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Cold-formed trapezoidal sheeting of thin steel plate is a very popular product for building

construction. It combines low weight and high strength and is economical in use. To increase the

insight into the behaviour of the sheeting, this article presents new experiments in which first-

generation sheeting behaviour is studied under combined concentrated load and bending. The

experiments show that after ultimate load, three different post-failure modes occur. Mechanical

models have been developed for the three post-failure modes. These models can help to explain why a

certain post-failure mode occurs.
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1 Introduction

Cold-formed trapezoidal sheeting of thin steel plate is a very popular product for building construc

tion. It combines low weight and high strength and is economical in use. Figure 1 shows a photo of

sheeting used for roof construction.

First generation sheeting is usually a rolled plate without any stiffeners. Second generation sheeting

has stiffeners in the longitudinal direction only. Third generation sheeting also has stiffeners in the

transverse direction. In this article, only first generation sheeting is investigated, although second

and third generation sheetings are widely used. The reason for this limitation is that it is important

to first understand the behaviour of the relatively simple first generation sheeting.

Next to trapezoidal sheeting, sheet sections will be introduced later in this article. Here, only their defini

tions are given (see figure 2). Trapezoidal sheeting is folded (rolled) plate with several webs and flanges.

A sheet section is a combination of one bottom flange, two webs, and two half top flanges. Constraints

are applied at the edges of the two half top flanges to let this sheet section behave like infinitely wide

sheeting. A hat section is a sheet section without constraints at the edges of the two half top flanges.
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Thus, it may behave differently from trapezoidal sheeting and sheet sections. At an interior support,

sheeting is subjected to a concentrated load F and a bending moment M as shown in figure 3.

Web Top flange

Bottom flange

Trapezoidal sheeting

Sheet section

Hat section

Fig. 2. Definitions of trapezoidal sheeting, sheet sections, and hat sections.

At this moment, design rules do not provide sufficient insight in the failure behaviour of sheeting

subjected to a concentrated load and a bending moment. To increase the insight in sheeting behav

iour, in this article new experiments are presented in section 2. The experiments show three post-

failure modes after ultimate load (a post-failure mode is a specific type of failure after ultimate

load). In section 3, three mechanical models are presented to predict the ultimate load for every

post-failure mode. The quality of the models is studied by comparing their predictions with experi

mental results (besides these models, also one very good model was developed for two post-failure

modes at the same time, see [3]). Section 4 shows how the mechanical models increase the insight in

sheeting behaviour. This by studying which mechanical model predicts the lowest load for chang

ing sheeting variables. Section 5 presents the conclusions. In general, additional information to this

article can be found in references [1,2, 3,4].

Fig. 1. Sheeting used for roofconstruction,
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Fig. 3. Longitudinal section and cross-section ofsheeting.

2 Experiments

In the experiments presented in this article, sheet sections are tested in a three-point bending test.

The sheet sections are chosen to represent the situation in practice for two aspects: the sheet section

cross-section variables (sheet section height for example) and the loading conditions (M/F ratios and

M’F/M,,”R,, (i) ratios). Both should’be similar for the experiments and the situation in practice. M,, is

the ultimate bending moment and R, the ultimate concentrated load the sheeting can bear.

All sheet sections, with their nominal values, are shown in figure 4. The variableL,~,,,, stands for the

span length, 0,, for the angle between web and flange [deg.], bbf is the bottom flange width [mm].

The variable r~stands for the bottom corner radius [mm] and Lib for the load-bearing plate width

[mm]. The sheet sections having a length of 600 mm (test ito 15) were not part of the experiments

originally. They were added later. Their aim was to be able to compare the experiments in this arti

cle (long span lengths) with the experiments of Bakker (short lengths) [5]. For the sheet sections the

iJ ratio is 0.45 to 3.60 and theM/F ratio ranges from 125 to 575 mm. In figure 5, these Mfl-ratios and
i~ ratios are shown and the experimental values do represent the situation in practice.

The experimental research uses a three-point bending test configuration to test the sheet sections.

Instead of a normal experimental set-up for three-point bending tests, an upside down set-up was

used. This set-up made it possible to investigate the deformation of the cross-section by making

castings of the inner cross-section during deformation. The test rig (mechanical properties) is shown

in figure 6. A hydraulic jack is connected to a load-bearing plate, which loads the sheet section. The

sheet section is supported by two support strips that are connected to four support rods by two sup

port bars. The support rods are connected to a rigid beam that is the base of the test rig. Strips are

fixed to the sheet section to avoid spreading of the webs and sway of the cross-section.

Bending moments

Shear forces
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Fig. 4. Experiments.

Fig. 5. Practical and experimental values.

The experiments show three different yield line patterns after ultimate load (figure 7). Before ulti

mate load, no yield lines are visible. The differences for the three yield line patterns are as follows.

Yield line pattern II shows yield lines -bold lines (a) and (b)- directly on both sides of the bottom

corners. The other two patterns show no yield lines on the bottom corner, but one yield line in the

web (a) and one in the flange (b). The third pattern is asymmetrical in the longitudinal direction.

The other two patterns are symmetrical. Every yield line pattern is accompanied by a specific load

versus web crippling deformation curve, see figure 7 at the bottom.
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Web crippling deformation Immi

Fig. Z Yield line patterns and accompanying load deformation curves.

Yield line pattern II and the accompanying load deformation curve are defined as a rolling post-fail

ure mode. This is because the yield lines at the bottom corner roll through the web and flange. Yield

line pattern I and the accompanying load deformation curve are defined as a yield arc post-failure

mode. This is because an arc-like shape develops in the web. Yield line pattern III and the accompa

Fig. 6. Test rig.

Top flange
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nying load deformation curve are defined as a yield eye post-failure mode, as an eye-like shape

develops in the bottom flange.

In figure 8, post-failure modes are shown for all tests. The character A stands for a yield arc post-

failure mode, the character “E” stands for a yield eye post failure mode. “R” stands for a rolling post-

failure mode, and “A>R” stands for a yield arc post-failure mode that is followed by a rolling post-

failure mode. Finally, “A>E” stands for a yield arc post-failure mode that is followed by a yield eye

post-failure mode.

3 Post-failure models

* More experiments in one field.

Fig. 8. Post-failure modesfor experiments.

The post-failure models are used to predict which post-failure mode occurs: all post-failure models

in this section predict the mode initiation load F1,,,. This is the intersection of curves describing elas

tic and plastic sheeting behaviour. For the yield arc and yield eye post-failure modes, load F1,,, is a

prediction for the ultimate load, see figure 9. For the rolling post-failure mode, figure 9 shows that

F1,,, is not a prediction of the ultimate load; it only predicts first plastic behaviour. The post-failure

models are not used to predict the ultimate load. For this aim, an other model has been developed
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Yield line pattern I,
yield arc post-failure mode

Mode initiation load
Ultimate load

Plastic curve

Elastic curve

Web crippling deformation [mml

Fig. 9. Mode initiation and ultimate loadsfor all three post-failure modes.

3.1 Mechanical nzodelfor the yield arc post-failure mode

Elastic behaviour

In 1995, Vaessen developed mechanical models to predict the elastic relationship between load and

web crippling deformation for sheet sections [6,7]. A part of one of his models can be used to predict

the elastic load F, on the load-bearing plate for a certain indentation of the cross-section (web crip

pling deformation Eih,,):

EI(3bbf +2b~)t~h~ 1 3 (1)
Fe = , where I = — L.lb

22 . 12~ibf ssn (8~)b~~bbf —~ribf sin(8w)J

The formula is valid for first-order elastic behaviour for a part of the sheet section (defined as modelled

cross-section), as shown in figure 10. Flange or web buckling is not taken into account.

~-‘~,~Ioad-bearing plate width

Plastic behaviour

For the yield arc post-failure mode, the plastic behaviour of the cross-section is modelled as shown

in figure 11. Making use of the principle of virtual displacements, the plastic load F~ related to the

web crippling deformation ~ is as follows:

~0
C
-t

Yield line pattern II,
rolling post-failure mode

Ul imate load

Plastic curve
Mode initiation load

~Elastic curve

Yield line pattern III,
yield eye post-failure mode

Mode initiation load

Ultimate load

~iccu~e

Elaatic curve

Fig. 10. Modelled cross-section.
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F =2-2~-1~~~_L I~_÷k_~~~_p •,jp; ~ lb~51~15 &~h~ ~

sec6~

~ (i~ ~ sec2 ~

(2)

and~+b~2cos2O~

F2= load for plastic behaviour [N].

= steel yield strength [N/mm2].

L,,= distance between yield lines [mm].

(p1 rotation yield line I [rad.].

x = substitute variable.

(4)

The factors 6tPb/ bEsh,1, and ötp2/ ödh,, are just as complex as factor &p2/~Ah,, and can be found in sec

tion 3.2 of report [2]. Distance L,2 is predicted by a method presented in section 4.3 of this report [2].

Fig. 11. Plastic behaviourfor modelled cross-section.

Intersection of elastic and plastic curves

Formulae 2, 3, and 4 can be simplified [2]. Making the simplified formulae equal to formula 1 (see

introduction section 3) yields the predicted ultimate load of the modelled cross-section. This load is

defined as F,,,:

where

( & ~ 2_(b_L)2_x2~1’ & ~

b5~—L~ 2(b~—L~)x2

(3)

/~_ (~2 - (b j~ )2 ~2

4(b~—L~)2x2

- - Load-bearing plate
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—L~)L~k+(~+~ (5)
Fcsu 2A (b~~ — ~~

E1(3bbf +2b~) (6)

‘ibf2 sin2 (Ow ~w(bbf — ~ Obf sin LOw)]

a=f~L1bt2 (7)

f3=kL~(C+BL~Xb~—L~) (8)

A =0.0624 (9)

B=—0.010l (10)

C=0.5633 (11)

Correction I of the ultimate load prediction

Figure 13 shows that not only the modelled cross-section indents during loading, but also two parts

adjacent to the modelled cross-section, over a length L~ The load needed to indent the cross-section

equals F,~, /LIb per mm. Therefore, the load needed to indent a piece with width Lbf equals F,S7Lb! /
L15. Because the indentation equals ~Xh,, at one end and zero at the other, it is estimated that only half

the load is needed. Because there are two parts, the load to deform the two parts adjacent to the

load-bearing plate, load F2~, simply equals:

Lbf (12)
F2~ = Fcsi~

The ultimate load of the modelled cross-section F,, can be corrected by adding the load F2~.

Correction 2 of the ultimate load prediction

Figure 13 shows that yield lines occur in the bottom flange of the sheet section. These yield lines dis

sipate energy, like the yield lines in the modelled cross-section. The yield lines in the bottom flange
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are shown in figure 12. For the moment, it is assumed that the bottom flange parts 1 and 3 do not

rotate relative to each other.

bottom flange, part 1

bottom flange, part 3

Fig. 12. Simple model to predict the force F,bf to deform the bottom flange.

The extra force needed to form the yield lines in the bottom flange F,lbf can be predicted as follows:

(13)
‘Pd = ‘Pe = arcsin

Lbf

1 — 1 (14)

o~z~ — 3~h~ — ~ ~2 — gLbf 2

Lbf 1i
l~

Fylbf~ (15)

The ultimate load of the modelled cross-section F,,, can be corrected by adding the load FY~bf.

Correction 3 of the ultimate load prediction

The load on the modelled cross-section F,,, equals the load acting on the load-bearing plate F plus an

extra force F1 due to indentation of the cross-section. Figure 13 illustrates this.

If the modelled cross-section deforms, yield lines develop in the bottom flange, which behave like

hinges. Besides these yield lines, compressive forces develop in the bottom flange, due to the bend

ing moment in the sheet section. These compressive forces, through the hinges, increase the force

on the modelled cross-section. This increase of force strongly depends on the section length. There

fore, this effect will be defined as ‘length effect’.
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Lspan

Fig. 13. Load at modelled cross-section F,, equals load acting on load-bearing plate F plus an extra force ~ due to

indentation of the cross—section.

First, virtual displacements are used to predict the internal and external incremental energy. During

an incremental change of the modelled cross-section indentation Llh,,, the load F acting on the sheet

section moves. Not only the distance zih,, (which is only the case for the indented cross-section) but

also for an extra displacement caused by the deflection of the sheet section. The incremental energy

can be written as follows (using figure 13):

öEeiFcsMhw (16)

( (La. an — Lib ~ (17)
öEe2=F~&~hw+öq~ p 2 JJ

SE,1 = incremental external energy cross-section only.

SE,2 = incremental external energy cross-section and sheet section deflection.

Szih,, = incremental cross-section indentation.

5q = incremental sheet section rotation.

Influences of stress on yield line energy dissipation are neglected and it is assumed that the yield

line pattern does not change geometrically during deformation. Then, because both mentioned

external energy terms should equal the incremental internal energy and internal energy is equal for

both cases, we can derive the following:

SEel SEe2 ~
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F~5~h~ = F1 ôdh~ + o~1Lspa!z — Lib ~ F = F~5~h~
2 ~ + Lspan — Lib]]

F-F -F ~— CS/ \ CS ill
~÷~_~_1 Lspan Llb

~ 3Ah~I~~ 2

f,1= length factor 1

The factor &p/Siih~, is complex and can only be predicted with complicated formulae (report [2],

Appendix 3, section 3.3). The ultimate load of the modelled cross-section F,,, is corrected by multi

plying the load with factorf~1.

Ultimate load F

The ultimate load is now found as follows:

Fu—(F~5u+F2p +Fylbf)fll (19)

Yield line distance Lbf

The distance between yield lines L~is shown in figure 13. The distance Lbf can be determined by var

ying Lbf and finding the minimum value for the ultimate load F, (see [1,2] for more information):

(20)

Lbf = /2f~t Llbbbf 2.601
l~ 4Fcsu

Summary

The ultimate load of a sheet section for the yield arc post-failure mode is predicted as follows:

Yield line distance L,, is predicted by a mechanical model presented in section 4.3 of report [2].

The ultimate load for the modelled cross-section F,,, is determined using formulae 5 to 11.

Distance Lbf is predicted by formula 20.

Load F2~ is predicted by formula 12.

Load F51~is predicted by formulae 13 to 15.

Factor f11 is calculated by formula 18.

Load F, is found by formula 19.
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3.2 Mechanical modelfor the rolling post-failure mode
Elastic behaviour

Elastic behaviour is the same for sheet sections failing by the yield arc and rolling post-failure

modes. Therefore, the formula presented in section 3.1 can be used.

Plastic behaviour

The plastic behaviour of the cross-section is modelled as shown in figure 14. Making use of the prin

ciple of virtual displacements, the plastic load F5 related to the cross-section indentation d~h,, equals:

F —2 &~a 1 ~_f’~~__~ +2 öUb 1 2 ~ +2 8~oc 2 (21)p - ~ lb lb lb

öUa — sin(O55+q~~) (22)

~ i—cos(O~ +(pc)

— sin(ew+qc) + _________ (23)
~1c0s(0w4’Pc) bwfl~1Xbsvfl

tsb — b~5fl (cosOw — cos(Ow + ~Pc ))+ ‘bf (sin 8w + ‘Pc — sin (Gw + ‘Pc); (24)wfl — l—cos(8~+’P~)

Calculating ~,as:

Ahwsin(~~ (25)

zsh~ cos(~3~}bw sin~~J

hu~= incremental movement of yield line i.

rbf— corner radius bottom flange.

~ change of web width br,.

More information can be found in the report [21, Appendix 2, section 2.3.

Intersection of elastic and plastic curves

Formulae 1 and 21 can be set equal. The solution is shown by formula 26. The variablek is given by

formula 6. 2b~~ Llb2fyt2 JO~~.(O~
— .f~rj,j 1~2) ~2

Ff55 — —k
Llb2fyr (26)

— b~5k — + b15k COs(e15)
3’bf
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Plastic behaviour

Fig. 14. Rolling post-failure mode, plastic behaviour.

Corrections of the ultimate load prediction

The corrections of the ultimate load prediction for the rolling post-failure mode are the same as for

the yield arc post-failure mode (section 3.1).

Summary

The ultimate load of a sheet section for the rolling post-failure mode is predicted as follows:

The ultimate load for the modelled cross-section F,,, is determined using formula 6 and 26.

Distance Lbf is predicted by formula 20.

Load F2~ is predicted by formula 12.

Load F515f is predicted by formulae 13 to 15.

Factorf,1 is calculated by formula 18.

Load F,, is found by formula 19.

3.3 Mechanical modelfor the yield eye post-failure mode

Elastic behaviour

Elastic behaviour is the same for sheet sections failing by the yield arc and yield eye post-failure

modes. Therefore, the formula presented in section 3.1 can be used.

Plastic behaviour

The yield eye post-failure mode has an eye-like yield line pattern located on the bottom flange (see

also section 2). In 1981, Murray and Khoo presented a paper that discussed some models to describe

the behaviour of simple yield line patterns [81. One of these patterns was called a flip-disc pattern

and has a strong geometrical similarity to the eye-like yield line pattern of the yield eye post-failure

mode. Figure 15 shows a thin-walled plate compressed by a force F~
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Negativeplastic hinge

Fig. 15. Thin-walled plate. Flip-disc pattern.

According to Murray and Khoo, the force F5f can be predicted using the following formula:

Fbf fyb~2A (27)

With:

a =O.2b.

F~ = compressive force [N].

A = ffip-disc out-of-plane deflection [mm].

b = plate width [mm].

a = flip-disc half width [mm].

= steel plate thickness [mm].

f5 = steel yield strength [N/mm2].

Intersection of elastic and plastic curves

Formula 1 describes the relationship between the concentrated load F acting on the sheet section

and the sheet section web crippling deformation Ah,,. Formula 27 defines the load F~acting on the

bottom flange needed to form a plastic mechanism for a certain flip-disc out-of-plane deflection A.

Thus, elastic and plastic formulae have different load and deformation variables. A relationship

between the load on the sheet section F and the load on the bottom flange Fbf should be developed.

Furthermore a relationship between the elastic cross-section deformation variable Ah,, and the plas

tic flip-disc deformation variable A should be developed.

Cross-section deformation versus flip-disc deformation

Figure 16 shows a possible relationship for this: for elastic behaviour, it is assumed that a certain

width adjacent to the modelled cross-section will deform like the modelled cross-section. This cer

tain width is set equal to the distance 2a between yield lines in the bottom flange during plastic

deformation. This leads to the following derivation:

323



(28)
2a 2a

A = flip-disc out-of-plane deflection [mm].

Ah~,= web crippling deformation [mm].

Load at section versus load at bottom flange

Looking at figure 16 it can be seen that the external bending moment in the section equals:

FLspan (29)
Me

= external bending moment [Nmm]

F = concentrated load of support on section [N]

L,5,,= span length [mm]

This gives the following assumptions:

‘One concentrated load F models the load of the load-bearing plate.
bThe ffip-disc occurs in the position of this concentrated load, i.e. the location of highest bending

moment.

The internal bending moment in the section can be derived as follows:

Fbf M~ Fbf
—=——s~M~= 30
bbft I~ bbfs5t

= internal bending moment [Nmm].

bbf = bottom flange width [mml.

I, = moment of inertia [ram4].

s = distance of bottom flange to centre of gravity sheet section [mml.

Because the internal and external bending moment should be equal, it can be derived that:

FLspan — Fbf ~ ~F= 4Fbf Is (31)

4 bbfs5t LspanbbfS*t
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Elastic behaviour,
side view

Start plastic behaviour,
longitudinal section (middle)

Elastic indentation of modelled
cross-section, relation F-L~h~~ is known,
elastic deformations are scaled

Fig. 16. Relationship between elastic cross-section deformation and plastic flip-disc deflection.

Intersect ion of elastic and plastic curves

Formula 28 can be substituted into formula 1 describing elastic sheet section behaviour. This results

in the following:

EI(3bbf + 2b~)2i~

ribf2 sin2 (o)bW(bbf ~ ~bf sin(Ow)) (32)

Formula 27 can be substituted into formula 31.

This results in:

(33)

Bottom flanee

Fe

F = 4FbfIs *P Lspa,jb/,fS*t
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If the elastic load F, and the plastic load F~ are set as equal, the flip-disc out-of-plane displacement

can be solved. Then the ultimate sheet section load F,, can be calculated by using the value for A into

formulae 32 or 33.

3.4 Verification of post—failure models
Experiments of section 2 are used failing by the yield arc post-failure mode. Table 1 shows the corre

lation, average, etc. for the experiments and Eurocode3 [9] predictions. Table 2 shows the experi

ments and the yield arc post-failure model predictions as presented in section 3.1.

Table 1. Eurocode3 predictions for experiments failing by the yield arc post-failure mode.

Experiments Correlation Average Standard Coefficient of
A (33) (code,exp.) (code/exp.) deviation (id.) variation (id.)

Eurocode3 0.95 0.93 0.09 0.09

Table 2. Post-failure model predictions for experiments failing by the yield arc post-failure mode.

Experiments Correlation Average Standard Coefficient of

A (33) deviation variation

Model MA1 0.70 1.32 0.36 0.27

Eurocode3 predictions are better than the post-failure model predictions. Section 4 will suggest

some differences between Eurocode3 and the models as a possible cause for the differences in per

formance.

Experiments of Bakkers thesis [5] are used that are failing by the rolling post-failure mode. Further

more, the 7 experiments of section 2 (failing by the rolling post-failure mode) are used. Table 3

shows the correlation, average, etc. for the experiments and Eurocode3 predictions. The ultimate

load of the experiments ~ is used for the comparison, not the mode initiation load F1,,,,, because

Eurocode3 predicts the ultimate load for sheet sections. In fact, almost all Bakker experiments do

not satisfy the conditions for using Eurocode3 (see thesis [1] chapter 2 for more details). However,

to have some possibilities to compare the Eurocode3 and the post-failure models, the experiments

are still used.
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Table 3. Eurocode3 predictions for experiments failing by the rolling post-failure mode.

Bakker experi- Correlation Average Standard devia- Coefficient of

ments tion variation

(28) and experi
ments section 2
(7)

Eurocode3 0.67 0.95 0.19 0.20

Table 4 shows the experiments and the rolling post-failure model as presented in section 3.2. Now,

the mode initiation load F1,,,, is used for the comparison, because the post-failure models predict the

mode initiation load.

Table 4. Post-failure model predictions for experiments failing by the rolling post-failure mode.

Bakker experi- Correlation Average Standard devia- Coefficient of
ments tion variation
(28) and experi
ments chapter 3
(7)

Model MR1 0.85 0.83 0.18 0.21

Model predictions are much better than the Eurocode3 predictions. However, Eurocode3 predicts

the ultimate load, the post-failure models predict the mode initiation load.

Experiments of section 2 are used that failed by the yield eye post-failure mode. Table 5 shows the

correlation, average, etc. for the experiments and Eurocode3 predictions. Table 6 shows the experi

ments and the yield eye post-failure model predictions as presented in section 3.3.

Table 5. Eurocode3 predictions for experiments failing by the yield eye post-failure mode.

Experiments E Correlation Average Standard Coefficient of

(7) deviation variation

Eurocode3 0.87 0.91 0.10 0.11

Table 6. Post-failure model predictions for experiments failing by the yield eye post-failure mode.

Experiments E Correlation Average Standard Coefficient of
(7) deviation variation

Model MEl 0.91 1.03 0.37 0.36

327



Both the Eurocode3 and the yield eye post-failure model predict the experimental values well. The

standard deviation of the post-failure model is significantly higher than for Eurocode3. However,

these conclusions are based on 7 experiments only.

The post-failure models presented cannot be used as design rules because their performance is less

than the current design rule Eurocode3. Another mechanical model, using the same principles, has

been developed to be a future design rule [3]. Section 4 will show that the post-failure models are

usefull to increase the insight in sheeting behaviour.

4 Post-failure modes for changing variables

In section 3, a post-failure mechanical model was presented for each post-failure mode. Now, these

three models are used for sheeting for which one variable value is changed. The mechanical model

that predicts the lowest load is regarded as predicting the post-failure mode that is occurring. Every

variable is presented in a separate section.

Section 3.4 shows that the averages of model predicted values divided by experimental values are

not equal to 1.0. However, to compare predictions of the models, the averages had to be 1.0, which

involves calibrating the models. The yield arc model predictions are divided by 1.32 (see table 2).

The rolling model predictions are divided by 0.83 (see table 4) and the yield eye model predictions

are divided by 1.03 (see table 6).

4.1 Corner radius

Experiments

Figures 4 and 8 in section 2 presented the post-failure mode for each experiment. Firstly, figures 4

and 8 indicate that for a larger corner radius (from 5 to 10 mm) a yield arc post-failure mode (A>R)

changes into a rolling post-failure mode (R) (experiments 6 and 7-13). A yield arc post-failure mode

followed by a rolling post-failure mode (A>R) was defined as a yield arc post- failure mode.

Secondly, the table indicates that a yield eye post-failure mode (E) changes into a yield arc post-fail

ure mode (A) for larger corner radii. The changes of (A>E) into (A) point in the same direction; for

small corner radii the yield arc post failure mode is still followed by a yield eye one (A>E), but for

larger corner radii only a full yield arc post-failure mode occurs (A), experiments 55, 58, 59, and 68.

Post-failure mechanical models: yield arc into rolling

The three post-failure models are used for a sheet section with the following variable values. The

corner radius rbf changes between 1 and 15 mm. Other variables are fixed; b~=100 mm, b,,=100 mm,

b~=100 mm, O,,,=90 degrees, Llb=SO mm, L,~,,=600 mm, t=0.68 mm,f5=340 N/mm2.
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Fig. 17. Model predictions for changing corner radius, yield arc model (MAI), rolling model (MRI), and yield eye

model (MEl).

Figure 17 shows the results. On the left, the model predictions are shown. It can be seen that the

yield arc model (MA1) gives the lowest values for all corner radii. Thus, it is predicted that the yield

arc post-failure mode occurs for all corner radii. However, for an increasing corner radius, model

MA1 predicts smaller distances L,,(see figure 18). For corner radii larger than 8mm, distanceL,,,

even equals to the corner radius. This is also shown in figure 18. A yield arc post-failure mode then

is quite similar to the rolling post-failure mode. This is also indicated by the curve of the rolling

model (MR1), the model for the rolling post-failure mode. This curve converges to the curve of the

yield arc model.

Figure 17 on the right shows the experimental ultimate loads of tests 6 and 7-13 (see also figure 4).

For the rolling post-failure modes (R) the experimentally found mode initiation load is used, not the

ultimate load. The same trend (for ultimate load / mode initiation values and post-failure modes) is

followed as the post-failure models indicate.

Post-failure mechanical models: yield eye into yield arc.

The three post-failure models are used for a sheet section with the following variable values. The

corner radius r~changed between 1 and 15mm. Other variables are fixed: b~,=100 mm, b,,,=100 mm,

bbflOO mm, O,,,=90 degrees, L,b=lOO mm, L,5,,,=2400 mm, t=0.68 mm,f5=340 N/mm2.

L~ [mm],,

A~

Normal yield arc Yield arc post-failure mode Rolling
post-failure mode with L,,,=rbf post-failure mode

Fig. 18. A yield arc post-failure mode with a small distance L~, is quite similar to a rolling

post-failure mode. Distance L,,, cannot be smaller than the corner radius.
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Fig. 19. Model predictions for changing corner radius II.

Figure 19 shows the results. On the left, the model predictions are shown. It can be seen that first the

yield eye model gives the lowest values, followed by the yield arc model. Thus, it is predicted that

first the yield eye post-failure mode occurs and then the yield arc post-failure mode. This is in

accordance with the experimental findings.

Figure 19 on the right shows the experimental ultimate loads of tests 55, 58, 59, and 68 (see also fig

ures 4 and 8). The same trend (for ultimate load values and post-failure modes) is followed as the

post-failure models indicate.

Behavioural insight

Figures 17 and 19 show why a specific post-failure mode occurs for a certain value of the corner

radius. However, to really understand why this is the case, it is important to know why the lines in

the figure increase, decrease, or remain the same for different corner radii.

It was shown that for an increasing corner radius, a yield arc post-failure mode changes into a roll

ing post-failure mode. This because distance L,, (figure 18) decreases for an increasing corner radius.

The mechanical model in [2], Appendix 4, section 4.3.1, explains why distanceL,, decreases. The

explanation is quite elaborate and will not be repeated here.

It was also shown that for an increasing corner radius, a yield eye post-failure mode changes into a

yield arc post-failure mode. This is explained below.

All three models predict decreasing strength for an increasing corner radius. This can be explained

because for a larger corner radius the elastic web crippling stiffness decreases. Because the ultimate

load is predicted by intersection of the elastic and plastic curve, and the plastic curves are decreas

ing, the predicted ultimate load will decrease too.

It cannot be easily determined why the strength according to the yield arc model decreases slightly

more strongly than the strength predicted by the yield eye model (the reason why for large corner

radii the yield arc post-failure occurs).
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Conclusions

Experiments show that for an increasing corner radius, a yield arc post-failure mode is followed by

a rolling post-failure mode. Furthermore, they show that a yield eye post-failure mode is followed

by a yield arc post-failure mode.

The post-failure mechanical models show that for an increasing corner radius, a yield arc post-fail

ure mode is followed by a rolling post-failure mode. This because the yield arc model predicts a

lower distance L,. Why this model predicts a lower distance L,,, is explained in [2], Appendix 4, sec

tion 4.3.1.

The post-failure mechanical models show that for an increasing corner radius, a yield eye post-fail

ure mode is followed by a yield arc post-failure mode.

4.2 Span length

Experiments

Figures 4 and 8 show often that for a larger span length (A>R) changes into (A), experiments 1, 3, 22,

and 24. This means that for a small span length a yield arc post-failure mode is followed by a rolling

post-failure mode. For a larger span length a pure yield arc post-failure mode occurs.

For even larger span lengths (A) changes into (A>E), for instance experiments 43 and 55. This means

that for larger span lengths, a pure yield arc post-failure mode changes into a yield arc post-failure

mode followed by a yield eye post-failure mode. Sometimes, a pure yield eye post-failure mode

occurs for long span lengths.

Post-failure mechanical models: rolling into yield arc

Unfortunately, it was not possible to find a set of sheet section variable values to show a change of

the rolling into a yield arc post-failure mode for increasing span length.

Post-failure mechanical models: yield arc into yield eye

The three post-failure models are used for a sheet section with the following variable values. The

span length L,5,~ is changed between 600 and 2400 mm. Other variables are fixed: b~=100 mm, r~=3

mm, b,,=100 mm, bbj=100 mm, O,,=90 degrees, LIb=lO0mm, t=0.68 mm,f5=340 N/mm2. Figure 20

shows the results. On the left, the model predictions are shown. It can be seen that first the yield arc

model (MA1) produces the lowest values, then the yield eye model (MEl). Thus, it is predicted that

for increasing span length, the yield arc post-failure mode changes into a yield eye post-failure

mode. This is in accordance with the findings of the experiments.
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