Silicon out-diffusion and aluminum in-diffusion in devices with atomic-layer deposited La2O3 thin films

Citation for published version (APA):

DOI:
10.1063/1.3025850

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Silicon out-diffusion and aluminum in-diffusion in devices with atomic-layer deposited La₂O₃ thin films

K. B. Jinesh,¹,a Y. Lamy,¹ R. A. M. Wolters,¹ J. H. Klootwijk,² E. Tois,³ F. Roozeboom,¹ and W. F. A. Besling¹
¹NXP Semiconductor Research, High Tech Campus 4, 5656 AE Eindhoven, The Netherlands
²Philips Research, High Tech Campus 4, 5656 AE Eindhoven, The Netherlands
³ASM Microchemistry Ltd., Vin Auerin Katu 12 A, FIN-00560 Helsinki, Finland

(Received 16 July 2008; accepted 23 October 2008; published online 12 November 2008)

The use of aluminum as an electrode in metal-insulator-semiconductor devices containing lanthanum oxide is impaired by unacceptable leakage current levels. Time of flight secondary ion mass spectroscopy depth profiling shows a significant amount of silicon out-diffusion from the substrate and aluminum in-diffusion towards the oxide. By using titanium nitride as the electrode, the silicon out-diffusion is suppressed, which improves the device performance. This indicates that, despite the larger coordination number of the lanthanum ions in the oxide, aluminum acts as a sink for silicon, thus driving the out-diffusion of silicon. © 2008 American Institute of Physics. [DOI: 10.1063/1.3025850]

The International Technology Roadmap for Semiconductors proposes La-based oxides as promising next generation dielectrics due to their relatively high permittivity (20–27), good electrical characteristics and potential for equivalent oxide thicknesses ≤1 nm, larger band gap (5.8–6.5 eV) compared to thermal silicon oxide, and even better thermodynamic stability than aluminum oxide. From a processing perspective as well, La₂O₃ is complementary metal-oxide-semiconductor compatible that can be deposited with various techniques such as atomic layer deposition, which gives excellent step coverage and deposition control on various topologies.

For the electrical characterization of lanthanum oxide (La₂O₃), usually metal-insulator-silicon (MIS) devices are fabricated on silicon substrates with aluminum as the top electrode. Recent studies suggest that silicon atoms diffuse outwards from the substrate through La₂O₃ towards the high-κ electrode interface. In this letter, we report on the extent of silicon out-diffusion and aluminum in-diffusion in MIS devices with La₂O₃ as an intermediate dielectric.

Thin La₂O₃ films were deposited on p-type (3–10 Ω cm) 150 mm Si (100) substrates at 300 °C in an ASM PULSAR® 2000 reactor using La(thd)₃ and ozone as precursors, as described before. The deposited film thickness was 14 nm, as determined from spectroscopic ellipsometry and transmission electron microscopy. For the electrical characterization of the devices, 500 nm of aluminum and 100 nm TiN were sputter deposited on the oxide layer, respectively, at temperatures around 100 °C to exclude the deposition process from triggering silicon out-diffusion. Al electrodes with different sputtering powers were also examined, with comparable results. The aluminum and TiN top electrodes were patterned using standard lithography and etching. Electrical measurements were done using an Agilent 4155C semiconductor parameter analyzer and an HP multi-frequency LCR meter.

Compositional depth profiles were acquired with time of flight secondary ion mass spectroscopy (TOFSIMS) with an ION-TOF-SIMS IV instrument using Cs⁺ ions as sputtering ions in negative mode (detection of negatively charged secondary ions). TOFSIMS offers the major advantage of using parallel acquisition; therefore, the entire mass spectrum can be stored during each cycle of the depth profile. Depth profiles can be subsequently reconstructed from the raw data files which allow reconstruction of a three-dimensional (3D) stoichiometric map of the layers. This is ideal for detecting unknown contaminants at buried interfaces or for studying

![TOFSIMS images of Al/La₂O₃/Si structures](https://example.com/fig1.png)

FIG. 1. (Color online) TOFSIMS images of Al/La₂O₃/Si structures: (a) silicon ion signal on the top aluminum electrode; (b) 3D view of silicon diffusing through the oxide and aluminum layers; (c) Al–La₂O₃ interface after sputtering off Al; (d) 3D La-ion mapping of the La₂O₃ layer; (e) Al-ion mapping of electrode top surface; (f) 3D Al-ion mapping of the device. The surface scan area is 70 × 70 μm² and the depth covers the thickness of the electrode (500 nm Al or 100 nm TiN) and the oxide (14 nm). Note that the thickness is not in scale with the surface area.

aAuthor to whom correspondence should be addressed. Electronic mail: k.b.jinesh@nxp.com.
many elements simultaneously. TOFSIMS depth profiling was performed.

Figure 1 shows a 3D TOFSIMS stoichiometric mapping of the as-deposited device, as constructed by successive sputter removal of the layers. Figure 1(a) shows the scan of the top Al electrode, showing the location of the silicon precipitates that appear as bright yellow spots on the top surface. Figure 1(b) shows silicon spikes protruding from the substrate through the oxide layer and into the top of the aluminum electrode. Figure 1(c) shows a La scan of the Al–La2O3 interface after sputtering off the aluminum. The interface appears to be very nonuniform. The 3D map in Fig. 1(d) shows that the Si–La2O3 interface is even rougher. Figure 1(e) shows the scan of the top aluminum electrode surface constructed from the aluminum signal. The 3D mapping of the device, reconstructed by the Al ions as shown in Fig. 1(f), demonstrates a bright top surface and a bright Al–La2O3 interface. The enhanced brightness in both areas is indicative of the presence of aluminum in oxidic form (probably Al2O3).

Figure 2 shows the TOFSIMS ion count profiles of Al, La, O, and Si ions across the Al/La2O3/Si MIS structure along the silicon spikes appearing through the oxide (Fig. 1) as a function of sputter time. Strikingly, the aluminum and silicon signals extend beyond their interface with the La2O3 layer, which shows that aluminum diffuses into the La2O3 layer and silicon diffuses from the substrate through La2O3 towards the aluminum electrode. In contrast to the earlier observations by Pan et al., the silicon atoms are not localized at the interface between Al and La2O3 but dissolve in aluminum and reach even the top electrode, forming Si precipitates on the electrode. In addition, the Al2O+ signal has a longer but steeper tail extending beyond the Al–La2O3 interface, possibly indicating the formation of Al2O3 at the interface. In addition, it is very likely that the aluminum atoms diffused into the oxide have formed lanthanum aluminate.

The TOFSIMS experiments demonstrate clearly that silicon diffuses through the La2O3 layer and 500 nm thick aluminum electrode. The Si atoms form precipitates on the aluminum surface even at room temperature. Rare-earth metal oxides, especially lanthanum oxide, have relatively larger cationic radii and larger coordination numbers in the solid compared to other metal oxides. In other words, the film is less dense compared to, say, Al2O3. This allows silicon out-diffusion from the substrate, forming lanthanum silicate in the film. The silicon spikes are not visible in the samples with the TiN top electrode, as shown in Fig. 3. This indicates that silicon out-diffusion due to the higher coordination number of La2O3 is enhanced significantly by the presence of the Al electrode on top. In a direct Si–Al contact, up to 1 at. % of silicon can be dissolved by Si out-diffusion. The relative face. In addition, it is very likely that the aluminum atoms diffused into the oxide have formed lanthanum aluminate.

The TOFSIMS experiments demonstrate clearly that silicon diffuses through the La2O3 layer and 500 nm thick aluminum electrode. The Si atoms form precipitates on the aluminum surface even at room temperature. Rare-earth metal oxides, especially lanthanum oxide, have relatively larger cationic radii and larger coordination numbers in the solid compared to other metal oxides. In other words, the film is less dense compared to, say, Al2O3. This allows silicon out-diffusion from the substrate, forming lanthanum silicate in the film. The silicon spikes are not visible in the samples with the TiN top electrode, as shown in Fig. 3. This indicates that silicon out-diffusion due to the higher coordination number of La2O3 is enhanced significantly by the presence of the Al electrode on top. In a direct Si–Al contact, up to 1 at. % of silicon can be dissolved by Si out-diffusion. The relative
Si-ion counts compared with the aluminum signal in Fig. 2 and the TiN signal in Fig. 4 show that silicon out-diffusion is significantly lower with TiN as the top electrode. Thus, the solid solubility of Si in Al acts as a sink for Si in this diffusion process, whereas this force driving the Si transport is absent for TiN. The appearance of the silicon spikes is rather surprising since the lanthanum oxide film is amorphous and therefore there should not be any preferential path for the silicon out-diffusion. As the diffusion of Si in Al will be faster along grain boundaries, it must be the grain boundaries in the aluminum electrodes that direct the silicon atoms to diffuse through specific locations.

The effects of these interdiffusions are reflected in the leakage current through the device as seen in the current density–electric field (J–E) plot shown in Fig. 5(a). Upon utilizing an aluminum electrode, the leakage current is orders of magnitude higher in comparison with the TiN electrode (at 4 MV/cm the leakage currents are 10^{-3} and 10^{-7} A/cm², respectively). Please note that the difference in leakage current is partially due to the higher work function difference between aluminum and TiN to lanthanum oxide. After a forming gas anneal (30 min at 400 °C), the Al/La₂O₃/Si device becomes very leaky and shows no breakdown anymore. Assuming Fowler–Nordheim tunneling through the oxide layer, the estimated energy barrier height between aluminum and La₂O₃ was 1 eV. This is 2.5 times lower than the theoretical value, suggesting again that the interface between aluminum and La₂O₃ is not well defined (or transformed into another material). The Weibull distributions of breakdown fields shown in Fig. 5(b) show that the breakdown is lower for the Al electrode, which is also attributed to the enhanced silicon out-diffusion in that case.

In addition, the dielectric permittivity of the La₂O₃ layer was 30% higher with TiN ($k=22.1$) than with aluminum as the top electrode ($k=17.0$). Since the interfacial silicon oxide thickness (~1 nm) is equal in both cases, the lower capacitance is caused by the formation of lower-k Al₂O₃ formation at the interface ($k\sim 8.9$), which then in series lowers the total effective capacitance of the layer.

In conclusion, we have shown that significant silicon out-diffusion and aluminum in-diffusion occur in Al/La₂O₃/Si device structures even at room temperature. With TiN as the top electrode instead of aluminum, the silicon out-diffusion is suppressed considerably. This means that despite the higher cationic radii of the oxide, the presence of aluminum on top of the oxide layer largely determines the silicon out-diffusion through the high-k oxide. A TiN electrode gives lower leakage levels and improves the total device performance, whereas usage of Al as the top electrode causes aluminum in-diffusion and silicon out-diffusion, causing severe device degradation. Moreover, we conclude that atomic interdiffusion of electrode materials chosen can severely interfere with the measurement of the dielectric breakdown voltage and the reliability of an oxide.

This work has been carried out as part of the European FP6-program “REALISE” (IST-NMP 016172).

