Tail Asymptotics for the Delay in a Brownian Fork-Join Queue

Citation for published version (APA):

DOI:
10.48550/arXiv.2208.04796

Document status and date:
Published: 09/08/2022

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Tail Asymptotics for the Delay in a Brownian Fork-Join Queue

Dennis Schol
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands, c.schol@tue.nl

Maria Vlasiou
University of Twente, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands, m.vlasiou@tue.nl

Bert Zwart
Eindhoven University of Technology, CWI, P.O. Box 513, 5600 MB Eindhoven, The Netherlands, bert.zwart@cwi.nl

August 10, 2022

Abstract

In this paper, we study the tail behavior of \( \max_{1 \leq N} \sup_{s > 0} (W_i(s) + W_A(s) - \beta s) \) as \( N \to \infty \), with \( (W_i, i \leq N) \) i.i.d. Brownian motions and \( W_A \) an independent Brownian motion. This random variable can be seen as the maximum of \( N \) mutually dependent Brownian queues, which in turn can be interpreted as the backlog in a Brownian fork-join queue. In previous work, we have shown that this random variable centers around \( \sigma_A^2 \log N \). Here, we analyze the rare-event that this random variable reaches the value \( (\sigma_A^2 + \alpha) \log N \), with \( \alpha > 0 \). It turns out that its probability behaves roughly as a power law with \( N \), where the exponent depends on \( \alpha \). However, there are three regimes, around a critical point \( \alpha^* \); namely, \( 0 < \alpha < \alpha^*, \alpha = \alpha^* \), and \( \alpha > \alpha^* \). The latter regime exhibits a form of asymptotic independence, while the first regime reveals highly irregular behavior with a clear dependence structure among the \( N \) suprema, with a nontrivial transition at \( \alpha = \alpha^* \).

Keywords: Brownian queues; fork-join queues; extreme value theory; tail asymptotics

1 Introduction

Fork-join queues are a useful modeling tool for congestion in complex networks, such as assembly systems, communication networks, and supply chains. Such networks can be large and assembly is only possible upon availability of all parts. Thus, the bottleneck of the system is caused by the slowest production line in the system. This setting motivates us to investigate such delays in a stylized version of a large fork-join queueing system. In this setting, a key quantity of interest is the behavior of the longest queue. We assume that arrival and service processes are Brownian, as it is a standard result in queueing theory that queueing systems in heavy-traffic can be approximated by reflected Brownian motions. Furthermore, when the arrival and service processes are deterministic with some white noise perturbation, it is also a natural choice to model this with Brownian motions. We analyze the steady-state behavior of this system. Hence, we can model the backlog in queue \( i \) by \( Q_{i,A}^\beta = \sup_{s > 0} (W_i(s) + W_A(s) - \beta s) \), where \( W_A \) is a Brownian motion term with standard deviation \( \sigma_A \) that represents the fluctuations in the arrival process, \( W_i \) is a Brownian motion term with standard deviation \( \sigma \) that represents the fluctuations in the service process, and \( \beta > 0 \) represents the drift of the queue. Furthermore, we assume that \( (W_i, i \leq N) \) are i.i.d. Brownian motions, and for all \( i \), \( W_i \) and \( W_A \) are mutually independent. These are natural choices as well, because these assumptions indicate that servers’ work speeds are mutually independent, and independent with respect to the interarrival times.

Because the bottleneck in the system is the slowest production line, we are interested in the longest queue length, and we investigate the random variable \( Q_N^\beta = \max_{1 \leq N} Q_{i,A}^\beta \). We see that this random variable is a maximum of \( N \) dependent random variables, due to the common arrival process \( W_A \). As we try to model systems with many servers, we are typically interested in the behavior of this random variable as \( N \to \infty \). In [15], it is shown that \( Q_N^\beta \) is in the domain of attraction of the normal distribution:

\[
\Pr\left( Q_N^\beta > \frac{\sigma_A^2}{2\beta} \log N + x\sqrt{\log N} \right) \xrightarrow{N \to \infty} \Pr\left( \frac{\sigma_A}{\sqrt{2\beta}} X > x \right),
\]

(1)
with \( X \overset{d}{=} \mathcal{N}(0, 1) \). This means that \( Q_N^\beta \) centers around \( \frac{\sigma^2}{2\beta^2} \log N \) and deviates with order \( \sqrt{\log N} \).

This convergence result provides a prediction of the typical delay. However, one might also be interested in the question how likely it is that the delay will be much longer, as delays may cause large costs. Obviously, the question is how fast this probability converges to 0. In this study, we focus on the probability

\[
P(\bar{Q}_N > yN) \xrightarrow{N \to \infty} 0,
\]

with \( y > 0 \). As we show later on, the exact behavior of this tail probability depends on the choice of \( y \), where we can distinguish three regimes: \( 0 < y < a^* \), \( a = a^* \), and \( a > a^* \), with \( a^* \) an explicitly identified constant in \((0, \infty)\).

The logarithmic asymptotics for these three regimes are given in Theorem 1, while the sharper asymptotics for the cases \( a > a^* \), \( a = a^* \), and \( 0 < a < a^* \) are given in Theorems 2, 3, and 4, respectively. It easily follows from the proofs that when \( yN \) is of larger order than \( \log N \), the convergence behavior of \( P(\bar{Q}_N > yN) \) is the same as for the case \( a > a^* \), cf. Corollary 5.1.

Our work is related to the literature on fork-join queues. Exact results on fork-join queues with two service stations can be found in \([1, 6, 8, 22]\). Approximations for systems with an arbitrary but fixed number of servers can be found in \([2, 9, 16]\). In \([21]\) a heavy-traffic analysis for fork-join queues is derived; see also \([17]\) and \([18]\). Our work also relates to the literature on extreme values of Gaussian processes. In this paper, we examine exceedance probabilities of the order \( (\frac{\sigma^2}{2\beta^2} + a) \log N \) with \( a > 0 \). More work has been done on joint suprema of Brownian motions. For instance, \([10]\) gives the solution of the Laplace transform of joint first passage times in terms of the solution of a partial differential equation, where the Brownian motions are dependent. Further, \([5]\) analyze the tail asymptotics of the all-time suprema of two dependent Brownian motions. The joint suprema of a finite number of Brownian motions is also studied \([4]\), where the authors give tail asymptotics of the joint suprema of independent Gaussian processes over a finite time interval. These are just three examples – more results may be found in \([14]\) and \([19]\).

Our work also relates to the literature on fork-join queues. Exact results on fork-join queues with two service stations can be found in \([1, 6, 8, 22]\). Approximations for systems with an arbitrary but fixed number of servers can be found in \([2, 9, 16]\). In \([21]\) a heavy-traffic analysis for fork-join queues is derived; see also \([17]\) and \([18]\). More recent work in this direction may be found in \([11, 12, 13, 20]\). Our work adds to the existing literature, as we analyze the largest of \( N \) queues as \( N \to \infty \). Literature on such extreme value results is rare. More specifically, we derive a large deviation principle for the longest of \( N \) dependent Brownian queues as \( N \to \infty \), to obtain this, we use and extend the results obtained in \([5]\), in which the case \( N = 2 \) is investigated.

This paper is organized as follows. In Section 2, we present our main results, which contain an interesting phase transition in the way a large supremum occurs depending on the value of \( a \). We explain the reason behind this phase transition in detail. The rest of the paper is devoted to proofs. In Section 3, we give a proof of Theorem 1, which focuses on logarithmic asymptotics. In Section 4, we present some auxiliary lemmas. In Sections 5.1.5.2, and 5.3, we provide the proofs of Theorems 2, 3, and 4, respectively, which deal with asymptotic estimates that are sharper than Theorem 1.

## 2 Main results

In this section, we present our main results and also provide some intuition. We first introduce some additional notation. Recall that \((W_i, i \leq N)\) is a sequence of i.i.d. Brownian motions with standard deviation \( \sigma \), \( W_A \) is a Brownian motion with standard deviation \( \sigma_A \), \( W_i \) and \( W_A \) are mutually independent for all \( i \), the steady-state queue length in front of server \( i \) is given by

\[
Q_{i,A}^\beta = \sup_{s > 0} (W_i(s) + W_A(s) - \beta s),
\]

and the maximum queue length equals

\[
\bar{Q}_N^\beta = \max_{i \leq N} Q_{i,A}^\beta.
\]

Further, we write the supremum of a Brownian motion \( \{W_i(t) + W_A(t) - \beta t, t > 0\} \) over an interval \((u, v)\) as

\[
Q_{i,A}^\beta(u, v) = \sup_{u < s < v} (W_i(s) + W_A(s) - \beta s),
\]

and the maximum of \( N \) of these identically distributed random variables as

\[
\bar{Q}_N^\beta(u, v) = \max_{i \leq N} Q_{i,A}^\beta(u, v).
\]
Also, we introduce shorthand notation that we use later on:

\[
f_N(a) = \left(\frac{\sigma^2}{2\beta} + a\right) \log N, \quad (6)
\]

\[
\lambda(a) = 1 - \frac{\sigma}{\sqrt{2a\beta + \sigma^2}}, \quad (7)
\]

\[
T_N(a, k) = \frac{f_N(a)}{\beta} + k \sqrt{\log N}, \quad (8)
\]

\[
T_N(a) = T_N(a, 0). \quad (9)
\]

Finally, we write

\[
\gamma(a) = \begin{cases} 
2a\beta + 2\sigma^2 - 2\sigma\sqrt{2a\beta + \sigma^2} & \text{if } 0 < a < a^*, \\
2a\beta - \frac{\sigma^2}{\sigma_A^2} & \text{if } a \geq a^*, 
\end{cases} \quad (10)
\]

with \(a^* = \frac{\sigma^4}{2a\beta^2} + \frac{\sigma^2}{\beta^2}\). The function \(\gamma(a)\) appears in the limit of the logarithmic asymptotics of \(P(\bar{Q}^d_N > f_N(a))\). In Figure 1, we plot \(-\gamma(a)\) for certain choices of the parameters \(\sigma, \sigma_A, \beta,\) and \(a^*\). As can be seen, from \(a = a^*\) onwards, the function is linear. Moreover, we see that \(\gamma(a)\) is continuous everywhere, also for \(a = a^*\).

![Figure 1: \(\sigma = 1, \sigma_A = 1, \beta = 1, a^* = 3/2\)](image)

Our first result, Theorem 1, provides the logarithmic asymptotics of the tail probability of the maximum steady-state queue length \(P(\bar{Q}^d_N > f_N(a))\).

**Theorem 1.** Let \(a > 0\), \((W_i, i \leq N)\) be i.i.d. Brownian motions with standard deviation \(\sigma\), \(W_A\) be a Brownian motion with standard deviation \(\sigma_A\), for all \(i, W_i\) and \(W_A\) are mutually independent, and \(\bar{Q}^d_N, \gamma(a), \) and \(f_N(a)\) are given by Equations (3), (10), and (6), respectively, then

\[
\frac{\log(P(\bar{Q}^d_N > f_N(a)))}{\log N} \xrightarrow{N \to \infty} -\gamma(a). \quad (11)
\]

We give the proof of Theorem 1 in Section 3. To provide some intuition, the form of the function \(\gamma(a)\) suggests there are at least two regimes: the case where \(0 < a < a^*\), and the case where \(a \geq a^*\). These two cases reveal interesting information on the tail behavior of the maximum queue length \(\bar{Q}^d_N\).
Case $a > a^\ast$. First of all, observe that for $a > a^\ast$ and $N$ large, by using the convergence result in (11) and the memoryless property of the exponential distribution, we have that

$$
P\left( \max_{i \leq N} \sup_{s > 0} (W_i(s) + W_A(s) - \beta s) > f_N(a) \right)
\geq P\left( \max_{i \leq N} \sup_{s > 0} (W_i(s) + W_A(s) - \beta s) > f_N(a^\ast) \right) \cdot P\left( \sup_{s > 0} (W_i(s) + W_A(s) - \beta s) > (a - a^\ast) \log N \right)
= P\left( \max_{i \leq N} \sup_{s > 0} (W_i(s) + W_A(s) - \beta s) > f_N(a^\ast) \right) \cdot \exp\left( \frac{-2\beta(a - a^\ast)}{\sigma^2 + \sigma_A^2} \log N \right)
\approx N^{-\gamma(a^\ast)} \exp\left( \frac{-2\beta(a - a^\ast)}{\sigma^2 + \sigma_A^2} \log N \right)
= N^{-\gamma(a)}.
$$

To understand the lower bound in this expression, observe that due to the memoryless property of an exponentially distributed random variable $E$, we have that

$$\text{for all } x > 0, \quad P(E > x + y) = P(E > x)P(E > y).$$

Then for a sequence of exponentially and identically distributed random variables $(E_i, i \leq N)$, we have for all $j \leq N$ that

$$P(\max_{i \leq N} E_i > x + y) = P(\max_{i \leq N} E_i > x)P(E_j > x + y) = P(\max_{i \leq N} E_i > x)P(E_j > y).$$

So, the fact that the tail probability of the maximum steady-state queue length in (12) is bounded from below by the expression in (12) implies that for $a > a^\ast$

$$P\left( \# \{ j \leq N : \sup_{s > 0} (W_j(s) + W_A(s) - \beta s) > f_N(a) \} = 1 \bigg| Q_N^3 > f_N(a) \right) \xrightarrow{N \to \infty} 1.$$

Second, we see that for $a \geq a^\ast$, $N^{-\gamma(a)} = N \cdot P(Q_N^3 > f_N(a))$. Obviously, since $a \geq 0$, the union bound gives that

$$P(Q_N^3 > f_N(a)) \leq N \cdot P(Q_{i,A}^3 > f_N(a)) = N^{-\frac{2a - \sigma^2}{\sigma^2 + \sigma_A^2}}.\quad (13)$$

The fact that the union bound is sharp when $a \geq a^\ast$ indicates that for $a \geq a^\ast$ the $N$ queues are asymptotically independent; i.e.,

$$P\left( \max_{i \leq N} \sup_{s > 0} (W_i(s) + W_A(s) - \beta s) > f_N(a) \right) \approx P\left( \max_{i \leq N} \sup_{s > 0} (W_i(s) + W_A,i(s) - \beta s) > f_N(a) \right),$$

where the arrival processes $(W_A,i, i \leq N)$ are independent Brownian motions. In Section 5.2, we see that the boundary case $a = a^\ast$ does show some dependent behavior, but this dependence structure cannot be deduced from the logarithmic asymptotics.

Case $0 < a < a^\ast$. Finally, the case $0 < a < a^\ast$ is more involved. The function $\gamma(a)$ involves $a$ in a nonlinear fashion. As we observe in Equation (13), due to the fact that the exponent of the tail probability of an exponentially distributed random variable is linear in $a$, we expect that the logarithmic asymptotics would also be linear in $a$. Thus the structure of $\gamma(a)$ shows that the dependent part $W_A$ influences the tail asymptotics, and contrary to the case where $a > a^\ast$, we have that

$$\lim \inf_{N \to \infty} P\left( \# \{ j \leq N : \sup_{s > 0} (W_j(s) + W_A(s) - \beta s) > f_N(a) \} > 1 \bigg| Q_N^3 > f_N(a) \right) > 0.$$

The reason that we see this is that in order to get that the maximum steady-state queue length $Q_N^3$ reaches the level $f_N(a)$, the arrival process $\{W_A(t) - \lambda(a)\beta t, t > 0\}$ must reach a high level around $\lambda(a)f_N(a)$, which is a rare event. Furthermore, one of the $N$ service processes needs to reach a level around $(1 - \lambda(a))f_N(a)$; however, this is not a rare event. Even more, the event that a finite number of service processes reaches a level around $(1 - \lambda(a))f_N(a)$ has a finite probability.

The function $\gamma(a)$ has more characteristics that can be explained from [15]. What we namely see is that $\gamma(0) = 0$, which is to be expected as we know from (1) and (6) that for $x = 0$

$$P(Q_N^3 > f_N(0)) \xrightarrow{N \to \infty} \frac{1}{2}.$$  

We further have that $\log N (\sigma / \sqrt{\log N}) \xrightarrow{N \to \infty} \frac{\sigma^2}{\sigma_A^2}$. It thus follows that for $N$ large,

$$N^{-\gamma(x)} \approx N^{-\frac{x^2}{\sigma_A^2}} = \exp\left( -\frac{x^2 \beta^2}{\sigma^2 + \sigma_A^2} \right).$$
which is the exponent of the limiting distribution given in (1).

To prove the logarithmic asymptotics in Theorem 1, it suffices to look at random variables of the type \( \max_{i \leq N}(W_i(T_N) + W_A(T_N - \beta T_N)) \) instead of the random variable \( \hat{Q}_N^\beta = \max_{i \leq N} \sup_{s>0}(W_i(s) + W_A(s) - \beta s) \), where the appropriate choice of \( T_N \) is \( T_N(a) \), cf. Equation (9). We show this in more detail in the proof of Lemma 1. For \( a > a^* \), the logarithmic asymptotics are relatively straightforward to derive because we see a notion of asymptotic independence, as explained above. In the proof of Lemma 1, we show that when \( 0 < a \leq a^* \),

\[
\log(\mathbb{P}(\hat{Q}_N^\beta > f_N(a))) \\
\approx \log(\mathbb{P}(\max_{i \leq N} W_i(T_N(a)) - (1 - \lambda(a))\beta T_N(a) > (1 - \lambda(a))f_N(a))) \\
+ \log(\mathbb{P}(W_A(T_N(a)) - \lambda(a)\beta T_N(a) > \lambda(a)f_N(a))),
\]

when \( N \) is large, and we show that the term \( \log(\mathbb{P}(\max_{i \leq N} W_i(T_N(a)) - (1 - \lambda(a))\beta T_N(a) > (1 - \lambda(a))f_N(a))) \) becomes negligible as \( N \to \infty \).

We now turn to precise asymptotics, which are stated in Theorems 2, 3, and 4 below for the cases \( a > a^* \), \( a = a^* \), and \( 0 < a < a^* \), respectively. The proofs of these theorems can be found in Sections 5.1, 5.2, and 5.3.

**Theorem 2.** Let \( a > a^* \), \( (W_i, i \leq N) \) be i.i.d. Brownian motions with standard deviation \( \sigma \), \( W_A \) be a Brownian motion with standard deviation \( \sigma_A \), for all \( i \), \( W_i \) and \( W_A \) are mutually independent, and \( \hat{Q}_N^\beta \), \( \gamma(a) \), and \( f_N(a) \) are given by Equations (3), (10), and (6), respectively, then

\[
N^{\gamma(a)} \mathbb{P}(\hat{Q}_N^\beta > f_N(a)) \xrightarrow{N \to \infty} 1. \tag{15}
\]

The theorem shows that for \( a > a^* \), the tail probability of the steady-state maximum queue length has the same asymptotic behavior as the one for independently and identically distributed arrival processes for each queue.

**Theorem 3.** Let \( a = a^* \), \( (W_i, i \leq N) \) be i.i.d. Brownian motions with standard deviation \( \sigma \), \( W_A \) be a Brownian motion with standard deviation \( \sigma_A \), for all \( i \), \( W_i \) and \( W_A \) are mutually independent, and \( \hat{Q}_N^\beta \), \( \gamma(a) \), and \( f_N(a) \) are given by Equations (3), (10), and (6), respectively, then

\[
N^{\gamma(a)} \mathbb{P}(\hat{Q}_N^\beta > f_N(a)) \xrightarrow{N \to \infty} \frac{1}{2}. \tag{16}
\]

To give a heuristic explanation why we have a transition point at \( a = a^* \), recall that \( \lambda(a) \) is given in Equation (7), \( W_i \) is a Brownian motion with standard deviation \( \sigma \), and \( W_A \) is a Brownian motion with standard deviation \( \sigma_A \). Because the all-time supremum of a Brownian motion is exponentially distributed it is easy to see that for \( a = a^* \),

\[
\sup_{s>0}(W_A(s) - \lambda(a^*)\beta s) \overset{d}{=} \sup_{s>0}(W_i(s) - (1 - \lambda(a^*))\beta s) \overset{d}{=} \sup_{s>0}(W_i(s) + W_A(s) - \beta s).
\]

Similarly, after a straightforward calculation we observe that for \( 0 < a < a^* \),

\[
\sup_{s>0}(W_A(s) - \lambda(a)\beta s) \geq_{st.} \sup_{s>0}(W_i(s) - (1 - \lambda(a))\beta s),
\]

and for \( a > a^* \),

\[
\sup_{s>0}(W_A(s) - \lambda(a)\beta s) \leq_{st.} \sup_{s>0}(W_i(s) - (1 - \lambda(a))\beta s).
\]

For \( 0 < a < a^* \), large values of \( \hat{Q}_N^\beta \) are predominantly caused by fluctuations of \( \{W_A(t) - \lambda(a)\beta t, t > 0\} \); we show this rigorously in Section 5.3. In contrast, for \( a > a^* \), fluctuations are caused by a combination of the arrival process and one of the service processes, and therefore we see a notion of asymptotic independence.

To explain in more detail why we have a constant 1/2 at the boundary case \( a = a^* \), we first observe that, since the all-time supremum of a Brownian motion with negative drift is exponentially distributed, \( \mathbb{P}(\sup_{s>0}(W_A(s) - \lambda(a^*)\beta s) > \lambda(a^*)f_N(a^*)) = N^{-\gamma(a^*)} \). Moreover, if the event \( \sup_{s>0}(W_A(s) - \lambda(a^*)\beta s) > \lambda(a^*)f_N(a^*) \) happens, it most likely occurs at time \( T_N(a^*) \). By using the union bound and that all suprema are the same in distribution we may therefore write

\[
\mathbb{P}(\hat{Q}_N^\beta(T_N(a^*), \infty) > f_N(a^*) | W_A(T_N(a^*)) - \lambda(a^*)\beta T_N(a^*) = \lambda(a^*)f_N(a^*)) \\
= \mathbb{P}\left(\max_{i \leq N}(W_i(T_N(a^*)) - (1 - \lambda(a^*))\beta T_N(a^*) + \hat{Q}_N^\beta I_{iA}) > (1 - \lambda(a^*))f_N(a^*)\right) \\
\approx N \mathbb{P}(W_i(T_N(a^*)) - (1 - \lambda(a^*))\beta T_N(a^*) + \hat{Q}_N^\beta I_{iA} > (1 - \lambda(a^*))f_N(a^*)) \\
= N \mathbb{P}\left(\sup_{s>T_N(a^*)}(W_i(s) - (1 - \lambda(a^*))\beta s) > (1 - \lambda(a^*))f_N(a^*)\right) \xrightarrow{N \to \infty} \frac{1}{2}.
\]
If we condition on \( \max_{i \leq N} \sup_{s > 0} (W_i(s) - (1 - \lambda(a^*))\beta s) = (1 - \lambda(a^*)) f_N(a^*) \), we obtain the same expression after using the same heuristic argument.

Our final result is an improvement of the logarithmic asymptotics for the case \( 0 < a < a^* \).

**Theorem 4.** Let \( 0 < a < a^* \), \( (W_i, i \leq N) \) be i.i.d. Brownian motions with standard deviation \( \sigma \), \( W_A \) be a Brownian motion with standard deviation \( \sigma_A \), for all \( i \), \( W_i \) and \( W_A \) are mutually independent, and \( Q_N, \gamma(a), f_N(a), \) and \( \lambda(a) \) are given by Equations (3), (10), (6), and (7) respectively, then

\[
\lim \inf_{N \to \infty} N^{\gamma(a)} (\log N)^{\frac{\lambda(a)}{2\lambda(a)} \frac{\sigma^2}{2\sigma^2 N}} \mathbb{P}(Q_N^\beta > f_N(a)) > 0, \tag{17}
\]

and

\[
\lim \sup_{N \to \infty} N^{\gamma(a)} (\log N)^{\frac{\lambda(a)}{2\lambda(a)} \frac{\sigma^2}{2\sigma^2 N}} \mathbb{P}(Q_N^\beta > f_N(a)) < \infty. \tag{18}
\]

We give a proof of this result in Section 5.3. As already suggested in Theorem 1, for the case \( 0 < a < a^* \) we observe more irregular behavior, which manifests itself already in the values of \( \gamma(a) \). In Theorem 4, we observe that the second term is not a constant, as was the case for the values \( a > a^* \) and \( a = a^* \), but is \( (\log N)^{\frac{\lambda(a)}{2\lambda(a)} \frac{\sigma^2}{2\sigma^2 N}} \).

To obtain heuristic insights, we argue that

\[
\mathbb{P}\left( \sup_{s > 0} (W_A(s) - \lambda(a)\beta s) > \lambda(a) f_N(a) + r_N \right) = N^{-\gamma(a)} (\log N)^{-\frac{\lambda(a)}{2\lambda(a)} \frac{\sigma^2}{2\sigma^2 N}}, \tag{19}
\]

with \( r_N = \frac{\sigma \sqrt{2a^2 + \sigma^2}}{4\beta} \log \log N \). Furthermore, we have for all \( k \)

\[
\mathbb{P}\left( \max_{i \leq N} W_i (T_N(a,k)) - (1 - \lambda(a))\beta T_N(a,k) > (1 - \lambda(a)) f_N(a) - r_N \right) = \Omega(1), \tag{20}
\]

where \( z_N = \Omega(1) \) means that \( \lim \inf_{N \to \infty} z_N > 0 \). Combining these two results we see that

\[
\mathbb{P}(Q_N^\beta > f_N(a)) \geq \mathbb{P}\left( \sup_{s > 0} (W_A(s) - \lambda(a)\beta s) > \lambda(a) f_N(a) + r_N, \max_{i \leq N} W_i (T_N) - (1 - \lambda(a))\beta T_N > (1 - \lambda(a)) f_N(a) - r_N \right), \tag{21}
\]

where \( T_N = \inf \{ t > 0 : W_A(t) - \lambda(a)\beta t > \lambda(a) f_N(a) + r_N \} \). We show later on that \( T_N \) conditioned being finite, has the form of \( T_N(a, K) \) with \( K \) being a random variable. Because

\[
\mathbb{P}\left( \sup_{s > 0} (W_A(s) - \lambda(a)\beta s) > \lambda(a) f_N(a) + r_N, \max_{i \leq N} W_i (T_N) - (1 - \lambda(a))\beta T_N > (1 - \lambda(a)) f_N(a) - r_N \right)
\]

\[
= \mathbb{P}\left( \sup_{s > 0} (W_A(s) - \lambda(a)\beta s) > \lambda(a) f_N(a) + r_N \right)
\]

\[
\cdot \mathbb{P}\left( \max_{i \leq N} W_i (T_N) - (1 - \lambda(a))\beta T_N > (1 - \lambda(a)) f_N(a) - r_N \mid T_N < \infty \right), \tag{22}
\]

we retrieve (17) after combining the results from (19)–(22). Thus, it turns out that for \( 0 < a < a^* \), \( r_N \) plays a key role. As explained in Section 5.2, in the case \( 0 < a < a^* \), \( \{ W_A(t) - \lambda(a)\beta t, t > 0 \} \) dominates, which explains why the tail asymptotics of the maximum queue length \( Q_N^\beta \) are the same as the tail asymptotics of \( \sup_{s > 0} (W_A(s) - \lambda(a)\beta s) \), and the behavior of \( \max_{i \leq N} W_i (T_N(a,k)) - (1 - \lambda(a))\beta T_N(a,k) \) is typical.

The main approach of proving the lower and upper bounds in (17) and (18), as well as the limits in (15) and (16), is by analyzing lower and upper bounds on the tail probability of the steady-state maximum queue length \( \mathbb{P}(Q_N^\beta > f_N(a)) \). These bounds are derived by utilizing the union bound, Bonferroni’s inequality, and a careful construction of hitting times. These hitting times are needed to estimate the time where the supremum most likely hits the desired level, and to adequately separate the independent part \( W_i \) and the dependent part \( W_A \) from each other. We also rely on some existing asymptotic estimates in the literature from extreme value theory, and on [5], that investigates the case \( N = 2 \). Finally, we develop a number of auxiliary technical estimates related to the asymptotic behavior of convolutions of normally and exponentially distributed random variables.

These techniques, when put together, are effective in the case \( a = a^* \) and \( a > a^* \) in order to obtain exact asymptotics. In the case \( 0 < a < a^* \), we are able to improve upon Theorem 1 and characterize the asymptotic behavior of \( \mathbb{P}(Q_N^\beta > f_N(a)) \) up to a constant. To derive precise asymptotics in this case seems beyond the scope of techniques developed in this paper.
3 Proof of the logarithmic asymptotics

In this section, we give a proof of Theorem 1, establishing logarithmic asymptotics for the maximum queue length. Our approach is to derive logarithmic lower and upper bounds of the maximum queue length by using the heuristic idea given in (14), and show that they coincide. These bounds are presented in Lemmas 1 and 2 below.

Lemma 1. Let \( a > 0, (W_i, i \leq N) \) be i.i.d. Brownian motions with standard deviation \( \sigma \), \( W_A \) be a Brownian motion with standard deviation \( \sigma_A \), for all \( i \), \( W_i \) and \( W_A \) are mutually independent, and \( \bar{Q}^\beta_N, \gamma(a), \) and \( f_N(a) \) are given by Equations (3), (10), and (6), respectively, then

\[
\liminf_{N \to \infty} \frac{\log(\mathbb{P}(\bar{Q}^\beta_N > f_N(a)))}{\log N} \geq -\gamma(a). \tag{23}
\]

Proof. Recall that \( \lambda(a) = 1 - \sigma/\sqrt{2a\beta + \sigma^2} \) and \( T_N(a) = f_N(a)/\beta \). By choosing \( s = f_N(a)/\beta \) and splitting \(-\beta s\) into two terms, observe that

\[
\mathbb{P}\left( \max_{1 \leq i \leq N} \sup_{s > 0} (W_i(s) + W_A(s) - \beta s) > f_N(a) \right)
\geq \mathbb{P}\left( \max_{1 \leq i \leq N} W_i(T_N(a)) - (1 - \lambda(a))\beta T_N(a) > (1 - \lambda(a))f_N(a), W_A(T_N(a)) - \lambda(a)\beta T_N(a) > \lambda(a)f_N(a) \right)
= \mathbb{P}\left( \max_{1 \leq i \leq N} W_i(T_N(a)) > 2(1 - \lambda(a))f_N(a) \right) \mathbb{P}(W_A(T_N(a)) > 2\lambda(a)f_N(a)). \tag{25}
\]

The expression in (25) is due to the fact that for all \( i \), \( W_i \) and \( W_A \) are independent. We now analyze the two probabilities in (25) separately. Since \( W_i \) and \( W_j \) are i.i.d. for all \( i \) and \( j \), for the first probability in (25) we get from Bonferroni’s inequality that

\[
\mathbb{P}\left( \max_{1 \leq i \leq N} W_i(T_N(a)) > 2(1 - \lambda(a))f_N(a) \right)
\geq N \mathbb{P}(W_i(T_N(a)) > 2(1 - \lambda(a))f_N(a)) - \left( \frac{N}{2} \right) \mathbb{P}(W_i(T_N(a)) > 2(1 - \lambda(a))f_N(a))^2. \tag{26}
\]

Furthermore, it is easy to see that

\[
\mathbb{P}\left( \sup_{s > 0} (W_i(s) - (1 - \lambda(a))s) > (1 - \lambda(a))f_N(a) \right) = \frac{1}{N} \tag{27}
\]

and that

\[
\mathbb{P}(W_i(T_N(a)) > 2(1 - \lambda(a))f_N(a)) \leq \mathbb{P}\left( \sup_{s > 0} (W_i(s) - (1 - \lambda(a))s) > (1 - \lambda(a))f_N(a) \right),
\]

and therefore we bound the second term in (26) as

\[
\left( \frac{N}{2} \right) \mathbb{P}(W_i(T_N(a)) > 2(1 - \lambda(a))f_N(a))^2 \leq \left( \frac{N^2}{2} \right) \mathbb{P}\left( \sup_{s > 0} (W_i(s) - (1 - \lambda(a))s) > (1 - \lambda(a))f_N(a) \right)
\cdot \mathbb{P}(W_i(T_N(a)) > 2(1 - \lambda(a))f_N(a))
= \frac{N}{2} \mathbb{P}(W_i(T_N(a)) > 2(1 - \lambda(a))f_N(a)).
\]

Thus the lower bound given in (26) can be further bounded to

\[
\mathbb{P}\left( \max_{1 \leq i \leq N} W_i(T_N(a)) > 2(1 - \lambda(a))f_N(a) \right) \geq \frac{N}{2} \mathbb{P}(W_i(T_N(a)) > 2(1 - \lambda(a))f_N(a)).
\]

As we aim to derive logarithmic asymptotics, we do so for the derived lower bound, now it is easy to see that

\[
\log \left( \frac{N}{2} \mathbb{P}(W_i(T_N(a)) > 2(1 - \lambda(a))f_N(a)) \right) \sim \log N + \log \left( \mathbb{P}(W_i(T_N(a)) > 2(1 - \lambda(a))f_N(a)) \right)
\]

as \( N \to \infty \), with \( f(x) \sim g(x) \) as \( x \to \infty \) meaning that \( \lim_{x \to \infty} f(x)/g(x) = 1 \). In addition, recall that for a normally distributed random variable \( X \) with standard deviation \( \sigma \), \( \log(\mathbb{P}(X > x)) \sim -x^2/(2\sigma^2) \), as \( x \to \infty \). Thus, we get that

\[
\log \left( \mathbb{P}(W_i(T_N(a)) > 2(1 - \lambda(a))f_N(a)) \right) \sim -\frac{(2(1 - \lambda(a))f_N(a))^2}{2\sigma^2T_N(a)} = -\log N,
\]

Thus, as the expression is logarithmic, we have completed the proof.
as $N \to \infty$, following the definitions of $\lambda(a)$, $f_N(a)$, and $T_N(a)$. Concluding,
\[
\liminf_{N \to \infty} \frac{\log \left( P(\max_{i \leq N} W_i(T_N(a)) - (1 - \lambda(a))\beta T_N(a) > (1 - \lambda(a))f_N(a) ) \right)}{\log N} \geq 0. \quad (28)
\]

For the second probability in (25) the logarithmic asymptotics can be easily computed, since $W_A(f_N(a))$ is normally distributed, and we obtain that
\[
\liminf_{N \to \infty} \frac{\log \left( P(W_A(T_N(a)) > 2\lambda(a)f_N(a) ) \right)}{\log N} \to -\frac{2a\beta + 2\sigma^2 - 2\sigma \sqrt{2a\beta + \sigma^2}}{\sigma^2_A}. \quad (29)
\]

Thus, after combining these two results in (28) and (29) with Equation (25), we have that,
\[
\liminf_{N \to \infty} \frac{\log \left( P(\max_{i \leq N} \sup_{s > 0} (W_i(s) + W_A(s) - \beta s) > f_N(a)) \right)}{\log N} \geq -\frac{2a\beta + 2\sigma^2 - 2\sigma \sqrt{2a\beta + \sigma^2}}{\sigma^2_A}, \quad (30)
\]
irrespective for the choice of $a$. Now, observe that for $a > 0$,
\[
\frac{2a\beta + 2\sigma^2 - 2\sigma \sqrt{2a\beta + \sigma^2}}{\sigma^2_A} \geq \frac{2a\beta - \sigma^2_A}{\sigma^2 + \sigma^2_A},
\]
with equality for $a = a^*$. This means that only for $0 < a \leq a^*$, the lower bound in (30) is sharp enough. For $a > a^*$, we apply the inequality in (12) to obtain for all $c > 0$ that
\[
P \left( \max_{i \leq N} \sup_{s > 0} (W_i(s) + W_A(s) - \beta s) > f_N(a^* + c) \right)
\]
\[
\geq P \left( \max_{i \leq N} \sup_{s > 0} (W_i(s) + W_A(s) - \beta s) > f_N(a^*) \right) \exp \left( -\frac{2\beta c \log N}{\sigma^2 + \sigma^2_A} \right). \quad (31)
\]
Combining this result with the inequality in (30), we get that for all $c > 0$,
\[
\liminf_{N \to \infty} \frac{\log \left( P(\max_{i \leq N} \sup_{s > 0} (W_i(s) + W_A(s) - \beta s) > f_N(a^* + c)) \right)}{\log N} \geq -\gamma(a^*) - \frac{2\beta c \log N}{\sigma^2 + \sigma^2_A} = -\gamma(a^* + c).
\]
Combining the lower bounds in (30) and (31) gives the lower bound in (23).

**Lemma 2.** Let $a > 0$, $(W_i, i \leq N)$ be i.i.d. Brownian motions with standard deviation $\sigma$, $W_A$ be a Brownian motion with standard deviation $\sigma_A$, for all $i$, $W_i$ and $W_A$ are mutually independent, and $Q^N_\gamma$, $\gamma(a)$, and $f_N(a)$ are given by Equations (3), (10), and (6), respectively, then
\[
\limsup_{N \to \infty} \frac{\log(P(Q^N_\gamma > f_N(a)))}{\log N} \leq -\gamma(a). \quad (32)
\]

**Proof.** We have by the union bound in (13) that
\[
\limsup_{N \to \infty} \frac{\log(P(Q^N_\gamma > f_N(a)))}{\log N} \leq -\frac{2a\beta - \sigma^2_A}{\sigma^2 + \sigma^2_A}. \quad (33)
\]
This upper bound implies the upper bound given in (32) for $a \geq a^*$. Turning to the case $0 < a < a^*$, we can bound the tail probability of the maximum queue length by using sub-additivity, the union bound, and by integrating over possible values of $\sup_{s > 0}(W_A(s) - \lambda(a)\beta s)$, and we obtain that
\[
P \left( Q^N_\gamma > f_N(a) \right)
\]
\[
\leq P \left( \max_{i \leq N} \sup_{s > 0} (W_i(s) - (1 - \lambda(a))\beta s) + \sup_{s > 0} (W_A(s) - \lambda(a)\beta s) > f_N(a) \right)
\]
\[
\leq \int_0^{\gamma(a)(\frac{2}{\lambda(a)} + 1)} \frac{2\lambda(a)\beta}{\sigma^2_A} N \log N P \left( \sup_{s > 0} (W_i(s) - (1 - \lambda(a))\beta s) > f_N(a) - y \log N \right) \exp \left( -\frac{2\lambda(a)\beta y \log N}{\sigma^2_A} \right) dy
\]
\[
+ P \left( \sup_{s > 0} (W_A(s) - \lambda(a)\beta s) > \lambda(a)f_N(a) \right)
\]
\[
= \int_0^{\gamma(a)(\frac{2}{\lambda(a)} + 1)} \frac{2\lambda(a)\beta}{\sigma^2_A} N \log N \exp \left( -\frac{2(1 - \lambda(a))\beta}{\sigma^2} (f_N(a) - y \log N) - \frac{2\lambda(a)\beta y \log N}{\sigma^2_A} \right) dy
\]
\[
+ P \left( \sup_{s > 0} (W_A(s) - \lambda(a)\beta s) > \lambda(a)f_N(a) \right).
\]

8
Because the function \( \exp \left( -\frac{2(1-\lambda(a))\beta}{\sigma^2} (f_N(a) - y \log N) - \frac{2\lambda(a)\beta y \log N}{\sigma_A^2} \right) \) with \( y \in [0, \lambda(a)(\frac{\sigma_A^2}{\sigma^2} + a)] \) is maximized when \( y = \lambda(a)(\frac{\sigma_V^2}{\sigma^2} + a) \) and equals \( N^{-\frac{2a\beta + 2\sigma^2 - 2\sigma \sqrt{2a\beta + \sigma^2}}{\sigma_A^2}} \), we get that

\[
\limsup_{N \to \infty} \frac{\log \left( \int_{0}^{\lambda(a)(\frac{\sigma_V^2}{\sigma^2} + a)} 2\lambda(a)\beta \frac{\sigma_V^2}{\sigma_A^2} \log N \cdot N \exp \left( -\frac{2(1-\lambda(a))\beta}{\sigma^2} (f_N(a) - y \log N) - \frac{2\lambda(a)\beta y \log N}{\sigma_A^2} \right) dy \right)}{\log N} = 1 + \limsup_{N \to \infty} \frac{\log \left( \int_{0}^{\lambda(a)(\frac{\sigma_V^2}{\sigma^2} + a)} \exp \left( -\frac{2(1-\lambda(a))\beta}{\sigma^2} (f_N(a) - y \log N) - \frac{2\lambda(a)\beta y \log N}{\sigma_A^2} \right) dy \right)}{\log N} \leq -\frac{2a\beta + 2\sigma^2 - 2\sigma \sqrt{2a\beta + \sigma^2}}{\sigma_A^2}.
\]

(35)

Now we have found a logarithmic upper bound for the integral in (34), we are left with the expression \( P(\sup_{s>0} (W_A(s) - \lambda(a)\beta s) > \lambda(a)f_N(a)) \) in (34). For this expression holds that

\[
P \left( \sup_{s>0} (W_A(s) - \lambda(a)\beta s) > \lambda(a)f_N(a) \right) = N^{-\frac{2a\beta + 2\sigma^2 - 2\sigma \sqrt{2a\beta + \sigma^2}}{\sigma_A^2}}.
\]

Combining the upper bounds in (33) and (34) gives the logarithmic upper bound on the maximum queue length in (32).

### 4 Useful lemmas

In the previous section, we have given a proof of the logarithmic asymptotics for the maximum queue length \( Q_N \). In order to be able to prove sharper results on the tail asymptotics, we need some auxiliary results; the goal of this section is to derive these. We begin by giving an overview of the results in this section.

First of all, observe that

\[
\sup_{s>T} (W(s) - \beta s) = W(T) - \beta T + \sup_{s>0} (\tilde{W}(s) - \beta s),
\]

where \( \tilde{W}(t), t > 0 \) is an independent copy of \( W(t), t > 0 \). From this, it follows that if we take the supremum of a Brownian motion starting at a positive time, this is in distribution the same as adding a normally distributed random variable to an exponentially distributed random variable. The tail asymptotics of this convolution equal the tail asymptotics of the normally distributed part, the exponentially distributed part, or a more complicated mixture of the two, depending on the starting time \( T \), the standard deviation of \( W(s) \) and the drift \( \beta \). In Lemma 3, these three cases are studied in more detail.

Second, our main strategy to investigate the tail asymptotics involves the use of hitting times. Observe that we have a maximum of \( N \) mutually dependent random variables. Based on the results in Section 3, we are able to make an educated guess where the supremum is attained. Following the proof of Lemma 1, we see that

\[
P \left( \max_{1 \leq N} \sup_{s>0} (W_i(s) + W_A(s) - \beta s) > f_N(a) \right) \approx P \left( \max_{1 \leq N} (W_i(T_N(a)) + W_A(T_N(a)) - \beta T_N(a)) > f_N(a) \right).
\]

So the expected hitting time, conditioned on being finite, is approximately \( T_N(a) \). Next, observe that for \( 0 < a \leq a^* \),

\[
P \left( \max_{1 \leq N} (W_i(s) - (1 - \lambda(a))\beta s) > (1 - \lambda(a))f_N(a) \right) = 1 - \left( 1 - \exp \left( -\frac{2(1-\lambda(a))\beta}{\sigma^2} (1 - \lambda(a))f_N(a) \right) \right)^N
\]

\[
= \Omega(1),
\]

(36)

and

\[
P \left( \sup_{s>0} (W_A(s) - \lambda(a)\beta s) > \lambda(a)f_N(a) \right) = \exp \left( -\frac{2\lambda(a)\beta}{\sigma_A^2} \lambda(a)f_N(a) \right) = N^{-\gamma(a)}.
\]

(37)

Since the expected conditional hitting time of a level \( x \) equals this value \( x \) divided by the drift, it is easy to see that in both (36) and (37) the expected conditional hitting time equals \( T_N(a) \). Thus, this heuristically explains why the processes \( \{W_i(t) - (1 - \lambda(a))\beta t, t > 0\} \) and \( \{W_A(t) - \lambda(a)\beta t, t > 0\} \) are important. In Definition 1 below, we define the hitting time densities of these processes and in Lemma 4 we show that after proper scaling these densities converge to the densities of normally distributed random variables, corrected with a constant.
Finally, we need to analyze limits of the type

$$\lim_{N \to \infty} \int_{-\infty}^{\infty} \mathbb{P}\left( \sup_{s>\tau_N} X_i(s) > y_N \Big| \tau_N = t \right) f_{\tau_N}(t) dt,$$

(38)

where $\tau_N$ is a hitting time and $f_{\tau_N}$ its density. In Lemma 5, we show that under certain assumptions, we can interchange the integral and the limit, when the integrand is a product of two functions, as is the case in (38). The proof of this interchange is similar to the proof of the dominated convergence theorem.

**Lemma 3** (Convolution of normal and exponential distributions). Let $X \stackrel{d}{=} \mathcal{N}(0,1)$ and $E \stackrel{d}{=} \text{Exp}(1)$ be independent random variables. Let $(\eta_N, N \geq 1), (x_N, N \geq 1)$ be sequences with $\eta_N > 0$, $x_N \to \infty$, and $x_N/\eta_N \to \infty$. Furthermore, let $\mu > 0$ and $c \in \mathbb{R}$. Then

1. if $\frac{x_N - \mu \eta_N^2}{\sqrt{2 \eta_N}} \xrightarrow{N \to \infty} c$, then

$$\mathbb{P}\left( \eta_N X + \frac{1}{\mu} E > x_N \right) \sim \frac{\eta_N e^{-\frac{x_N}{\sqrt{2 \eta_N}}}}{\sqrt{2 \pi x_N}} + \frac{1}{2} e^{\frac{1}{2} \mu (\mu \eta_N^2 - 2x_N)} (1 + \text{erf}(c)), \quad (39)$$

as $N \to \infty$, and $\text{erf}(c)$ the error function,

2. if $\frac{x_N - \mu \eta_N^2}{\sqrt{2 \eta_N}} \xrightarrow{N \to \infty} \infty$, then

$$\mathbb{P}\left( \eta_N X + \frac{1}{\mu} E > x_N \right) \sim \frac{\eta_N e^{-\frac{x_N}{\sqrt{2 \eta_N}}}}{\sqrt{2 \pi x_N}} + e^{\frac{1}{2} \mu (\mu \eta_N^2 - 2x_N)}, \quad (40)$$

as $N \to \infty$,

3. and if $\frac{x_N - \mu \eta_N^2}{\sqrt{2 \eta_N}} \xrightarrow{N \to \infty} -\infty$, then

$$\mathbb{P}\left( \eta_N X + \frac{1}{\mu} E > x_N \right) \sim \frac{\eta_N e^{-\frac{x_N}{\sqrt{2 \eta_N}}}}{\sqrt{2 \pi x_N}} - \frac{1}{\sqrt{2 \pi}} e^{\frac{1}{2} \mu (\mu \eta_N^2 - 2x_N)} \frac{\eta_N e^{-\frac{1/2 \eta_N^2}{\sqrt{2 \eta_N}}}}{x_N - \mu \eta_N^2}, \quad (41)$$

as $N \to \infty$.

**Proof.** We have

$$\mathbb{P}\left( \eta_N X + \frac{1}{\mu} E > x_N \right) = \mathbb{P}(\eta_N X > x_N) + \int_{-\infty}^{x_N/\eta_N} \mathbb{P}\left( \frac{1}{\mu} E > x_N - \eta_N z \right) e^{-\frac{z^2}{2\pi}} dz. \quad (42)$$

The first term satisfies

$$\mathbb{P}(\eta_N X > x_N) \sim \frac{\eta_N e^{-\frac{x_N}{\sqrt{2 \eta_N}}}}{\sqrt{2 \pi x_N}},$$

as $N \to \infty$. Furthermore,

$$\int_{-\infty}^{x_N/\eta_N} \mathbb{P}\left( \frac{1}{\mu} E > x_N - \eta_N z \right) e^{-\frac{z^2}{2\pi}} dz = \frac{1}{2} e^{\frac{1}{2} \mu (\mu \eta_N^2 - 2x_N)} \left( \text{erf}\left( \frac{x_N - \mu \eta_N^2}{\sqrt{2 \eta_N}} \right) + 1 \right).$$

Observe that $\text{erf}(z) \to 1$, as $z \to \infty$ and $1 + \text{erf}(-z) \sim \frac{1 - z^2}{\sqrt{2 \pi}}$, as $z \to \infty$. The lemma follows. ☐

**Definition 1.** For $a > 0$, $r \in \mathbb{R}$, and $i \in \{1, 2, \ldots, N\}$, we define the random variable $\tau_{i,r}^{a,-}$ by

$$\tau_{r}^{a,-} := \inf\{t > 0 : W_i(t) - (1 - \lambda(a))bt > (1 - \lambda(a))f_{N}(a) - r\},$$

and the function $f_{\tau_{i,r}^{a,-}}$ as its density. Furthermore, we write

$$\tau_{\lambda, r}^{a,-} := \min_{i \leq N} \tau_{i, r}^{a,-}.$$

Similarly, we define the random variable $\tilde{\tau}_{\lambda, r}^{a,-}$ by

$$\tilde{\tau}_{r}^{a,-} := \inf\{t > 0 : W_i(t) - \lambda(a)bt > \lambda(a)f_{N}(a) + r\},$$

and the function $f_{\tilde{\tau}_{\lambda, r}^{a,-}}$ as its density.
Lemma 4 (Convergence of hitting time density). For the density function $f_{r_{i,N}}$ given in Definition 1 and $T_N(a,k)$ given in Equation (8) we have that

$$N \sqrt{\log N} f_{r_{i,N}}(T_N(a,k)) \overset{N \to \infty}{\to} \frac{\beta^2 \exp \left( \frac{\beta \left( 8 \alpha^2 \beta r - \beta^3 k^2 \sigma \sqrt{2a \beta + \sigma^2 + 8a \beta r \sigma^2 + 2r \sigma^4} \right)}{\sigma (2a \beta + \sigma^2)^{3/2}} \right)}{\sqrt{\pi} (2a \beta + \sigma^2)}. \quad (43)$$

Proof. The density $f_{r_{i,N}}(t)$ satisfies

$$f_{r_{i,N}}(t) = \frac{(1 - \lambda(a))f_N(a) - r}{\sqrt{2\pi a t}} \exp \left( - \frac{(1 - \lambda(a))f_N(a) - r + (1 - \lambda(a))\beta t^2}{2a t} \right);$$

cf. [3, Eq. 2.0.2, p. 301]. From this, the limit in (43) follows. □

Corollary 1. For the density function $f_{r_{i,N}}$ given in Definition 1 and $T_N(a,k)$ given in Equation (8) we have that

$$\lim_{N \to \infty} \int_{-\infty}^{\infty} N \sqrt{\log N} f_{r_{i,N}}(T_N(a,k)) \, dk = \lim_{N \to \infty} N \sqrt{\log N} f_{r_{i,N}}(T_N(a,k)) \, dk. \quad (44)$$

Proof. Observe that for $N$ large enough such that $(1 - \lambda(a))f_N(a) - r > 0$,

$$\int_{-\infty}^{\infty} N \sqrt{\log N} f_{r_{i,N}}(T_N(a,k)) \, dk = N \mathbb{P} \left( \sup_{s > 0} (W_i(s) - (1 - \lambda(a))\beta s) > (1 - \lambda(a))f_N(a) - r \right) = \exp \left( \frac{2(1 - \lambda(a))\beta r}{\sigma^2} \right),$$

and

$$\int_{-\infty}^{\infty} \frac{\beta^2 \exp \left( \frac{\beta \left( 8 \alpha^2 \beta r - \beta^3 k^2 \sigma \sqrt{2a \beta + \sigma^2 + 8a \beta r \sigma^2 + 2r \sigma^4} \right)}{\sigma (2a \beta + \sigma^2)^{3/2}} \right)}{\sqrt{\pi} (2a \beta + \sigma^2)} \, dk = \exp \left( \frac{2(1 - \lambda(a))\beta r}{\sigma^2} \right).$$

□

Lemma 5 (Convergence of integrals of sequences of functions). Assume we have sequences of positive integrable functions $v_N(x)$ and $w_N(x)$ that satisfy the following:

- $v_N(x) \overset{N \to \infty}{\to} v(x)$,
- $\int_{\mathbb{R}} v_N(x) \, dx \overset{N \to \infty}{\to} \int_{\mathbb{R}} v(x) \, dx$,
- $w_N(x) \overset{N \to \infty}{\to} w(x)$,
- There exists a constant $c > 0$ such that $w_N(x) < c$ for all $x$ and $N$.

Then

$$\int_{\mathbb{R}} v_N(x) w_N(x) \, dx \overset{N \to \infty}{\to} \int_{\mathbb{R}} v(x) w(x) \, dx. \quad (45)$$

Proof. First of all, by using Fatou’s lemma we obtain that

$$\liminf_{N \to \infty} \int_{\mathbb{R}} v_N(x) w_N(x) \, dx \geq \int_{\mathbb{R}} v(x) w(x) \, dx.$$  

Furthermore, observe that $v_N(x)c - v_N(x)w_N(x) > 0$ for all $x$ and $N$. Now, from Fatou’s lemma it follows that

$$\liminf_{N \to \infty} \int_{\mathbb{R}} v_N(x)c - v_N(x)w_N(x) \, dx \geq \int_{\mathbb{R}} v(x)c - v(x)w(x) \, dx.$$  

Because $\int_{\mathbb{R}} v_N(x) \, dx \overset{N \to \infty}{\to} \int_{\mathbb{R}} v(x) \, dx$, we get that

$$\limsup_{N \to \infty} \int_{\mathbb{R}} v_N(x) w_N(x) \, dx \leq \int_{\mathbb{R}} v(x) w(x) \, dx.$$  

The lemma follows. □
5 Proofs of the sharper asymptotics

In this section, we prove sharper asymptotics of the tail behavior of $\mathbb{P}(Q_N^\alpha > f_N(a))$. Recall the definition of $\tau_{i,N}^{a,-r}$ and $\tau_{A,N}^{a,r}$ given in Definition 1, and observe that

$$\mathbb{P}(Q_N^\alpha > f_N(a)) = \mathbb{P}(Q_N^\alpha(\tau_{i,N}^{a,-r} \wedge \tau_{A,N}^{a,r}, \infty) \mathbb{I}(\tau_{i,N}^{a,-r} \wedge \tau_{A,N}^{a,r} < \infty) > f_N(a)). \quad (46)$$

This equation is valid, because for $0 < t < \tau_{\tilde{N}}^{a,-r} \wedge \tau_{\tilde{A}}^{a,r}$, we see that $W_i(t) - (1 - \lambda(a))\beta t < (1 - \lambda(a))f_N(a) - r$ and $W_A(t) - \lambda(a)\beta t < \lambda(a)f_N(a) + r$. Thus, $W_i(t) + W_A(t) - \beta t < f_N(a)$. Now, using (46), we obtain lower and upper bounds of the form

$$\max\left(\mathbb{P}\left(Q_N^\alpha(\tau_{i,N}^{a,-r}, \infty) \mathbb{I}(\tau_{i,N}^{a,-r} < \infty) > f_N(a)\right), \mathbb{P}\left(Q_N^\alpha(\tau_{A,N}^{a,r}, \infty) \mathbb{I}(\tau_{A,N}^{a,r} < \infty) > f_N(a)\right)\right) \leq \mathbb{P}(Q_N^\alpha > f_N(a)) \leq \mathbb{P}\left(Q_N^\alpha(\tau_{A,N}^{a,r}, \infty) \mathbb{I}(\tau_{A,N}^{a,r} < \infty) > f_N(a)\right), \quad (47)$$

which we can exploit. Other important inequalities that we use are the union bound and Bonferroni’s inequality.

In the case of identically distributed random variables $X_i$, these bounds simplify to

$$N \mathbb{P}(X_i > x) = \binom{N}{2} \mathbb{P}(\min(X_i, X_j) > x) \leq \mathbb{P}(\max_{i \leq N} X_i > x) \leq N \mathbb{P}(X_i > x),$$

which is the case for our problem. Dębicki et al. [5] have derived the tail asymptotics of $\min(Q_{i,A}^\alpha, Q_{j,A}^\beta)$. In Lemma 7 we show how we use [5, Th. 2.3] on the tails of $\min(Q_{i,A}^\alpha, Q_{j,A}^\beta)$ together with Bonferroni’s inequality such that these are applicable in our proof of the case $a > a^*$. Now that we can write upper and lower bounds in which hitting times play a role, we condition on the hitting times and get sequences of the form as given in (38). By using Fatou’s lemma we know that

$$\liminf_{N \to \infty} \int_{-\infty}^\infty \mathbb{P}\left(\sup_{s > \tau_N} X_i(s) > y_N \mid \tau_N = t\right) f_{\tau_N}(t) dt \geq \liminf_{N \to \infty} \int_{-\infty}^\infty \mathbb{P}\left(\sup_{s > \tau_N} X_i(s) > y_N \mid \tau_N = t\right) f_{\tau_N}(t) dt,$$

and by using Lemma 5, we obtain that

$$\lim_{N \to \infty} \int_{-\infty}^\infty \mathbb{P}\left(\sup_{s > \tau_N} X_i(s) > y_N \mid \tau_N = t\right) f_{\tau_N}(t) dt = \int_{-\infty}^\infty \lim_{N \to \infty} \mathbb{P}\left(\sup_{s > \tau_N} X_i(s) > y_N \mid \tau_N = t\right) f_{\tau_N}(t) dt.$$

To obtain limits of the form as given in (38) we use Lemmas 3 and 4.

5.1 The case $a > a^*$

In this section, we prove Theorem 2 on exact asymptotics of the maximum queue length when $a > a^*$. As is stated in (15), $\mathbb{P}(Q_N^\alpha > f_N(a)) \sim N^{-\gamma(a)}$, as $N \to \infty$, when $a > a^*$. Since the union bound in (13) gives us that $N^{\gamma(a)} \mathbb{P}(Q_N^\alpha > f_N(a)) \leq 1$, we only need to show that

$$\liminf_{N \to \infty} N^{\gamma(a)} \mathbb{P}(Q_N^\alpha > f_N(a)) \geq 1.$$

In order to prove the liminf, we first observe that $Q_N^\alpha > Q_{i,N}^\alpha(\tau_{i,N}^{a,0}, \infty) \mathbb{I}(\tau_{i,N}^{a,0} < \infty)$, and we know by using Bonferroni’s inequality that

$$\mathbb{P}(Q_N^\alpha(\tau_{i,N}^{a,0}, \infty) \mathbb{I}(\tau_{i,N}^{a,0} < \infty) > f_N(a)) \geq \mathbb{P}(Q_{i,A}^\beta(\tau_{i,N}^{a,0}, \infty) \mathbb{I}(\tau_{i,N}^{a,0} < \infty) > f_N(a))$$

$$- \binom{N}{2} \mathbb{P}(\min(Q_{i,A}^\beta(\tau_{i,N}^{a,0}, \infty), Q_{j,A}^\beta(\tau_{j,N}^{a,0}, \infty)) \mathbb{I}(\tau_{i,N}^{a,0} < \infty), Q_{j,A}^\beta(\tau_{j,N}^{a,0}, \infty)) > f_N(a)). \quad (48)$$

where $\tau_{i,N}^{a,0}$ and $\tau_{j,N}^{a,0}$ are hitting times defined in Lemma 4. In Lemma 7, we show that the first term is leading, and the second order term is of smaller order. In order to prove this, we first give a convenient upper bound for

$$\mathbb{P}^{k < t}(\min(Q_{i,A}^\beta(\tau_{i,N}^{a,0}, \infty), Q_{j,A}^\beta(\tau_{j,N}^{a,0}, \infty)) > f_N(a))$$

12
in Lemma 6, with
\[ \mathbb{P}^{(k<l)}(A) = \mathbb{P}\left( A \mid \tau_{i,N}^{\alpha,0} = T_N(a^*, k) < \tau_{j,N}^{\alpha,0} = T_N(a^*, l) \right). \]  
(49)

From now on, let \( \hat{W} \) be an independent copy of the Brownian motion \( W \), and \( \hat{Q}_{i,A}^{\beta}(s, t) \) an independent copy of \( Q_{i,A}^{\beta}(u, v) \).

**Lemma 6.** Let \( a > a^* \), \( (W_i, i \leq N) \) be i.i.d. Brownian motions with standard deviation \( \sigma \), \( W_A \) be a Brownian motion with standard deviation \( \sigma_A \), for all \( i \), \( W_i \) and \( W_A \) are mutually independent, and \( Q_{i,A}^{\beta}(u, v) \), \( \gamma(a) \), \( f_N(a) \), and \( \mathbb{P}^{(k<l)}(A) \) are given by Equations (5), (10), (6), and (49) respectively. Furthermore, \( \tau_{i,N}^{\alpha,0} \) is given in Definition 1 and \( \hat{Q}_{i,A}^{\beta} \) is an independent copy of \( Q_{i,A}^{\beta} \). Then for all \( \delta > 0 \) there exists an \( N_\delta > 0 \) such that for all \( N \geq N_\delta \)

\[
\mathbb{P}^{(k<l)}( \min(Q_{i,A}^{\beta}(\tau_{i,N}^{\alpha,0}, \infty), Q_{j,A}^{\beta}(\tau_{j,N}^{\alpha,0}, \infty)) > f_N(a) ) \\
\leq 4 \mathbb{P}^{(k<l)}( (1 + \delta)W_A(\tau_{i,N}^{\alpha,0}) + \min(Q_{i,A}^{\beta}, Q_{j,A}^{\beta}) > f_N(a) - (1 - \lambda(a^*))f_N(a^*) + \lambda(a^*)\beta\tau_{i,N}^{\alpha,0} ) .
\]

**Proof.** First of all, we have that

\[
\mathbb{P}^{(k<l)}( \min(Q_{i,A}^{\beta}(\tau_{i,N}^{\alpha,0}, \infty), Q_{j,A}^{\beta}(\tau_{j,N}^{\alpha,0}, \infty)) > f_N(a) ) \\
\leq \mathbb{P}^{(k<l)}( Q_{i,A}^{\beta}(\tau_{i,N}^{\alpha,0}, \tau_{j,N}^{\alpha,0}) > f_N(a) ) + \mathbb{P}^{(k<l)}( \min(Q_{i,A}^{\beta}(\tau_{i,N}^{\alpha,0}, \infty), Q_{j,A}^{\beta}(\tau_{j,N}^{\alpha,0}, \infty)) > f_N(a) ),
\]

(50)

because \( \min(Q_{i,A}^{\beta}(\tau_{i,N}^{\alpha,0}, \infty), Q_{j,A}^{\beta}(\tau_{j,N}^{\alpha,0}, \infty)) \leq \max(Q_{i,A}^{\beta}(\tau_{i,N}^{\alpha,0}, \tau_{j,N}^{\alpha,0}), \min(Q_{i,A}^{\beta}(\tau_{i,N}^{\alpha,0}, \infty), Q_{j,A}^{\beta}(\tau_{j,N}^{\alpha,0}, \infty))) \) when \( \tau_{i,N}^{\alpha,0} < \tau_{j,N}^{\alpha,0} < \infty \). Now, recall from Definition 1 that

\[
Q_{i,A}^{\beta}(\tau_{i,N}^{\alpha,0}, \tau_{j,N}^{\alpha,0}) \\
= \sup_{\tau_{i,N}^{\alpha,0} < s < \tau_{j,N}^{\alpha,0}} (W_i(s) + W_A(s) - \beta s) = (1 - \lambda(a^*))f_N(a^*) + W_A(\tau_{i,N}^{\alpha,0}) - \lambda(a^*)\beta\tau_{i,N}^{\alpha,0} + \hat{Q}_{i,A}^{\beta}(0, \tau_{j,N}^{\alpha,0} - \tau_{i,N}^{\alpha,0}) .
\]

Thus, for the first term in (50) we have

\[
\mathbb{P}^{(k<l)}( Q_{i,A}^{\beta}(\tau_{i,N}^{\alpha,0}, \tau_{j,N}^{\alpha,0}) > f_N(a) ) \\
= \mathbb{P}^{(k<l)}( W_A(\tau_{i,N}^{\alpha,0}) + \hat{Q}_{i,A}^{\beta}(0, \tau_{j,N}^{\alpha,0} - \tau_{i,N}^{\alpha,0}) > f_N(a) - (1 - \lambda(a^*))f_N(a^*) + \lambda(a^*)\beta\tau_{i,N}^{\alpha,0} ) \\
\leq \mathbb{P}^{(k<l)}( W_A(\tau_{i,N}^{\alpha,0}) + \hat{W}_i(\tau_{i,N}^{\alpha,0} - \tau_{i,N}^{\alpha,0}) + W_A(\tau_{j,N}^{\alpha,0} - \tau_{i,N}^{\alpha,0}) > f_N(a) - (1 - \lambda(a^*))f_N(a^*) + \lambda(a^*)\beta\tau_{i,N}^{\alpha,0} ) \\
\leq \mathbb{P}^{(k<l)}( (1 + \delta)W_A(\tau_{i,N}^{\alpha,0}) > f_N(a) - (1 - \lambda(a^*))f_N(a^*) + \lambda(a^*)\beta\tau_{i,N}^{\alpha,0} ) \\
\leq \mathbb{P}^{(k<l)}( (1 + \delta)W_A(\tau_{i,N}^{\alpha,0}) + \min(\hat{Q}_{i,A}^{\beta}, \hat{Q}_{j,A}^{\beta}) > f_N(a) - (1 - \lambda(a^*))f_N(a^*) + \lambda(a^*)\beta\tau_{i,N}^{\alpha,0} ) ,
\]

(51)

For any \( x \) and \( y \), it holds that \( x + |y| \leq \max(x + y, x - y) \). Therefore, by the union bound we can bound the probability in (51) as

\[
\mathbb{P}^{(k<l)}( W_A(\tau_{i,N}^{\alpha,0}) + \hat{W}_i(\tau_{i,N}^{\alpha,0} - \tau_{i,N}^{\alpha,0}) + W_A(\tau_{j,N}^{\alpha,0} - \tau_{i,N}^{\alpha,0}) > f_N(a) - (1 - \lambda(a^*))f_N(a^*) + \lambda(a^*)\beta\tau_{i,N}^{\alpha,0} ) \\
\leq 2 \mathbb{P}^{(k<l)}( W_A(\tau_{i,N}^{\alpha,0}) + \hat{W}_i(\tau_{i,N}^{\alpha,0} - \tau_{i,N}^{\alpha,0}) + W_A(\tau_{j,N}^{\alpha,0} - \tau_{i,N}^{\alpha,0}) > f_N(a) - (1 - \lambda(a^*))f_N(a^*) + \lambda(a^*)\beta\tau_{i,N}^{\alpha,0} ) \\
\leq 2 \mathbb{P}^{(k<l)}( (1 + \delta)W_A(\tau_{i,N}^{\alpha,0}) > f_N(a) - (1 - \lambda(a^*))f_N(a^*) + \lambda(a^*)\beta\tau_{i,N}^{\alpha,0} ) \\
\leq 2 \mathbb{P}^{(k<l)}( (1 + \delta)W_A(\tau_{i,N}^{\alpha,0}) + \min(Q_{i,A}^{\beta}, Q_{j,A}^{\beta}) > f_N(a) - (1 - \lambda(a^*))f_N(a^*) + \lambda(a^*)\beta\tau_{i,N}^{\alpha,0} ) ,
\]

(52)

for \( \delta > 0 \) and \( N > N_\delta \). The upper bound in (52) holds since \( \tau_{i,N}^{\alpha,0} = \Omega(\log N) \), and \( \tau_{j,N}^{\alpha,0} - \tau_{i,N}^{\alpha,0} = O(\sqrt{\log N}) \). The upper bound in (53) holds because we add a positive random variable. For the second term in (50), first observe that \( \mathbb{P}(\min(X, Y) > z) = \mathbb{P}(X > z, Y > z) \). Second, under the assumption that \( \tau_{i,N}^{\alpha,0} < \tau_{j,N}^{\alpha,0} < \infty \), we can write

\[
Q_{i,A}^{\beta}(\tau_{j,N}^{\alpha,0}, \infty) = (1 - \lambda(a^*))f_N(a^*) + W_i(\tau_{j,N}^{\alpha,0} - \tau_{i,N}^{\alpha,0}) - (1 - \lambda(a^*))\beta(\tau_{j,N}^{\alpha,0} - \tau_{i,N}^{\alpha,0}) + W_A(\tau_{j,N}^{\alpha,0} - \tau_{i,N}^{\alpha,0}) - \lambda(a^*)\beta\tau_{j,N}^{\alpha,0} + \hat{Q}_{i,A}^{\beta}.\]
Thus, by applying similar techniques as for the analysis of the first term in (50) we obtain that
\[
\begin{align*}
\mathbb{P}(k<\ell) \left( \min(Q_{i,A}^\beta(\tau_{i,N}^{a^*,0}, \infty), Q_{j,A}^\beta(\tau_{j,N}^{a^*,0}, \infty)) > f_N(a) \right) \\
= \mathbb{P}(k<\ell) \left( W_A(\tau_{i,N}^{a^*,0}) + W_i(\tau_{i,N}^{a^*,0} - \tau_{i,N}^{a^*,0}) - (1 - \lambda(a^*)) \beta(\tau_{i,N}^{a^*,0} - \tau_{i,N}^{a^*,0}) + \hat{Q}_i,A > f_N(a) - (1 - \lambda(a^*)) f_N(a^*) + \lambda(a^*) \beta r_{i,N}^{a^*,0} \right. \\
\left. \\
W_A(\tau_{j,N}^{a^*,0}) + \hat{Q}_j,A > f_N(a) - (1 - \lambda(a^*)) f_N(a^*) + \lambda(a^*) \beta r_{j,N}^{a^*,0} \right)
\end{align*}
\]

Thus, by applying similar techniques as for the analysis of the first term in (50) we obtain that

Furthermore, observe that due to Equation (27),
\[
\begin{align*}
W_A(\tau_{i,N}^{a^*,0}) + \hat{Q}_i,A > f_N(a) - (1 - \lambda(a^*)) f_N(a^*) + \lambda(a^*) \beta r_{i,N}^{a^*,0} \\
W_A(\tau_{j,N}^{a^*,0}) + \hat{Q}_j,A > f_N(a) - (1 - \lambda(a^*)) f_N(a^*) + \lambda(a^*) \beta r_{j,N}^{a^*,0}
\end{align*}
\]

Combining this bound with the bound in (53) completes the proof of the lemma.

Lemma 7. Let \( a > a^* \) (\( W_i, i \leq N \)) be i.i.d. Brownian motions with standard deviation \( \sigma \), \( W_A \) be a Brownian motion with standard deviation \( \sigma_A \), for all \( i \), \( W_i \) and \( W_A \) are mutually independent, and \( Q_N^\beta, \gamma(a) \), and \( f_N(a) \) are given by Equations (3), (10), and (6), respectively, then

\[
\lim_{N \to \infty} \inf N^{\gamma(a)} \mathbb{P}(Q_N > f_N(a)) \geq 1.
\]

The general idea of the proof of Lemma 7 is to make rigorous that the lower bound on the maximum queue length \( Q_N^\beta \) given in (48) is approximately the same as \( N \mathbb{P}(Q_{i,A}^\beta(\tau_{i,N}^{a^*,0}, \infty) \mathbb{I}(\tau_{i,N}^{a^*,0} < \infty) > f_N(a)) \) when \( N \) is large. Thus the last term in (48) is asymptotically negligible. We use the result from Lemma 6 to establish this. Observe that now, following Definition 1,

\[
Q_{i,A}^\beta(\tau_{i,N}^{a^*,0}, \infty) = W_i(\tau_{i,N}^{a^*,0}) + W_A(\tau_{i,N}^{a^*,0} - \tau_{i,N}^{a^*,0}) + \hat{Q}_i,A = (1 - \lambda(a^*)) f_N(a^*) + W_A(\tau_{i,N}^{a^*,0}) - \lambda(a^*) \beta r_{i,N}^{a^*,0} + \hat{Q}_i,A.
\]

Furthermore, observe that due to Equation (27), \( P(\tau_{i,N}^{a^*,0} < \infty) = 1/N \). From this it follows that

\[
N \mathbb{P}(Q_{i,A}^\beta(\tau_{i,N}^{a^*,0}, \infty) \mathbb{I}(\tau_{i,N}^{a^*,0} < \infty) > f_N(a)) = \mathbb{P}(Q_{i,A}^\beta(\tau_{i,N}^{a^*,0}, \infty) > f_N(a) | \tau_{i,N}^{a^*,0} < \infty).
\]

Therefore, in order to prove a sharp lower bound on the tail asymptotics of the maximum queue length, we prove by using Fatou’s lemma that

\[
\lim_{N \to \infty} \inf N^{\gamma(a)} \mathbb{P}(W_A(\tau_{i,N}^{a^*,0}) - \lambda(a^*) \beta r_{i,N}^{a^*,0} + \hat{Q}_i,A > f_N(a) - (1 - \lambda(a^*)) f_N(a^*) | \tau_{i,N}^{a^*,0} < \infty) \geq 1.
\]

In order to prove this, we show that \( \hat{Q}_i,A \) is most likely to hit a level \( g_N(a, x, k) \), and \( W_A(\tau_{i,N}^{a^*,0}) - \lambda(a^*) \beta r_{i,N}^{a^*,0} \) is most likely to hit the level \( f_N(a) - (1 - \lambda(a^*)) f_N(a^*) - g_N(a, x, k) \).

We now turn to a formal proof of Lemma 7.

Proof. For abbreviation, we write

\[
P_{i,j,N} = \mathbb{P} \left( \min(Q_{i,A}^\beta(\tau_{i,N}^{a^*,0}, \infty) \mathbb{I}(\tau_{i,N}^{a^*,0} < \infty), Q_{j,A}^\beta(\tau_{j,N}^{a^*,0}, \infty) \mathbb{I}(\tau_{j,N}^{a^*,0} < \infty)) > f_N(a) \right).
\]

Thus, the inequality in (48) simplifies to

\[
\mathbb{P}(Q_N^\beta(\tau_{i,N}^{a^*,0}, \infty) \mathbb{I}(\tau_{i,N}^{a^*,0} < \infty) > f_N(a)) \geq N P_{i,j,N} - \left( \frac{N}{2} \right) P_{i,j,N}.
\]

For abbreviation, we also write

\[
Q_{i,j,N}(k, l) = \mathbb{P} \left( \min(Q_{i,A}^\beta(\tau_{i,N}^{a^*,0}, \infty), Q_{j,A}^\beta(\tau_{j,N}^{a^*,0}, \infty)) > f_N(a) | \tau_{i,N}^{a^*,0} = T_N(a, k), \tau_{j,N}^{a^*,0} = T_N(a, l) \right).
\]
Now, before we analyze (54) in more detail, observe that we can express \( \mathbb{P}(\tau_{i,N}^{a^*,0} < \infty, \tau_{j,N}^{a^*,0} < \infty) \) as
\[
\mathbb{P}(\tau_{i,N}^{a^*,0} < \infty, \tau_{j,N}^{a^*,0} < \infty) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\tau_{i,N}^{a^*,0}}(T_N(a^*, k)) f_{\tau_{j,N}^{a^*,0}}(T_N(a^*, l)) \log N dkdl = \frac{1}{N^2}.
\]
Then,
\[
NP_{i,i,N} = N \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\tau_{i,N}^{a^*,0}}(T_N(a^*, k)) \sqrt{\log NQ_{i,i,N}(k,k)} dk.
\]
Also, observe that \( \left( \frac{N}{2} \right) < N^{2}/2 \), and that
\[
\frac{N^2}{2} P_{i,j,N} = N \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\tau_{i,N}^{a^*,0}}(T_N(a^*, k)) f_{\tau_{j,N}^{a^*,0}}(T_N(a^*, l)) \log NQ_{i,j,N}(k,l) dkdl.
\]
In conclusion, we can write the inequality in (54) as
\[
\mathbb{P}(\tilde{Q}_N^{a^*,0}(\tau_{i,N}^{a^*,0}, \infty) \mathbb{I}(\tau_{i,N}^{a^*,0} < \infty) > f_N(a)) \geq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\tau_{i,N}^{a^*,0}}(T_N(a^*, k)) f_{\tau_{j,N}^{a^*,0}}(T_N(a^*, l)) N^2 \log N \left( Q_{i,i,N}(k,k) - \frac{1}{2} Q_{i,j,N}(k,l) \right) dkdl
\]
\[
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\tau_{i,N}^{a^*,0}}(T_N(a^*, k)) f_{\tau_{j,N}^{a^*,0}}(T_N(a^*, l)) N^2 \log N \left( Q_{i,i,N}(k,k) - \frac{1}{2} Q_{i,j,N}(k,l) \right) dkdl
\]
\[
+ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\tau_{i,N}^{a^*,0}}(T_N(a^*, k)) f_{\tau_{j,N}^{a^*,0}}(T_N(a^*, l)) N^2 \log N \left( Q_{i,i,N}(k,k) - \frac{1}{2} Q_{i,j,N}(k,l) \right) dkdl.
\]
Since we want to prove a sharp lower bound on the tail asymptotics of the maximum queue length \( \tilde{Q}_N^{a^*} \), we can use the expression in (56). We want to prove convergence of a lower bound of this integral by using Fatou’s lemma. Therefore, we focus on the integrand first and prove convergence for the integrand as \( N \to \infty \). Assume that \( k \leq l \), then, following Lemma 6,
\[
Q_{i,j,N}(k,l) \leq 4 \mathbb{P}\left( (1 + \delta)W_A(T_N(a^*, k)) + \min(\tilde{Q}_{i,A}^{a^*}, \tilde{Q}_{j,A}^{a^*}) > f_N(a) - (1 - \lambda(a^*))f_N(a^*) + \lambda(a^*) \beta T_N(a^*, k) \right),
\]
for all \( \delta > 0 \) for \( N > N_0 \). Observe that \( Q_{i,i,N}(k,k) - Q_{i,j,N}(k,l)/2 \),
\[
Q_{i,j,N}(k,l) = \left( Q_{i,i,N}(k,k) - \frac{1}{2} Q_{i,j,N}(k,l) \right)^+.
\]
The density of \( W_A(T_N(a^*, k)) \) equals
\[
\frac{\exp\left(-x^2/(2\sigma_A^2 T_N(a^*, k))\right)}{\sqrt{2\pi \sigma_A^2 T_N(a^*, k)}}.
\]
We write \( a = a^* + \epsilon \), with \( \epsilon > 0 \). Let
\[
g_N(a, x, k) = f_N(a) - (1 - \lambda(a^*))f_N(a^*) + \lambda(a^*) \beta T_N(a^*, k) - \frac{\sigma_A^2 (\sigma^2 + \sigma_A^2)}{\beta \sigma^2} \log N - x \sqrt{\log N}.
\]
Observe that
\[
g_N(a, x, k) + \frac{\sigma_A^2 (\sigma^2 + \sigma_A^2)}{\beta \sigma^2} \log N + x \sqrt{\log N} = f_N(a) - (1 - \lambda(a^*))f_N(a^*) + \lambda(a^*) \beta T_N(a^*, k).
\]
Furthermore,
\[
N^{\gamma(a)} Q_{i,i,N}(k,k) = N^{\gamma(a)} \mathbb{P}\left( W_A(T_N(a^*, k)) + \tilde{Q}_{i,A}^{a^*} > g_N(a, x, k) + \frac{\sigma_A^2 (\sigma^2 + \sigma_A^2)}{\beta \sigma^2} \log N + x \sqrt{\log N} \right)
\]
\[
= \int_{-\infty}^{\infty} N^{\gamma(a)} \mathbb{P}(\tilde{Q}_{i,A}^{a^*} > g_N(a, x, k)) \frac{1}{\sqrt{2\pi \sigma_A^2 T_N(a^*, k)}} dx.
\]
We can simplify this expression further and get that
\[
N^{\gamma(a)} \mathbb{P}(\hat{Q}_{i,A}^\beta > g_N(a, x, k)) \frac{\sqrt{\log N} \exp \left( - \frac{\left( \frac{\beta_2}{\sigma_A^2} \log \frac{N+x\sqrt{\log N}}{\sigma_A^2} \right)^2}{2 \sigma_A^2 T_N(a^*, k)} \right)}{\sqrt{2\pi \sigma_A^2 T_N(a^*, k)}} \\
= N^{\gamma(a)} \exp \left( - \frac{2\beta}{\sigma_A^2 + \sigma_A^2} g_N(a, x, k) \right) \frac{\sqrt{\log N} \exp \left( - \frac{\left( \frac{\beta_2}{\sigma_A^2} \log \frac{N+x\sqrt{\log N}}{\sigma_A^2} \right)^2}{2 \sigma_A^2 T_N(a^*, k)} \right)}{\sqrt{2\pi \sigma_A^2 T_N(a^*, k)}} \\
\rightarrow N \exp \left( - \frac{\beta \sigma \exp \left( \frac{-\beta^2 \sigma^2 (x(a^*+\sigma_A^2) - 2\beta k \sigma_A^2)^2}{\sigma_A^2 (\sigma^2 + \sigma_A^2)} \right)}{\sqrt{\pi \sigma_A (\sigma^2 + \sigma_A^2)}} \right) \quad N \rightarrow \infty.
\]

Furthermore, following Lemma 4, we have that
\[
f_{\tau_{i,N}^{\ast o}}(T_N(a^*, k))f_{\tau_{j,N}^{\ast o}}(T_N(a^*, l)) N^2 \log N \rightarrow \frac{\beta^2 \exp \left( - \frac{\beta^2 k^2}{2a^* \beta + \sigma^2} \right)}{\sqrt{\pi} (2a^* \beta + \sigma^2)} \frac{\beta^2 \exp \left( - \frac{\beta^2 l^2}{2a^* \beta + \sigma^2} \right)}{\sqrt{\pi} (2a^* \beta + \sigma^2)}.
\]

Let \( 0 < \delta < \frac{\beta A^2}{2 \sqrt{\sigma_A^2 (\sigma^2 + \sigma_A^2)}} \) and let
\[
h_N(a, x, k) = f_N(a) - (1 - \lambda(a^*)) f_N(a^*) + \lambda(a^*) \beta T_N(a^*, k) - (1 + \delta) \left( \frac{\sigma_A^2 (\sigma^2 + \sigma_A^2)}{\beta \sigma^2} \log N + x \sqrt{\log N} \right).
\]

From Dębicki et al. [5, Th. 2.3], we know that
\[
P \left( \min(\hat{Q}_{i,A}^\beta, \hat{Q}_{j,A}^\beta) > x \right) \exp \left( \frac{2\beta}{\sigma_A^2 / 2 + \sigma_A^2} x \right) \longrightarrow 0,
\]
as \( x \rightarrow \infty \). We have that
\[
N^{\gamma(a)} \exp \left( - \frac{2\beta}{\sigma_A^2 / 2 + \sigma_A^2} h_N(a, x, k) \right) \frac{\sqrt{\log N} \exp \left( - \frac{\left( \frac{\beta_2}{\sigma_A^2} \log \frac{N+x\sqrt{\log N}}{\sigma_A^2} \right)^2}{2 \sigma_A^2 T_N(a^*, k)} \right)}{\sqrt{2\pi \sigma_A^2 T_N(a^*, k)}} \rightarrow N \exp \left( - \frac{\beta \sigma \exp \left( \frac{-\beta^2 \sigma^2 (x(a^*+\sigma_A^2) - 2\beta k \sigma_A^2)^2}{\sigma_A^2 (\sigma^2 + \sigma_A^2)} \right)}{\sqrt{\pi \sigma_A (\sigma^2 + \sigma_A^2)}} \right) \quad N \rightarrow \infty.
\]

Thus, when \( k \leq l \), then
\[
\liminf_{N \rightarrow \infty} N^{\gamma(a)} f_{\tau_{i,N}^{\ast o}}(T_N(a^*, k)) f_{\tau_{j,N}^{\ast o}}(T_N(a^*, l)) N^2 \log N \left( Q_{i,i,N}(k, k) - \frac{1}{2} Q_{i,i,N}(k, l) \right) \]
\[
\geq \frac{\beta^2 \exp \left( - \frac{\beta^2 k^2}{2a^* \beta + \sigma^2} \right)}{\sqrt{\pi} (2a^* \beta + \sigma^2)} \frac{\beta^2 \exp \left( - \frac{\beta^2 l^2}{2a^* \beta + \sigma^2} \right)}{\sqrt{\pi} (2a^* \beta + \sigma^2)} \frac{\beta \sigma \exp \left( \frac{-\beta^2 \sigma^2 (x(a^*+\sigma_A^2) - 2\beta k \sigma_A^2)^2}{\sigma_A^2 (\sigma^2 + \sigma_A^2)} \right)}{\sqrt{\pi \sigma_A (\sigma^2 + \sigma_A^2)}}.
\]

The case \( k > l \) can be treated analogously. Finally, we have
\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \beta^2 \exp \left( - \frac{\beta^2 k^2}{2a^* \beta + \sigma^2} \right) \frac{\beta^2 \exp \left( - \frac{\beta^2 l^2}{2a^* \beta + \sigma^2} \right)}{\sqrt{\pi} (2a^* \beta + \sigma^2)} \frac{\beta \sigma \exp \left( \frac{-\beta^2 \sigma^2 (x(a^*+\sigma_A^2) - 2\beta k \sigma_A^2)^2}{\sigma_A^2 (\sigma^2 + \sigma_A^2)} \right)}{\sqrt{\pi \sigma_A (\sigma^2 + \sigma_A^2)}} dxdkdl = 1.
\]
By applying Fatou’s lemma, Lemma 7 follows.

**Corollary 2.** Let \( (y_N, N \geq 1) \) be a sequence such that \( \liminf_{N \rightarrow \infty} y_N / \log N = \infty \), \( (W_i, i \leq N) \) be i.i.d. Brownian motions with standard deviation \( \sigma_W \), \( W_A \) be a Brownian motion with standard deviation \( \sigma_A \), for all \( i, W_i \) and \( W_A \) are mutually independent, and \( \hat{Q}_{i,A}^\beta, \gamma(a) \), and \( f_N(a) \) are given by Equations (3), (10), and (6), respectively. Then the tail probability of the steady-state maximum queue length satisfies
\[
\mathbb{P}(\hat{Q}_{i,A}^\beta > y_N) \sim N \mathbb{P}(Q_{i,A}^\beta > y_N),
\]
as \( N \rightarrow \infty \).
Proof. By using the union bound, we have that $\mathbb{P}(Q^\beta_N > y_N) \leq N \mathbb{P}(Q^\beta_{i,A} > y_N)$. Furthermore, by using Bonferroni’s inequality we obtain that $\mathbb{P}(Q^\beta_N > y_N) \geq N \mathbb{P}(Q^\beta_{i,A} > y_N) - N^2/2 \mathbb{P}(Q^\beta_{i,A} > y_N, Q^\beta_{j,A} > y_N)$. Now, using the limit in (57), we see that

$$
\limsup_{N \to \infty} \frac{N^2/2 \mathbb{P}(Q^\beta_{i,A} > y_N, Q^\beta_{j,A} > y_N)}{N \mathbb{P}(Q^\beta_{i,A} > y_N)} \leq \limsup_{N \to \infty} \frac{1}{2} \mathbb{P}(Q^\beta_{i,A} > y_N) = 0.
$$

The corollary follows. $\square$

5.2 The case $a = a^*$

In Section 3, we showed that we have at least two regimes, namely $0 < a < a^*$, and $a \geq a^*$. It turns out, that when we investigate sharper asymptotics, that the case $a = a^*$ deserves special attention. In the present section, we establish that in the case $a = a^*$, $\mathbb{P}(Q^\beta_N > f_N(a^*)) \sim \frac{1}{2} N^{-\gamma(a^*)}$, thus the prefactor is $1/2$ instead of $1$ as in the case $a > a^*$. To make the heuristics given in Section 2 rigorous, we proceed by deriving asymptotic lower and upper bounds, in two separate lemmas. As in Section 5.1, we prove that the lim inf converges to the desired limit. We do this in Lemma 8. The proof of this Lemma is similar to the proof of Lemma 7. However, the simple union bound $N \mathbb{P}(Q^\beta_{i,A} > f_N(a^*)) \sim N^{-\gamma(a^*)}$ is not tight for $a = a^*$. Thus, we also need to prove that the lim sup is tight. We provide this proof in Lemma 9.

Lemma 8. Let $a = a^*$, $(W_i, i \leq N)$ be i.i.d. Brownian motions with standard deviation $\sigma$, $W_A$ be a Brownian motion with standard deviation $\sigma_A$, for all $i$, $W_i$ and $W_A$ are mutually independent, and $\hat{Q}^\beta_N$, $\gamma(a)$, and $f_N(a)$ are given by Equations (3), (10), and (6), respectively, then

$$
\liminf_{N \to \infty} N^{\gamma(a^*)} \mathbb{P}(Q^\beta_N > f_N(a^*)) \geq \frac{1}{2}.
$$

Proof. First of all, we have the lower bound

$$
\mathbb{P}(Q^\beta_N > f_N(a^*)) \geq \mathbb{P}(\hat{Q}^\beta_N(\tau^{a^*, r}_{i,N}, \infty) \mathbb{1}(\tau^{a^*, r}_{i,N} < \infty) > f_N(a^*)).
$$

As in (54) we can bound this further by Bonferroni’s inequality to

$$
N \mathbb{P}(Q^\beta_{i,A}(\tau^{a^*, r}_{i,N}, \infty) \mathbb{1}(\tau^{a^*, r}_{i,N} < \infty) > f_N(a^*))
- \frac{N}{2} \mathbb{P}(\min(Q^\beta_{i,A}(\tau^{a^*, r}_{i,N}, \infty) \mathbb{1}(\tau^{a^*, r}_{i,N} < \infty), Q^\beta_{j,A}(\tau^{a^*, r}_{j,N}, \infty) \mathbb{1}(\tau^{a^*, r}_{j,N} < \infty)) > f_N(a^*))
\geq \left(1 - \frac{\exp\left(-\frac{2(1-\lambda(a^*))\beta r}{\sigma^2}\right)}{2}\right) N \mathbb{P}(Q^\beta_{i,A}(\tau^{a^*, r}_{i,N}, \infty) \mathbb{1}(\tau^{a^*, r}_{i,N} < \infty) > f_N(a^*)),
$$

(58)

The last step is true because for independent $X$ and $Y$, $\mathbb{P}(\min(X, Y \mathbb{1}(Y < \infty)) > z) \leq \mathbb{P}(Y < \infty) \mathbb{P}(X > z)$. Since $\mathbb{P}(\tau^{a^*, r}_{i,N} < \infty) = \exp(-2(1-\lambda(a^*))\beta r/\sigma^2)/N$, we can simplify the expression in (58) to

$$
\left(1 - \frac{\exp\left(-\frac{2(1-\lambda(a^*))\beta r}{\sigma^2}\right)}{2}\right) N \mathbb{P}(Q^\beta_{i,A}(\tau^{a^*, r}_{i,N}, \infty) \mathbb{1}(\tau^{a^*, r}_{i,N} < \infty) > f_N(a^*)).
$$

(59)

Following the proof of Lemma 7 we have that

$$
N^{\gamma(a^*)} \mathbb{P}(\hat{Q}^\beta_{i,A} > g_N(a^*, x, k) - r) \sim \frac{\sqrt{\log N} \exp\left(-\frac{(\frac{\sigma_k^2}{\beta \sigma^2} + \frac{\sigma_{k,k}^2}{\beta \sigma^2})\log N + \frac{\beta r}{\sqrt{\pi \sigma_A} \sqrt{T_N(a^*, k)}}}{2}\right)}{\sqrt{2\pi \sigma_A} \sqrt{T_N(a^*, k)}}.
$$

(60)

when $x < \sigma_k^2 \beta k/(\sigma^2 + \sigma_{k,k}^2)$, and 0 otherwise. Thus, by combining this result with the result from Lemma 4, for
Now, we examine the parts of the integrand of this integral separately. First, note that, following Definition 1, in (47), we have that

\[ \int_{-\infty}^{\infty} \frac{\beta^2 \sigma^2 \exp \left( -\frac{\beta^2 k^2 + 2\sigma^2 + \sigma_A^2}{\sigma^2 + \sigma_A^2} \right) \beta \sigma \exp \left( -\frac{\beta \sigma^2 (x - \mu + \sigma_A^2)}{\sigma^2 (\sigma^2 + \sigma_A^2)} \right) \exp \left( \frac{2\beta r}{\sigma^2 + \sigma_A^2} \right) }{\sqrt{\pi} (\sigma^2 + \sigma_A^2)^2} \, dxdk = \frac{1}{2}. \]

Observe that the integral

\[ \lim_{N \to \infty} N^{\gamma(a^*)} \mathbb{P} \left( Q^\beta_{t,a} (t_{i,N}, \infty) \mathbb{I} (t_{i,N}^{a*,r} < \infty) > f_N(a^*) \right) \geq \frac{1}{2}, \]

and thus by applying this on the expression in (59), we get that

\[ \lim_{N \to \infty} N^{\gamma(a^*)} \mathbb{P} (Q^\beta_N > f_N(a^*)) \geq \frac{1}{2} \left( 1 - \frac{\exp \left( -\frac{2(1 - \gamma(a^*))}{\sigma^2} \right) }{2} \right) \]

Lemma 9. Let \( a = a^*, (W_i, 1 \leq N) \) be i.i.d. Brownian motions with standard deviation \( \sigma \), \( W_A \) be a Brownian motion with standard deviation \( \sigma_A \), for all \( i \), \( W_i \) and \( W_A \) are mutually independent, and \( Q^\beta_N, \gamma(a^*) \), and \( f_N(a^*) \) are given by Equations (3), (10), and (6), respectively, then

\[ \limsup_{N \to \infty} N^{\gamma(a^*)} \mathbb{P} (Q^\beta_N > f_N(a^*)) \leq \frac{1}{2} \]

Proof. Let \( \tilde{\tau}_{A,N}^{a*,r} = \inf \{ t : W_A(t) - \lambda(a^*)t > \lambda(a^*)f_N(a^*) + r \} \). Following Equation (46) and the upper bound in (47), we have that

\[ \mathbb{P} (Q^\beta_N > f_N(a^*)) \leq \mathbb{P} (Q^\beta_N (\tilde{\tau}_{A,N}^{a*,r}, \infty) \mathbb{I} (\tilde{\tau}_{A,N}^{a*,r} < \infty) > f_N(a^*)) + \mathbb{P} (Q^\beta_N (\tilde{\tau}_{A,N}^{a*,r} - r, \infty) \mathbb{I} (\tilde{\tau}_{A,N}^{a*,r} - r < \infty) > f_N(a^*)). \]

Observe that we can bound the first term in (60) as

\[ \mathbb{P} (Q^\beta_N (\tilde{\tau}_{A,N}^{a*,r} < \infty) | \tilde{\tau}_{A,N}^{a*,r} > f_N(a^*)) \leq \mathbb{P} (\tilde{\tau}_{A,N}^{a*,r} < \infty) = N^{-\gamma(a^*)} \exp \left( -\frac{2\lambda(a^*)}{\sigma^2} \right), \]

and the second term in (60) as

\[ N^{\gamma(a^*)} \mathbb{P} (Q^\beta_N (\tilde{\tau}_{A,N}^{a*,r} < \infty) > f_N(a^*)) \leq N^{\gamma(a^*)} \mathbb{P} (Q^\beta_N (\tilde{\tau}_{A,N}^{a*,r} - r, \infty) > f_N(a^*)) \left. \right| \tilde{\tau}_{A,N}^{a*,r} = T_N(a^*, k) \]

\[ = \int_{-\infty}^{\infty} N^{\gamma(a^*)} \mathbb{P} (Q^\beta_N (\tilde{\tau}_{A,N}^{a*,r} - r, \infty) > f_N(a^*) | \tilde{\tau}_{A,N}^{a*,r} = T_N(a^*, k)) \mathbb{E} \left( W_A(\tilde{\tau}_{A,N}^{a*,r} - r) + \hat{\beta} N^{\gamma(a^*)} \right) \]

\[ = \mathbb{E} \left( W_A(\tilde{\tau}_{A,N}^{a*,r} - r) + \hat{\beta} N^{\gamma(a^*)} \right) \]
We can analyze this probability using Lemma 3 by taking \( x_N = 2\lambda(a^*)f_N(a^*) + \lambda(a^*)b_k\log N + r, \eta_N = \sigma_A \sqrt{T_N(a^*, k)} \), and \( \mu = 2\beta/(\sigma^2 + \sigma_A^2) \). Write

\[
\frac{x_N - \mu \eta_N^2}{\sqrt{2} \eta_N} = \frac{2\lambda(a^*)f_N(a^*) + \lambda(a^*)b_k\log N + r - \frac{2\beta}{\sigma^2 + \sigma_A^2}T_N(a^*, k)}{\sqrt{2} \sqrt{\sigma^2_A T_N(a^*, k)}} = \frac{r - \lambda(a^*)b_k\log N}{\sqrt{2} \sqrt{\sigma^2_A T_N(a^*, k)}} \xrightarrow{N \to \infty} - \frac{\sqrt{2}\beta^3 \kappa_A \sigma^2}{(\sigma^2 + \sigma_A^2)^3}.
\]

The first term in (39) of Lemma 3 satisfies

\[
\sigma \exp \left(-\beta \left(\frac{b_k^2 \sigma^2 \sigma^2 + 2r (\sigma^2 + \sigma_A^2)}{(\sigma^2 + \sigma_A^2)^2}\right)\right) \frac{N^{-\gamma(a)}}{2\sqrt{\pi} \sigma_A}.
\]

and the second term satisfies

\[
\frac{1}{2} (x_N(a^*) - \mu \eta_N^2) \left(1 + \text{erf} \left(-\frac{\sqrt{2}\beta^3 \kappa_A \sigma^2}{(\sigma^2 + \sigma_A^2)^3}\right)\right) \approx \frac{1}{2} \left(1 + \text{erf} \left(-\frac{2\beta r}{\sigma^2 + \sigma_A^2}\right)\right) \left(1 + \text{erf} \left(-\frac{\sqrt{2}\beta^3 \kappa_A \sigma^2}{(\sigma^2 + \sigma_A^2)^3}\right)\right) N^{-\gamma(a)},
\]

as \( N \to \infty \). So, we can conclude that

\[
\mathbb{P}(Q_{t, A}^\beta \mid \tau_{i, N}^a \sim \tau_N(a^*, k) = T_N(a^*, k)) = N^{-\gamma(a)}(a^*),
\]

as \( N \to \infty \). Second, following Lemma 4, the density of the hitting time \( \tau_{i, N}^a \) appears in the integrand in (62), and satisfies

\[
N f_{\tau_{i, N}^a, r}(T_N(a^*, k)) \sqrt{\log N} \xrightarrow{N \to \infty} \beta \exp \left(\beta \left(\frac{b_k^2 \sigma^2 \sigma^2 + 2r (\sigma^2 + \sigma_A^2)}{(\sigma^2 + \sigma_A^2)^2}\right)\right) \frac{N^{-\gamma(a)}}{2\sqrt{\pi} \sigma_A}.
\]

Thus, for the integrand in (62) we have that

\[
N^{\gamma(a)} \mathbb{P}(Q_{t, A}^\beta \mid \tau_{i, N}^a \sim \tau_N(a^*, k) f_{\tau_{i, N}^a, r}(T_N(a^*, k)) \sqrt{\log N} \xrightarrow{N \to \infty} \frac{\beta^2 \sigma^2}{2\sqrt{\pi} (\sigma^2 + \sigma_A^2)^2}.
\]

When we integrate this result we get

\[
\int_{-\infty}^{\infty} \frac{\beta^2 \sigma^2}{2\sqrt{\pi} (\sigma^2 + \sigma_A^2)^2} \left(1 + \text{erf} \left(-\frac{\sqrt{2}\beta \sigma \sigma_A \sigma^2}{(\sigma^2 + \sigma_A^2)^3}\right)\right) \exp \left(\frac{\beta \left(2r (\sigma^2 + \sigma_A^2) - \beta^3 k^2 \sigma^4\right)}{(\sigma^2 + \sigma_A^2)^3} - \frac{2\beta r}{\sigma^2 + \sigma_A^2}\right) dk = \frac{1}{2}.
\]

Now, because

\[
N^{\gamma(a)} \mathbb{P}(Q_{t, A}^\beta \mid \tau_{i, N}^a \sim \tau_N(a^*, k) = T_N(a^*, k)) \leq N^{\gamma(a)} \mathbb{P}(\sup_{s \geq 0} \{W_A(s) - \lambda(a^*)b(s) > \lambda(a^*)f_N(a^*) + r\}) = N^{\gamma(a^*)} \exp \left(-\frac{2\lambda(a^*)}{\sigma_A^2} (\lambda(a^*)f_N(a^*) + r)\right) = \exp \left(-\frac{2\beta r}{\sigma^2 + \sigma_A^2}\right),
\]

and

\[
\lim_{N \to \infty} \int_{-\infty}^{\infty} N f_{\tau_{i, N}^a, r}(T_N(a^*, k)) \sqrt{\log N} dk = \int_{-\infty}^{\infty} \lim_{N \to \infty} N f_{\tau_{i, N}^a, r}(T_N(a^*, k)) \sqrt{\log N} dk,
\]

19
we can use Lemma 5 to conclude that
\[
\limsup_{N \to \infty} N^{\gamma(a^*)} \mathbb{P}(Q^{\beta}_{1, A}(\tau_{1,N}^{a^*}, \infty) \mathbb{I}(\tau_{1,N}^{a^*} < \infty) > f_N(a^*)) \leq \frac{1}{2}.
\] (63)

Now, after combining the bounds in (61) and (63),
\[
\limsup_{N \to \infty} N^{\gamma(a^*)} \mathbb{P}(Q^\beta_N > f_N(a^*)) \leq \frac{1}{2} + \exp \left( -\frac{2\lambda(a^*)\beta^r}{\sigma^2} \right) \overset{r \to \infty}{\rightarrow} \frac{1}{2}.
\]

\[\Box\]

### 5.3 The case \(0 < a < a^*\)

As we have proven the exact asymptotics for the cases \(a > a^*\) and \(a = a^*\) in Theorems 2 and 3, respectively, we now turn to the proof of Theorem 4. In Theorem 1 we have shown that \(\gamma(a) = \frac{2a\beta + 2\alpha^2 - 2\alpha\sqrt{2a\beta + \alpha^2}}{2a\beta + \alpha^2}\), thus we expect highly dependent behavior because this indicates that the union upper bound \(\mathbb{P}(Q^\beta_N > f_N(a)) \leq N \mathbb{P}(Q^\beta_{1, A} > f_N(a))\) is not sharp when \(0 < a < a^*\), as is explained in the proof of Lemma 2.

**Proof of Theorem 4.** First of all, we prove Equation (17). We write \(r_N = \frac{\sigma \sqrt{2a\beta + \alpha^2}}{\beta} \log \log N\). Let \(\tau_{a,rN}^a = \inf\{t > 0 : W_A(t) - \lambda(a)\beta t > \lambda(a)f_N(a) + r_N\}\). Let \(f_{a,rN}^{a,rN}\) be its density. Observe that
\[
\mathbb{P}(Q^\beta_N > f_N(a)) \\
\geq \mathbb{P}(Q^\beta_N(\tau_{a,rN}^{a, rN}, \tau_{a,rN}^{a, rN})) (\tau_{a,rN}^{a, rN} < \infty) > f_N(a)) \\
= \int_{-\infty}^{\infty} \mathbb{P} \left( \max_{i \leq N} W_i(T_N(a,k)) - (1 - \lambda(a))\beta T_N(a,k) > (1 - \lambda(a))f_N(a) - r_N \right) f_{a,rN}^{a,rN} (T_N(a,k)) \sqrt{\log N} dk.
\] (64)

As in the proof of Lemma 9, we analyze the components of the integrand of (64) separately. Following a similar derivation as in Lemma 4, we see that the term \(f_{a,rN}^{a,rN}(T_N(a,k)) \sqrt{\log N}\) in (64) satisfies
\[
N^{\gamma(a)}(\log N) \frac{\lambda(a)}{\sigma(a^*)^2} \frac{\beta^2}{\sigma(a)} f_{a,rN}^{a,rN} (T_N(a,k)) \sqrt{\log N} \\
\to \frac{\beta^2 (\sigma^2 - 2\alpha\beta + \alpha^2 + 2a\beta) \exp \left( \frac{\beta^4 k^2 (\sigma^2 - 2\alpha\beta + \alpha^2)^2}{2a\beta + \alpha^2} \right)}{\sqrt{\pi} (2a\beta + \alpha^2)^{3/2}}.
\] (65)

Moreover, a result in extreme value theory states that when \(b_N = \sqrt{2\log N - \log(4\pi \log N)/(2\sqrt{2\log N})}\), then
\[
\left( \frac{\max_{i \leq N} W_i(d \log N)}{\sigma(d \log N)} - b_N \right) \overset{d}{\to} G,
\]

with \(G \overset{d}{=} \text{Gumbel, as } N \to \infty\), cf. [7, p. 11, Ex. 1.1.7] for a proof. From this it follows that the term \(\mathbb{P}(\max_{i \leq N} W_i(T_N(a,k)) - (1 - \lambda(a))\beta T_N(a,k) > (1 - \lambda(a))f_N(a) - r_N)\) in (64) satisfies
\[
\mathbb{P} \left( \max_{i \leq N} W_i(T_N(a,k)) - (1 - \lambda(a))\beta T_N(a,k) > (1 - \lambda(a))f_N(a) - r_N \right) \\
\to 1 - \exp \left( -\frac{\beta^4 k^2}{2\sqrt{\pi}} \right).
\] (66)

Thus, the product of the limits in (65) and (66) gives the tail asymptotics of the integrand in (64). Now, by applying Fatou’s lemma, we obtain a sharper than logarithmic lower bound on the asymptotics for the maximum queue length, and is given in (17).

In order to prove (18), we use the upper bound given in (47) and observe that
\[
\mathbb{P}(Q^\beta_N > f_N(a)) \leq \mathbb{P}(Q^\beta_N(\tau_{a,rN}^{a, rN}, \infty)) (\tau_{a,rN}^{a, rN} < \infty) > f_N(a)) \\
+ \mathbb{P}(Q^\beta_N(\tau_{a,rN}^{a, rN}, \infty)) (\tau_{a,rN}^{a, rN} < \infty) > f_N(a)).
\] (67)

(68)
We can bound the expression in (67) as follows:

$$\mathbb{P}(\hat{Q}_N^\beta(r_{i,N}^{a,r_N},\infty)\|\hat{r}_{i,N}^{a,r_N} < \infty) > f_N(a) \leq \mathbb{P}(\hat{r}_{i,N}^{a,r_N} < \infty) = N^{-\gamma(a)}(\log N)^{-\lambda(a)/2\pi N}.$$  \hspace{1cm} (69)

Therefore,

$$\limsup_{N \to \infty} N^{\gamma(a)}(\log N)^{-\lambda(a)/2\pi N} \mathbb{P}(\hat{Q}_N^\beta(r_{i,N}^{a,r_N},\infty)\|\hat{r}_{i,N}^{a,r_N} < \infty) > f_N(a) \leq 1.$$

Thus, because of the bounds given in (67) and (68), to prove that (18) holds, it is left to show that

$$\limsup_{N \to \infty} N^{\gamma(a)}(\log N)^{-\lambda(a)/2\pi N} \mathbb{P}(\hat{Q}_N^\beta(r_{i,N}^{a,r_N},\infty)\|\hat{r}_{i,N}^{a,r_N} < \infty) > f_N(a).$$

To prove this, observe that, by using the union bound and by conditioning on the hitting time $\hat{r}_{i,N}^{a,r_N}$ the expression in (68) satisfies

$$\mathbb{P}(\hat{Q}_N^\beta(r_{i,N}^{a,r_N},\infty)\|\hat{r}_{i,N}^{a,r_N} < \infty) > f_N(a) \leq N \mathbb{P}(\hat{Q}_N^\beta(r_{i,N}^{a,r_N},\infty)\|\hat{r}_{i,N}^{a,r_N} < \infty) > f_N(a))$$

$$= \int_{-\infty}^\infty N \mathbb{P}(\hat{Q}_N^\beta(r_{i,N}^{a,r_N},\infty) > f_N(a) \mid \hat{r}_{i,N}^{a,r_N} = T_N(a,k))f_{\hat{r}_{i,N}^{a,r_N}}(T_N(a,k))\sqrt{\log N}dk. \hspace{1cm} (70)$$

Now, we can use Lemma 5 to show convergence of the integral in (70). Following a similar analysis as in Lemma 4, we have that

$$N \int_{-\infty}^\infty \frac{\beta^2 e^{-\beta^2 k^2/(2a + \sigma^2)}}{\sqrt{\pi} (2a + \sigma^2)}dk = \int_{-\infty}^\infty N \sqrt{\log N}f_{\hat{r}_{i,N}^{a,r_N}}(T_N(a,k))dk = 1.$$  

Furthermore,

$$\int_{-\infty}^\infty \beta^2 e^{-\beta^2 k^2/(2a + \sigma^2)}dk = \int_{-\infty}^\infty N \sqrt{\log N}f_{\hat{r}_{i,N}^{a,r_N}}(T_N(a,k))dk = 1.$$  

Thus, the first and second condition in Lemma 5 hold. Thus, we now only need to analyze

$$\mathbb{P}(\hat{Q}_N^\beta(r_{i,N}^{a,r_N},\infty) > f_N(a) \mid \hat{r}_{i,N}^{a,r_N} = T_N(a,k)) = \mathbb{P}(W_A(r_{i,N}^{a,r_N}) + \hat{Q}_N^\beta > \lambda(a)f_N(a) + r_N + \lambda(a)\beta r_{i,N}^{a,r_N} \mid \hat{r}_{i,N}^{a,r_N} = T_N(a,k)),$$  \hspace{1cm} (71)

which is a component in the integrand in (70). We show that this expression satisfies the third and fourth condition of Lemma 5, by proving pointwise convergence and by proving that this probability is uniformly bounded by a constant. To do this, first observe that the random variable in (71) has the form of the sum of a normally distributed random variable and an exponentially distributed random variable, hence we can follow the framework of Lemma 3 in order to analyze this probability, we take $x_N = 2\lambda(a)f_N(a) + \lambda(a)\beta k\sqrt{\log N} + r_N$, $\eta_N = \sigma_A \sqrt{T_N(a,k)}$, and $\mu = 2\beta/(\sigma^2 + \sigma_A^2)$. Now, the expression in (71) can be written in the form of Equation (42). Furthermore, observe that

$$x_N - \mu_N^2 = 2\lambda(a)f_N(a) + \lambda(a)\beta k\sqrt{\log N} + r_N - \frac{2\beta}{\sqrt{2}\sigma_A T_N(a,k)}N \to -\infty.$$

Thus, for $0 < a < a^*$, we are in the third situation of Lemma 3. The first term in (41) satisfies

$$\eta_N e^{-\frac{\beta}{2}\frac{k^2}{\beta^2}} \sim \frac{\sigma_A \exp \left( -\frac{\beta^2 k^2 (\sigma - \sqrt{2a + \sigma^2})^2}{\sigma_A^2 (2a + \sigma^2)^2} \right) \log N^{-\lambda(a)/2\pi N} \frac{\sigma^2}{2\pi N} N^{-\gamma(a)} \frac{1}{\sqrt{\log N}}}{2\sqrt{\sigma^2 N} \sqrt{\log N}},$$

as $N \to \infty$. Furthermore, we have for all $t > 0$ that

$$\mathbb{P}(W_A(t) - \lambda(a)\beta t > x) \leq \mathbb{P}(W_A(x/(\lambda(a)\beta)) > 2x).$$
From this it follows that the first part in (42) satisfies

\[ \mathbb{P}(\eta N X > x_N) = \mathbb{P}\left( W_A(\tau_{i,N}^{a,-r_N}) > \lambda(a)f_N(a) + r_N + \lambda(a) \beta \tau_{i,N}^{a,-r_N} \right| \tau_{i,N}^{a,-r_N} = T_N(a,k)) \leq \mathbb{P}\left( W_A(\tau_{i,N}^{a,-r_N}) > \lambda(a)f_N(a) + r_N + \lambda(a) \beta \tau_{i,N}^{a,-r_N} \left| \tau_{i,N}^{a,-r_N} = T_N(a,k) \right. \right) \]

\[ \sim \frac{\sigma_A}{2\sqrt{\pi} \left( 2a\beta + \sigma^2 - \sigma \right)} \log N^{-\frac{N(a)}{2}\frac{\sigma^2}{\sigma_A^2}} N^{-\gamma(a)} \frac{1}{\sqrt{\log N}}, \]

as \( N \to \infty \). So there exists an \( \epsilon > 0 \) and an \( N_\epsilon \) such that for \( N > N_\epsilon \) and all \( k > -f_N(a)/(\beta \sqrt{\log N}) \),

\[ (\log N)^{-\frac{N(a)}{2}\frac{\sigma^2}{\sigma_A^2}} N^{-\gamma(a)} \sqrt{\log N} \mathbb{P}\left( W_A(\tau_{i,N}^{a,-r_N}) > \lambda(a)f_N(a) + r_N + \lambda(a) \beta \tau_{i,N}^{a,-r_N} \left| \tau_{i,N}^{a,-r_N} = T_N(a,k) \right. \right) \leq \frac{\sigma_A}{2\sqrt{\pi} \left( 2a\beta + \sigma^2 - \sigma \right)} + \epsilon. \] (72)

The second term in (41) satisfies

\[ -\frac{1}{2\sqrt{2\pi}} e^{\frac{1}{2}\mu (\mu \eta^2 - x_N^2)} \frac{e^{-\frac{x_N^2}{2\eta^2}}}{x_N - \mu \eta^2} \frac{\sigma_A}{\sqrt{2\pi}} \left( \sigma^2 + \sigma_A^2 \right) \exp \left( -\frac{2\beta k^2 \left( \sigma^2 + \sigma_A^2 \right)}{\sigma_A^2 \left( 2a\beta + \sigma^2 - \sigma \right)^{5/2}} \right) \]

\[ \sim \frac{\sigma_A}{2\sqrt{2\pi}} \left( \sigma^2 + \sigma_A^2 \right) \log N^{-\frac{N(a)}{2}\frac{\sigma^2}{\sigma_A^2}} N^{-\gamma(a)} \frac{1}{\sqrt{\log N}}. \] (73)

as \( N \to \infty \). In this case first observe that in Equation (42) the exact expression of the convolution term equals

\[ \int_{-\infty}^{x_N/\eta^2} \mathbb{P}\left( 1 \mu E > x_N - \eta^2 e \right) \frac{e^{-x^2/2\eta^2}}{\sqrt{2\pi}} dx = \frac{1}{2} \left( \text{erf} \left( \frac{x_N - \mu \eta^2}{\sqrt{2\eta^2}} \right) + 1 \right) e^{\frac{1}{2}\mu (\mu \eta^2 - x^2)}. \]

Second, observe that this can be further rewritten into

\[ \frac{1}{2} \left( \text{erf} \left( \frac{x_N - \mu \eta^2}{\sqrt{2\eta^2}} \right) + 1 \right) e^{\frac{1}{2}\mu (\mu \eta^2 - x_N^2)} \]

\[ = \mathbb{P}\left( W_A(\tau_{i,N}^{a,-r_N}) > \frac{2\beta}{\sigma^2 + \sigma_A^2} \sigma_A \lambda(a)f_N(a) - r_N - \lambda(a) \beta \tau_{i,N}^{a,-r_N} \left| \tau_{i,N}^{a,-r_N} = T_N(a,k) \right. \right. \]

\[ \cdot \exp \left( \frac{1}{2} \frac{2\beta}{\sigma^2 + \sigma_A^2} \left( \frac{2\beta}{\sigma^2 + \sigma_A^2} \sigma_A \lambda(a)f_N(a) - r_N - \lambda(a) \beta \tau_{i,N}^{a,-r_N} \right) \right). \]

Thus, the expression that we are investigating is a product of a tail probability of a Gaussian random variable and an exponential function. With an analogous derivation as for the first term in (41), due to the expression in (73) we can bound for all \( t > 0 \)

\[ (\log N)^{-\frac{N(a)}{2}\frac{\sigma^2}{\sigma_A^2}} N^{-\gamma(a)} \sqrt{\log N} \mathbb{P}\left( W_A(t) > \frac{2\beta}{\sigma^2 + \sigma_A^2} \sigma_A^2 t - \lambda(a)f_N(a) - r_N - \lambda(a) \beta t \right) \]

\[ \cdot \exp \left( \frac{1}{2} \frac{2\beta}{\sigma^2 + \sigma_A^2} \left( \frac{2\beta}{\sigma^2 + \sigma_A^2} \sigma_A^2 t - \lambda(a)f_N(a) - 2\lambda(a) \beta t - 2r_N \right) \right). \]

Hence, due to this and the upper bound given in (72), we have that the third and fourth condition of Lemma 5 are satisfied. Thus, in the end we know that

\[ (\log N)^{-\frac{N(a)}{2}\frac{\sigma^2}{\sigma_A^2}} N^{-\gamma(a)} \mathbb{P}\left( Q_i^\beta A(\tau_{i,N}^{a,-r_N}, \infty) > f_N(a) \left| \tau_{i,N}^{a,-r_N} = T_N(a,k) \right. \right) \]

\[ \sim \frac{\sigma_A \exp \left( \frac{\beta k^2 \left( \sigma - \sqrt{2a\beta + \sigma^2} \right)^2}{\sigma_A^2 \left( 2a\beta \sigma^2 \right)^{5/2}} \right)}{2\sqrt{2\pi} \left( \sqrt{2a\beta + \sigma^2} - \sigma \right)} + \frac{\sigma_A \left( \sigma^2 + \sigma_A^2 \right) \exp \left( \frac{-2\beta k^2 \left( \sigma - \sqrt{2a\beta + \sigma^2} \right)^2}{\sigma_A^2 \left( 2a\beta \sigma^2 \right)^{5/2}} \right)}{2\sqrt{2\pi} \left( \sigma - \sqrt{2a\beta + \sigma^2} + \sigma_A^2 \right)} \]

\[ \cdot \frac{\beta e^{-\frac{\beta k^2}{2(2a\beta + \sigma^2)}}}{{\sqrt{\pi}}(2a\beta + \sigma^2)}, \]
and we apply Lemma 5 to conclude that (18) holds.

Remark 1. We have stated in Theorem 4 that we can prove a lower and upper bound which are sharper than logarithmic, however we do not specify these bounds, but from the proof of Theorem 4 it becomes clear that

\[
\liminf_{N \to \infty} N^{\gamma(a)} (\log N)^{\frac{\lambda(a)}{\lambda + \alpha}} \frac{\sigma^2}{\sigma_A^2} \mathbb{P}(Q^2_N > f_N(a)) \\
\geq \int_{-\infty}^{\infty} \frac{\beta^2 \left( \sigma \left( \sigma - \sqrt{2a\beta + \sigma^2} \right) + 2a\beta \right) \exp \left( - \frac{\beta^4 k^2 \left( \sigma - \sqrt{2a\beta + \sigma^2} \right)}{\sigma_A^2 (2a\beta + \sigma^2)^{3/2}} \right)}{\sqrt{\pi} \sigma_A (2a\beta + \sigma^2)^{3/2}} \left( 1 - \exp \left( - \frac{\exp \left( - \frac{\beta^4 k^2}{2\sqrt{\pi}} \right)}{2\sqrt{\pi}} \right) \right) \, dk,
\]

and

\[
\limsup_{N \to \infty} N^{\gamma(a)} (\log N)^{\frac{\lambda(a)}{\lambda + \alpha}} \frac{\sigma^2}{\sigma_A^2} \mathbb{P}(Q^2_N > f_N(a)) \\
\leq \int_{-\infty}^{\infty} \left( \sigma_A \exp \left( - \frac{\beta^4 k^2 \left( \sigma - \sqrt{2a\beta + \sigma^2} \right)}{\sigma_A^2 (2a\beta + \sigma^2)^{3/2}} \right) + \sigma_A (\sigma^2 + \sigma_A^2) \exp \left( - \frac{2\beta^4 k^2 \left( \sigma - \sqrt{2a\beta + \sigma^2} \right) + a\beta \left( \sqrt{2a\beta + \sigma^2} - 2\sigma \right)}{2\sqrt{\pi} \sigma_A (2a\beta + \sigma^2)^{3/2}} \right) \right) \left( 1 - \exp \left( - \frac{\exp \left( - \frac{\beta^4 k^2}{2\sqrt{\pi}} \right)}{2\sqrt{\pi}} \right) \right) \, dk + 1.
\]

Acknowledgments

This work is part of the research program Complexity in high-tech manufacturing, (partly) financed by the Dutch Research Council (NWO) through contract 438.16.121.
References


