Piecing Together the Puzzle: Understanding Trust in Human-AI Teams (Short Paper)

Citation for published version (APA):

Document license:
CC BY

Document status and date:
Gepubliceerd: 01/01/2023

Document Version:
Uitgevers PDF, ook bekend als Version of Record

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 29. May. 2024
Piecing Together the Puzzle: Understanding Trust in Human-AI Teams

Anna-Sophie Ulfert-Blank, Eleni Georganta, Myrthe Tielman, and Tal Oron-Gilad

1 Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
2 University of Amsterdam, Nieuwe Achtergracht 129, 1001 NK Amsterdam, the Netherlands
3 Delft University of Technology, Mekelweg 5, 2628 CD Delft, the Netherlands
4 Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410500, Israel

Abstract

With the increasing adoption of Artificial intelligence (AI) as a crucial component of business strategy, establishing trust between humans and AI teammates remains a key issue. The project "We are in this together" highlights current theories on trust in Human-AI teams (HAIT) and proposes a research model that integrates insights from Industrial and Organizational Psychology, Human Factors Engineering, Human-Computer Interaction, and Computer Science. The proposed model suggests that in HAIT, trust involves multiple actors and is critical for team success. We present three main propositions for understanding trust in HAIT collaboration, focused on trustworthiness and trustworthiness reactions in interpersonal relationships between humans and AI teammates. We further suggest that individual, technological, and environmental factors impact trust relationships in HAIT. The project aims to contribute in developing effective HAIT by proposing a research model of trust in HAIT.

Keywords

Trust, Human-AI teams, Multidisciplinary research, Theoretical model

1. Introduction

Artificial intelligence (AI) is rapidly transforming the workplace, with an increasing number of organizations adopting AI as a crucial component of their business strategy [1]. AI is no longer a simple tool but has become a teammate that works alongside humans to improve productivity, efficiency, and decision-making [2]. For example, SAP has utilized the AI-powered assistant "Olivia" to help with recruiting tasks, such as scheduling interviews and answering employee questions. With the introduction of new generative AI tools in recent months, many companies have implemented AI assistants using ChatGPT to support customers while shopping (e.g., Shopify) or to assist customer support staff (e.g., Salesforce) [3]. In light of these recent developments, researchers argue that AI is transforming from a tool to a teammate [2]. At the same time, this development has raised concerns about how such teams can collaborate effectively, [5] and how such collaborations should be implemented in the workplace while guaranteeing the safety and well-being of employees [6].

According to practice and research [7], HAIT are expected to become prevalent in the workforce. However, appropriate trust between team members remains a key challenge in
developing such teams [4]. This is because humans tend to have difficulties in developing appropriate trust in intelligent technologies [8], [9] and understanding their behaviors [10]. Moreover, it is unclear how AI teammates can express their status and intentions to be perceived as trustworthy by human teammates [7]. Recent research suggests that trust within HAIT will be essential for teams to communicate, integrate information, coordinate, and perform effectively [12]. Although research in different disciplines offers insights into how human teams develop trust, how humans interact with technology, and how AI systems should be designed, clear guidelines for how HAIT should be designed to foster appropriate trust are missing.

2. Trust perspectives across disciplines

Across disciplines, the study of trust as a central influencing factor on human-technology interaction has a longstanding tradition that has led to various perspectives and definitions [13], [14]. In the psychology and human-technology interaction literature, trust in humans and AI is typically defined as the willingness to rely on and be vulnerable to another party [13]-[16]. Definitions in these fields often build on organizational research, suggesting that interpersonal trust is impacted by the way a teammate’s (trustee) trustworthiness is perceived by another teammate (trustor) [15]. Trustworthiness is defined by three dimensions: ability, integrity, and benevolence. Ability describes how a team member’s knowledge or competences are perceived by the other team members [17]. Integrity describes how a team member’s credibility and consistency are perceived [18]. Benevolence reflects perceptions about a team member’s concern for the good of the team [19]. Positive expectations of one’s trustworthiness can positively impact accepting one's vulnerability [17]. Recent studies on trust in AI agents further show that reliable, autonomous, and consistent AI agents are perceived as more trustworthy [20]. Based on the human or AI team members’ trustworthiness evaluations, team members will adapt their behavior and collaboration (e.g. deciding not to share information in case of low perceived trustworthiness).

Further, antecedents of trust can include characteristics and states of the human and the AI teammates as well as their shared environment [13]. For instance, the effect of a system’s reliability on trust may be influenced by differences in the type of AI system [21]. In contrast to interpersonal trust, team trust describes the shared perception among all team members that enables the free sharing of information and views and reflects one of the most crucial properties for team success [22]. Thus, trust in HAIT involves multiple actors, including human and AI teammates, whose trust is critical to team success [23]. To achieve effective collaboration, human and AI teammates must perceive each other as trustworthy and perceive that they are being trusted [23]. Literature across disciplines agrees that to collaborate effectively, HAIT require appropriate levels of trust that are bidirectional (i.e., expressed by the human and the AI agent). To achieve this goal, the engineering literature proposes design approaches with the goal of building appropriate bidirectional trust between humans and AI (i.e., trust engineering; [24]), for instance, by addressing aspects such as explainability, security, or training.

3. Further theoretical integration is needed

Although the different literature streams have addressed trust as a central construct for effective collaboration, the definitions differ slightly, depending on their unique disciplinary perspective [9]. For instance, a large body of literature in team research focuses on the role of trust in team processes and how individual perceptions by team members impact collaboration, thus, highlighting the perspective of humans as trustors in their collaboration with AI teammates [25]. In contrast, trust engineering literature predominantly addresses technical challenges of HAIT, such as data protection, transparency, or interface design [24]. Currently, there is still a lack of integration of technical system design perspectives and team processes in HAIT.

Further, across disciplines, the focus of trust research is often on dyadic trust relationships between humans and AI agents or between AI agents (e.g., in computer science) [24], rather than
trust between multiple team members and at different levels (dyadic and team). Consequently, it remains unclear how trust in HAIT can be understood and what mechanisms underlie the development of trust in HAIT [20].

To understand the emergence of trust in HAIT, more integrated definitions and interdisciplinary insights are needed. HAIT can largely differ in their composition of human and AI teammates (i.e., number of human and AI teammates or their roles within the team). A team’s composition can strongly impact how trust develops and how trustworthy team members are perceived [26]. Yet, current research predominantly highlights reactions to team member characteristics rather than the dynamic development of trust in HAIT, trust reciprocity, or differing trust levels among team members [16]. Trust in HAIT should be considered from a dynamic and multilevel perspective, where team members differ in their characteristics (e.g., AI or human; trustworthiness), their behaviors (e.g., how they display trust), their roles, and their relationships (e.g., their trust relationship with individual team members) [23].

As HAIT find their way into work environments, we urgently require further integration of perspectives to answer pressing questions such as: How can trust in HAIT be defined considering different disciplinary perspectives? What is an appropriate level of trust in HAIT to enable effective collaboration? How can the vast and constantly growing trust literature be unified across disciplines? How can trust in HAIT foster performance as well as human safety and well-being?

4. Addressing trust from multidisciplinary perspectives

To provide first answers, our project “We are in this together” develops theoretical and empirical arguments for gaining a better understanding of trust in HAIT (see Figure 1) to move towards a workspace model that can be understood across disciplines. The research model focuses on individual characteristics, perceptions and reactions, as well as relationships between all team members, both human and AI aiming to define and map the components and emergence of trust in HAIT.

![Figure 1. Research model of the project "We are in this together".](image)

In this project, we integrate knowledge from Industrial and Organizational Psychology, Human Factors Engineering, Human-Computer Interaction, and Computer Science about teams, trust, and interaction between humans and (intelligent) technologies. In line with prior works [12], [23], we suggest that for trust to develop, both human and AI teammates must be able to perceive and express trust. Thus, we propose that:

Proposition 1: Trust in HAIT considers human and AI teammates as trustors and trustees.

For trust to develop, human and AI teammates will evaluate the trustworthiness of their teammates and appropriately react to the evaluations of their own trustworthiness. Yet, research
on how humans perceive, evaluate, and react to such trustworthiness reactions by AI agents is still scarce. Prior works on trustworthiness reactions in human-only interactions may be guiding in further exploring how humans may react to trust expressions by AI teammates [27], [28]. In addition, building on team research, we suggest that interpersonal trust further depends on the interpersonal relationships between team members [29]. Specifically, having a high degree of similarity and past experiences can have a positive impact on interpersonal trust [12]. This is because trust develops more naturally when team members have similarities. Recognizing similarities leads to assuming similarities in values and beliefs [30] and thus, results in a sense of comfort and a willingness to trust [31]. Given that similar social rules and evaluation strategies apply when humans build trust relationships with intelligent technologies [32], we expect that when human team members perceive an AI teammate as similar and, in consequence, as part of the team, their interpersonal trust will become stronger [33], [34]. At the same time, we expect that prior history of working together can support interpersonal trust between human and AI teammates. Related work suggests that having experience with intelligent technologies influences how much a human team member develops trust in this technology [14]. Overall, we propose that:

Proposition 2: Trust in HAIT depends on human and AI trustworthiness, their trustworthiness reactions, and interpersonal relationship between teammates.

As previously described, in HAIT, individual team members will develop trust towards other individual team members, dyads, and the team as a whole [23]. Thus, we propose that:

Proposition 3: Trust in HAIT is multilevel, including individual-, dyadic-, and team-level trust.

We further propose that (4) additional factors, such as individual, technological, and environmental considerations (e.g., system characteristics; complexity of the team and its roles), form and impact trust relationships in HAIT [16]. Our overall goal is to contribute to developing effective HAIT by presenting a research model of trust in human-AI teams that can serve as the foundation for unified conceptualizations and measurements of trust, as well as interdisciplinary empirical insights.

Acknowledgments

This research was funded by the SIOP Visionary Grant.

References

