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Abstract
Consider a stable M/G/1 system in which, at time t = 0, there are exactly n customers
with residual service times equal to v1, v2, . . . , vn . In addition, assume that there is
an extra customer c who arrives at time t = 0 and has a service requirement of x .
The externalities which are created by c are equal to the total waiting time that others
will save if her service requirement is reduced to zero. In this work, we study the
joint distribution (parameterized by n, v1, v2, . . . , vn, x) of the externalities created
by c when the underlying service distribution is either last-come, first-served with
preemption or first-come, first-served. We start by proving a decomposition of the
externalities under the above-mentioned service disciplines. Then, this decomposition
is used to derive several other results regarding the externalities: moments, asymptotic
approximations as x → ∞, asymptotics of the tail distribution, and a functional central
limit theorem.
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1 Introduction

Consider a stable M/G/1 queue with an arrival rate λ and a service distribution G(·).
In addition, assume that at time t = 0, there are n ≥ 0 customers in the system
whose residual service times are respectively equal to v1, v2, . . . , vn . Now, assume
that there is an arrival of an additional customer with a service requirement x ≥ 0
at time t = 0. In general, we say that the externalities which are generated by this
additional customer are equal to the total amount of waiting time that others would
save if she reduced her service requirement from x to zero. Some motives for the
research about the properties of the externalities are in the context of, e.g., choice
of a management scheme [18], regulation of queues with discretionary services [22,
23] and server-allocation (scheduling) problems in multiclass queues (especially with
dynamic class types) [3, 20, 21, 29]. For an extra elaboration regarding these aspects,
see [24, Sect. 1.1].

Naturally, the externalitieswhich are created by the additional customer are stochas-
tic and the corresponding analysis relies heavily on the underlying service discipline.
In previous work [24], there is an analysis of the externalities under the assumption
that the service discipline is first-come, first-served (FCFS). The main motivation for
the current research has been to examine the externalities under a different service
discipline, viz., the last-come, first-served with preemption (LCFS-PR), and to obtain
insight into the effect of the service discipline on externalities. This is triggered by
the observation that FCFS and LCFS-PR are in some respect two extreme cases w.r.t.
externalities: In FCFS, the additional customer only affects later arrivals, whereas
in LCFS-PR she only affects the customers who are already present. To the best of
our knowledge, the only existing result under the LCFS-PR discipline is about the
expected externalities in a stationary queue [18, Theorem 2.2].

The analysis of the current work is based on a joint representation of the external-
ities under LCFS-PR and FCFS in terms of a bivariate compound Poisson process.
The arrival rate of this process is λ and its bivariate jump distribution is determined
uniquely by the primitives of the model (λ and G(·)) in a way which is to be explained
in the sequel. Notably, this decomposition is a generalization of the univariate decom-
position which was introduced in [24, Corollary 2] for the externalities under the
FCFS discipline. In order to give a formal statement of this decomposition, a precise
definition of the externalities under both LCFS-PR and FCFS disciplines should be
addressed. This is done in Sect. 2. Then, Sect. 3 is dedicated to the statement and the
proof of the decomposition result. In other sections of this work, there are various
applications of the above-mentioned decomposition:

1. In Sect. 4, the decomposition is used to derive the first and second moment
of the externalities under the LCFS-PR discipline, and the correlation with the
externalities under the FCFS discipline. In particular, the results include: (i) a gen-
eralization of [18, Theorem 2.2] and (ii) an explicit expression for the variance of
the externalities in a stationary M/M/1 LCFS-PR queue.

2. In Sect. 5, the decomposition is used to derive a first order approximation of the
externalities under LCFS-PR when x → ∞. In addition, it is applied to determine
the rate at which the externalities under FCFS tend to infinity as x → ∞.
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3. In Sect. 6, utilizing the decomposition, we study the tail asymptotics of the exter-
nalities under both LCFS-PR and FCFS. In particular, we show that if the service
times belong to a specific large subclass of the subexponential distributions, then
so do the externalities.

4. In Sect. 7, a functional central limit theorem (CLT) for the externalities under the
LCFS-PR service discipline is derived. This result is analogous to [24, Theorem
4] which states a functional CLT for the externalities under the FCFS discipline.

Finally, Sect. 8, and also Sects. 6.1 and 7.2, contain a discussion about open problems
which arise from the current research andmight be interesting to consider in the future.

2 Model description

Assume λ > 0 and G(·) a distribution function such that G(0−) = 0. In addition,
denote its LST (Laplace-Stieltjes transform) by

˜G(s) =
∫ ∞

0
e−stdG(t), s ≥ 0, (1)

and let for each m ≥ 1

μm =
∫ ∞

0
tmdG(t). (2)

In particular, assume that ρ ≡ λμ1 < 1.
Let {J (t); t ≥ 0} be a compound Poisson process with rate λ and jump distribution

G(·). Also, let v ≡ (v1, . . . , vn) be a vector with positive coordinates and v ≡ v1 +
v2 + . . . + vn . Then, define the process

Xv(t) ≡ v + J (t) − t, (3)

and denote its reflection at the origin (for more details, see, e.g., [7, Sect. 2.4]) by
Wv(t). Note that Wv(t) represents the workload process of an M/G/1 system with
strong service discipline (i.e., the order in which customers are served is not a function
of their service requirements; cf. [18]), an arrival rate λ and a service distribution
G(·) under the following assumption: At time t = 0, there are n ≥ 1 customers
c1, c2, . . . , cn such that for every 1 ≤ i ≤ n, the remaining service time of ci is
equal to vi . In addition, without loss of generality we shall assume that for every
1 ≤ i < j ≤ n, ci arrived to the queue before c j .

2.1 The externalities under LCFS-PR

Assume that the service discipline is LCFS-PRand observe that the preemption implies
that an arrival of an additional customer c with a service requirement x ≥ 0 at time
t = 0 increases the waiting times of c1, c2, . . . , cn while the waiting times of the
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customers who arrive after time t = 0 remain the same. Now, for every 0 ≤ j ≤ n
let v j = ∑ j

s=1 vs (an empty sum being zero) and observe that the additional waiting
time of ck (1 ≤ k ≤ n) due to the arrival of the additional customer at time t = 0 is
equal to

Ek(x, v) ≡ min{t ≥ 0;Wvn+x (t) = vk−1} − min{t ≥ 0;Wvn (t) = vk−1} . (4)

It is common to refer to Ek(x, v) as the externalities which are imposed on ck and
correspondingly to define the total externalities by

EL(x, v, n) ≡
n
∑

k=1

Ek(x, v). (5)

Here and in the sequel we generally suppress n when denoting externalities.

2.2 The externalities under FCFS

Assume that the service discipline is FCFS and for every i ≥ 1, let τi be the time when
J (·) has its i-th jump. Assume that an additional customer cwith a service requirement
x ≥ 0 arrives at time t = 0. Then, her arrival can only affect the waiting times of those
who arrive after time t = 0. Specifically, for every i ≥ 1, the externalities which are
imposed on the customer who arrived at τi are equal toWv+x (τi ) −Wv(τi ). Thus, the
total externalities are

EF (x, v) ≡
∞
∑

i=1

[

Wv+x (τi ) − Wv(τi )
]

, (6)

and it is instructive to notice that they depend on v only through v. A thorough analysis
of (6) is provided in [24].

3 Decomposition

Define the externalities vector

E(x, v) ≡ (EL(x, v), EF (x, v)) (7)

and note that once the vector v is fixed, then {E(x, v); x ≥ 0} is a bivariate stochastic
process. In Sect. 3.1we present a decomposition of this process in terms of a compound
Poisson process; cf. Theorem 1. In Sect. 3.2 we briefly discuss such a decomposition
for non-preemptive LCFS.
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3.1 LCFS-PR and FCFS

Consider a FCFS M/G/1 queue with an arrival rate λ and a service distribution G(·)
which is empty at t = 0. Let B be the length of the first busy period and let N be the
number of customers who received service during this period. The LST of its joint
distribution is given on p. 250 of [5]; see also Formula (28) below. Additionally, let
w j ≡ v − v j−1 for every 1 ≤ j ≤ n.

Theorem 1 In the probability space of the model, there exists a bivariate compound
Poisson process S ≡ (S1, S2) with rate λ and jumps which are distributed like the
vector (B, N ) such that the equations ((8)), (9) and ((10)) below hold pointwise:

1. For each 1 ≤ k ≤ n,

Ek(x, v) = x + S1(x + wk) − S1(wk), x ≥ 0, (8)

and hence

EL(x, v) = nx +
n
∑

k=1

[S1(x + wk) − S1(wk)] , x ≥ 0. (9)

2.

EF (x, v) =
∫ x

0
S2(v + y)dy, x ≥ 0. (10)

Remark 1 Assume that the initial workload is v+x . In addition, consider the customers
whose arrival times determine the descending ladder process (of the workload). Due
to the strong Markov property of the workload process, each of these customers ini-
tiates a busy period which ends when the workload level returns to its original level
(the level just before the first arrival epoch of that busy period). For each of these
busy periods we may compute: (i) The length of the busy period and (ii) the number
of customers who arrive until it ends. Since these busy periods are independent, the
resulting bivariate random vectors are independent. Furthermore, standard properties
of the Poisson process imply that the number of customers whose arrival times deter-
mine the descending ladder process has a Poisson distribution with rate λ(v + x) and
it is independent of the busy periods initialized by these customers. Thus, the sum
of the bivariate random vectors has a bivariate compound Poisson distribution. This
observation is the basis of the construction of S = (S1, S2). In [24], it was shown that
EF (x, v) is determined uniquely by S2(·) via the integral (10). Here, we complete the
picture by expressing EL(x, v) as a functional of S1(·). Remarkably, the statement of
Theorem 1 is about a joint decomposition of E(x, v) as a functional of S(·). We will
demonstrate the additional value of having this joint decomposition by computing the
cross covariance (and correlation) of EL(x, v) and EF (x, v) in Sect. 4.2. In particular,
this computation reveals that the coordinates of E(x, v) are positively correlated, and
quite strongly correlated in heavy traffic. This is not surprising in view of the fact that
the number of customers and the length of each busy period in an M/G/1 queue are
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Time

Workload

v

v + x

T1 U1 T2 U2 T3 U3 θv+x(v)

Fig. 1 The blue graph illustrates a path of the workload process from level v + x to the lower level v. Note
thatU1 − T1,U2 − T2 andU3 − T3 are three iid random variables which are distributed like B. In addition,
observe that x = (v + x) − v = T1 + T2 −U1 + T3 −U2 + θv+x (v) −U3 (Color figure online)

positively dependent. Furthermore, in Sects. 6 and 7 we mention two open problems
for which we suspect that the joint decomposition in Theorem 1 might be useful in
their solutions.

Remark 2 Note that the stationary increments of the compound Poisson process imply
that for every x ≥ 0 and 1 ≤ k ≤ n,

Ek(x, v)
d= x + S1(x). (11)

Notably, the distribution of the right-hand side is invariant with respect to v and k,
which is a bit surprising. In practice, this means that when the service discipline is
LCFS-PR, then for every 1 ≤ k ≤ n, the distribution of the externalities which are
imposed on ck is invariant with respect to: (i) the vector of the remaining service times
v and (ii) the place k of ck in the order of service.

Remark 3 In [24] it is observed that for fixed v the externalities process x �→ EF (x, v)
is an integral of a nondecreasing right-continuous process and hence it is convex. An
open problem that is discussed there concerns the characterization of the set of service
disciplines for which the externalities process is convex. Notably, LCFS-PR does not
belong to this set: The sample paths of x �→ EL(x, v) are composed of a positive drift
and positive jumps, such that x �→ EL(x, v) is neither convex nor concave in x .

Proof (Theorem 1) Fix v and let T1 equal τ1, the time of the first jump of the pro-
cess J (·). Under LCFS-PR, this arrival interrupts the service of one of the customers
present at time 0, whose service is resumed once the workload process is back at level
Xvn+x (T1), a time which we denote byU1. Now, let T2 be the time of the first jump of
the process J (·) after U1, and U2 the first time after T2 the process Xvn+x (·) is back
at level Xvn+x (T2). We may continue recursively with this construction, yielding the
sequences (Ti )i≥1 and (Ui )i≥1. An illustration of these sequences for a single sample
path of J (·) is given in Fig. 1.

Let U0 ≡ 0 and, for each i ≥ 1, Ii ≡ Ti − Ui−1. Note that I1, I2, . . . is an
iid sequence of exponentially distributed random variables with rate λ. Furthermore,
define for each i ≥ 1

Bi ≡ Ui − Ti , Ni ≡ |{Ti ≤ t ≤ Ui ; J (t) − J (t−) > 0}| , (12)
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and observe that (B1, N1), (B2, N2), . . . are iid bivariate random vectors with the dis-
tribution of (B, N ). Importantly, the sequences I1, I2, . . . and (B1, N1), (B2, N2), . . .

are independent, and hence may be used to construct a bivariate compound Poisson
process. Specifically, with

Nλ(t) = min
{

k ≥ 1;
k
∑

i=1

Ii > t
}

− 1 , t ≥ 0

a Poisson process with rate λ, we consider the bivariate process

S(t) ≡ (S1(t), S2(t)) ≡
Nλ(t)
∑

i=1

(Bi , Ni ) , t ≥ 0 . (13)

Let

θv(y) ≡ min{t ≥ 0; Xv(t) = y}, y > 0, (14)

and observe that

Ek(x, v) = θvn+x (vk−1) − θvn+x (vk−1 + x). (15)

In addition, for every 0 ≤ y ≤ v,

θv(y) = min{t ≥ 0; Xv−y(t) = 0} = v − y + S1(v − y), (16)

and hence by combining (15) and (16), deduce (8). Finally, [24, Corollary 2] implies
(10). �	

3.2 Non-preemptive LCFS

One may wonder why we did not include the non-preemptive LCFS (LCFS-NP) in
the decomposition which was stated in Theorem 1. The reason is that there exist
some crucial differences between LCFS-PR and LCFS-NP. In order to explain these
differences, we also provide a concrete example with a pictorial illustration in Fig. 2.

Consider an M/G/1 queue under the LCFS-NP discipline, and recall that for every
1 ≤ i < j ≤ n, ci arrived to the queue before c j . Then, cn was not preempted by the
additional customer c who arrives at t = 0 with a service requirement x ≥ 0. Thus,
the externalities which were imposed on cn by c equal zero. In addition, for every
1 ≤ k < n, there were no interruptions during the service period of ck . Therefore, the
externalities which were imposed on ck by c equal

min{t ≥ 0;Wvn+x (t) = vk} − min{t ≥ 0;Wvn (t) = vk} = Ek+1(x, v). (17)

While this is in line with the decomposition (8), now a big difference is showing up:
Unlike in the case of the LCFS-PR discipline, under LCFS-NP the additional customer
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might influence the waiting times of the customers who arrived after time t = 0 and
the computation of the externalities for these customers is very complicated. This
is mainly because their waiting times might be affected by the customer who was
in the service position when they arrived. In fact, externalities could be negative for
LCFS-NP.

To demonstrate the possibility of having negative externalities, consider a LCFS-
NP M/G/1 queue with n = 2, v1 = 3 and v2 = 2, to which an additional customer c
with service requirement x arrives. In addition, assume that there is a customer ĉ who
arrived at t = 2.5, and that besides him, no one else arrived during the time interval
(0, 5]. If x = 1, the service of ĉ would have been initiated at t = 3. If x = 0, the
service of ĉ would have been initiated at t = 5. For convenience, we also provide a
graphical illustration of the timelines under both scenarios (x = 1 versus x = 0) in
Fig. 2 below.

4 Themoments of E(x, v)
When v is fixed, the moments of EF (·, v) are given in [24, Sect. 4]. If v is a random
vector which is independent of the arrival process and the service demands of the cus-
tomers, then the moments of EF (·, v) are given in [24, Sect. 7]. In Sect. 4.1 we analyse
the first two moments of EL(·, v) and in Sect. 4.2 the joint moment of the coordinates
of E(x, v). A mean-variance analysis for LCFS-PR is performed in Sect. 4.3. Initially,
v is assumed to be fixed, but this assumption is relaxed in Sect. 4.4.

4.1 Mean and auto-covariance of EL(·, v)

It is well-known (cf. [5], Sect. II.4.4) that

EB = μ1

1 − ρ
, EB2 = μ2

(1 − ρ)3
. (18)

t

t

0 2 5 6

0 2 3 4 7

2.5
x = 0:

x = 1:

c2 c1 ĉ

c2 c ĉ c1

Fig. 2 Comparison between two timelines representing the service periods of customers under different
service requirements (x = 1 versus x = 0) of the customer c who arrives at time t = 0. In both timelines it
is assumed that upon arrival of c there are only two customers (c1 and c2) with service requirements which
are respectively given by v1 = 3 and v2 = 2. Also, it is assumed that there is only one customer ĉ who
arrives during the time interval (0, 5]
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Thus, (11) implies that

EEL(x, v)

n
= EE1(x, v) (19)

= x + ES1(x)

= x(1 + λEB) = x

1 − ρ
.

Also, a standard calculation yields that

Cov (S1(t1), S1(t2)) = λEB2 min{t1, t2} (20)

= λμ2 min{t1, t2}
(1 − ρ)3

, t1, t2 ≥ 0,

and for simplicity of notations write

σ 2(u) ≡ Var (S1(u)) = λμ2u

(1 − ρ)3
, u ≥ 0. (21)

Therefore, for every 1 ≤ k, l ≤ n and x1, x2 ≥ 0 deduce that

Rk,l(x1, x1 + x2) ≡ Cov
(

Ek(x1, v), El(x1 + x2, v)
)

(22)

=
{

σ 2(x1+wk) − σ 2(min{x1+wk, wl}), wk ≤ wl

σ 2(x1+min{wk, x2+wl}) − σ 2(min{wk, x1+x2+wl}), wk > wl
,

= λμ2

(1 − ρ)3

{

(x1 + wk − wl)
+, k ≥ l

(x1 − (x2 + wl − wk)
−)+, k < l

,

where we have used the standard notations u+ ≡ max{u, 0} and u− ≡ max{−u, 0}.
As a result, this formula implies that

Rv(x1, x1 + x2) ≡ Cov (EL(x1, v), EL(x1 + x2, v)) (23)

=
n
∑

k=1

Rk,k(x1, x1 + x2) +
n
∑

k,l=1;k 
=l

Rk,l(x1, x1 + x2)

= nx1λμ2

(1 − ρ)3
+

n
∑

k=2

k−1
∑

l=1

(

Rk,l(x1, x1+x2) + Rl,k(x1, x1+x2)
)

= λμ2

(1 − ρ)3

[

nx1 +
n
∑

k=2

k−1
∑

l=1

(

(x1 + wk − wl)
+ + (x1 − (x2 + wk − wl)

−)+
)

]

= λμ2

(1 − ρ)3

[

nx1 +
n
∑

k=2

k−1
∑

l=1

(

(x1−vl,k)
+ + (x1 − (x2−vl,k)

−)+
)

]

,
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where

vl,k ≡ wl − wk =
k−1
∑

i=1

vi −
l−1
∑

i=1

vi , 1 ≤ l, k ≤ n. (24)

For future reference, we mention that taking x2 = 0 in (23) gives

Var [EL(x, v)] = λμ2

(1 − ρ)3

⎡

⎣nx + 2
∑

1≤l<k≤n

(x − vl,k)
+
⎤

⎦ . (25)

Remark 4 Observe that Rv(x1, x1 + x2) is positive whenever x1 > 0.

Remark 5 The auto-correlation function of Ek(·, v) is easily seen to equal

Rk,k(x1, x1 + x2)
√

Rk,k(x1, x1)Rk,k(x1 + x2, x1 + x2)
=
√

x1
x1 + x2

.

Notably, this expression is invariant with respect to the parameters of the model, i.e.,
the arrival rate and the service distribution. The auto-correlation function of the total
externalities satisfies the same invariance. The auto-correlation function of EF (x, v)
has the same property (see, [24, Eq. (33)]).

4.2 Cross-covariance of EL(·, v) and EF(·, v)

We first mention two results from [24]:

EEF (x, v) = λx
(

v + x

2

)

EN = λx
(

v + x

2

) 1

1 − ρ
, (26)

Var[EF (x, v)] = λx2
(

v + x

3

)

EN 2 = λx2
(

v + x

3

) λ2μ2 + 1 − ρ2

(1 − ρ)3
. (27)

Next consider the joint distribution of the length B of an M/G/1 busy period and the
number of customers N served in it. It is well-known (cf. p. 250 of [5]) that for every
α, β ≥ 0,

φ(α, β) ≡ Ee−αN−βB = e−α
˜G {β + λ [1 − φ(α, β)]} . (28)

Observe that

d˜G(β+λ(1−y))

dy
= λ

∫ ∞

0
te−βt−λ(1−y)tdB(t) . (29)
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Therefore, differentiating both sides of (28) once with respect to β, then with respect
to α and taking both α and β equal to zero yields

EBN = 1

(1 − ρ)3

(

(1 − ρ)μ1 + λμ2
)

. (30)

In addition, observe that for every u, y > 0,

c(u, y) ≡ ES1(u)S2(y) (31)

= E

Nλ(u∧y)
∑

i=1

Bi Ni + E

Nλ(u)
∑

i=1

Nλ(y)
∑

j=1; j 
=i

Bi N j

= λ(u ∧ y)EBN +
(

ENλ(u ∧ y)
(

Nλ(u ∨ y)−1
)

)

EBEN

= λ(u ∧ y)EBN + λ2uyEBEN .

The last step follows from the fact that, for 0 ≤ t1 ≤ t2 < ∞,

E [Nλ(t1) (Nλ(t2) − 1)] = E[Nλ(t1)
2] + E[Nλ(t1)]E[Nλ(t2 − t1)] − E[Nλ(t1)] .

Therefore, using (26) in the third step below,

Cov (EL(x, v), EF (x, v)) (32)

=
n
∑

k=1

{

v+x
∫

v

(

c(x+wk, y) − c(wk, y)
)

dy
}

− nλxEBEEF (x, v)

=
n
∑

k=1

{

λEBN

v+x
∫

v

(

(y−wk)∧x
)

dy + λ2x2
(

v+ x

2

)

EBEN
}

− nρx

1−ρ
EEF (x, v)

= (1−ρ)ρ+λ2μ2

(1−ρ)3

n
∑

k=1

v+x
∫

v

(

(y−wk)∧x
)

dy

= (1−ρ)ρ+λ2μ2

(1−ρ)3

{

nx2− 1

2

n
∑

k=1

((x− (v−wk))
+)2
}

.

Together with the expression (27) for the variance of EF (x, v) this directly yields that

Corr(EL(x, v), EF (x, v)) (33)

=
(

(1−ρ)μ1+λμ2
)

{

nx2− 1
2

∑n
k=1((x− (v−wk))

+)2
}

x
√

μ2(1+λ2μ2−ρ2)(v+ x
3 )(nx + 2

∑

1≤l<k≤n(x−vl,k)+)
,
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which is easily seen to be positive. In particular, denote the variance of the service
distribution by σ 2 and observe that

lim
x→∞Corr(EL(x, v), EF (x, v)) =

√
3

2

(1−ρ)μ1+λμ2
√

μ2(1+λ2μ2−ρ2)
(34)

=
√
3

2

μ1+λσ 2
√

(μ1+λσ 2)2+(1−ρ)2σ 2
,

which is bounded from above by
√
3/2 (the value that is attained in heavy traffic).

Note that the positive correlation between the externalities processes is due to their
bivariate decomposition in terms of a compound Poisson process with jumps which
are distributed like (B, N ).

4.3 Mean-variance analysis

Fix x > 0, some positive integer n, and set V (v; x, n) ≡ Var [EL(x, v)]. Recall that
(19) implies that the mean of EL(x, v) is determined uniquely by the parameters x
and n (which is the length of v). This motivates the following natural question: Given
fixed values of x and n, what are the extreme values for the variance of EL(x, v)?

Corollary 1 For every x and n,

min
v

V (v; x, n) = nxλμ2

(1 − ρ)3
, max

v
V (v; x, n) = n2xλμ2

(1 − ρ)3
. (35)

Proof Observe that V (v; x, n), given by (25), is determined uniquely by
v1, v2, . . . , vn−1, i.e., it is invariant with respect to the value of vn . Furthermore,
V (·; x, n) is decreasing in each of the coordinates v1, v2, . . . , vn−1. This immediately
yields the result. �	
Remark 6 The current discussion resembles the situation in the classical mean-
variance analysis in which the aim is to decompose a portfolio with minimal variance
under the constraint that the expected return is fixed (see, e.g., [30]).

Remark 7 Note that for every n > 1 and v > 0,

V (v; x, 1) = xλμ2

(1 − ρ)3
<

n2xλμ2

(1 − ρ)3
= V (0, 0, . . . , 0, v; x, n). (36)

This means that gradual reduction of the remaining service times of the customers
towards zero does not have the same effect as removing these customers from the
system. In particular, Corollary 1 implies that by reducing the remaining service times
of c1, c2, . . . , cn−1 to be arbitrarily close to zero, the variance of the total externalities
becomes arbitrarily close to its maximum. However, it is important to notice that once
the remaining service times of customers are elapsed, they leave the system. Thus,
in that sense the maximum which appears in the statement of Corollary 1 should be
considered as a supremum.
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4.4 Random initial condition

Assume that the vector v is a random vector with a random size M such that v is
independent of all other stochastic objects of the model. An application of (19) with
proper conditioning implies that

EEL(x, v) = E
Mx

1 − ρ
= xEM

1 − ρ
. (37)

In addition, observe that for every x1, x2 ≥ 0:

Cov
(

E

[

EL(x1, v)
∣

∣

∣ v
]

,E
[

EL(x1 + x2, v)
∣

∣

∣ v
])

(38)

= Cov
(Mx1
1−ρ

,
M(x1 + x2)

1−ρ

)

= x1(x1 + x2)Var(M)

(1 − ρ)2
.

Therefore, a proper conditioning with the help of (23) and the law of total covariance
yields that

Cov
(

EL(x1, v), EL(x1 + x2, v)
)

= x1(x1 + x2)Var(M)

(1 − ρ)2

+ λμ2

(1 − ρ)3

{

x1EM + E

[
M
∑

k=2

k−1
∑

l=1

(

(x1−vl,k)
+ + (x1−(x2−vl,k)

−)+
)]

}

.

Especially, by setting x1 = x ≥ 0 and x2 = 0, deduce that:

Var
[EL(x, v)

] = x2Var(M)

(1 − ρ)2
+ λμ2

(1 − ρ)3

⎧

⎨

⎩

xEM + 2E
∑

1≤l<k≤M

(x−vl,k)
+
⎫

⎬

⎭

.

(39)

Moreover, observe that for every x ≥ 0,

Cov
(

E

[

EL(x, v)
∣

∣

∣ v
]

,E
[

EF (x, v)
∣

∣

∣ v
])

= Cov
( Mx

1−ρ
,

λx

1−ρ

(

v + x

2

)

)

= λx2

(1 − ρ)2
Cov(M, v) ,

and hence the law of total variance can be used to find that

Cov (EL(x, v), EF (x, v))
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= λx2

(1 − ρ)2
Cov(M, v) + (1−ρ)ρ+λ2μ2

(1−ρ)3

{

x2EM − 1

2
E

M
∑

k=1

((wk + x − v)+)2
}

.

4.4.1 The stationary distribution as an initial condition

Assume that v is distributed according to the stationary distribution of the remaining
service times and the queue length under LCFS-PR. By applying [26, Corollary 1]
and PASTA, this distribution is as follows:

1. M is a geometric random variable, i.e.,

P {M = m} = (1 − ρ)ρm, m ≥ 0. (40)

2. For every m ≥ 1, (v1, v2, . . . , vm)|{M = m} is a random vector with iid coor-
dinates such that v1 is distributed according to the residual time distribution of
G(·).

Consequently, (37) implies that

EEL(x, v) = xEM

1 − ρ
= xρ

(1 − ρ)2
(41)

which yields a new derivation for [18, Theorem 2.2]. Also, (39) yields the following
result.

Proposition 1 If the service distribution is exponential with rate ν such that λ
ν

< 1,
then the variance of the externalities in the stationary LCFS-PRM/G/1 queue is equal
to

xρ

(1−ρ)4
(x+λμ2) + 2μ2λρ

2

(1−ρ)5

[

x + μ1

1−ρ

(

e−(1−ρ)x/μ1−1
)

]

. (42)

Proof For each i ≥ 1, let Xi be a random variable which is distributed according to

Fi (u) ≡ 1 −
i−1
∑

j=0

e−νu(νu) j

j ! , u ≥ 0, (43)

i.e., an Erlang distribution with shape i and rate ν. Then, conditioning on M yields:

E

∑

1≤l<k≤M

(x − vl,k)
+ =

∞
∑

m=2

(1 − ρ)ρm
∑

1≤l<k≤m

E
[

(x−vl,k)
+|M = m

]

=
∞
∑

m=2

(1 − ρ)ρm
∑

1≤l<k≤m

{

xP {Xk−l < x} − EXk−l1{Xk−l < x}
}

123



Queueing Systems (2023) 104:239–267 253

=
∞
∑

m=2

(1 − ρ)ρm
m−1
∑

i=1

(m − i)

{

xP {Xi < x} − EXi1{Xi < x}
}

=
∞
∑

m=2

(1 − ρ)ρm
m−1
∑

i=1

(m − i)

{

xFi (x) −
∫ x

0

νi ui e−νu

(i−1)! du

}

=
∞
∑

m=2

(1 − ρ)ρm
m−1
∑

i=1

(m − i)

{

xFi (x) − i

ν
Fi+1(x)

}

= (1 − ρ)

∞
∑

i=1

∞
∑

j=1

jρi+ j
{

xFi (x) − i

ν
Fi+1(x)

}

= 1

(1 − ρ)

∞
∑

i=1

ρi+1
{

xFi (x) − i

ν
Fi+1(x)

}

= 1

(1 − ρ)

∞
∑

i=1

ρi
{

ρxFi (x) − (i − 1)

ν
Fi (x)

}

. (44)

It is well-known that a compound geometric distribution with a probability of success
p and an exponential distribution with rate ν is an exponential distribution with rate
pν, and hence

∞
∑

i=1

ρi Fi (x) = ρ

1 − ρ

∞
∑

i=1

(1 − ρ)ρi−1Fi (x) = ρ

1 − ρ

(

1 − e−(1−ρ)νx) .

This identity may also be used to obtain that

∞
∑

i=1

iρi Fi (x) = ρ
d

dρ

( ∞
∑

i=1

ρi Fi (x)

)

= ρ
d

dρ

(

ρ

1 − ρ

(

1 − e−(1−ρ)νx)
)

= ρ

(1 − ρ)2

(

1 − e−(1−ρ)νx)− ρ2νx

1 − ρ
e−(1−ρ)νx .

Thus, the expression in (44) equals

ρ2

ν(1 − ρ)3

{

e−(1−ρ)νx − 1 + xν(1 − ρ)
}

.

Insertion of this formula into (39) yields the desired result. �	
Remark 8 The variance of the externalities is very sensitive to a high traffic load.
Concretely, notice that

x + μ1

1−ρ

(

e−(1−ρ)x/μ1−1
)

=
∞
∑

k=1

(−x)k+1

(k + 1)!μk
1

(1 − ρ)k
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and hence Var
[EL(x, v)

]

is of the order (1 − ρ)−4 as ρ ↑ 1.

5 Rates of increase

Note that x �→ EL(x, v) (resp. x �→ EF (x, v)) is representing the evolution of the
externalities generated by the additional customer as a function of her service require-
ment under the LCFS-PR (resp. FCFS) discipline. By definition, under both of these
service disciplines, the corresponding externalities processes are nondecreasing. The-
orem2 below includes some approximations of these processes as x ↑ ∞. Specifically,
it asserts that the externalities process under LCFS-PR is approximated by an increas-
ing linear function while its analogue under FCFS is approximated by an increasing
quadratic function. An intuitive explanation for the difference is as follows: The mean
number of customers who are affected by the additional customer under LCFS-PR is
fixed in x while under FCFS this number is linear in x .More results about the externali-
ties process under FCFS in anM/G/1 setup appear in [24]. For an additional discussion
about externalities processes in the context of spectrally-positive Lévy queues, see [15,
Sect. 4].

Theorem 2 For every v (with nonnegative coordinates whose sum is positive), the
following statements hold with probability one:

1.

EL(x, v) ∼ x

1 − ρ
as x → ∞. (45)

2.

λ

4(1 − ρ)
≤ lim

x→∞ inf
EF (x; v)

x2
≤ lim

x→∞ sup
EF (x; v)

x2
≤ λ

(1 − ρ)
. (46)

Remark 9 Note that Theorem 2 states that x �→ EL(x, v) (resp. x �→ EF (x, v))
increases at the same rate in which x �→ EEL(x, v) (resp. x �→ EEF (x, v)) increases
(see (19) and also [24, Eq. (28)]).

Remark 10 It is important to notice that the rate which is stated in (45) and the bounds
on the rate which are given in (46) are all uniform in v. Since EEL(x, v) is invariant
with respect to v (see (19)), it is not surprising that v has no effect on the first order
approximation of x �→ EL(x, v) as x → ∞. However, [24, Eq. (28)] implies that v
influences EEF (x, v) and hence we suspect that the bounds in (46) are sub-optimal.

Remark 11 Theorem 2 implies that

sup {x ≥ 0; EL(x, v) ≥ EF (x, v)} (47)

is finite with probability one.
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Proof (Theorem 2) Consider some x > 0 and observe that for each 1 ≤ k ≤ n,
Theorem 1 and the renewal reward theorem imply that with probability one:

Ek(x, v)

x
= 1 + S1(x + wk) − S1(wk)

x
(48)

= 1 + x−1
Nλ(x+wk )
∑

i=Nλ(wk )+1

Bi

= 1 + x−1
Nλ(x+wk )−Nλ(wk )

∑

i=1

Bi+Nλ(wk )

x→∞−−−→ 1 +
μ1
1−ρ

1/λ
= 1

1 − ρ
. (49)

This yields (45) via summation over k.
In addition, observe that Theorem 1 and the renewal reward theorem might be

applied once again in order to deduce that with probability one:

EF (x, v)

x2
= x−2

∫ x

0
S2(v + y)dy (50)

≤ x−1S2(v + x)

= x + v

x
· 1

x + v

Nλ(v+x)
∑

i=1

Ni
x→∞−−−→

1
1−ρ

1/λ
= λ

1 − ρ
.

In a similar fashion, deduce that for every α ∈ (0, 1) with probability one:

EF (x, v)

x2
= x−2

∫ x

0
S2(v + y)dy (51)

≥ x−2
∫ x

αx
S2(v + y)dy

≥ (1 − α)(v + αx)

x
· 1

v + αx
S2(v + αx)

x→∞−−−→ α(1 − α) ·
1

1−ρ

1/λ
= α(1 − α)λ

1 − ρ
.

Finally, an insertion of α = 1
2 completes the proof. �	

6 Tail asymptotics

Our goal in this section is to determine the tail behavior of EL(x, v) and EF (x, v) in the
case of heavy-tailed service times. Consider x > 0 and for every distribution function
F(·), let F ≡ 1− F . In addition, denote by � a convolution between two distribution

123



256 Queueing Systems (2023) 104:239–267

functions. In this section, we assume that G(·) is subexponential, i.e.,

G�G(u) ∼ 2G(u) as u → ∞. (52)

We have already seen that theM/G/1 busy period length B plays a key role in EL(x, v),
and that the corresponding number of customers N in that busy period plays a key role
in EF (x, v). In the literature it was first shown [8] for the M/G/1 queue with regularly
varying service times (a subclass of the class of subexponential distributions) that

P {B > u} ∼ 1

1 − ρ
G [u(1 − ρ)] as u → ∞. (53)

Exactly the same result was subsequently derived for the larger classes of intermediate
regularly varying service times [34] and of service times with a tail that is heavier than
e−√

u ; see [25] and finally [2]. An explanation why it is impossible to get (53) when
G(u) is lighter than e−√

u as u → ∞ can be found in [1, Sect. 6.2].
More or less equivalently, very similar conditions (basically either intermediate regular
variation or a tail heavier than e−√

u , and somemoment conditions) have been provided
[9, 10] under which

P {N > u} ∼ 1

1 − ρ
G

[

u(1 − ρ)

λ

]

as u → ∞. (54)

The precise conditions for both formulas to hold are rather delicate; for details we
refer to Theorem 1.2 of [2] (for B) and Proposition 3.2 of [9] (for N ). In the remainder
of this section we assume that these conditions are satisfied, so that (53) and (54) hold.
For clarity, the statements of the main results (Theorems 3 and 4) appear in Sect. 6.1
while the proofs are included in Sect. 6.2.

6.1 Results and some open problems

6.1.1 LCFS-PR

Assume that v = (v1, v2, . . . , vn) is such that vi > 0 for every 1 ≤ i ≤ n. For the
statement of the upcoming Theorem 3, we introduce the set D ≡ {w1, . . . , wn} ∪
{w1 + x, . . . , wn + x} and its cardinality d ≡ |D|. Also, let w̃1 < w̃2 < . . . < w̃d be
the elements of D in an increasing order and for each 1 ≤ j ≤ d − 1, let q j be the
number of k’s (1 ≤ k ≤ n) such that

[

w̃ j , w̃ j+1
] ⊆ [wk, wk + x], i.e.,

q j ≡ ∣∣{1 ≤ k ≤ n;wk ≤ w̃ j , w̃ j+1 ≤ wk + x
}∣

∣ . (55)

Respectively, let J ≡ {

1 ≤ j ≤ d − 1; q j > 0
}

, which is a non-empty set. To see
that, if 1 ≤ j ≤ d − 1 and w̃ j = wk for some 1 ≤ k ≤ n, then w̃ j+1 ≤ wk + x and
hence

[

w̃ j , w̃ j+1
] ⊆ [wk, wk + x] which implies that q j ≥ 1.

Theorem 3 Assume that (53) holds. Then:
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1. For each 1 ≤ k ≤ n, Ek(x, v) has a subexponential distribution such that

P {Ek(x, v) > u} ∼ λx

1 − ρ
G [u(1 − ρ)] as u → ∞. (56)

2. EL(x, v) has a subexponential distribution such that

P {EL(x, v) > u} ∼ λ

1 − ρ

∑

j∈J
(w̃ j+1 − w̃ j )G

[

u(1 − ρ)

q j

]

as u → ∞. (57)

Remark 12 Since G(·) is nonincreasing, (57) implies that

P {EL(x, v) > u} = �

{

G

[

u(1 − ρ)

max
{

q j ; j ∈ J }
]}

as u → ∞. (58)

This means that as u → ∞, P {EL(x, v) > u} vanishes at the same rate (up to a

multiplicative constant) that G
[

u(1−ρ)

max{q j ; j∈J }
]

tends to zero.

Remark 13 Observe that EL(x, v) = ∑n
k=1 Ek(x, v) is a sum of dependent random

variables. There is an extensive literature about the tail asymptotics of sums of depen-
dent random variables, e.g., [14, 19, 32, 33] and the references therein. Having said
that, we are not aware of any existing result which might be useful in order to prove
Theorem 3.

6.1.2 FCFS

The analogue of Theorem 3 for the externalities under the FCFS discipline is the
following Theorem 4.

Theorem 4 Assume that (54) holds. In addition, let

ω1 ≡
∫ 1

0
lim inf
u→∞

G(u/y)

G(u)
dy, ω2 ≡

∫ 1

0
lim sup
u→∞

G(u/y)

G(u)
dy. (59)

Then EF (x, v) has a subexponential distribution such that

λ (v + xω1)

(1 − ρ)
≤ lim inf

u→∞
P {EF (x, v) > ux}

G
[

ux(1−ρ)
λ

] (60)

≤ lim sup
u→∞

P {EF (x, v) > ux}
G
[

ux(1−ρ)
λ

] ≤ λ (v + xω2)

(1 − ρ)
.
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Remark 14 There are cases in which ω1 = ω2. In such cases, Theorem 4 yields a first
order approximation of the tail distribution of EF (x, v). For example, when G(·) is
regularly varying, i.e.,

G(u) ∼ L(u)u−α as u → ∞ (61)

for some α > 0 and L : (0,∞) → (0,∞) such that L(uy) ∼ L(u) as u → ∞ for
every y > 0 (i.e., L(·) is slowly varying at infinity). In that case, standard calculations
yield that ω1 = ω2 = 1

1+α
.

6.1.3 Open problem: Is E(x, v) bivariate regularly varying?

Theorems 3 and 4 include certain conditions on heavy-tailedG(·) underwhich the (uni-
variate) tail distributions of EL(x, v) and EF (x, v) are just as heavy as G(·). It would
be interesting to also study the bivariate tail asymptotics of (EL(x, v), EF (x, v)). For
example, assume thatG(·) is regularly varying; does it imply that the joint distribution
of (EL(x, v), EF (x, v)) is also regularly varying? For details about regularly varying
random vectors, see, e.g., [28, Sect. 2].

We believe that this query should start by figuring out whether a regularly varying
G(·) implies a bivariate regularly varying distribution of (B, N ). Then, once such a
relation is established, it might be applied in order to derive conditions on the service
distribution under which the distribution of (EL(x, v), EF (x, v)) is bivariate regularly
varying. To the best of our knowledge, there are no existing results in this direction.

6.1.4 Open problem: the stationary distribution as an initial condition

If the additional customer arrives when the M/G/1 LCFS-PR queue is in steady state,
then she sees a geometric(ρ) distributed number of customers (cf. Sect. 4.4.1). If,
moreover, the service time of the additional customer has distribution G(·), then all
customers already present experience the sameM/G/1 busy period as extra delay. One
can now use the above-mentioned known results about the tail behavior of such a busy
period to conclude that the externalities distribution is just as heavy-tailed as G(·).
For FCFS, however, the situation is more complicated. Now the remaining workload
v of the customers already present plays a role in the externalities. Considering the
tail behavior of (cf. (10))

∫ v+x
v

S2(y)dy when v, x are heavy-tailed random variables,
the ‘principle of the one big jump’ (cf. [13]) suggests that the workload v will be
dominant, and will determine the tail behavior of the externalities. For example, when
G(·) is a regularly varying function at infinity of index −ν ∈ (−2,−1), then the
steady-state workload v is regularly varying of index 1−ν [6], and we conjecture that
EF is then also regularly varying at infinity of index 1 − ν, i.e., one degree heavier
than the service time and the busy period.

6.2 Proofs

In general, the proof of Theorem 3 (resp. Theorem 4) is based on the decomposition
which was stated in Theorem 1 (resp. [24, Theorem 2]) with an application of some
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known results from the theory about subexponential distributions. The next lemma is
a summary of the existing results which are needed.

Lemma 1 Assume that X is a nonnegative random variable with a subexponential
distribution. In addition, let Y be a nonnegative random variable which is independent
of X. Then:

(i) For every h > 0, hX also has a subexponential distribution.
(ii) For every h > 0,

P {X > u} ∼ P {X > u + h} as u → ∞. (62)

(iii) If Y is bounded, then XY has a subexponential distribution.
(iv) Assume that Y is unbounded and there are 0 < z1 < z2 < ∞ such that

z1 ≤ P {X > u}
P {Y > u} ≤ z2 (63)

for every u > 0. Then, Y has a subexponential distribution.
(v) Assume that Y is unbounded such that

sup
u>0

P {Y > u}
P {X > u} < ∞, (64)

and for every h > 0,

P {Y > u} ∼ P {Y > u + h} as u → ∞. (65)

Then,

P {X + Y > u} ∼ P {X > u} + P {Y > u} as u → ∞. (66)

(vi) Assume that Y is distributed according to a Poisson distribution with rate γ > 0.
If X , X1, X2, . . . is an iid sequence of random variables, which are independent
of Y , then SY ≡ X1 + X2 + . . .+ XY has a subexponential distribution such that

P {SY > u} ∼ γP{X > u} as u → ∞ . (67)

Proof (Lemma 1) (i) is an immediate consequence of the definition in (52). (ii) is [13,
Lemma 3.2], (iii) is [4, Corollary 2.5], (iv) is due to [27, Theorem 2.1(a)], (v) is [12,
Lemma 2] and (vi) is due to [11, Theorem 3]. �	
Proof (Theorem 3) We provide only a proof for (57) since the proof of (56) follows
from similar arguments and it is more standard.

It is given that G(·) is subexponential. Thus, due to (53), Lemma 1(iv) implies that
B has a subexponential distribution. Next, for every 1 ≤ i ≤ d − 1, let

Ŝi ≡ S1(w̃i+1) − S1(w̃i ). (68)
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Therefore, Theorem 1 yields that

P {EL(x, v) > u} = P

{

n
∑

k=1

[S1 (x + wk) − S1 (wk)] > u − nx

}

= P

⎧

⎨

⎩

∑

j∈J
q j Ŝ j > u − nx

⎫

⎬

⎭

. (69)

Notably, since S1(·) has stationary independent increments, then:

1.
{

q j Ŝ j ; j ∈ J
}

is a collection of independent random variables.

2. For each j ∈ J , the random variable q j Ŝ j has a compound Poisson distribution
with rate λ

(

w̃ j+1 − w̃ j
)

and jumps which have the distribution of q j B.

Especially, observe that for each j ∈ J , Lemma 1(vi) and the fact that q j B has a
subexponential distribution (due to Lemma 1(i)) imply that q j Ŝ j has a subexponential
distribution such that

P

{

q j Ŝ j > u
}

∼ λ
(

w̃ j+1 − w̃ j
)

P
{

q j B > u
}

∼ λ
(

w̃ j+1 − w̃ j
)

1 − ρ
G

[

u(1 − ρ)

q j

]

as u → ∞ . (70)

Let r ≡ |J | and without loss of generality assume that q1 ≤ q2 ≤ . . . ≤ qr . In
particular, observe that for every 1 ≤ i1 < i2 ≤ r ,

sup
u>0

G
[

u(1−ρ)
qi1

]

G
[

u(1−ρ)
qi2

] ≤ 1. (71)

Thus, Lemma 1(v) implies that

P

{

2
∑

i=1

qi Ŝi > u

}

∼ λ

1 − ρ

2
∑

j=1

(w̃ j+1 − w̃ j )G

[

u(1 − ρ)

q j

]

as u → ∞. (72)

In particular, (72) and the assumption that G(·) is subexponential imply that q1 Ŝ1 +
q2 Ŝ2 is a nonnegative random variable which is independent of q3 Ŝ3 and satisfies the
condition (65). Therefore, Lemma 1(v) with (71) may be applied once again in order
to deduce that

P

{

3
∑

i=1

qi Ŝi > u

}

∼ λ

1 − ρ

3
∑

j=1

(w̃ j+1 − w̃ j )G

[

u(1 − ρ)

q j

]

as u → ∞ (73)
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such that q1 Ŝ1 + q2 Ŝ2 + q3 Ŝ3 is a nonnegative random variable which is independent
of q4 Ŝ4 and satisfies the condition (65). Then, this argument may be repeated until
getting

P

{

r
∑

i=1

qi Ŝi > u

}

∼ λ

1 − ρ

r
∑

j=1

(w̃ j+1 − w̃ j )G

[

u(1 − ρ)

q j

]

as u → ∞ (74)

such that
∑r

i=1 qi Ŝi satisfies the condition (65). Therefore, (57) follows via (69) with
Lemma 1(ii). Finally, since qr Ŝr has a subexponential distribution, (57) implies that
EL(x, v) has a subexponential distribution via Lemma 1(iv) (see also Remark 12).

�	
The proof of Theorem 4 is based on an application of [24, Theorem 2] which is now
provided.

Theorem 5 (Jacobovic and Mandjes [24]) Assume that M1, M2, (ψm,1)
∞
m=1,

(ψm,2)
∞
m=1, (ϕm)∞m=1 are independent random variables such that:

1. M1 ∼ Poi(λv) and M2 ∼ Poi(λx).
2. (ψm,1)

∞
m=1 and (ψm,2)

∞
m=1 are two iid sequences of random variables which are

distributed like N.
3. (ϕm)∞m=1 is an iid sequence of random variables which are distributed uniformly

on [0, 1].
Then,

EF (x, v)
d= x

(

M1
∑

m=1

ψm,1 +
M2
∑

m=1

ψm,2ϕm

)

. (75)

Proof (Theorem 4) Assume that v > 0. Otherwise, when v = 0, the proof follows
from the same arguments and becomes much simpler.

Consider the random variables which appear in the statement of Theorem 5. In
addition, G(·) has a subexponential distribution such that (54) is valid and hence
Lemma 1(iv) implies that N has a subexponential distribution. Therefore, Lemma
1(vi) implies that

∑M1
m=1 ψm,1 has a subexponential distribution such that

P

{

M1
∑

m=1

ψm,1 > u

}

∼ λv

1 − ρ
G

[

u(1 − ρ)

λ

]

as u → ∞ . (76)

In addition, as was shown above, ψ1,2 has a subexponential distribution and ϕ1 is
bounded from above. As a result, Lemma 1(iii) implies that ψ1,2ϕ1 has a subex-
ponential distribution. Consequently, Lemma 1(vi) yields that

∑M2
m=1 ψm,2ϕm has a

subexponential distribution such that

P

{

M2
∑

m=1

ψm,2ϕm > u

}

∼ λxP
{

ψ1,2ϕ1 > u
}

as u → ∞. (77)
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To evaluate the probability in the RHS, Fatou’s lemma and (54) yield

lim inf
u→∞

P
{

ψ2,1ϕ1 > u
}

P
{

ψ2,1 > u
} = lim inf

u→∞

∫ 1

0

P

{

N > u
y

}

P {N > u} dy ≥ ω1. (78)

In a similar fashion, we may apply the reverse Fatou’s lemma with (54) in order to get

lim sup
u→∞

P
{

ψ2,1ϕ1 > u
}

P
{

ψ2,1 > u
} = lim sup

u→∞

∫ 1

0

P

{

N > u
y

}

P {N > u} dy ≤ ω2. (79)

Now, for every u > 0

P

{

∑M2
m=1 ψ2,mϕm > u

}

P

{

∑M1
m=1 ψ1,m > u

} ≤
P

{

∑M2
m=1 ψ2,m > u

}

P

{

∑M1
m=1 ψ1,m > u

} , (80)

and observe, using Lemma 1(vi), that the upper bound in (80) converges to x
v
as

u → ∞. Therefore, deduce that

sup
u>0

P

{

∑M2
m=1 ψ2,mϕm > u

}

P

{

∑M1
m=1 ψ1,m > u

} < ∞ (81)

and hence Lemma 1(v) implies that

P {EF (x, v) > ux} ∼ λv

1 − ρ
G

[

ux(1 − ρ)

λ

]

+ λxP
{

ψ1,2ϕ1 > ux
}

as u → ∞
(82)

from which (60) follows.
Due to Lemma 1(iv), this yields that EF (x, v)/x has a subexponential distribution,

and hence EF (x, v) also has a subexponential distribution via Lemma 1(i). �	

7 Functional CLT

The model which was described in Sect. 2 is characterized by the triplet (λ,G(·), v).
Fix v = (v1, . . . , vn) with positive coordinates, and consider a sequence (in m) of
models

(λm,Gm(·), v), m ≥ 1,
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such that the m-th model is associated with an arrival rate λm and service distribution
Gm(·). Respectively, for each m ≥ 1 let:

μk,m ≡
∫ ∞

0
tkdGm(t), k ≥ 1,

ρm ≡ λmμ1,m .

In addition, for each m ≥ 1, denote the externalities processes under LCFS-PR in the
m-th model by E (m)

L (·, v, n) and let Bm be a random variable which is distributed like
the length of the busy period in the m-th model. In particular, the fixed-point relation
(28) yields that for each m ≥ 1 (see also [5, p. 251, (II.4.66)])

σm ≡ EB2
m = μ3

2,m

(1 − ρm)3
, (83)

νm ≡ EB3
m = 1

(1 − ρm)5

[

3λmμ2
2,m + μ3,m(1 − ρm)

]

, (84)

and hence

νm
√

λmσ 3
m

= 3

√

λm

μ5
2,m(1 − ρm)

+ μ3,m

μ4.5
2,m

√

1 − ρm

λm
, m ≥ 1. (85)

Theorem 6 For m ≥ 1, define a stochastic process (in x):

Ê (m)
v (x) ≡ E (m)

L (x, v) − EE (m)
L (x, v)√

λmσm
, x ≥ 0 .

In addition, let W (·) be a standard Wiener process on [0,∞) and define a stochastic
process (in x):

Hv ≡
n
∑

k=1

[W (x + wk) − W (wk)] , x ≥ 0 .

Assume that all of the following conditions are satisfied:

(I) λm → ∞ as m → ∞,
(II) There is m′ ≥ 1 such that ρm < 1 for every m ≥ m′,
(III) νm√

λmσ 3
m

→ 0 as m → ∞ .

Then,

Ê (m)
v (·) ⇒ Hv(·) as m → ∞ ,

where ⇒ denotes weak convergence on D[0,∞) equipped with the uniform metric
(on compacta).
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Proof For each m ≥ 1, let S(m)(·) be a compensated compound Poisson process with
rate λm and jumps which are distributed like Bm .

Let K > 0 and according to [24, Theorem 5], existence of Conditions (I)-(III) all
together implies that

S(m)(·)√
λmσm

⇒ W (·) as m → ∞,

where⇒ denotes weak convergence inD[0,∞) equipped with the uniform metric on
compacta. Since the limit process is concentrated on C[0, x + v], the representation
theorem [31, Theorem IV.13] yields that there is a probability space with stochastic
processes ˜W (·) and {˜Sm(·);m ≥ 1

}

such that:

1. ˜W (·) d= W (·).
2. ˜Sm(·) d= S(m)(·) for every m ≥ 1.
3.

lim
m→∞ sup

0≤y≤v+x

∣

∣

∣

∣

˜Sm(y)√
λmσm

− ˜W (y)

∣

∣

∣

∣

→ 0 w.p. 1. (86)

Then, notice that

sup
0≤x≤K

∣

∣

∣

∣

∣

1√
λmσm

n
∑

i=1

[

˜S1(x + wi ) −˜S1(wi )
]−

n
∑

i=1

[W (x + wi ) − W (wi )]

∣

∣

∣

∣

∣

≤ 2n sup
0≤y≤v+x

∣

∣

∣

∣

˜Sm(y)√
λmσm

− ˜W (y)

∣

∣

∣

∣

, (87)

and the RHS tends to zero with probability one. As a result, due to Theorem 1, deduce
that the sequence of processes Ê (m)

v (·) admits weak convergence to Hv(·) on D[0, K ]
equipped with the uniform metric. Since this convergence holds for every positive K
and the limiting process Hv(·) is concentrated in C[0,∞), this convergence can be
extended to D[0,∞) via [31, Theorem V.23] and the result follows. �	

7.1 The conditions

The pre-conditions of Theorem 6 are not straightforward. Namely, Condition (I) states
that λm → ∞ asm → ∞. Thus, Condition (II) implies thatμ1,m vanishes asm → ∞.
In addition, since λm → ∞ as m → ∞, it must be that μ2,m → ∞ as m → ∞ in
order to make the first term of (85) vanish as m → ∞.

Below, there is an example inwhich the pre-conditions ofTheorem6are all satisfied.
This illustrates that Theorem 6 is informative. Having said that, it might be interesting
to look for more general conditions under which the asymptotic distribution of the
externalities process can be identified.
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7.1.1 Example

For each m ≥ 1, assume that Gm(·) is a distribution function of a random variable τm
such that

τm ≡
{

0 w.p 1 − m−p

mk w.p m−p (88)

for some p, k > 0. Then, for each m ≥ 1, observe that

μ1,m = mk−p, μ2,m = m2k−p, μ3,m = m3k−p. (89)

Also, let λm ≡ qmp−k for some q ∈ (0, 1). Thus, in order to ensure that Condition (I)
is satisfied, require that p > k and observe that ρm = q which means that Condition
(II) is also valid. It is left to check Condition (III). To this end, note that

λm

μ5
2,m(1 − ρm)

= q

1 − q
m6p−11k (90)

and hence we require 6p − 11k < 0. Similarly, note that

μ3,m

μ4.5
2,m

√

1 − ρm

λm
= m−5.5k+3p

√

1 − q

q
(91)

and hence we require −5.5k +3p < 0. Thus, for any p, k > 0 such that 6p
11 < k < p,

all the pre-conditions of Theorem 6 are satisfied. Indeed, one may verify that for such
p and k, we get that μ1,m → 0 as m → ∞ and μ2,m → ∞ as m → ∞.

7.2 Open problem: Is E(x, v) asymptotically Gaussian?

Theorem 6 is a functional CLT for the process x �→ EL(x, v). In previous work [24,
Theorem 4], there is an analogous result for x �→ EF (x, v). Both of these univariate
results are based on the bivariate decomposition which is given in Theorem 1 with an
application of [24, Theorem 5]. Since the decomposition in Theorem 1 is bivariate,
it looks promising to reach a unified version of both of these results, i.e., a bivariate
functional CLT of x �→ (EL(x, v), EF (x, v)). The proof of such a result might be
based on a complicated bivariate version of [24, Theorem 5] which should be devel-
oped. Since we prefer not to shift the balance of the current work by developing this
generalization of [24, Theorem 5], here we just mention the possibility of having a
bivariate functional CLT of x �→ (EL(x, v), EF (x, v)) in passing.
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8 Discussion

This work concerns the externalities in anM/G/1 queue under the LCFS-PR and FCFS
disciplines. The cornerstone of the current analysis is Theorem 1: The externalities
have a joint decomposition in terms of a bivariate compound Poisson process with an
arrival rate λ and jumps which are distributed like (B, N ). We demonstrated that this
decomposition is useful via several applications, including: moments computations,
externalities approximations as x → ∞, tail asymptotics of the externalities and a
functional CLT. The rest of this section is dedicated to a discussion about the special
meaning of the externalities analysis under FCFS and LCFS-PR.

Observe that when FCFS is implemented, then the additional customer affects only
customers who arrive after him. On the contrary, when LCFS-PR is implemented, the
additional customer would affect only the customers who arrived before him. In that
sense, FCFS and LCFS-PR are edge cases. As demonstrated in Sect. 3.2, there are
service disciplines under which the additional customer affects both some customers
who were in the queue at time t = 0 as well as some other customers who arrive
after this time. The externalities in these intermediate cases have not been analysed. It
might be interesting to examine in what sense their properties mitigate the properties
of the externalities under FCFS and LCFS-PR.
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7. Dȩbicki, K., Mandjes, M.: Queues and Lévy Fluctuation Theory. Springer, New York (2015)
8. De Meyer, A., Teugels, J.L.: On the asymptotic behaviour of the distributions of the busy period and

service time in M/G/1. J. Appl. Probab. 17, 802–813 (1980)
9. Denisov, D.E., Shneer, V.: Global and local asymptotics for the busy period of an M/G/1 queue.

Queueing Systems 64, 383–393 (2010)

123

http://creativecommons.org/licenses/by/4.0/


Queueing Systems (2023) 104:239–267 267

10. Doney, R.A.: On the asymptotic behaviour of first passage times for transient random walks. Probab.
Theory Relat. Fields 81, 239–246 (1989)

11. Embrechts, P., Goldie, C.M., Veraverbeke, N.: Subexponentiality and infinite divisibility. Probab.
Theory Relat. Fields 49, 335–347 (1979)

12. Embrechts, P., Goldie, C.M.: On closure and factorization properties of subexponential and related
distributions. J. Aust. Math. Soc. 29, 243–256 (1980)

13. Foss, S., Korshunov, D., Zachary, S.: An Introduction to Heavy-Tailed and Subexponential Distribu-
tions. Springer, New York (2011)

14. Geluk, J., Tang, Q.: Asymptotic tail probabilities of sums of dependent subexponential random
variables. J. Theor. Probab. 22, 871–882 (2009)

15. Glynn, P.W., Jacobovic, R., Mandjes, M.: Moments of polynomial functionals in Lévy-driven queues
with secondary jumps. Unpublished manuscript (2023)

16. Goldie, C.M.: Subexponential distributions and dominated-variation tails. J. Appl. Probab. 15, 440–442
(1978)

17. Grandell, J.: Mixed Poisson Processes, vol. 77. CRC Press, Boca Raton (1997)
18. Haviv, M., Ritov, Y.A.: Externalities, tangible externalities and queue disciplines. Manage. Sci. 44,

850–858 (1998)
19. Hazra, R.S., Maulik, K.: Tail behavior of randomly weighted sums. Adv. Appl. Probab. 44, 794–814

(2012)
20. Hu, Y., Chan, C.W., Dong, J.: Optimal scheduling of proactive service with customer deterioration and

improvement. Manage. Sci. 68, 2533–2578 (2022)
21. Huang, J., Carmeli, B., Mandelbaum, A.: Control of patient flow in emergency departments, or

multiclass queues with deadlines and feedback. Oper. Res. 63, 892–908 (2015)
22. Jacobovic, R.: Internalization of externalities in queues with discretionary services. Queueing Syst.

100, 453–455 (2022)
23. Jacobovic, R.: Regulation of a single-server queue with customers who dynamically choose their

service durations. Queueing Syst. 101, 245–290 (2022)
24. Jacobovic, R., Mandjes, M.: Externalities in queues as stochastic processes: the case of FCFS M/G/1.

Stoch. Syst. (2022). https://doi.org/10.48550/arXiv.2207.02599
25. Jelenkovic, P.R.,Momcilovic, P.: Large deviations of square root insensitive random sums.Math. Oper.

Res. 29, 398–406 (2004)
26. Kelly, F.P.: The departure process from a queueing system.Math. Proc. Camb. Philos. Soc. 80, 283–285

(1976)
27. Klüppelberg, C.: Subexponential distributions and integrated tails. J. Appl. Probab. 25, 132–141 (1988)
28. Kulik, R., Soulier, P.: Heavy-Tailed Time Series. Springer, New York (2020)
29. Liu, Y., Sun, X., Hovey, K.: Scheduling to differentiate service in a multiclass service system. Oper.

Res. 70, 527–544 (2022)
30. Markowitz, H.M., Todd, G.P.: Mean-Variance Analysis in Portfolio Choice and Capital Markets, vol.

66. Wiley, Hoboken (2000)
31. Pollard, D.: Convergence of Stochastic Processes. Springer, New York (2012)
32. Tang, Q.: Insensitivity to negative dependence of asymptotic tail probabilities of sums and maxima of

sums. Stoch. Anal. Appl. 26, 435–450 (2008)
33. Zhang, Y., Shen, X., Weng, C.: Approximation of the tail probability of randomly weighted sums and

applications. Stoch. Process. Appl. 119, 655–675 (2009)
34. Zwart, A.P.: Tail asymptotics for the busy period in the GI/G/1 queue. Math. Oper. Res. 26, 485–493

(2001)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.48550/arXiv.2207.02599

