highly dominated by convection. The dimensional volume flow \dot{V}_h or the velocity u_t through the orifice is in a linear approximation given by [2]

$$\dot{V}_h(t) = C_{or}(p - p_b), \quad (7)$$

where p_b is the buffer (reservoir) pressure and C_{or} is the flow conductance of the orifice. The following non-dimensional relation gives the velocity at the hot end of the tube as the boundary condition (BC) for the velocity equation (5)

$$u_t(L_t,t) = C(p - \mathcal{E}_0), \quad (8)$$

where $\mathcal{E}_0 = p_b/p_m$. The upwind BC for the temperature equation (6) depend on the local flow directions and read

$$\begin{cases}
T_{g0}(L_t,t) = T_H & \text{if } u_t(L_t,t) \leq 0, \\
\frac{\partial T_{g0}}{\partial t}(L_t,t) = [(1 - \gamma) \frac{\partial u_t}{\partial x} T_{g0}(L_t,0) - \frac{\partial T_{g0}}{\partial t}(L_t,t)]/u_t(L_t,t) & \text{if } u_t(L_t,t) > 0.
\end{cases} \quad (9)$$

$$\begin{cases}
T_{g0}(0,t) = T_C & \text{if } u_t(0,t) \geq 0, \\
\frac{\partial T_{g0}}{\partial x}(0,t) = [(1 - \gamma) \frac{\partial u_t}{\partial x} T_{g0}(0,t) - \frac{\partial T_{g0}}{\partial t}(0,t)]/u_t(0,t) & \text{if } u_t(0,t) < 0.
\end{cases} \quad (10)$$
where T_H and T_C are the given temperatures at the hot and cold ends respectively.

The Regenerator Model

The governing equations for the regenerator, where $0 < x < L_r$, are similar to those of the tube and read [5]

\[\frac{\partial p_s}{\partial t} + \frac{\partial}{\partial x}(p_s u) = 0, \]

\[\rho_s \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \right) = - \frac{\partial p}{\partial x} + \frac{4}{3} \rho \frac{\partial^2 u}{\partial x^2} - \frac{\mu u}{\phi} \]

\[\rho_r (1 - \phi) \frac{\partial T_r}{\partial t} = \beta (T_s - T_r) + (1 - \phi) k \frac{\partial^2 T_r}{\partial x^2}, \]

\[\rho_s c_g \phi \frac{\partial T_g}{\partial t} = \beta (T_r - T_g) + \phi \left(\frac{\partial p}{\partial t} + u \frac{\partial p}{\partial x} \right) + \phi k \frac{\partial^2 T_g}{\partial x^2} + \frac{4}{3} \mu \frac{\partial u}{\partial x}, \]

\[p = \rho_r R_m T_g, \]

where ϕ is the porosity of the regenerator material which is assumed to be constant. The flow resistance is taken into account by Darcy’s law via the momentum equation (12). By non-dimensionalising the variables and employing asymptotic analysis, the equations take the following simplified form:

\[\frac{\partial u_r}{\partial x} = \frac{a_1}{p_r} \frac{\partial T_{g_r}}{\partial x^2} + \frac{a_6}{p_r} (T_r - T_{g_r}) + a_7 \frac{u_r}{p_r} u_r - \frac{1}{\gamma p_r} \frac{\partial p_r}{\partial t}, \]

\[\frac{\partial p_r}{\partial x} = -D u_r, \]

\[\frac{\partial T_r}{\partial t} = a_3 (T_s - T_r) + a_4 \frac{\partial^2 T_r}{\partial x^2}, \]

\[\frac{\partial T_{g_r}}{\partial t} = a_2 \left(\frac{T_s}{p_r} \frac{\partial^2 T_{g_r}}{\partial x^2} + a_5 \frac{T_{g_r}}{p_r} (T_r - T_{g_r}) + (1 - \gamma) \frac{\partial u_r}{\partial x} T_{g_r} - u_r \frac{\partial T_{g_r}}{\partial x} \right), \]

(9-10) as follows

\[\begin{cases} T_{g_r}(0,t) = T_H & \text{if } u_r(0,t) \geq 0, \\ \frac{\partial T_{g_r}}{\partial x} = \left[a_5 \left(\frac{T_{g_r}}{p_r} (T_r - T_{g_r}) + (1 - \gamma) \frac{\partial u_r}{\partial x} T_{g_r} - u_r \frac{\partial T_{g_r}}{\partial x} \right) \right] / u_r(0,t) & \text{if } u_r(0,t) < 0, \end{cases} \]

\[\begin{cases} T_{g_r}(L_r,t) = T_C & \text{if } u_r(L_r,t) \leq 0, \\ \frac{\partial T_{g_r}}{\partial x} = \left[a_5 \left(\frac{T_{g_r}}{p_r} (T_r - T_{g_r}) + (1 - \gamma) \frac{\partial u_r}{\partial x} T_{g_r} - u_r \frac{\partial T_{g_r}}{\partial x} \right) \right] / u_r(L_r,t) & \text{if } u_r(L_r,t) > 0. \end{cases} \]

We apply the heat exchanger temperatures as the proper BC for the material temperature equation (18). Mass conservation at the cold end gives BC for the velocity equation (16).

The Three-Stage PTR Model

The three-stage PTR (Fig. 2) is treated as three single-stage PTRs that are coupled via physical interface conditions. The regenerator material temperatures are considered to be fully decoupled from each other. The local energy and mass conservation provide the coupling conditions for the gas velocities and gas temperatures at the interfaces. For instance, at the junction connecting the first regenerator, the second regenerator and the first pulse-tube, we have mass conservation according to

\[\dot{m}_{Reg1} = \dot{m}_{Reg2} + \dot{m}_{Tube1}, \]

which is equivalent with

\[\frac{u \Delta \Phi}{T} |_{Reg1} = \frac{u \Delta \Phi}{T} |_{Reg2} + \frac{u A}{T} |_{Tube1}. \]

Neglecting the kinetic energy and local conduction terms, the energy conservation is satisfied by the enthalpy flow condition

\[H^*|_{Reg1} = H^*|_{Reg2} + H^*|_{Tube1}, \]

with

\[H^* = n^* H_m, \]

where n^* is the molar flow and H_m is the molar enthalpy. Then

\[n^* = \frac{u A}{V_m} = \frac{u A \rho}{R T^*}. \]
where V_m is the molar volume, R is the gas constant and p is the thermodynamic pressure. The molar enthalpy is

$$H_m^* = c_p T. \quad (27)$$

The enthalpy flow is then

$$H^* = (\frac{c_p p}{R}) u A. \quad (28)$$

Therefore energy conservation at the junction reduces to volume conservation

$$u A \phi|_{Reg 1} = u A \phi|_{Reg 2} + u A|_{Tube 1}. \quad (29)$$

By using mass conservation (Eq. 23) and energy conservation (Eq. 29) together with pressure continuity we couple two regenerators and one pulse-tube at each junction. Equation (23) is simply used as the proper BC for the upper regenerator at each junction.

There are six (out of eight) flow possibilities at an incompressible junction as depicted in Fig. 3. The vertical arrows show the flow in two consecutive regenerators and the horizontal one displays the flow to or from the pulse-tube. These multiple flows are explained below and the corresponding upwind boundary conditions for the temperature equations (6) and (19) are listed in Table 1.

State I: There are two outflows: from the upper regenerator and from the tube. These are described by the Neumann BCs (Eq. 10) and (Eq. 21) respectively. Temperature-dependant mass inflow Eq. (23) is used as the BC for the lower regenerator.

State II: We apply Neumann BC (Eq. 21) for the upper regenerator. Mass inflow Eq. (23) is the BC for the lower regenerator. The gas in the tube takes the temperature of the upper regenerator.

State III: We apply Neumann BC (Eq. 10) for the lower regenerator and mass inflow for the upper regenerator. The gas temperature of the tube at the junction is equal to the one in the lower regenerator.

State IV: There are two outflows, from lower regenerator and tube, and we apply the Neumann BCs (Eq. 10) and (Eq. 21) to them. Mass conservation (Eq. 23) is applied to the junction and this gives the BC for the upper regenerator.

State V: In this state, which lasts a very short time during the gas circulation, Neumann BC (Eq. 10) is applied to the pulse-tube and the gas temperature of the regenerators is taken equal to the gas temperature of the pulse-tube at the junction.

State VI: In this flow situation, which also lasts for a very short time, the flow from both regenerators enters the pulse-tube. Mass inflow according to (Eq.23) is then defined to the junction as the BC for the pulse-tube. Two Neumann BCs for the gas temperatures are applied to the outflows from the regenerators.

The simulation starts from linear functions for the initial temperatures in the regenerators. Third degree polynomials are used for the initial temperatures of the tubes. These are derived from estimates of the flow amplitudes at the cold and hot ends of the tubes. The initial temperatures at the cold heat exchangers, CHX I and CHX II are estimated. The temperature of CHX III is set as a constant value.

NUMERICAL METHOD

The energy equations for the gas temperature in the tubes (6), the gas and the material temperatures in the regenerators (18-19) are solved simultaneously for all three stages by an implicit method of lines. The equations are discretised in space using one-sided differences of second-order accuracy and flux limiters for the convection terms. The θ-method with $\theta = 0.5 + \Delta t$ gives

<table>
<thead>
<tr>
<th>state</th>
<th>Regenerator I</th>
<th>Regenerator II</th>
<th>Pulse-Tube I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N. (outflow)</td>
<td>D. (inflow)</td>
<td>N. (outflow)</td>
</tr>
<tr>
<td>2</td>
<td>N. (outflow)</td>
<td>D. (inflow)</td>
<td>D. (inflow)</td>
</tr>
<tr>
<td>3</td>
<td>D. (inflow)</td>
<td>N. (inflow)</td>
<td>D. (inflow)</td>
</tr>
<tr>
<td>4</td>
<td>D. (inflow)</td>
<td>N. (outflow)</td>
<td>N. (outflow)</td>
</tr>
<tr>
<td>5</td>
<td>D. (inflow)</td>
<td>D. (inflow)</td>
<td>N. (outflow)</td>
</tr>
<tr>
<td>6</td>
<td>N. (outflow)</td>
<td>N. (outflow)</td>
<td>D. (inflow)</td>
</tr>
</tbody>
</table>
second-order accuracy in time. For instance, the discretisation of Eq. (6) for $u^n_{j+1} > 0$ and omitting the subscript t is

$$
T_{E_j}^{n+1} - \Delta t^n \theta
\left(\frac{T_{E_j}^n - 2T_{E_{j+1}}^n + T_{E_{j+2}}^n}{h^2} - \frac{1}{2} \frac{T_{E_{j+1}}^n - T_{E_j}^n}{2h}\right)
= (1 - \gamma)\frac{T_{E_j}^n - T_{E_{j-1}}^n}{2h}
$$

where the Courant number $c_j^n := \Delta t^n u_j^n / \Delta x$ and Δt^n is an adaptive time step satisfying condition (32). The ratio $r^n_{j+\frac{1}{2}}$ is defined by

$$
r^n_{j+\frac{1}{2}} := \begin{cases}
\frac{T_{E_{j+1}}^n - T_{E_j}^n}{T_{E_{j+1}}^n - T_{E_j}^n} & \text{if } u_j^n > 0, \\
\frac{T_{E_{j+1}}^n - T_{E_j}^n}{T_{E_{j+1}}^n - T_{E_j}^n} & \text{if } u_j^n < 0.
\end{cases}
$$

The flux limiter $\Phi^n_{j+\frac{1}{2}} = \Phi(r^n_{j+\frac{1}{2}})$ herein is that of Van Leer, see [6]. For $r \leq 0$ the limiter function $\Phi(r) = 0$. Because of the CFL stability condition $|c_j^n| \leq 1$ it is required that

$$
\Delta t^n \leq \Delta x / \max_j |u_j^n|.
$$

The continuity equation (5) is discretised with second order of accuracy as follows:

$$
u_{E_j}^{n+1} = u_{E_j}^n + \frac{h}{c_j^n} (T_{E_{j+1}}^n - T_{E_j}^n),
$$

$$
u_{E_j}^{n+1} - u_{E_{j-1}}^{n+1} = \frac{2 \epsilon_i}{h} (T_{E_{j+1}}^n - 2T_{E_j}^n + T_{E_{j-1}}^n)
- \frac{h}{\gamma p_j^n} \left(3p_{j+1}^{n+1} - 4p_j^{n+1} + p_{j-1}^{n+1}\right),
$$

$$
u_{E_j}^{n+1} - u_{E_{j-1}}^{n+1} = \frac{2 \epsilon_i}{h} (T_{E_{j+1}}^n - 2T_{E_j}^n + T_{E_{j-1}}^n)
- \frac{h}{\gamma p_j^n} \left(3p_{j+1}^{n+1} - 4p_j^{n+1} + p_{j-1}^{n+1}\right),
$$

for every time level $n = 0, 1, 2, ..., \text{ with } u_{H_{i+1}}$ given by Eq. (8). The pulse-tubes and regenerators are coupled by the interface conditions Eq.(23) and Eq.(29). The global system of equations for the temperatures that is numerically solved reads

$$
\begin{bmatrix}
X \ X \ C \ 0 \ 0 \ 0 \ 0 \ 0 \\
X \ X \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \\
0 \ C \ X \ 0 \ 0 \ 0 \ 0 \ 0 \\
0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0
\end{bmatrix}

\begin{bmatrix}
T_{RR}^n \\
T_{R1}^n \\
T_{R2}^n \\
T_{R3}^n
\end{bmatrix}

=

\begin{bmatrix}
F_1^n \\
F_2^n \\
F_3^n \\
F_4^n
\end{bmatrix}
$$

where X represents the discretisation of a single PTR, and C accounts for the coupling at the junctions. The global system of equations for the velocities and the regenerator pressures that is numerically solved reads

$$
\begin{bmatrix}
X \ X \ C \ 0 \ 0 \ 0 \ 0 \ 0 \\
X \ X \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \\
0 \ C \ X \ 0 \ 0 \ 0 \ 0 \ 0 \\
0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0
\end{bmatrix}

\begin{bmatrix}
\mathbf{u}_{R1}^n \\
\mathbf{u}_{R2}^n \\
\mathbf{u}_{R3}^n \\
\mathbf{u}_{R4}^n
\end{bmatrix}

=

\begin{bmatrix}
\mathbf{f}_1^n \\
\mathbf{f}_2^n \\
\mathbf{f}_3^n \\
\mathbf{f}_4^n
\end{bmatrix}
$$

RESULTS and DISCUSSION

A three-stage PTR operating at 20 Hz has been simulated for a set lowest temperature of 4 K. All parameters are listed in the Appendix. In Fig. 4 we see the velocities at different positions for all three stages. Fig. 5 shows the pressure at different positions in the pulse-tube refrigerator. The amplitude of velocity and pressure decreases with distance from the compressor, and there is a phase difference between all signals. The pressure drop is caused by the resistance of the regenerators and the velocity decrease is caused by the compressibility and the decrease of temperature and pressure decreases with distance from the compressor, positions in the pulse-tube refrigerator. The amplitude of velocities for all three stages. Fig. 5 shows the pressure at different positions in the pulse-tube refrigerator.
the buffer pressure and returns to the CHX at a lower pressure with a temperature lower than \(T_C \) (BC (10)). This below-\(T_C \) temperature generates the desired cooling power. When the pressure and the velocity at the cold end of the third stage are in phase the maximum cooling power occurs. The cooling power is equal to the cycle-averaged enthalpy flow\([1, 2]\)

\[
\overline{H} = \frac{1}{t_C} \int_{t}^{t+t_C} c_p \dot{m} T_g dt,
\]

(36)

with

\[
\dot{m}_t = A_t \rho u_t,
\]

where \(t_c \) is the cycle period. In Refs\([1, 2]\) this quantity is estimated by

\[
\overline{H}_e = \frac{1}{2} C_{\text{en}} \overline{p}^2,
\]

(37)

where \(\overline{p} \) is the pressure amplitude which differs per tube. The calculated values are 4.37 W, 0.67 W and 0.46 W for the first, the second and the third tube, respectively. The corresponding estimated values 4.26 W, 0.86 W and 0.43 W are consistent. The calculated enthalpy flows in the three tubes are shown in Fig. 8.

CONCLUSION

A mathematical model has been developed that describes the heat and mass transfer in a three-stage pulse-tube refrigerator where the hot and cold heat exchangers are assumed to be ideal. The system is operating at frequencies higher than usual. In the coupling of single-stage PTRs, six fluid flow possibilities at the junctions have been considered. Each flow possibility led to its own set of upwind BCs. The studied three-stage PTR is able to cool down to 4 K with a remaining cooling power of about 0.5 W. Real gas in the third stage, temperature-dependant material properties and double inlets are essential features that have not been considered herein.
Figure 7. Hot end temperatures in the three-stage PTR.

Figure 8. Enthalpy flow in middle of three pulse-tubes.

ACKNOWLEDGMENT

This project is funded by STW (Dutch Technology Foundation). The grant number is ETF6595.

REFERENCES

Appendix: PHYSICAL DATA FOR THE THREE-STAGE PULSE-TUBE REFRIGERATOR.
Table 2. GEOMETRIES.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>diameter of the 1st tube</td>
<td>24.6 mm</td>
</tr>
<tr>
<td></td>
<td>diameter of the 2nd tube</td>
<td>7 mm</td>
</tr>
<tr>
<td></td>
<td>diameter of the 3rd tube</td>
<td>5 mm</td>
</tr>
<tr>
<td></td>
<td>diameter of the 1st regenerator</td>
<td>72 mm</td>
</tr>
<tr>
<td></td>
<td>diameter of the 2nd regenerator</td>
<td>32 mm</td>
</tr>
<tr>
<td></td>
<td>diameter of the 3rd regenerator</td>
<td>19 mm</td>
</tr>
<tr>
<td></td>
<td>length of the 1st tube</td>
<td>67.5 mm</td>
</tr>
<tr>
<td></td>
<td>length of the 2nd tube</td>
<td>246 mm</td>
</tr>
<tr>
<td></td>
<td>length of the 3rd tube</td>
<td>285 mm</td>
</tr>
<tr>
<td></td>
<td>length of the 1st regenerator</td>
<td>65 mm</td>
</tr>
<tr>
<td></td>
<td>length of the 2nd regenerator</td>
<td>78.5 mm</td>
</tr>
<tr>
<td></td>
<td>length of the 3rd regenerator</td>
<td>70 mm</td>
</tr>
</tbody>
</table>

Table 3. REGENERATOR MATERIAL PROPERTIES.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>reg. specific heat capacity</td>
<td>400 J kg⁻¹ K⁻¹</td>
</tr>
<tr>
<td></td>
<td>reg. permeability</td>
<td>3.0 (\times) 10⁻¹¹ m²</td>
</tr>
<tr>
<td></td>
<td>gas thermal conductivity</td>
<td>1.58 (\times) 10⁻¹ W m⁻¹ K⁻¹</td>
</tr>
<tr>
<td></td>
<td>1st reg. thermal conductivity</td>
<td>10 W m⁻¹ K⁻¹</td>
</tr>
<tr>
<td></td>
<td>2nd reg. thermal conductivity</td>
<td>5 W m⁻¹ K⁻¹</td>
</tr>
<tr>
<td></td>
<td>3rd reg. thermal conductivity</td>
<td>5 W m⁻¹ K⁻¹</td>
</tr>
<tr>
<td></td>
<td>1st reg. density</td>
<td>7800 kg m⁻³</td>
</tr>
<tr>
<td></td>
<td>2nd reg. density</td>
<td>11350 kg m⁻³</td>
</tr>
<tr>
<td></td>
<td>3rd reg. density</td>
<td>9400 kg m⁻³</td>
</tr>
<tr>
<td></td>
<td>1st reg. porosity</td>
<td>0.682</td>
</tr>
<tr>
<td></td>
<td>2nd reg. porosity</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>3rd reg. porosity</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>reg. heat transfer coefficient</td>
<td>10⁸ W m⁻³ K⁻¹</td>
</tr>
</tbody>
</table>

Table 4. GENERAL PROPERTIES.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>frequency</td>
<td>20 s⁻¹</td>
</tr>
<tr>
<td></td>
<td>orifice setting parameter [2]</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>C_{or1}</td>
<td>(L_{11}/\alpha \beta \bar{u})</td>
</tr>
<tr>
<td></td>
<td>C_{or2}</td>
<td>(L_{22}/\alpha \beta \bar{u})</td>
</tr>
<tr>
<td></td>
<td>C_{or3}</td>
<td>(L_{33}/\alpha \beta \bar{u})</td>
</tr>
<tr>
<td></td>
<td>c_p</td>
<td>gas specific heat capacity</td>
</tr>
<tr>
<td></td>
<td>(\beta \bar{p})</td>
<td>pressure oscillation amplitude</td>
</tr>
<tr>
<td></td>
<td>(\bar{p})</td>
<td>average pressure</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>gas constant</td>
</tr>
<tr>
<td></td>
<td>R_m</td>
<td>specific gas constant</td>
</tr>
<tr>
<td></td>
<td>T_a</td>
<td>ambient temperature</td>
</tr>
<tr>
<td></td>
<td>T_H</td>
<td>hot temperature</td>
</tr>
<tr>
<td></td>
<td>(\bar{u})</td>
<td>gas velocity</td>
</tr>
<tr>
<td></td>
<td>V_{b1}</td>
<td>1st buffer volume</td>
</tr>
<tr>
<td></td>
<td>V_{b2}</td>
<td>2nd buffer volume</td>
</tr>
<tr>
<td></td>
<td>V_{b3}</td>
<td>3rd buffer volume</td>
</tr>
<tr>
<td></td>
<td>(\omega)</td>
<td>angular frequency</td>
</tr>
<tr>
<td></td>
<td>(\bar{\rho})</td>
<td>gas density</td>
</tr>
<tr>
<td></td>
<td>(\bar{\mu})</td>
<td>gas dynamic viscosity</td>
</tr>
</tbody>
</table>

Table 5. DIMENSIONLESS NUMBERS AND VALUES.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\bar{B})</td>
<td>(p_{av}/\bar{\rho} R_m T_a)</td>
</tr>
<tr>
<td></td>
<td>C_1</td>
<td>(C_{or1} P_{av}/A_{or1})</td>
</tr>
<tr>
<td></td>
<td>C_2</td>
<td>(C_{or2} P_{av}/A_{or2})</td>
</tr>
<tr>
<td></td>
<td>C_3</td>
<td>(C_{or3} P_{av}/A_{or3})</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>(k_p/\sqrt{\phi_{pav} \omega k})</td>
</tr>
<tr>
<td></td>
<td>(\gamma)</td>
<td>(\beta/\bar{\rho} R_m)</td>
</tr>
<tr>
<td></td>
<td>(\Gamma)</td>
<td>(\beta/\bar{\rho} P_{av})</td>
</tr>
<tr>
<td></td>
<td>(\gamma)</td>
<td>(\beta/\bar{\rho} P_{av})</td>
</tr>
<tr>
<td></td>
<td>(\Gamma_{r1})</td>
<td>(\rho_{r1}^{-\frac{3}{2}} \bar{\rho}_{g}^{-1/2})</td>
</tr>
<tr>
<td></td>
<td>(\Gamma_{r2})</td>
<td>(\rho_{r2}^{-\frac{3}{2}} \bar{\rho}_{g}^{-1/2})</td>
</tr>
<tr>
<td></td>
<td>(\Gamma_{r3})</td>
<td>(\rho_{r3}^{-\frac{3}{2}} \bar{\rho}_{g}^{-1/2})</td>
</tr>
<tr>
<td></td>
<td>(\gamma)</td>
<td>(e_{g}^{-\frac{3}{2}} \bar{\rho}_{g}^{-1/2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subscripts

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>buffer</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>cold end</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>hot end</td>
</tr>
<tr>
<td></td>
<td>g</td>
<td>gas</td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>regenerator</td>
</tr>
<tr>
<td></td>
<td>t</td>
<td>tube</td>
</tr>
</tbody>
</table>
PREVIOUS PUBLICATIONS IN THIS SERIES:

<table>
<thead>
<tr>
<th>Number</th>
<th>Author(s)</th>
<th>Title</th>
<th>Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>09-13</td>
<td>J.A.W.M. Groot, C.G. Giannopapa, R.M.M. Mattheij</td>
<td>Numerical optimisation of blowing glass parison shapes</td>
<td>March ‘09</td>
</tr>
<tr>
<td>09-14</td>
<td>A.S. Tijsseling</td>
<td>Exact computation of the axial vibration of two coupled liquid-filled pipes</td>
<td>May ‘09</td>
</tr>
<tr>
<td>09-15</td>
<td>M. Pisarenco, B.J. van der Linden, A.S. Tijsseling, E. Ory, J.A.M. Dam</td>
<td>Friction factor estimation for turbulent flows in corrugated pipes with rough walls</td>
<td>May ‘09</td>
</tr>
<tr>
<td>09-16</td>
<td>B.J. van der Linden, E. Ory, J.A.M. Dam, A.S. Tijsseling, M. Pisarenco</td>
<td>Efficient computation of three-dimensional flow in helically corrugated hoses including swirl</td>
<td>May ‘09</td>
</tr>
<tr>
<td>09-17</td>
<td>M.A. Etaati, R.M.M. Mattheij, A.S. Tijsseling, A.T.A.M. de Waele</td>
<td>One-dimensional simulation of a stirling three-stage pulse-tube refrigerator</td>
<td>May ‘09</td>
</tr>
</tbody>
</table>