Comment on "Mechanism of branching in negative ionization fronts"

Citation for published version (APA):

DOI:
10.1103/PhysRevLett.101.139501

Document status and date:
Published: 01/01/2008

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Aug. 2019
Comment on “Mechanism of Branching in Negative Ionization Fronts”

When the fingers of discharge streamers emerge from a planar ionization front due to a Laplacian instability, their initial spacing is determined by the band of unstable transversal Fourier perturbations and generically dominated by the fastest growing modes. The Letter [1] therefore aims to calculate the temporal growth rate \(s(k) \) of modes with wave number \(k \), when the electric field far ahead of the ionization front is \(E_\infty \). In earlier work [2–4], \(s(k) \) was determined in a pure reaction-drift model for the free electrons, i.e., in the limit of vanishing electron diffusion \(D_e = 0 \). For negative streamers in pure gases like nitrogen or argon, electron diffusion \(D_e > 0 \) should be included into the discharge model. This is attempted in [1] in the limit of large field \(|E_\infty| \) ahead of the front. A different, extensive analysis with different results can be found in [5]. Below we show that the expansion and calculation in [1] are inconsistent, that the result contradicts a known analytical asymptote, and that it does not fit the cross-checked numerical results presented in [5]. Furthermore, we find in [5] that the most unstable wavelength does not scale as \(D_e^{1/3} \) as claimed in [1], but as \(D_e^{1/4} \).

In [1], ionization fronts are only considered in the limit \(|E_\infty| \gg 1 \) ahead of the front which amounts to a saturating impact ionization cross section \(\alpha(E) \to 1 \). For \(|E_\infty| \gg 1 \), planar fronts obey [[1], Eq. (7)] after all fields are rescaled with \(E_\infty \). For any finite \(E_\infty \), a diffusive layer of width \(1/\Lambda^* = \sqrt{D_e/[|E_\infty|\alpha(E_\infty)]} \) forms in the leading edge of the front [6]. (We denote the diffusion constant \(D \) from [2–6] by \(D_e \) to distinguish it from the \(D = D_e/|E_\infty| \) in [1].) Following the calculation in [1], Eq. (8) reproduces the diffusive layer for large \(|E_\infty| \), but the nonlinear term is incomplete. Then the dispersion relation is calculated by the expansion (11)–(13) about the planar ionization front. Here the expansion of the electron density \(n_e \) starts in order \(\delta^2 \) (where \(\delta \) is the small expansion parameter), while the expansions of ion density \(n_i \) and field \(E \) start in order \(\delta \). The absence of order \(\delta \) in the expansion of \(n_e \) is unexpected, not explained, and in contradiction with the calculation for \(D_e = 0 \) in [4].

Jumping to the result of [1], the dispersion relation in Eq. (21) is given as \(s = |E_\infty k|/[2(1 + |k|) - D_e k^2] \) in the present notation. The small \(k \) limit \(s = |E_\infty k|/2 + O(k^2) \) of [[1], Eq. (21))] is consistent neither with the limit \(D_e = 0 \), where the asymptote \(s(k) = |E_\infty k|/|k| \ll \alpha(E_\infty)/2 \) was derived in [4], nor with the case \(D_e > 0 \) where the asymptote \(s = c^*|k|, c^* = Ed_E\alpha(E_\infty) = |E| + 2\sqrt{D_e|E|\alpha(E)} \) was proposed in [2] and analytically confirmed in [5].

Furthermore, in [5], dispersion curves \(s(k) \) for a range of fields \(E_\infty \) and diffusion constants \(D_e \) are derived as an eigenvalue problem for \(s \); they are plotted in Fig. 1. In one case, the curve is confirmed by numerical solutions of an initial value problem; the curves are also consistent with the analytical small \(k \) asymptote. The results for positive \(s \) are conveniently fitted as \(s(k) = c^*|k|(1 - 4|k|/\Lambda^*)/(1 + a|k|) \) with \(a = 3/\alpha(E_\infty) \) [5]. Figure 1 also shows the prediction from [1] for \(E_\infty = -10 \) and \(D_e = 0.1 \); here the reduced diffusion constant \(D_e/|E_\infty| \) is as small as 0.01, and the assumptions \(|E_\infty| \gg 1 \) and \(D_e/|E_\infty| \ll 1 \) from [1] hold. However, Fig. 1 shows that the data of [5] and the prediction of [1] clearly differ. Therefore also the scaling prediction [[1], Eq. (23)] for the spacing of emergent streamers does not hold; rather our physical arguments and the numerical data in [5] suggest that the fastest growing mode is \(k_{\max} = (\sqrt{1 + a\Lambda^*/4} - 1)/a \approx D_e^{1/4} \Lambda^* \gg 1 \).

Ute Ebert1 and Gianne Derks2
1CWI
P.O.Box 94079, 1090 GB Amsterdam, The Netherlands
2Department of Mathematics
University of Surrey
Guildford, GU2 7XH, United Kingdom

Received 15 June 2007; published 23 September 2008
DOI: 10.1103/PhysRevLett.101.139501
PACS numbers: 52.80.Hc, 05.45.–a, 47.54.–r