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ABSTRACT
The spatial distribution of bus garages determines the total vehicular dead
mileage of the transit system because buses must travel between bus
garages and terminals at the start or conclusion of a day. By contrast,
the size of the garages determines the queuing status when buses enter
or leave the garages. Thus, a bus garage system with reasonable distri-
bution and size is required to address these problems. In this article, a
queuing–location–allocation model for optimizing a bus garage system is
developed. Since a nonlinear objective function is involved, a linearization
technique is introduced to convert the proposed model into an equivalent
linear form. Next, a Lagrangian relaxation algorithm is designed to solve
the linear form model. To validate the proposed algorithm, two groups of
randomlygenerated test instances anda real-life case, theDalian transit sys-
tem in China, are applied. The results show that the proposed Lagrangian
heuristic is efficient and stable.
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1. Introduction

Public transit holds an irreplaceable position in urban transport. It is regarded as the most efficient
means ofmoving large numbers of commuters across a city (Ebrahimi and Bridgelall 2020). However,
inadequate planning and management in the urban transport sector still lead to tough challenges
being faced within cities. Because of limited urban space and high land prices, most transit agencies
build bus garages on the outskirts of the city. As a result, the starting/ending points of the routes,
as well as the bus garages, are distributed among different locations, leading to vehicular dead (or
deadhead) miles and dead costs. Under the conditions of market economics, the influence of these
ineffective costs on the operation of the transit system becomes more andmore noticeable (Perre and
Oudheusden 1997).

Vehicle allocation is also a critical factor in reducing the dead mileage costs. Allocating buses to
their nearest garage could decrease the total dead miles. However, idle waiting time and associated
invalid costs may also be generated if too many vehicles are allocated to the same garage because
drivers have to queue up to pull into or out of the garage. To capture this feature, this article explicitly
models the bus garage as a congested system.When taken together, the appropriate number, location
and size of bus garages and a reasonable assignment of buses can not only help transit agencies to
save on the total operational costs but also use the allocated funding reasonably to provide a better
service.
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The methodology presented in this article is a queuing–location–allocation model for designing
the bus garage system to reduce the total operational costs of transit agencies (Ball et al. 1984). The
cost components are classified into two parts: (1) garage-related cost and (2) assignment-related cost.
The garage-related cost contains two parts: one is the initial investment (fixed charge) for a new garage
with the necessary facilities, and the other is the variable cost that increases linearly with garage capac-
ity. The assignment-related costs can be divided into three parts: deadmileage cost for buses, staff cost
for the garage system and waiting-time cost for drivers. Considering that the level of service varies
throughout the day, the vehicles in thismodel are divided into two parts to respond to the fluctuations
in passenger demand, i.e. (1) the base service throughout the day and (2) an additional service used
as a supplement during peak periods. Different vehicle types are also considered in this mathematical
model, since different vehicle types require different facilities.

Furthermore, as discussed later inmore detail, the proposedmodel contains a nonlinear objective.
Following Sherali and Alameddine (1992), themodel is converted to an equivalent linear form. Then,
a Lagrangian relaxation (LR) algorithm is designed to solve it. Two randomly generated test instances
and a real-life case are finally presented to demonstrate the effectiveness of the model and algorithm.

The remainder of this article proceeds as follows. In Section 2, the literature on the bus garage sys-
tem’s location and allocation problems is reviewed. Section 3 describes the proposed model. Section
4 details the linearization technique and the LR algorithm. Section 5 gives the computational results,
and a real-life application is examined in Section 6. Finally, Section 7 provides some conclusions and
suggests directions for future study.

2. Literature review

The determination of the optimal location, number and size of bus garages can be classified as the
location–allocation problem. It is one of the oldest problems studied in management science (Salhi
and Rand 1989; Chen, Tian, and Yao 2019; Othman et al. 2020). The pioneering studies on the
location–allocation problem for designing bus garages were conducted by Maze, Khasnabis, and
Kutsal (1982, 1983). At approximately the same time, Ball et al. (1984) also discussed a model for
the bus garage location–allocation problem but with the significant difference that it disaggregated
the demand into three parts: base requirement, morning and afternoon incremental requirements.
Waters et al. (1986) analysed a complementary approach compared to the models proposed byMaze,
Khasnabis, and Kutsal (1982, 1983) and Ball et al. (1984). In their article, the number of bus garages
is first obtained using the basic facility location model. Then, the garages’ size and location and the
allocation of vehicles are determined using a traditional, discrete-space location–allocation model.
Uyeno andWilloughby (1995) also formulated amixed-integer programming (MIP)model consider-
ing an existing configuration of bus routes and a set of existing and candidate transit centre locations
to minimize the cost for transit centre location–allocation decisions. However, the results showed
one weakness, recognized as a managerial inconvenience by scheduling personnel, that buses for a
given route are split between transit centres. Uyeno andWilloughby (2001) later further developed a
heuristic procedure to make sure that all buses on a route are assigned to the same garage. To further
extend the application of the MIP model, Willoughby (2002) explored how solutions change under
different additional transit planning scenarios, which include no candidate facilities, forced Oakridge
allocation and Greenfields approach. Unlike the assumption of the independent relationship between
vehicle assignments and the location and size of bus garages, Maze and Khasnabis (1985) developed
a technique that can simultaneously design vehicle scheduling and determine the location and size of
bus garages.

All of the literature discussed above indicates that minimization of the total cost of the transit
system is always chosen as the objective function and the dead mileage cost accounts for a large pro-
portion of the total cost. In practice, a transit agency may operate different bus brands/types for a
given route, for which different maintenance facilities are also required. Thus, vehicles with the same
brand/type should be grouped in the same garage to the greatest extent possible. In recent decades,
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many studies have paid attention to the bus allocation problem to consider the effect of different bus
brands/types, aiming to minimize dead mileage costs (Perre and Oudheusden 1997; Kepaptsoglou,
Karlaftis, and Bitsikas 2009; Djiba et al. 2012; Nasibov et al. 2013; Kontou et al. 2014; Mahadikar,
Mulangi, and Sitharam 2015; Yao et al. 2019).

Although many studies have focused on the bus garage location–allocation problem or bus allo-
cation problem to reduce the costs of bus agencies, few researchers have considered the bus garage
as a congestion system. It becomes difficult for buses to enter or leave the garage when too many
vehicles are allocated to the same garage. This phenomenon not only causes the wastage of fuel but
also increases the drivers’ idle time. Some applications of the queuing–location–allocation problem
in other fields have been studied (Wang, Batta, and Rump 2002; Shavandi andMahlooji 2006; Berman
and Drezner 2007; Yao et al. 2019; Shan et al. 2019; Liu et al. 2020). For more details about the queu-
ing–location–allocation problem andmodel variations, interested readersmay refer to Boffey,Galvão,
and Espejo (2007) and Shavarani et al. (2019).

In this article, a location–allocation model for designing the bus garage system that incorporates
the queuing problem is developed. This model considers different service times and vehicle types and
takes the waiting time of drivers into consideration. The contributions to the current literature are as
follows.

First, this work aims to design a bus garage system for a transit agency. The existing literature limits
its focus to minimizing the dead mileage cost or the total costs. As a result, these methods tend to
allocate buses to their nearest garage. However, the queuing phenomenon occurs if too many buses
are allocated to the same garage, increasing the drivers’ invalid cost and working time. Thus, this
article models the bus garage as a congested facility to determine the optimal location, number and
size of the bus garage system.

Secondly, different vehicle types are always operated by one transit agency, and different vehi-
cle types need different maintenance facilities. For instance, electric vehicles can only be parked in
garages with charging points. However, previous studies on the location–allocation of the bus garage
system have always ignored this effect. This article aims to cope with the related problems raised by
considering different types of vehicles.

3. Model development

Themodel developed in this study is based on the following assumptions. (1) The numbers and loca-
tions of bus routes and garages are known. Moreover, the number of buses contained in each bus
route is also known. (2) Buses that pull out from a bus garage to their starting service point must
return to the same garage after a full day’s service. (3) Multiple servers (doors) are allowed for each
bus garage. (4) Each bus garage has a service limitation. (5) Vehicles for service are divided into two
parts: one part is for the base service throughout the day, while the other part is used as a supplement
during peak periods. (6) The bus garage is regarded as an M/M/S system; basically, it has to accord
with the queuing system’s typical queuing behaviour. In this article, bus arrivals are assumed to be
subject to the Poisson distribution and garage service time follows an exponential distribution. (7)
Servers (doors) in a given garage have a unique service rate. In contrast, the service rates of servers
(doors) belonging to different garages are different. Therefore, the waiting time, queuing length and
other measures can be calculated by standard formulae (Kleinrock 1975).

For easy reference, the notation used in the model is listed as follows.

Index sets:

I Set of bus routes indexed by i; i = 1, 2, . . . ,M
J Set of sites of potential bus garages indexed by j; j = 1, 2, . . . ,N
K Set of vehicle types indexed by k
S Set of numbers of servers (doors) S = {θ1, θ2, . . . , θp−1, θp} indexed by s
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T Set of serving times indexed by t; t =
{
1, for base service
2, for peak service

Decision variables:

yjk =
{
1, if bus garage j is open and the kth type of bus can be parked in it
0, otherwise

xijkt =
{
1, if the kth type of bus on route i in serving time t is assigned to bus garage j
0, otherwise

zjs =
{
1, if s servers are built at garage j
0, otherwise

Parameters:

μjt Service rate of a single server at bus garage j in serving time t
λikt Arrival rate of the kth type of bus on route i in serving time t
dij Average travel distance from bus route i to garage j
fjk Fixed cost for building garage j with facilities that can serve the kth type of bus
Tcijkt Average unit dead mileage cost of the kth type of bus from bus route i to garage j in serving

time t
Wcjkt Average unit waiting cost of the kth type of bus at garage j in serving time t
Wtjkts Average waiting time of the kth type of bus at garage j in the serving time t when the server

number is s
Scj Unit staff cost at garage j
πjs Number of staff members at garage j when the server number is s
τk Required area per bus of type k
δj Unit land price for building bus garage j
Aj Service limitation of bus garage j; (a prespecified number for existing garages or a consider-

able number for garages that are to be built)
σi Length of bus route i
vikt Free-flow speed of buses of type k on route i and in serving time t
PL Lower limit of the number of opened garages
PU Upper limit of the number of opened garages
� Funding limitation
ξ Discount rate parameter

The objective of the present model is to minimize the total cost of the transit agency, including
the fixed charge and variable portion of garage construction costs, staff cost, waiting-time cost in the
queuing system and dead mileage cost.

The model is formulated as follows.

Min
∑
j∈J

∑
k∈K

f ξjk · yjk +
∑
j∈J

∑
s∈S

(πjs · Scj) · zjs

+
∑
i∈I

∑
j∈J

∑
k∈K

∑
t∈T

(λikt · dij · Tcijkt + λikt · τk · δj) · xijkt

+
∑
i∈I

∑
j∈J

∑
k∈K

∑
t∈T

∑
s∈S

(Wtjkts · Wcjkt) · λikt · xijkt · zjs (1)
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s.t. ∑
j∈J

xijkt = 1, ∀i ∈ I, k ∈ K, t ∈ T (2)

xijkt � yjk,∀i ∈ I, j ∈ J, k ∈ K, t ∈ T (3)∑
s∈S

zjs � 1, ∀j ∈ J (4)

∑
s∈S

zjs�xijkt ,∀i ∈ I, j ∈ J, k ∈ K, t ∈ T (5)

∑
i∈I

∑
k∈K

λikt · xijkt � μjt · zjs,∀j ∈ J, t ∈ T, s ∈ S (6)

∑
i∈I

∑
k∈K

2σi/vikt
60/λikt

· xijkt · τk � Aj, t = 2,∀j ∈ J (7)

xijkt1 = xijkt2 , t1 �= t2,∀i ∈ I, j ∈ J, k ∈ K, t1, t2 ∈ T (8)∑
j∈J

∑
k∈K

f ξjk · yjk +
∑
i∈I

∑
j∈J

∑
k∈K

∑
t∈T

(λikt · τk · δj) · xijkt � �ξ (9)

PL �
∑
j∈J

∑
k∈K

yjk � PU (10)

yjk, xijkt , zjs = 1 or 0,∀i ∈ I, j ∈ J, k ∈ K, t ∈ T, s ∈ S (11)

Objective (1) is to minimize the total cost of the bus garage system. Constraint (2) states that
for all vehicles of type k on route i in serving time t, they must be assigned to precisely one garage.
Constraint (3) indicates that the assignment of bus routes can only bemade if the bus garage is opened
(= 1). Constraints (4) and (5) guarantee that any opened bus garage jmust provide at least one server
(door). Constraint (6) requires that the service rate must be larger than the arrival rate of vehicles.
Constraint (7) ensures that the number of vehicles assigned to garage j does not exceed its capacity
during the peak period. Constraint (8) ensures that buses of type k on route i are assigned to the same
garage, regardless of the serving time. Constraint (9) indicates the funding limitation. Constraint (10)
is a surrogate constraint for improving the bounds obtained in the solution algorithm. Furthermore,
the bounds PL and PU will be updated iteratively to provide tighter limits on the number of opened
garages.

4. Solution algorithm

4.1. Linearization of themodel

The model developed in Section 3.2 is nonlinear as a result of the product of the binary variables
xijkt and zjs in the objective function. Therefore, a linearization technique introduced by Sherali and
Alameddine (1992) is used in this article to convert the model into an equivalent linear form by
introducing a new variableψijkts to replace xijkt · zjs. As a result, for any i ∈ I, j ∈ J, k ∈ K, t ∈ t, s ∈ S,
a set of constraints is added, as follows:

ψijkts � xijkt ,∀i ∈ I, j ∈ J, k ∈ K, t ∈ T, s ∈ S (12)

ψijkts � zjs,∀i ∈ I, j ∈ J, k ∈ K, t ∈ T, s ∈ S (13)

ψijkts � xijkt + zjs − 1, ∀i ∈ I, j ∈ J, k ∈ K, t ∈ T, s ∈ S (14)

ψijkts = 1 or 0,∀i ∈ I, j ∈ J, k ∈ K, t ∈ T, s ∈ S (15)



6 B. YAO ET AL.

The equivalent linear model is then converted as follows:

∑
j∈J

∑
k∈K

f ξjk · yjk +
∑
j∈J

∑
s∈S

(πjs · Scj) · zjs

+
∑
i∈I

∑
j∈J

∑
k∈K

∑
t∈T

(λikt · dij · Tcijkt + λikt · τk · δj) · xijkt

+
∑
i∈I

∑
j∈J

∑
k∈K

∑
t∈T

∑
s∈S

(Wtjkts · Wcjkt) · λikt · ψijkt (16)

subject to Constraints (2)–(15).

4.2. Lagrangian relaxation algorithm

The above 0–1 integer programming model is an instance of an NP-complete problem. The problem
difficulty increases rapidly with the increase in problem size. The LR heuristic is an algorithm that can
efficiently solve integer or mixed-integer optimization models and has been proven to be an effective
technique in a variety of applications (Beasley 1993; Liu, Li, and Liu 2017; Wang, Liu, and Zheng
2020; Tolouei et al. 2020; Hamdan and Diabat 2020; Zhang et al. 2020). By relaxing the complicating
constraints and adding them to the objective function, this method provides a lower bound to the
original optimization model (for a minimization problem) (Fisher 1985).

In this article, Constraints (3), (5), (6), (9) and (12)–(14) are relaxed by adding them to the objective
function. Relaxing these constraints is conducive to the model decomposition as more than one vari-
able is involved in each of the constraints. The details of the LR decomposition method are provided
in the next subsection.

4.2.1. Lagrangian dual problem
The Lagrangian multipliers αijkt ,βijkt , γjts,χ , εijkts, νijkts,wijkt associated with these ‘hard constraints’
are introduced. The LR model after mathematical manipulation is shown as follows:

Z�LR(αijkt ,βijkt , γjts, εijkts, νijkts,ωijkts)�

= Min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PO +
∑
i∈I

∑
j∈J

∑
k∈K

∑
t∈T

(
αijkt · (xijkt − yjk)+ βijkt ·

(
xijkt −

∑
s∈S

zjs

))

+
∑
j∈J

∑
t∈T

∑
s∈S

γjts ·
(∑

i∈I

∑
k∈K

λikt · xijkt − μjt · zjs
)

+
∑
i∈I

∑
j∈J

∑
k∈K

∑
t∈T

∑
s∈S
(εijkts · (ψijkts − xijkt)+ νijkts · (ψijkts − zjs)

+ωijkts · (xijkt + zjs − 1 − ψijkts))

+χ ·
⎛
⎝∑

j∈J

∑
k∈K

f ξjk · yjk +
∑
i∈I

∑
j∈J

∑
k∈K

∑
t∈T

(λikt · τk · δj) · xijkt −�ξ

⎞
⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17)

subject to Constraints (2), (4), (7), (8) and (10):

yjk, xijkt , zjs,ψijkts = 1 or 0,∀i ∈ I, j ∈ J, k ∈ K, t ∈ T, s ∈ S (18)
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Here, PO denotes the objective function of the primal model. The objective function of the LRmodel
can be rewritten in another form:

Z�LR(αijkt ,βijkt , γjts, εijkts, νijkts,ωijkts)�

= ZMin

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
j∈J

∑
t∈T

∑
s∈S

{
πjs · Scj − γjtsμjt +

∑
i∈I

∑
k∈K

(ωijkts − βijkt − vijkts)

}
· zjs

+
∑
j∈J

∑
k∈K

{
(1 + χ) · f ξjk −

∑
i∈I

∑
t∈T

αijkt

}
· yjk

+
∑
i∈I

∑
j∈J

∑
k∈K

∑
t∈T

{
λikt ·

[
dij · Tcijkt + (1 + χ) · τk · δj +

(∑
s∈S

γjts

)]

+ αijkt + βijkt +
∑
s∈S

(ωijkts − εijkts)

}
· xijkt

+
∑
i∈I

∑
j∈J

∑
k∈K

∑
t∈T

∑
s∈S

(Wtjkts · Wcjkt · λikt + εijkts + γijkts − ωijkts) · ψijkts

−
∑
i∈I

∑
j∈J

∑
k∈K

∑
t∈T

∑
s∈S

ωijkts − χ ·�ξ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(19)

Let LD be the Lagrangian dual of LR(αijkt ,βijkt , γjts, εijkts, vijkts,ωijkts), then the Lagrangian dual prob-
lem is to maximize the Lagrangian objective (lower bound) by continually adjusting the values of
Lagrangian multipliers.

(LD) Z(LD) = Max Z�LR(αijkt ,βijkt , γjts, εijkts, vijkts,ωijkts)� (20)

4.2.2. Lower bounds
The lower bound of the original problem can be obtained by solving the LR model described in
Section 4.2.1. It may be observed that the LR model can be further decomposed by variables. In
addition, the terms

∑
i∈I
∑

j∈J
∑

k∈K
∑

t∈T
∑

s∈S ωijkts and χ ·�ξ are both constant. Thus, the four
submodels of the LR model are presented as follows.

Submodel I

Min
∑
j∈J

∑
k∈K

{
(1 + χ) · f ξjk −

∑
i∈I

∑
t∈T

αijkt

}
· yjk (21)

subject to Constraint (10)

yjk = 0 or 1,∀j ∈ J, k ∈ K (22)

Submodel II

Min
∑
i∈I

∑
j∈J

∑
k∈K

∑
t∈T

{
λikt · [dij · Tcijkt + (1 + χ) · τk · δj] + αijkt + βijkt

+
(∑

s∈S
γikt

)
· λikt +

∑
s∈S

(ωijkts − εijkts)

}
· xijkt (23)
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subject to Constraints (2), (7) and (8)

xijkt = 0 or 1,∀i ∈ I, j ∈ J, k ∈ K, t ∈ T (24)

Submodel III

Min
∑
j∈J

∑
t∈T

∑
s∈S

{
πjs · Scj − γjts · μjt +

∑
i∈I

∑
k∈K

(ωijkts − βijkt − vijkts)

}
· zjs (25)

subject to Constraint (4)

zjs = 0 or 1, ∀j ∈ J, s ∈ S (26)

Submodel IV

Min
∑
i∈I

∑
j∈J

∑
k∈K

∑
t∈T

∑
s∈S

(Wtjkts · Wcjkt · λikt + εijkts + γijkts − ωijkts) · ψijkts (27)

s.t. ψijkts = 0 or 1,∀i ∈ I, j ∈ J, k ∈ K, t ∈ T, s ∈ S (28)

Thus, for given multipliers, the LR model can be solved separately, corresponding to the four
submodels. The lower bound of the original problem is obtained as follows.

Step 1. Initialization

Step 1.1. Initialize the lower bound of the original problem, LBinc , to a low value.
Step 1.2. Calculate the lower bound at each iteration and store the value in LBiter . The details of the

procedure are shown in Steps 2–5.

Step 2. Find the best solution of Submodel I

Step 2.1. Sort the coefficient of yjk,(1 + χ) · f ξjk −∑
i∈I
∑

t∈T αijkt , with givenmultipliers in ascending
order.

Step 2.2. Set yjk = 1 for the first PL garages; otherwise, yjk = 0.
Step 2.3. If PL = PU , go to Step 2.5.
Step 2.4. Keep setting yjk = 1 until either (1) the coefficients of yjk have become positive or (2) PU

garages have been opened.
Step 2.5. Let the set of yjk be chosen as y∗

jk and save y∗
jk to LB

1
iter.

Step 3. In Submodel II

Step 3.1. For each bus garage j during peak periods (i.e. serving time equals 2), form the coefficient
λikt · [dij · Tcijkt + (1 + χ) · τk · δj] + αijkt + βijkt + (∑

s∈S γjts
) · λikt +∑

s∈S (ωijkts − εijkts)
with the combination of route i and vehicle type k.

Step 3.2. Record all potential garage numbers if Constraint (7) is not violated. Then, iden-
tify j∗ corresponding to Minλikt · [dij · Tcijkt + (1 + χ) · τk · δj] + αijkt + βijkt + (∑

s∈S γjts
) ·

λikt +∑
s∈S (ωijkts − εijkts).

Step 3.3. Set xijkt2 = 1 for j∗ and xijkt2 = 0 for other garages. Finally, set xijkt1 = 1 for the same com-
bination of route i and vehicle type k but in another serving time according to Constraint
(8).

Step 3.4. Let the set of xijkt be chosen as x∗
ijkt and save x∗

ijkt to LB
2
iter .
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Step 4. For Submodel III

Step 4.1. Calculate the coefficient of zjs, which means the cost for garage j with s servers (doors).
Step 4.2.For givenmultipliers and each garage j, record s corresponding toMinπjs · (Scjt − γjts · μjt)+∑

i∈I
∑

k∈K (ωijkts − βijkt − vijkts).
Step 4.3. Check whether the value of the coefficient is negative. If so, save s = s∗ and set zjs = 1 for

s = s∗. Otherwise, set zjs = 0.
Step 4.4. Let the set of zjts be chosen as z∗jts and save z∗jts to LB

3
iter .

Step 5. To solve Submodel IV

Step 5.1. Calculate the coefficient (Wtjkts · Wcjkt · λikt + εijkts + γijkts − ωijkts) for each combination
of route i, garage j, vehicle type k, serving time t and server number s.

Step 5.2. Set ψijkts = 1 for the coefficient less than zero; otherwise, set ψijkts = 0.
Step 5.3. Let the set of ψijkts be chosen as ψ∗

ijkts and save ψ∗
ijkts to LB

4
iter .

Step 6. At the end of the iteration, the solutions to the LR model are y∗
jk, x

∗
ijkt , z

∗
js and ψ

∗
ijkts. By

summing up the LBiiter , a lower bound of the original problem, LBiter , is also obtained. After compar-
ing with the original LBinc, the incumbent lower bound is then updated by letting LBinc = LBiter if
LBinc ≥ LBiter .

The determination of the initial and improved upper bounds is described in the next subsection.

4.2.3. Upper bounds
The lower bound solution calculated by the Lagrangian iteration is generally not a feasible solution
to the primal model. However, finding a feasible solution is likely to accelerate the convergence of
the Lagrangian heuristic. In this subsection, a heuristic used to find the initial feasible solution (i.e.
the initial upper bound), and the improved feasible solution from the lower bound, is given. The
procedure is described below.

Step 1. Initialization

Step 1.1. Initialize the upper bound of the original problem, UBinc, to a large value.
Step 1.2. The upper bound calculated at each iteration is stored inUBiter. SetUBiter = M (M is a large

number) in the first iteration. The details of the later procedure are shown as follows.

Step 2. Determine the decision variable x∗
ijkt

Step 2.1. Let Y be the set of opened garages obtained in the lower bound, i.e. Y = {(j, k) : yjk = 1}.
Then, the decision variable xijkt of the improved upper bound solution can be solved by an
allocation subproblem, with the set of opened garages being given by the lower bound.

Step 2.2. For each combination of route i, vehicle type k and serving time t2, solve the following
allocation subproblem when the set of opened garages is fixed:

(GAP) Min
∑
i∈I

∑
j∈J

∑
k∈K

∑
t∈T

(λikt · dij · Tcijkt + λikt · τk · δj) · xijkt (29)

s.t.
∑
j∈J

xijkt2 = 1, ∀i ∈ I, k ∈ K (30)

∑
i∈I

∑
k∈K

2σi/vikt
60/λikt

· xijkt2 · τk � Aj,∀j ∈ J (31)
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xijkt2 = 1 or 0,∀i ∈ I, j ∈ J, k ∈ K (32)

Step 2.3. Set xijkt1 = 1 for the same combination of route i and vehicle type k but in another serving
time, according to Constraint (8). Check whether Constraint (9) is violated or not. If not, go to
Step 2.4; otherwise, go to Step 2.2 and find another suboptimal solution.

Step 2.4. Save x∗
ijkt to UBiter.

Step 3. Solve z∗js

Step 3.1. According to Constraints (4) and (5), exactly one server can be provided at each opened
garage j.

Step 3.2. For each xijkt = 1 obtained in Step 2, identify all possible combinations of zjs without vio-
lating Constraint (6). Traverse all eligible zjs and choose those gaining the least staff cost to the
objective value.

Step 3.3. Save z∗
js to UBiter .

Step 4. Find the best ψ∗
ijkts

Step 4.1. For each combination of route i, garage j, vehicle type k, serving time t and server number
s, set ψijkts = 1 if zjts and xijkt are both equal to 1 according to Steps 2 and 3.

Step 4.2. Save ψ∗
ijkts to UBiter.

Step5. All portions of the objective function in the primal problemcan be calculated and constitute
the UBiter . The incumbent upper bound UBinc is also updated by letting UBinc = UBiter if UBinc ≥
UBiter.

4.2.4. The subgradient procedure
Finding good Lagrangian multipliers is crucial in designing an LR algorithm (Fisher 1985). In the
algorithm, the dual multipliers are updated at each iteration using the subgradient method. The
subgradients of the problem are computed as follows:

NU(αijkt) = xijkt − yjk, NU(βijkt) = xijkt −∑
s∈S zjs,NU(γjts) = ∑

i∈I
∑

k∈K λikt · xijkt − μjt·zjs
NU(εijkts) = ψijkts − xijkt ,NU(vijkts) = ψijkts − zjs,NU(ωijks) = xijkt + zjs − 1 − ψijkts
NU(χ) = ∑

j∈J
∑

k∈K f ξjk · yjk +∑
i∈I
∑

j∈J
∑

k∈K
∑

t∈T (λikt · τk · δj) · xijkt −�ξ

(33)
Then, the Lagrangian multipliers αijkt are updated; for example, as

αn+1
ijkt = max{αnijkt +�n · NU(αijkt), 0} (34)

where the step size�n = ϑn
(UBn−LBn)

||sn||2 , sn is the vector of subgradients at iteration n, and ϑn is a scalar
chosen between 0 and 2. UBn and LBn are the incumbent upper and lower bounds of the problem,
respectively. In this article, the norm of sn is taken as the Euclidean norm. The procedure starts with
an initial ϑ0 = 2 and keeps the value unchanged if the solution is improved, while ϑn will be set
to ϑn = 1/2ϑn−1 if the solution is not improved in two consecutive iterations. The other multipliers
are updated in the same manner. Then, the lower bound problem in the next iteration is solved by
applying the updated dual multipliers, and the procedure is terminated after 20 iterations. Finally,
the general algorithm procedure for solving the problem proposed in this paper is summarized and
illustrated in Figure 1.
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Figure 1. Procedure of the Lagrangian relaxation algorithm.

5. Computational experiments

In this section, a set of numerical experiments is employed to validate the proposed LR algorithm. The
data used in these experiments are obtained by simulation. The algorithm is coded in Java and run on
a personal desktop computer with Intel Core E5-2603, 1.7 GHz CPU, 48GB of RAM and Windows
7 64-bit operating system. Two test problems are generated by varying the number of bus routes and
potential garage locations. In the first group, the number of bus routes is set as 80, 100, 150 or 200,
while the number of potential locations is fixed at 60. In the second group, the number of possible
garage locations is 40, 60, 80 or 100, while the number of bus routes is fixed at 100. For simplicity,
the arrival rates (operation schedules) of different bus routes are assumed to be the same in peak and
off-peak periods. The number of required garages is set as 30 in all experiments (i.e. PL = PU = 30).

5.1. Data generation

• Problem parameters
- Number of servers (doors) for each garage j is fixed at 2.
- Number of vehicle types is fixed at 2.
- Service rate for each combination of garage j and serving time t: U(15, 20).
- Arrival rate of each combination of bus route i, vehicle type k and serving time t: U(6, 12).
- Average distance between bus route i and garage j: U(15, 30).
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Table 1. Impact of the number of bus routes.

Instance no.
No. of bus
routes

No. of
required
garages

No. of
potential
locations

Average gap %
between lower
and upper
bounds

Average
computation

time (s)

a-1 80 30 60 0.879 18.53
a-2 100 30 60 1.046 51.33
a-3 150 30 60 1.114 80.15
a-4 200 30 60 1.251 120.94

Average 1.072 67.74

Table 2. Impact of the number of potential bus garages.

Instance no.
No. of bus
routes

No. of
required
garages

No. of
potential
locations

Average gap %
between lower
and upper
bounds

Average
computation

time (s)

b-1 100 30 40 0.814 36.14
b-2 100 30 60 1.046 51.33
b-3 100 30 80 0.872 70.75
b-4 100 30 100 0.988 86.45

Average 0.894 61.17

- The freeflow speed for each combination of bus route i, vehicle type k and serving time t:
U(10, 25) for peak period, whereas U(15, 30) for off-peak period.

- Fixed cost for building garage j with facilities that can serve vehicle type k: U(20, 000 CNY,
40, 000 CNY).

- Average dead mileage cost per bus for each combination of bus route i, garage j, vehicle type k
and serving time t: U(2 CNY, 8 CNY).

- Waiting cost per bus for each combination of garage j, vehicle type k and serving time t:
U(0.3 CNY , 0.8 CNY).

- Staff cost per server (door): U(200 CNY, 300 CNY).
- The required area per bus of type k is fixed at 180m2.
- Unit land price is fixed at 500 CNY.
- Discount rate parameter is fixed at 0.0325.

• Parameters in Langrangian heuristic
- Maximum number of iterations is set to 20.
- Parameter ϑ0 in the step size equation is initially set to 2.0.
- Lower limit of ϑ0 is set to 0.05.

5.2. Results analysis

The results in Tables 1 and 2 report a positive correlation between the computation time and precision
and the size of the instance. For more details, Table 1 shows that the computation time increases
rapidly with the increased number of bus routes. In contrast, Table 2 reports that the computation
time only increases linearly with the number of potential garage locations. The results suggest that
the number of bus routes has a more significant impact on computation time than the number of
potential garage locations. Besides, the average computation time shows that this algorithm can solve
the problem within a reasonable time, even for a large version of the transit system. Regarding the
precision, the average gaps between the upper and lower bounds are also reasonable. For the instances
in group 1, the average gap is closed to 1.07, while in group 2, the average gap is 0.894. Even for the
largest instance investigated in this article, a-4 or b-4, the average gap can be limited to 1.5%.



ENGINEERING OPTIMIZATION 13

Figure 2. Iterative process of instance a-2/b-2: (a) dual value; (b) primal value.

As one instance appears in both test groups (i.e. a-2/b-2) and to show the solutions in detail, the
detailed output of instance a-2/b-2 in five repeated computations is provided in Figure 2. The error
bars in Figure 2 indicate the standard deviation of the five repeated calculations.

Figure 2 also demonstrates the reliability of the proposed method. Compared with the iterative
process of primal solutions, the dual value seems to have a more stable performance. Although the
primal solutions are unstable in different calculations, the method could still provide a favourable
solution to the dual value and the algorithm eventually converged to a stable condition. Consequently,
all observations from the above analysis suggest that the proposed Lagrangian heuristic is efficient and
is suitable for solving large and sophisticated problems.

6. A real-life case study

According to the Financial Report of the Dalian Government, the losses of the Dalian Passenger
Transport Group (DPTG) system in 2016 reached 1.4 billion CNY (http://www.czj.dl.gov.cn/zwgk/
czgg.htm), of which invalid operation costs made up a large proportion. Therefore, it is necessary to
reoptimize the largest city public transport system in Dalian, China, to reduce these invalid opera-
tional costs. Since most vehicles in this system belong to conventional public transit, the analysis in
this article only focuses on these conventional buses.

6.1. Data preparation

6.1.1. Existing and candidate bus garage locations
In theDPTG system, all vehicles are parked,maintained and repaired in 26 bus garages located around
Dalian city. Figure 3 illustrates the locations of all bus routes and garages. Ten additional candidate
sites used to design a more efficient bus garage system are also selected and visualized in Figure
3. Appendix A provides data on the capacities of the bus garages and the vehicle allocations of the
existing bus garage system. Some information about the candidate garages is also provided.

In Figure 3, the dots at the ends of all bold lines represent the terminal stations of bus routes, boxes
with symbol P the current garages, and circles with symbol P the candidate garage sites; the bold lines
are the present bus routes and fine lines are the Dalian city road network.

6.1.2. Estimation of related cost and parameters
According to the investigations on the DPTG, the average operational cost of a diesel bus is 9.45
CNY/mile, while for a bus running on liquefied natural gas (LNG) the cost is 1.32 CNY/mile and for
a hybrid bus 5.72 CNY/mile. The actual distances between bus garages and terminal stations were
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Figure 3. Current transit network in Dalian, China.

obtained using the GIS software MapInfo 11.0. By assuming that 60% of vehicles on each bus route
are assigned to the departure station, while the remainder are allocated to the terminal station, the
average travel cost per bus can be calculated. Besides, the average monthly wage for drivers and other
staff is 3500 CNY.

For the garage construction cost, this article assumes that the unit land price is determined by
reference to the China Real Estate Index System (CREIS). Note that the existing garages cannot be
expanded because available land resources are scarce. Furthermore, because different vehicle types
have different fuelling and maintenance requirements, some bus garages can only accommodate cer-
tain vehicle types. In this case, the initial construction costs of existing garages are set to 0. In contrast,
the initial construction costs of new candidate garages are determined by which vehicle type can be
parked there. In this article, vehicles are grouped into three categories: diesel, LNG and hybrid. There-
fore, garages with diesel-related equipment can only park diesel buses and those with LNG-related
facilities can only hold LNG buses, while hybrid buses can only be served in garages that have both
diesel and LNG facilities. The area needed per bus for all vehicle types is 180m2, and the discount rate
is set to 0.0325. Other related parameters are based on the real operational situation of the DPTG.

6.2. Application and results

Based on the data presented in Section 6.1, the proposedmodel and algorithmare finally applied to the
real-life case. Figure 4 illustrates the objective values and gaps between the upper and lower bounds in
five repeated calculations. The detailed results, including the best location, size and vehicle allocation,
of the best calculation are presented in Table 3. A comparison of the associated cost components
before and after optimization is provided in Table 4.

From Table 3, it can be seen that all existing garages are still retained, and only four of the 10 can-
didate garages are opened. This is because opening a new garage involves a costly initial investment.
However, many vehicles are reallocated as a result of the constraints of capacities of the garages and
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Figure 4. Objective values and gaps in the five repeated calculations.

Table 3. Configuration of the bus garage system after optimization.

No.
Current
allocation

Optimal
allocation

Optimal
size No.

Current
allocation

Optimal
allocation

Optimal
size

1 20 19 3,420 19 82 65 11,700
2 81 166 29,880 20 34 26 4,680
3 90 116 20,880 21 156 108 19,440
4 62 33 5,940 22 39 32 5,760
5 103 125 22,500 23 89 52 9,360
6 176 74 13,320 24 166 150 27,000
7 96 65 11,700 25 35 15 2,700
8 155 174 31,320 26 63 105 18,900
9 96 55 9,900 27 – –
10 80 52 9,360 28 – 74 28,440
11 120 119 21,420 29 – 88 17,640
12 103 86 15,480 30 – –
13 206 102 18,360 31 – –
14 70 45 8,100 32 – 120 20,520
15 171 94 16,290 33 – –
16 119 83 14,940 34 – 94 23,040
17 103 41 7,380 35 – –
18 102 117 21,060 36 – –

Table 4. Comparison of associated cost components before and after optimization.

Cost category (CNY) Current system Optimal system Gap (%)

Capital cost – 34,173,720 –
Dead mileage cost 228,162,143 200,597,445 −12.08
Waiting-time cost 5,328,161 4,936,682 −7.34
Server staff cost 182,000 225,000 +23.6
Discounted value – 18,073,306 –
Total cost 233,672,304 221,859,541 −5.06

the required area per bus. For example, Yunong Road Station (no. 15) initially has 171 vehicles before
optimization, with only 99.5m2 for each bus. As a result, drivers waste a lot of time pulling into and
out of the garage. The new vehicle allocation of Yunong Road Station is reduced to 94, but the garage
area is nearly unchanged after optimization. It may cost a lot to build additional spaces to park these
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extra buses, but in the long run, this is a considerable reduction in the amount of waiting time and
fuel costs.

Table 4 shows a comparison of the associated cost components of the bus garage system before and
after optimization. After optimization, about 1.12 million CNY is saved, accounting for about 5.06%
of the initial total cost of the bus garage system. Concerning the deadmileage cost, there is a reduction
of almost 2.76million CNY, reflecting a decrease of around 12.08%. However, with the increase in the
number of bus garages, the staff cost increases by 23.6%. In short, although extra investment costs are
required for these new garages, the total cost of the whole garage system can be decreased through
the reduction in dead mileage and waiting-time costs.

7. Conclusions

A nonlinear integer programming model for determining the best location, number and size of bus
garages, and a heuristic algorithm based on Lagrangian relaxation have been developed in this arti-
cle. Although previous literature has focused on the bus garage location–allocation problem, few
researchers have considered the bus garage as a congestion system. Drivers need to queue up to drive
out of and into the garage before the beginning or after the end of daily service if too many buses
are allocated to the same garage. Thus, the proposed model incorporates a wide range of costs, such
as garage-related cost, dead mileage cost, staff cost and waiting-time cost. To further conform to the
practical situation, different vehicle types and server numbers are also considered. Two groups of
randomly generated test instances and a real-life case, the Dalian transit system in China, are applied
to validate the algorithm. The results indicate that the proposed Lagrangian heuristic is efficient and
stable.

Based on the modelling discussed in this article, several directions to further elaborate the mod-
elling remain. One direction is that the queuing behaviour of the bus garage system may not act as
anM/M/C queue. Examining complicated scheduling policies in future studies could provide a more
elaborate model to explain the impacts of the queuing phenomenon on the optimization of the bus
garage system. Furthermore, in this study, two randomly generated test instances and a real-life case
were developed to validate the proposed LR algorithm. Future research may use other techniques to
improve the performance of the proposed algorithm further.
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Appendix A. Information about the current bus garage system

No. Location
Current
area (m2)

Current
allocation No. Location

Current
area (m2)

Current
allocation

1 MiniBus Station 3,500 20 19 Changchun Road Station 11,770 82
2 Fuguo Station 30,000 81 20 Fujia Manor Station 4,800 34
3 AnjiaWang Station 21,000 90 21 Lvbo Station 19,582 156
4 Baihe Village Station 6,000 62 22 Jinxiu Station 5,900 39
5 Tongde Road Station 22,527 103 23 Taishan Road 9,538 89
6 Jinliu Road Station 20,000 176 24 Zhangjia Station 30,000 166
7 Haikou Road Station 11,866 96 25 Zhongxia Road Station 3,000 35
8 Huadong Road Station 31,333 155 26 Lvcheng Station 18,925 63
9 Huanan Road Station 10,500 96 27 Donggang Station – –
10 Huanan Station 9,500 80 28 Miaoling Station – –
11 Jinjia Road Station 21,530 120 29 Beihai industrial zone Station – –
12 Youyi Road Station 15,481 103 30 Xiajia River Station – –
13 Yaojia Station 21,095 206 31 Xiaopingdao Station – –
14 Ganjingzi Station 8,190 70 32 Xianglujiao Station – –
15 Yunong Road Station 17,000 171 33 Suoyuwan Station – –
16 PaoYazi Station 15,000 119 34 Mingzhu Road Station – –
17 Zhongnan Road Station 8,900 103 35 Huanan Square Station – –
18 Zhongnan Station 23,825 102 36 Novy Valleys Station – –


