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Abstract

A stable phase plate insusceptible to charge contamination is desirable in transmission electron microscopy
to enhance the image contrast of weak phase objects. Optical phase plates, which use tightly focused laser
light to apply the electron phase shift, have been proposed as a more constant and durable alternative
to the already existing phase plates. This work characterizes the theoretical functioning of a pulsed laser
phase plate, in combination with bunched electrons, as a novel optical phase plate design. First, the semi-
classical electron phase shift is calculated using the ponderomotive potential approximation to formulate a
correct phase mask description. Second, the analytical angular averaged phase contrast transfer function
is calculated and compared to that of defocus phase contrast. Third, angular averaged one-dimensional
phase contrast image intensities of simple, phase-only object wave functions are calculated numerically, to
characterize the basic phase contrast behavior. Fourth, two-dimensional phase contrast image intensities
of more complex object wave functions are calculated numerically, to investigate the complete phase
contrast behavior. To achieve this, the size of a simulated object wave function from a crystal structure is
varied. Here, the total image intensity formed by electron bunches is calculated by the incoherent addition
of a collection of single-electron image intensities, varying the light-electron interaction time for every
single electron. The results show that with standard pulsed laser systems and short electron bunches,
phase contrast can be achieved over length scales � 5 nm. Tighter laser focusing proves to increase this
length scale, while simultaneously lessening the phase contrast asymmetry, which is observable in the
two-dimensional image intensity as bright vertical stripes. In comparison to existing designs, such as the
thin film and Volta phase plate, a pulsed laser phase plate produces shorter-range but more constant
phase contrast with potentially a longer operating lifetime. A pulsed laser phase plate is hence a possible
future option for phase contrast imaging in (ultrafast) transmission electron microscopy.
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1 j Introduction

Transmission electron microscopy (TEM) can visualize microscopic structures such as biological cells, vir-
uses and atomic lattices on the (sub)nanometer scale [1, 2]. To minimize radiation damage, the samples
used with TEM must be very thin (� 100 nm), thereby imprinting negligible amplitude information on
the electron wave which leads to minimal intensity contrast [3, 4, 5]. With Zernike phase contrast, the
contrast is increased by using the sample’s imprinted (weak) phase information to modulate the intensity,
leading to maximal contrast and increasing the information retrieval per electron [6, 7]. This technique
is based on using a phase plate to create a �=2 phase difference between the unscattered electron beam
and the electron beam scattered from the sample.

The first phase plate design for TEM consisted of a thin carbon film responsible for the phase shift applied
to the scattered beam, with a small centered hole allowing the unscattered electrons to pass freely [8].
These phase plates have proven to be, however, highly susceptible to charge contamination. The direct
bombardment of source electrons and ions in the beam-line charges the phase plate. The electrostatic
potential of these charge contaminants alters the desired phase shift and impedes optimal phase contrast
imaging [9, 10]. Accordingly, recent research has developed new phase plate designs, which reduce charge
contamination.

Volta phase plates comprise a non-punctured thin carbon film designed to take advantage of the charging
effects [11]. Specifically, the correct phase shift is applied by the Volta potential induced by the un-
scattered electron beam. In this way, highly localized phase shifts can be attained, free of high-frequency
fringe artifacts. While attractive in theory, these types of phase plates still produce a time-variant phase
shift [12]. Hence, optical phase plates have been proposed, that use the ponderomotive potential of
high-intensity laser light (� 100 GW m�2) to induce an electron phase shift [13]. Optical phase plates
are advantageous, being insusceptible to charge contamination and offering a constant and tunable phase
shift.

The first experimental results of phase contrast imaging using an optical phase plate were published re-
cently [14]. A continuous-wave laser phase plate was created by employing high-finesse buildup cavities to
acquire sufficiently high peak intensities. Besides the technical challenge of obtaining such high intensities
with a continuous-wave laser system, the difficulty of placing an optical cavity in the correct position in
a TEM column inhibits the ease of wide-scale implementation into modern TEM systems. Hence, in this
work, we will investigate the feasibility of a pulsed laser phase plate. Besides eliminating the effects of
charge contamination and delivering a constant peak phase shift, such as the aforementioned laser phase
plate, a pulsed beam can produce high peak intensities with much less average power. Therefore, widely
available, smaller laser systems could be used, increasing the ease of implementation and tunability. The
pulsed laser phase plate combined with a pulsed electron source [15], is an interesting option for phase
contrast imaging in (ultrafast) transmission electron microscopy.

A more elaborated discussion will now be held below concerning the aforementioned claims. Additionally,
some background information will be provided following the work of Nagayama [16], and Williams [17].
Finally, the main outline of this thesis is given.
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CHAPTER 1. INTRODUCTION

1.1 Resolution

In 1924, Louis de Broglie first introduced the wave-particle duality of electrons. He postulated that
electrons can be viewed as waves with wavelengths much shorter than visible light. The introduction
of this concept sparked the idea of being able to ‘see’ with electrons instead of visible light. In 1932,
Knoll and Ruska proposed the transmission electron microscope [18]. Only a year later, the resolution
limit of visible light was broken. Interestingly, however, Ruska mentioned he had not read the work of
Louis de Broglie and simply hoped the resolution limit was determined by the extremely small size of
the electrons. Currently, we know that the resolution limit of electrons can be defined similarly to the
definition in visible-light microscopy (VLM). A good measure for resolution in VLM is the minimum
resolvable distance �, which according to the Rayleigh criterion is � = 0:61�=NA [17]. Here, � is the
wavelength of the source beam, and NA is the numerical aperture of the corresponding optical system.
To obtain quick estimates for �, we assume for simplicity that NA � 1. It is easy to see then that the
optimal resolution lies around 300 nm for wavelengths in the visible-light spectrum. This resolution limit
clearly impedes the study of structures with length scales on the order of 0:1 � 100 nm. For electron
microscopy, the resolution is similarly defined:

� = 1:22
�

�
; (1.1)

where � is the semi-angle of collection [17]. The electron wavelength for standard TEM energies (200 keV)
is around 2:5 pm. This is a decrease in wavelength of 5 orders of magnitude compared to visible light.
For realistic collection angles (mrad), the resolution is on the order of Ångströms to several nanometers.
Because of this, TEM is a very powerful method for exploring structures on the order of 0:1 � 100 nm,
not accessible with VLM.

1.2 Phase contrast

During Ruska’s initial TEM experiments, he was able to image cotton fiber samples. However, he simul-
taneously discovered that those samples would quickly deteriorate due to radiation damage caused by the
high-energy electrons. The samples would heat up and eventually start to carbonize. Hence, to minimize
sample heating, they were prepared very thin (� 100 nm) [3]. Radiation damage is still a common root
for problems in the modern-day era of TEM [4]. As a consequence, many samples are so thin that little
information is imprinted on the amplitude of the electron waves. Therefore, there is little contrast in the
image intensity, making interpretation of the image information difficult. Hence, new imaging techniques
were developed.

At around the same time as Ruska’s first TEM experiments, the Dutch physicist Zernike invented a
technique for VLM accordingly called Zernike phase contrast. He observed, similar to Ruska, that thin
and often biological samples were difficult to image, as most of the light would pass through unaffected.
Ultimately, he discovered that placing a structured �=4-plate (a phase plate) in the back focal plane of a
VLM results in an intensity modulated by the source wave’s phase information rather than the amplitude
information, increasing the contrast in the final image [6]. For this discovery he was awarded the Nobel
prize in 1953. Accordingly, this led to the production of the Zernike phase plate. Strictly speaking, this
technique only holds for weak phase objects (WPOs), i.e., samples that minimally distort the amplitude
and only apply small phase shifts. The method exploits the Fourier transforming properties of lenses. In
the back focal plane of a lens, all spatial frequency components of the incident (object) wave are spatially
separated (the object wave is Fourier transformed). For a standard 4f lens system, this is illustrated in
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CHAPTER 1. INTRODUCTION

Figure 1.1: Schematic of 4f optical system, displaying the Fourier transforming property of lenses [19].

Figure 1.1 (f is the focal length). Zernike understood that in the back focal plane (T), one could easily
manipulate the spectral components of the object wave. Using a phase plate, positioned in the center
of the back focal plane, creates a phase difference between the zero-order beam and the higher-order
frequency components. Doing so accordingly leads to phase contrast in the image plane (see Section 2.2).

Roughly a decade after Zernike invented phase-contrast imaging for VLM, Boersch proposed to apply the
same technique to TEM [8]. Consequently, prototypes started arising of the electrostatic phase plate and
the more common thin-film phase plate. The thin-film phase plate consisted of a thin carbon film with a
micron-sized hole in the center. The design aimed to transmit the zero-order beam while applying a phase
shift to the higher-order frequency components. However, progress in this field was severely delayed due
to a complicated production process and competition from other, more popular phase contrast imaging
techniques, such as defocus phase contrast. In the early stages of development, there were only minor
improvements in intensity contrast. The first TEM images that showed a significant improvement in
phase contrast were not published until 2001 [20]. Following a long silence in this field of research, a
group working in isolation published a paper containing very encouraging results. They managed to
image horse spleen ferritin with a Zernike phase plate showing significant phase contrast (Figure 1.2). It
was the first time, a group obtained greater contrast than was possible with defocus phase contrast. This
paper revived the belief that Zernike phase contrast could become the workhorse in the field of TEM.
However, the sudden burst of optimism regarding thin-film phase plates was short-lived.

3



CHAPTER 1. INTRODUCTION

Figure 1.2: The 300 kV cryo-TEM images of a sample from negatively stained horse spleen ferritin. (a) ZPC-
TEM image acquired using a Zernike phase plate. (b{d) Conventional TEM images at a defocus of 2550, 540 and
130 nm, respectively (underfocus). The insets show the di�ractogram for each image. The scale bars in the insets
correspond to 1 nm�1. [Taken from Fig. 6 of ref. [20]]

1.3 Charge contamination

Not long after their publication in 2001, Danev and Nagayama noticed that obtaining results of similar
quality was more challenging than expected. Being an isolated group, relatively novice to the field of
Zernike phase contrast, they were mostly unaware of the setbacks that had previously overcome other
research groups. One could say that their good result was due to a stroke of beginner’s luck. In follow-up
experiments, the authors were faced with the reality of charge contamination. They realized that after
a few rounds of usage, the phase plate would become charged due to the bombardment of electrons and
ions in the beam line. The electrostatic interaction between the now charged phase plate and the incident
electron wave hindered the proper functioning of the phase plate, greatly reducing its quality. In Figure
1.3 such a contaminated phase plate is shown (taken from [20]). Calculations followed for the amount
of electrons required for a significant reduction in phase contrast [9, 10]. It became clear that a small
amount of charge can produce significant undesirable phase shifts. The charge contamination originates
not solely from electrons hitting the phase plate, but also from (in)organic materials and metal oxides
inside the TEM system. For instance, some sources of contaminants are the oil mist of vacuum pumps
inside the TEM and metal oxides deposited during the production process.

Consequently, much thought went into finding solutions to battle this contamination. The conclusion
was that a contaminated phase plate had to be wrapped with an additional carbon (conductive) layer,
shielding the contaminants’ electrostatic potential. This method proved useful as it led to an increase in
the amount of functional phase plates. However, this meant that the already difficult production process
of a thin film phase plate was made even more cumbersome. Consequently, interest in novel phase plate
designs has recently risen.

4



CHAPTER 1. INTRODUCTION

Figure 1.3: (a) Image of the phase plate acquired in the focused ion beam machine (JEOL JFIB-2300) used to
form the central hole. The inset shows a magni�cation of the central area. (b) TEM image of a contaminated
phase plate after being used in several experiments. Many point-like contamination spots can be observed at the
periphery of the hole, caused by the focused electron beam irradiation. The wide uniformly contaminated area
was formed by illumination with a spread beam. [Taken from Fig. 4 of ref. [20]]

1.4 Novel phase plate designs

In 2014, a research group discovered that a thin carbon film without a central hole displayed interesting
behavior [11]. Namely, at the place of highest electron-beam irradiation (at the location of the unscattered
beam for WPOs) a negative Volta potential arose. Designing the thin film in such a way that the potential
applied a �=2 phase shift to the electrons, led to the first Volta phase plate (VPP). The results were very
promising. Firstly, the alignment was less cumbersome as the phase shift would be produced “on the fly”.
No alignment with a micron-sized hole was necessary. Instead, a VPP displays self-alignment. Moreover,
the lifetime of the VPP was drastically longer than the original thin film phase plate. The VPP used
in the publication had already been functioning properly for 6 months. Additionally, fringe artifacts of
high-frequency information are fixed due to the smooth phase-onset of a VPP instead of the sharp onset
of a thin film phase plate. Although the results of this paper were very promising, in a paper published 3
years later by some of the same authors, it appeared that the VPP was still inherently time-variant [12].
A different manufacturing process severely altered the phase-shifting properties of the VPP used in this
publication. Hence, the search for a constant phase plate continued.

A recently introduced phase plate design is the optical or laser phase plate. This design is based on
inducing an electron phase shift with the ponderomotive potential Up of a tightly focused laser beam.
The corresponding phase delay ’ can be calculated semi-classically with the following integral

’ =
�1

h̄

Z 1
�1

Up dt; (1.2)

where h̄ is the reduced Planck’s constant. See Chapter 3 for a more in-depth treatment. At standard
energies for TEM (200 keV), electrons generally do not get trapped in laser light. Therefore, the function-
ing of optical phase plates is not hindered by charge contamination. Consequently, they apply a stable
phase shift during their operating lifetime. Furthermore, by varying the optical power laser phase plates
can be made tunable.

Recently the first experimental realization of a laser phase plate was achieved [14]. The group performed
phase contrast imaging of an amorphous carbon sample using a continuous-wave laser. They observed
a significant image contrast at low spatial frequencies. For sufficiently high phase shifts, intensities on
the order of 100 GW cm�2 are required. Hence, their setup included a high-finesse build-up cavity to
achieve these intensities with a continuous laser system. Besides the technical challenge of constructing
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CHAPTER 1. INTRODUCTION

and stabilizing such a cavity, positioning it correctly in the center of the back focal plane was cumbersome
due to its size. The cavity had to be moved down in the TEM column as it did not fit in the center of
the original back focal plane. Additional electron optics had to be used to create a second, magnified
diffraction plane where the cavity could be placed.

1.5 Pulsed laser phase plate

In this work, we propose the use of a pulsed laser phase plate. Besides the discussed benefits of a laser
phase plate (eliminating charge contamination and applying a constant phase shift), pulsed beams make
high intensities more attainable, allowing for more widely available, smaller, laser systems. These smaller
laser systems allow for easier positioning in the TEM column and better overall phase tunability.

To perform phase contrast imaging using a pulsed laser phase plate, the electron source is required to
be pulsed. Within our research group Coherence and Quantum Technology (CQT), we have developed
a chopper cavity that transforms a continuous electron beam into a pulsed electron beam [15]. The
use of pulsed beams for both the source and the phase plate allows for ultra-fast transmission electron
microscopy (UTEM) with Zernike phase contrast. There has, up until now, only been one publication
regarding similar research [21]. However, the exact phase contrast characteristics of a pulsed laser are
still unknown. Hence, in this work, we will investigate the phase contrast quality of a pulsed laser phase
plate in combination with a pulsed electron source.

1.6 Thesis outline

First, we elaborate on basic imaging theory in Chapter 2 to set up the required theoretical framework
of Zernike phase contrast. Then, in Chapter 3 we outline the system setup, elaborating upon the pulsed
laser, the bunched electrons, and their corresponding interaction scheme. Subsequently, in Chapter 4 we
study the interaction between the pulsed laser and electron bunches. We calculate the ponderomotive
phase shift applied to single electrons and subsequently extend the theory to fit a pulsed electron beam
description. Furthermore, we analyze the corresponding momentum shifts and formulate a correct phase
mask description. Lastly, we incorporate the pulsed laser phase mask into the established theoretical
framework of Zernike phase contrast. In Chapter 5 we use this framework to investigate the phase
contrast quality of the pulsed laser phase plate in combination with bunched electrons. In Chapter 6 we
summarize all findings and draw relevant conclusions. Lastly, we give an outlook wherein we propose
ideas for future work in Chapter 7.
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2 j Preliminaries

In this chapter, the preliminary theory regarding (phase contrast) imaging is given. Specifically, we use
Fourier optics to display the effect of a phase plate on the information transfer in an imaging system.
Subsequent derivations closely follow the work of Lichte [22].

2.1 Normal imaging

Similar to visible-light microscopy, imaging with transmission electron microscopy can be described using
Fourier optics. When an electron source (assumed here to be a plane wave) illuminates a sample, part of
the beam diffracts due to the spatial structure of the sample. The wave that exits the sample, also called
the object wave obj(r), is modulated in amplitude a(r) and phase �(r)

obj(r) = a(r)ei�(r): (2.1)

Because the samples used in TEM are required to be very thin, most often they are WPOs. WPOs
only weakly distort the incoming electron wave’s phase while leaving the amplitude almost unaffected. A
common definition for WPOs is that the maximum local phase shift is �0 � 2�=10 whilst the amplitude
can be written as a(r) = 1 � t(r) with t(r) � 1. Omitting higher-order terms, we can expand the
exponential part of the object wave for small phase shifts, giving

obj(r) = 1� t(r) + i�(r): (2.2)

The remaining electron wave propagation to the image plane can be broken down into two steps. Namely,
propagation from the sample plane to the back-focal plane and subsequently from the back-focal plane to
the image plane. We have already briefly touched upon a lens’ Fourier transform property in Section 1.2.
This property comes from the fact that the back focal plane of a lens is conjugate to infinity. Therefore,
the diffraction pattern in the back focal plane follows Fraunhofer diffraction, the solution of which is
precisely equal to a Fourier transform. To be precise, this holds only for 4f systems, where f is the
focal length (see Figure 1.1). Although realistic TEM setups generally deviate from 4f constructions, the
difference is negligible for systems with a single lens and large magnification. Thus, we conclude that in
the back focal plane, we find the Fourier spectrum spec(u) of the object wave

spec(u) = F [obj(r)] (2.3)

= jspec(u)jei�(u); (2.4)

with corresponding amplitude jspec(u)j and phase �(u). It is easiest to perform such Fourier transform
for one spatial frequency u0 and subsequently generalize for all frequencies u. Hence, in the remainder
of this chapter we will consider the object wave of a standard amplitude and phase grating

obj(x) = 1� (t0 � i�0) cos (2�u0x): (2.5)

The accompanying Fourier spectrum is given by
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spec(u) = �(u)� 1

2

q
t20 + �2

0

�
�(u� u0) + �(u+ u0)

�
e�i#; (2.6)

where # = arctan (�0=t0) is the phase of the off-axis reflections. Elegantly, one can perform the inverse
Fourier transform to find the electron wave configuration in the image plane. Thus, for ideal, normal
imaging, we find that the image wave ima(x) is equal to the object wave

ima(x) = F�1[spec(u)] (2.7)

= obj(x): (2.8)

Measurement devices can, however, only acquire the intensity of the resulting image wave. The image
intensity for WPOs, neglecting second-order contributions, follows as

Iim(x) = jima(x)j2 (2.9)

= 1� 2t0 cos(2�u0x) + (t20 + �2
0) cos2(2�u0x) (2.10)

= 1� 2t0 cos(2�u0x): (2.11)

The second-order terms are neglected as they do not convey the correct object wave information, as
opposed to the linear terms. Hence, for ease of illustration, we will not include the second-order terms in
further derivations. We can conclude that for ideal, normal imaging, the intensity is solely modulated by
the amplitude information t0. In this case, we say that we have optimal amplitude contrast. Considering
that for WPOs it holds that t0 � 1, it is clear that this contrast is, however, very low. Moreover,
useful information imprinted on the wave’s phase is left unutilized. Therefore, phase contrast imaging
techniques such as Zernike phase contrast, have been developed to more clearly image WPOs. Specifically,
with phase contrast imaging, one aims to let the phase �0 rather than the amplitude t0 modulate the
image intensity. We will now elaborate on the case of imaging with an ideal phase plate, continuing in
the framework of Fourier optics.

2.2 Ideal Zernike phase contrast

Zernike discovered with VLM that if one places a �=4-phase plate (�=2 phase shift) in the center of
the back focal plane, one can interchange the amplitude and phase information of WPOs. This method
can be translated one-to-one to TEM and has been widely adopted. An ideal phase plate creates a
phase difference of ��=2 between the zero-order (u = 0) and higher-order beam (u0 6= 0). Hence, the
corresponding spectrum can be written as

spec(u) = �(u)� 1

2

q
t20 + �2

0

�
�(u� u0) + �(u+ u0)

�
e�i(#��=2): (2.12)

Here, it was chosen to apply the phase shift to the non-zero frequency components, as this makes the
equations slightly more elegant. Consequently, the corresponding image wave becomes

ima(x) = F�1[spec(u)] (2.13)

= 1� (�0 + it0) cos(2�u0x): (2.14)
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Using a phase plate results in interchanging the image wave’s imaginary component from the phase to
the amplitude information. Accordingly, the image intensity using an ideal phase plate becomes

Iim(x) = 1� 2�0 cos(2�u0x); (2.15)

which is thus solely modulated by the phase information �0 rather than the amplitude information. In
this way, an ideal phase plate produces optimal phase contrast in the image intensity. Recalling the WPO
condition �0 � 2�=10 and t0 � 1, it is clear that phase contrast will generally be higher than amplitude
contrast.

For general spatial frequency u we now formally define the phase shift ’(u) of an ideal phase plate as

’(u) =

(
��=2; if u = 0

0; if u 6= 0:
(2.16)

Thus, an ideal phase shift only shifts the phase of the zero-order beam (u = 0) while leaving the dif-
fracted beam (u 6= 0) unaltered. The exact opposite would also be possible: shifting the phase of the
higher-order components whilst letting the zero-order beam pass unaltered. This is more similar to the
functioning of a thin-film phase plate. However, we shift the phase of the zero-order beam as this is more
in line with the pulsed laser phase plate.

2.3 Arbitrary phase shift

We now calculate the image wave and corresponding image intensity for an arbitrary phase difference
∆� = �(u0)� �0 between the higher-order frequency components �(u0) and the zero-order frequency �0.
The corresponding spectrum becomes

spec(u) = �(u)� 1

2

q
t20 + �2

0

�
�(u� u0) + �(u+ u0)

�
e�i(#���): (2.17)

Taking the inverse Fourier transform, we find for the image wave

ima(x) = 1� (T0 � iΦ0) cos(2�u0x): (2.18)

In the case of an arbitrary phase shift, the amplitude modulation T0

T0 = t0 cos ∆� + �0 sin ∆�; (2.19)

and phase modulation Φ0

Φ0 = �0 cos ∆� � t0 sin ∆� (2.20)

of the image wave, both consist of a combination of amplitude and phase information of the object wave.
The corresponding values for cos ∆� and sin ∆� represent the respective weight given to the amplitude
and phase information. The intensity is subsequently given by

9
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Iim(x) = 1� 2T0 cos(2�u0x) (2.21)

= 1� 2(t0 cos ∆� + �0 sin ∆�) cos(2�u0x): (2.22)

As a check, we can plug into this equation ∆� = 0, and find that we obtain the image intensity found for
normal imaging (optimal amplitude contrast) derived in Eq.(2.11). Furthermore, we can fill in ∆� = �=2,
and obtain the case for an ideal phase plate (optimal phase contrast) derived in Eq.(2.15)). On the other
hand, for an arbitrary phase shift ∆� the intensity will comprise of a combination of amplitude and
phase contrast, determined by the weighting factors cos ∆� and sin ∆�, respectively. Accordingly, these
weighting factors

ACTF := cos ∆�; (2.23)

and

PCTF := sin ∆�; (2.24)

are called the amplitude and phase contrast transfer factors, respectively.

2.4 Aberrations and decoherence

Besides the phase shift applied by a phase plate ’(u), aberrations in the imaging systems, can also induce
an electron phase shift �(u). The two most important coherent aberrations are defocus, and spherical
aberrations. Spherical aberrations are caused by imperfect lens focusing. For a lens with spherical
aberrations, the focal length depends on the transverse, radial position inside the lens. Strongly scattered
(high frequency) electrons will have a large scattering angle and consequently a larger radial position inside
the lens. When the focusing power has a spatial modulation, this can lead to phase differences along
the remaining trajectory. The second aberration, defocus, is most often added intentionally. By adding
a slight defocus to the objective lens, the negative phase effect caused by the spherical aberrations can
be counteracted partially. The frequency-dependent phase shift applied by an optical system considering
only these two aberrations is given by

�(u) = �

�
�∆f�eu

2 +
1

2
Cs�

3
eu

4

�
: (2.25)

Here, ∆f is the defocus, Cs is the spherical aberration constant, and �e is the electron wavelength. The
expression indicates that for a particular optical system with spherical aberrations Cs, the source wave
will experience a frequency-dependent phase shift. This phase shift can be influenced manually by ad-
justing the defocus, giving some control range. Including both the phase shift applied by a phase plate
and aberrations, the total phase shift becomes �(u) = ’(u) + �(u).

For a more complete description of the information transfer in an imaging system, we have to in-
clude decoherence effects. As a consequence of decoherence, there will be an additional frequency-
dependent damping effect, mainly influencing the high-frequency components. The damping function
D(u) = Dsc(u)Dtc(u) consists of both the spatial Dsc(u) and temporal Dsc(u) coherence damping func-
tion, respectively. The damping due to the spatial decoherence stems from the fact that the source will
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have a finite width, meaning that there will be illumination under different incident angles resulting in
a shifted Fourier spectrum and eventually in certain damping. The temporal coherence stems from the
fact that a realistic source will never be completely monochromatic, i.e., there will always be a spread in
electron energy. As the focusing depends on the electron energy, an imperfect source will have a spatial
spreading, resulting in decoherence. We will not work out the equations for the damping functions ex-
plicitly, as this was not the main focus of this work. For a more in-depth discussion, we direct the reader
to the work of the aforementioned author [22]. In the remainder of this work, we will approximate the
damping as a Gaussian function, similar to what was done in the work of Schwartz [14].

2.5 Contrast transfer functions

Combining the amplitude and phase contrast transfer factors, the damping function and the total phase
shift including aberrations, we can define the amplitude contrast transfer function ACTF(u) and phase
contrast transfer function PCTF(u) as

ACTF(u) = D(u) cos ∆�(u) (2.26)

PCTF(u) = D(u) sin ∆�(u); (2.27)

where ∆�(u) = �(u) � �(0). These functions describe the respective degree of amplitude and phase
contrast per frequency. For optimal phase contrast jPCTF(u)j � 1 is desired for a large frequency band.

To illustrate the general behavior of these functions, and to provide some instructive information we will
now elaborate upon an example of phase contrast imaging called defocus phase contrast and highlight the
corresponding transfer functions. With defocus phase contrast the aim is to obtain optimal phase contrast
without using a phase plate. Instead, the defocus is tuned to optimize the phase contrast transfer.

2.5.1 Scherzer-defocus

In the absence of a phase plate, the contrast transfer functions become dependent on only the aberration
phase shift

ACTF(u) = D(u) cos�(u) (2.28)

PCTF(u) = D(u) sin�(u): (2.29)

Note that �(0) = 0. Hence, for optimal phase contrast, we want j�(u)j to approach �=2 for as many
frequencies as possible. Scherzer found that the corresponding optimal defocus ∆fsz is given by

∆fsz = 1:2
p
�eCs: (2.30)

Accordingly, this is called Scherzer defocus, and the range of frequencies with good phase contrast is
called the Scherzer band. In Figure 2.1 an example of the resulting amplitude (green) and phase (black)
transfer functions can be seen. Here, the spherical aberration constant is Cs = 1:3 mm and the damping
function is approximated by a Gaussian with HWHM of wD = [0.2 nm]�1. Noise levels are arbitrarily
set to �0:1. For electron energies Ek = 200 keV and the aforementioned spherical aberration constant,
∆fsz = 68:5 nm.
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Figure 2.1: Simulated amplitude (green) and phase (black) contrast transfer functions for a TEM with Cs = 1:3
mm at Scherzer focus �fsz = 68:5 nm, with arbitrary noise values �0:1 (dashed).

From the phase contrast transfer function it can be deduced which frequencies are easily interpreted. All
frequencies below, in this case, umin, fail to be transferred with phase contrast as they fall below the noise
levels. Long-range phase information is therefore missing in the image intensity. All frequencies between
umin and ures are transferred with a certain level of phase contrast (Scherzer band). At ures, the first
change in sign occurs, after which the interpretation of the information becomes much more cumbersome
due to the rapid oscillations giving rise to distortions. This frequency is called the instrumental resolution
limit. It is affected by spherical aberrations and the defocus and can only be increased by aberration
correction. Furthermore, the actual information limit is determined solely by damping and is called ulim.
Up until this frequency, information is still transferred. However, interpreting the information at these
frequencies is extremely difficult due to the distortions. Hence, typically, the resolution is defined using
the instrumental resolution limit ures.

One can clearly see the cosine and sine nature of the amplitude and transfer function respectively. Fur-
thermore, from the figure, it is clear that at low frequencies, amplitude contrast dominates over phase
contrast. However, phase contrast is optimized for most frequencies.

2.5.2 Phase plate focus

Including a phase plate applying a phase shift ’0 to the zero-order beam and ’(u) to the higher-order
frequencies, the contrast transfer functions become

ACTF(u) = D(u) cos (�(u) + ’(u)� ’0) (2.31)

PCTF(u) = D(u) sin (�(u) + ’(u)� ’0): (2.32)

It has been derived [20] that for a phase plate, the optimal defocus is equal to

∆fpp = 0:73
p
�eCs: (2.33)

In Figure 2.2, the phase contrast transfer function is plotted (red) for an ideal phase plate (’0 = ��=2,
∆fpp = 41:7 nm). Additionally, the phase contrast transfer function is plotted for Scherzer defocus
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(black), i.e., without a phase plate. It can be observed that using a phase plate optimizes the phase
contrast for low frequencies. However, compared to Scherzer defocus, the instrumental resolution limit
ures is lower when using a phase plate. This is an ideal moment to address an essential point regarding
phase plates. Phase plates do not increase the resolution. That is to say; they will not improve the ability
to distinguish two nearby points in the image. The general function of phase plates is to enhance image
contrast. Moreover, phase plates improve phase contrast at low frequencies compared to defocus phase
contrast at Scherzer defocus.

Figure 2.2: Phase contrast transfer function of TEM with Cs = 1:3 mm for ideal phase plate at �fpp = 41:7
nm (red) and for Scherzer defocus �fsz = 68:5 nm (black), with arbitrary noise values �0:1 (dashed).

In reality, all phase plates are non-ideal, meaning that frequencies besides the zero-frequency are also
phase-shifted ’(u > 0) 6= 0. As a consequence there will be a non-zero minimum resolution umin 6=
0. Overall, when characterizing a phase plate, it is mainly important to investigate the low-frequency
behavior and the corresponding effect on the phase contrast transfer function.

2.6 Wave transfer function

We will now summarize and generalize the previous findings. The main message of this chapter is that
modifying the amplitude and phase of the spectrum, will vary the degree and type of modulation in the
image wave and as a consequence, the degree and type of contrast in the intensity. Generalizing for all
frequencies, we can use the wave transfer function WTF(u) to describe the modification for general phase
�(u) and amplitude due to decoherence effects D(u), given by

WTF(u) = D(u)ei�(u): (2.34)

Then, accordingly, the image wave can be calculated by multiplication of the wave transfer function with
the spectrum in the back focal plane and subsequently transforming

ima(r) = F�1[WTF(u) � spec(u)]: (2.35)

Furthermore, the intensity Iim(r) = jima(r)j2, will comprise amplitude and phase contrast according to
the amplitude and phase contrast transfer functions given in Eq.(2.26) and Eq.(2.27).
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2.7 Theoretical aim

In this work, we explore the feasibility of a pulsed laser phase plate for TEM. To accomplish this, the
goal is to derive the correct wave transfer function and analyze the accompanying phase contrast transfer
function. Doing so enables the calculation of phase contrast image intensities attainable with a pulsed
laser phase plate and the investigation of the corresponding contrast transfer. For the wave and contrast
transfer function, the phase shift applied by the pulsed laser ’(u) as a function of the object frequency
has to be known. Hence, the following chapters will attempt to adequately describe the electron phase
shift for a pulsed laser phase plate. As the electron source will be bunched, some critical things must be
considered. Thus, the main theoretical aim is to formulate a correct expression for the pulsed laser phase
mask.
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3 j System outline

In this chapter, we attempt to carefully describe the main characteristics of the system. We provide a
schematic setup to display the interaction scheme inside the TEM. Thereafter, we elaborate upon the
pulsed laser, specifying the most important parameters. Lastly, we provide some details regarding the
electron bunches.

3.1 Setup

In Figure 3.1 a schematic of the general setup is shown. The electron bunches, moving downwards in
the image, interact with the sample located in the object plane, resulting in a scattered (green) and
unscattered (purple) beam. The objective lens focuses the unscattered beam onto the pulsed laser phase
plate, which is positioned in the back focal plane. The laser is focused such that the waist coincides with
the propagation axis of the electrons. From the back focal plane, the electrons subsequently propagate
to the image plane. The focal length of the objective lens was set to f = 3:5 mm for most calculations.
Moreover, we have chosen to let the electrons propagate along x and the pulsed laser beam along z.
When we speak about the transverse and longitudinal direction, we are considering the electron reference
frame. Hence, the transverse plane is given by (y; z) and the longitudinal direction is along x.

Objective Lens

Sample

Unscattered Scattered

Laser pulse

Electron bunch

Back focal plane

Image plane

Object plane

Figure 3.1: System setup; an electron bunch (0x̂) incident on a sample scatters partly, forming a scattered
(purple) and unscattered (green) beam. The unscattered beam is focused precisely on the waist of the pulsed
laser (red, z) in the back focal plane, by the objective lens. Here, the Fourier transform of the sample’s object
wave is present. Finally, a phase contrast image is formed in the image plane.

15



CHAPTER 3. SYSTEM OUTLINE

3.2 Pulsed laser

For the pulsed laser system, we set the pulse length to � = 100 fs and assume a standard wavelength
of � = 800 nm. In most calculations we use a waist of w0 = 2� = 1:6 �m. We will later specify the
reasoning behind this choice in Section 5.1.3. The corresponding Rayleigh length is zR = 10:1 �m.

The intensity of a pulsed laser beam can be modeled by a three-dimensional Gaussian distribution. Taking
into account the correct coordinate configuration, the intensity distribution is equal to

I(x; y; z; t) =
2W

�3=2w(z)2�
e�

(z=c�t)2

�2 e
�2 x

2+y2

w(z)2 (3.1)

with pulse energy W, and transverse width w(z) = w0

p
1 + z2=z2

R. In Figure 3.2, the corresponding
intensity distribution is plotted in the transverse plane at t = 0 to assist in understanding the size and
shape of the phase plate. The dimensions for high intensities are on the order of w0 and zR for the y-
and z-directions, respectively.

Figure 3.2: Normalized intensity of laser pulse of length � = 100 fs and wavelength � = 800 nm, focused to a
waist w0 = 2� at o�set time t0 = 0. Dimensions of high intensity are determined by the Rayleigh length zR � 10
�m and wavelength � � �m, in the z- and y- direction respectively .

3.3 Bunched electrons

For proper phase contrast, all (unscattered) source electrons should interact with the phase plate. As
the phase plate is a pulsed laser beam, this implies that the electrons have to be bunched before being
injected into the TEM column. Within our group CQT, this is achieved with a microwave deflection
cavity. We now highlight the main characteristics of this cavity. Thereafter, we specify corresponding
definitions regarding the synchronization of the electrons and the laser beam.

3.3.1 Microwave deflection cavity

For the ultra-fast electron microscope in our laboratory, we make use of a single compact resonant
microwave cavity operating in dual mode [15]. The cavity is designed in an elliptical shape to enclose
two orthogonal TM110 modes with resonant frequencies f1 = 3 GHz and f2 = 3:075 GHz. The resulting
transverse deflections caused by the Lorentz force of the oscillating magnetic fields are described by a
Lissajous pattern. By placing a (chopping) aperture at the exit of the cavity, only the electrons that fall
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within the overlapping area of the aperture and Lissajous pattern are transmitted. In this way electrons
bunches can be created periodically, at a repetition rate of frep = 75 MHz.

3.3.2 Synchronization

This electron bunch framework requires some specific definition. Individual electrons in a single bunch
will cross the z-axis at different times. We denote this time at which the electrons cross the z-axis with
t0, the (electron) offset time. We speak of a synchronized electron when for that electron the offset time is
zero, t0 = 0. A synchronized electron crosses the laser waist when the intensity is at its highest. Further-
more, we say that an electron bunch is spatially synchronized whenever the center electron of that bunch
is synchronized. This directly implies that the off-center electrons in the bunch will be unsynchronized,
t0 6= 0. Hence, the off-center electrons will observe an off-centered laser pulse. As t0 is defined as the
electron offset, electrons in the front of the bunch are characterized with t0 < 0 and electrons in the
back with t0 > 0. In Figure 3.3 a schematic is shown to illustrate this, where the arrow denotes the
propagation direction.

Figure 3.3: Spatially synchronized electron bunch decomposed into single electrons, characterized by a set of
varying o�set time t0. Front electrons are denoted by t0 < 0, center electron by t0 = 0 and the following electrons
by t0 > 0.

In most calculations throughout this text, we will assume spatially synchronized electron bunches. Hence,
to investigate the interaction between the pulsed laser and electron bunches of length �e, we can analyze
the single-electron interaction for an offset range of t0 2 [��e; �e].

To match the experimental parameters predominantly used in the lab, we set the electron energy to
Ek = 200 keV, corresponding to a normalized velocity � = 0:69 and Lorentz factor 
 = 1:39. Moreover,
the incoherent electron energy spread is ∆Ek � 1 eV and the repetition rate is set to match that of the
electrons, frep = 75 MHz. Adequate values for the bunch length �e will be discussed later on in Section
4.3.2.
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4 j Light-electron interaction

In this chapter, we discuss the interaction between the pulsed laser light and the electron bunches. We
start out with a brief discussion on the long pulse limit. Then, we introduce the ponderomotive potential
Up with which we model the light-electron interaction. Subsequently, we calculate the corresponding
electron phase shift. Furthermore, we discuss the ponderomotive scattering of the electrons. Finally, the
correct phase mask description is given and linked to the theory of Chapter 2

4.1 Long pulse limit

The time it takes for a single electron to cross the laser waist can be defined by the transit time �t = w0p
2v

.

For the specified electron energy (200 keV) and laser waist (1:6 �m), the transit time is �t � 7 fs. Hence,
the transit time is much shorter than the laser pulse length (� = 100 fs). We will define this limit where
�t � � as the long pulse limit. It greatly simplifies subsequent calculations. We stay within this limit for
the remainder of this text.

4.2 Ponderomotive potential

When the electrons encounter the oscillating electromagnetic field of the laser light, they will exhibit
quivering motion, of which the amplitude in space and velocity is proportional to the electric field strength
E0. Accordingly, their kinetic energy will increase proportionally to the electric field strength squared
E2

0 / I0, and hence to the intensity. If the interaction is much longer than a single optical cycle, we
can temporally average the kinetic energy. This time-averaged kinetic energy can be seen as an effective
potential and is called the ponderomotive (quasi) potential Up. In terms of intensity, it is given by

Up(x; y; z; t) =
e2

2c�0
m!2
0

I(x; y; z; t); (4.1)

where e is the elementary charge, m the electron mass, !0 the laser frequency, 
 the Lorentz factor, �0
the vacuum permittivity and c the speed of light. We included relativistic effects by adding a factor of 

to the denominator m! 
m. This is in line with saying that due to the relativistic velocity, the electron
gets ‘heavier’ and consequently the kinetic energy obtained from the electric field decreases. Hence, the
ponderomotive potential decreases by the same amount. We call this the quasi-relativistic ponderomotive
potential. Filling in the laser intensity of Eq.(3.1) into the above expression yields an expression for the
pulsed laser ponderomotive potential

Up(x; y; z; t) =
U0

1 + z2=z2
R

e�
(z=c�t)2

�2 e
�2 x

2+y2

w(z)2 : (4.2)

For notational ease, all constants are collected in the peak ponderomotive energy U0 = �I0, which is
composed out of

� =
e2

2c�0
m!2
0

(4.3)

I0 =
2W

�3=2w2
0�
: (4.4)
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Here, we thus insert a Gaussian intensity distribution, which is only valid in the paraxial approximation.
As the laser is focused tightly w0 = 2�, it is not immediately clear whether this paraxial approximation
still holds. To test whether both the quasi-relativistic (m! 
m) and the paraxial assumptions are valid,
we have extensively compared results of light-electron interactions using Eq.(4.2) with results obtained
using a simulation program with a more realistic field description. In the simulation program, the light-
electron interactions were calculated based on the relativistically correct equations of motion together
with non-paraxial field descriptions. From this simulation program we can conclude that for a w0 = 2�
focus and electron energies of Ek = 200 keV, the quasi-relativistic paraxial ponderomotive potential is a
very good model for the interaction between an electron and a pulsed laser beam. The results are shown
in Appendix A.

4.3 Phase shift

Now that we have an appropriate model for the interaction between the electrons and the pulsed laser in
the simplest picture, we can calculate the phase shift ’ by evaluating the following integral

’ =
�1

h̄

Z +1

�1
dtUp (x; y; z; t) : (4.5)

For an electron traveling along the path x = v(t� t0) interacting with a laser at offset time t0 the phase
shift follows as

’(y; z; t0) =
�1

h̄

Z +1

�1
dtUp (v(t� t0); y; z; t) (4.6)

=
�p�U0�i(z)

h̄(1 + z2=z2
R)

e
�2 y2

w(z)2 e
�

( z
c

+t0)2

�d(z)2 ; (4.7)

In this equation, two important timescales are present. Namely, the interaction time �i(z) and the decay
time �d(z) given by

�i(z) =
1q

1
�2
t (1+z2=z2

R)
+ 1

�2

(4.8)

�d(z) =
q
�2
t (1 + z2=z2

R) + �2: (4.9)

The interaction time is simply the time of spatial overlap between the electron and the pulsed laser.
Additionally, the decay time determines the effective decay of the intensity profile as felt by the electron
at time t0, in the z-direction. The electron phase shift is strongest near the waist, at the high-intensity
region, where z � zR. For this region, the long pulse limit still applies �t

p
1 + z2=z2

R � � . Hence, we
can simplify these two timescales to

�i(z) � �t
q

1 + z2=z2
R (4.10)

�d(z) � �: (4.11)
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Consequently, this allows us to write the total phase shift as

’(y; z; t0) =
�p�U0�t

h̄
p

1 + z2=z2
R

e
�2 y2

w(z)2 e�
( z
c

+t0)2

�2 (4.12)

=
’0p

1 + z2=z2
R

e
�2 y2

w(z)2 e�
( z
c

+t0)2

�2 ; (4.13)

where, ’0 = �p�U0�t=h̄ is the peak phase shift. Interestingly, apart from several constants, the phase
shift in the long pulse limit can be found by the multiplication of the corresponding interaction time �i(z)
and the laser’s transverse intensity distribution I(y; z; t0)

’(y; z; t0) / I(y; z; t0)�i(z): (4.14)

As the laser intensity follows � 1=w(z)2, while the interaction time goes as � w(z), the phase shift
profile will be slightly broader than the intensity profile in the z-direction. In Figure 4.1 the normalized
amplitude of the phase shift is plotted together with the laser intensity for t0 = 0 against the z-axis. Note
that, as this plot is only for the z-direction, the dimensions of the phase plate, averaged over all angles
� = arctan(y=z), will be much smaller than this graph suggests.

Figure 4.1: Normalized amplitude of phase shift (solid) versus laser intensity (dashed). The distribution of the
phase shift is broader as it is proportional to the intensity 1=w(z)2 multiplied by the laser width w(z) (in the long
pulse limit).

The prior derivation suggests that in the long pulse limit, we can assume that the interaction occurs over
such a short timescale that the electrons experience an effectively stationary pulsed laser.
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4.3.1 Pulse energy

We can use the expression for ’0, to find an equation for the pulse energyW required for a specific phase
shift. Doing so accordingly results in

W =
�h̄p
2�
j’0jw0�: (4.15)

Consequently, the pulse energy required for a peak phase shift j’0j = �=2 and corresponding laser set-
tings isW = 17 nJ. This is a realistic pulse energy, achievable with standard laser systems. Matching the
laser’s repetition rate to the electron source frep = 75 MHz, an average power is required of Pavg = 1:3 W.

4.3.2 Constant-phase criterion & bunch length

Ideally, a phase plate induces a phase shift only to the central part of the electron diffraction plane where
z = y = 0, or in terms of spatial frequency uz = uy = 0 of the object. The behavior of the phase shift for
these unscattered electrons follows directly from Eq.(4.13) as

’(t0) = ’0e�
t20
�2 : (4.16)

The phase shift behavior for the unscattered electrons follows the temporal intensity distribution of the
laser. Hence, the phase shift will decrease as a function of offset time. We have already discussed in
Section 3.3 that to describe the behavior of electron bunches, we should analyze the interaction for a
range of offset times t0 2 [��e; �e]. However, we have not yet mentioned any specific electron bunch
length. We will now use Eq.(4.16) to formulate a criterion for the bunch length, correlating it to an
approximately constant phase shift for the whole electron bunch. We will call this the constant-phase
criterion.

The intended function of a phase plate in phase contrast imaging is to apply a phase shift of �=2 to the
incident unscattered electron source. However, as the phase shift applied by the pulsed laser will vary
temporally it will not be possible to apply a perfectly constant phase shift to the whole electron bunch.
Now we define the maximum allowed phase shift variation across the bunch to be � 10 %. Using Eq.(4.16)
this means that the outermost electron, which interacts with the laser at time t0 = �e, will obtain a phase
shift ’(�e) � 0:9’0. Solving accordingly, this results in the constant-phase criterion, linking the electron
bunch length to the laser pulse length

�e � �=3: (4.17)

Hence, we know that for spatially synchronized electron bunches, the phase shift variation will be at most
� 10 % if the electron bunch length is equal to one-third of the laser pulse length. For the pulse length
mentioned in this work (� = 100 fs), it corresponds to the upper limit of �e = 33 fs. In Section 5.1.4 this
criterion will be examined in more depth by creating phase contrast images for various electron bunch
lengths.
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4.4 Momentum shift

Ideally, phase plates should not affect the electron trajectory. However, when the electrons interact
with the spatially inhomogeneous laser phase plate, they will obtain a momentum shift ∆p due to the
ponderomotive force:

∆p =

Z 1
�1

dtrUp(x; y; z; t): (4.18)

As the pulsed laser’s ponderomotive potential is time-dependent, the electrons will generally gain or lose
energy, with momentum shifts in both the longitudinal and transverse direction as a consequence. These
slight changes in momenta will alter the electron trajectory, leading to the potential delocalization of
information. We now first discuss the transverse electron momentum shifts caused by the pulsed laser
phase plate and explain how they are related to the phase mask. Thereafter, we discuss the additional
effect on the phase shift due to the longitudinal momentum shift. Lastly, we discuss the information
delocalization of a finite-sized zero-order beam.

4.4.1 Transverse momentum shift

We consider again an electron travelling along the path x = v(t� t0), interacting with a laser delayed at
offset time t0. For the transverse momentum shift ∆p?, we are allowed to take the gradient out of the
integrand in Eq.(4.18), and rewrite the expression in terms of the gradient in phase shift, leading to

∆p?(y; z; t0) = h̄r’(y; z; t0): (4.19)

This expression is very elegant. It connects the gradient of the two-dimensional phase shift ’(y; z; t0) to
the transverse momentum shift. It shows an interesting congruence between the wave and particle view
of electrons. Up until now in the phase and momentum shift calculations, we have viewed the electrons
as point particles. However, in the framework of Fourier optics, we regard the electrons as plane waves,
interacting with a phase mask in the back focal plane. Consequently, the shape of the electron wavefront
will be affected by the phase gradient of the phase mask. With Eq.(4.19) we can understand that the
effect of this wavefront disturbance correlates precisely with the classical scattering of electrons.

Thus, classically one could argue that electron scattering leads to the delocalization of information. The
electrons obtain transverse momentum shifts and end up at a position on the image plane deviating from
their original destination, altering the electron distribution. The exact same delocalization is described
in the framework where we view electrons as plane waves interacting with a phase profile in the back
focal plane and calculate the resulting electron distribution in the image plane. This implies that the
delocalization of information is correctly included in the phase mask description. No further additions
have to be made.

In this section, we have only treated the transverse momentum shift. However, the presence of longitudinal
momentum shifts poses an interesting question. Namely, whether these momentum shifts will have any
additional effect on the phase shift. In the subsequent section, we elaborate upon this.

22



CHAPTER 4. LIGHT-ELECTRON INTERACTION

4.4.2 Longitudinal momentum shift

As mentioned, the ponderomotive potential is time-dependent and can therefore transfer energy to the
electrons, leading to longitudinal acceleration. For the x-direction, the order of integration and differ-
entiation in Eq.(4.18) cannot be changed. Hence, we cannot take the gradient out of the integral such
as we have done for the transverse components. For an electron traveling along the path x = v(t � t0),
interacting with a laser delayed at offset time t0 we can calculate the longitudinal momentum shift, up
to first order, as

∆px =

Z 1
�1

dtrxUp(x; y; z; t)
��
x=v(t�t0)

: (4.20)

We are now going to investigate whether the longitudinal electron acceleration results in an additional
phase shift. In the case of large longitudinal acceleration, the phase of the electron could increase during
the propagation to the image plane, adding to the original phase ’(y; z; t0). Hence, if the pulsed laser
produces large enough longitudinal momentum shifts, we should expand on the phase mask model in
order to incorporate the additional phase shift. We will now further work out the momentum shift in the
x-direction, and discuss the corresponding effect on the phase shift.

Additional phase effect

We work out Eq.(4.20) for the zero-order beam (z = y = 0), interacting with the laser pulse at offset
time t0, and find

∆px = �8h̄

v

’0

�2
t0e�

t20
�2 : (4.21)

This equation tells us that whenever an electron is unsynchronized t0 6= 0 there is a longitudinal mo-
mentum shift. The reason for the momentum shift is that for t0 6= 0 the potential experienced by the
electron along the path x = v(t� t0) is asymmetric, leading to energy transfer. For the chosen laser para-
meters and bunch lengths meeting the constant-phase criterion, we find that the maximum acceleration
is on the order of �px

p0
� 10�8, with p0 the initial electron momentum. Hence, we can conclude that the

acceleration caused by the pulsed laser is very small. However, from this statement, no conclusions can
yet be made regarding its effect on the phase shift. It could be possible that a small momentum shift
would induce a small but increasing phase shift along the electron trajectory, a phase drift. Hence, we
pose the following question

Does a small longitudinal momentum shift induce drift in the electron phase?

Here, we quantify a ‘small’ momentum shift by the assumption that we can neglect the second-order mo-
mentum components ∆p2

x. In Appendix B an extensive discussion and derivation are given to answer this
question. The problem is treated with the relativistic quasiclassical path integral method. Moreover, the
results are compared with results obtained from performing simulations with the Schrödinger equation.
Moreover, a non-relativistic calculation is also provided of two launched Gaussian electron wave packets
with a small difference in frequency. The reader is encouraged not to shy away from this extra material
as it discusses a very interesting topic. In other words, the question is whether an electron wave will
display self-interference when part of that wave is shifted in frequency. One can think of this as a double
slit experiment where at one slit, the electron wave’s frequency is altered slightly.

From the derivations and discussions given in the appendix, we conclude that for small momentum shifts
there is no additional phase effect. This means that the electron will display normal self-interference after
interaction with the pulsed laser phase plate. No additional phase term has to be added to the model in
Eq.(4.13).
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4.4.3 Zero-order beam

In the standard framework of Fourier optics, the unscattered beam will be focused by the objective lens
to a point in the back focal plane at u = 0. However, this holds only for a point source. In reality, the
zero-order beam will not be focused to a perfect point. Rather, because the electron beam has a non-zero
transverse emittance and thus a finite source size, the zero-order beam in the back focal plane will have a
certain transverse spot size. For an emittance on the order of 10�12 rad focused with a converging angle
on the order of milliradians, the spot size will be around �r � 10 nm. These ‘off-center’ unscattered
electrons will not be taken into account by the mathematical Fourier treatment. The analytical frame-
work does not incorporate all effects present in practical setups. Therefore, we will investigate whether
this discrepancy will produce any additional effects. Hence, in the following section, we will calculate the
deflections from ponderomotive scattering for the finite-sized zero-order beam.

z-deflections

We will now investigate the behavior of the momentum shift in the z-direction at transverse position
z = �r and set y = 0 to eliminate the behavior in the y-direction. As the Rayleigh length is on the order
of micrometers while �r is on the order of nanometers, �r=zR � 1, which means that we can assume to
be in the laser waist w(�r) � w0, simplifying the expression for the phase shift to

’(z; t0) = ’0e�
(z=c�t0)2

�2 : (4.22)

Then, using Eq.(4.18) we find for the momentum shift in the z-direction

∆pz = �2h̄

c

’0

�2
(t0 + z=c)e�

(z=c�t0)2

�2 (4.23)

� �2h̄

c

’0

�2
t0e�

t20
�2 (4.24)

where in the last step, the z=c term was omitted as for z � �r this term is very small and does not change
the function significantly. Thus, we find that the finite spot size of the zero-beam does not cause any
effect. Instead, what we find is that the momentum shift in the z-direction is determined by the offset
time. Specifically, the momentum shift is an odd function in t0. Considering a spatially synchronized
electron bunch this implies that electrons in the front of the bunch t0 < 0, obtain a positive momentum
shift, whereas the electrons in the back of the bunch t0 > 0, obtain a negative momentum shift. This
results in a sweeping motion. Moreover, we see that the momentum shift is inversely proportional to the
square of the laser pulse length. Shorter laser pulses produce larger transverse deflections.

To get an idea of the size of these deflections, let us calculate the maximum spread as observed in the
object plane (the location of the sample). Taking into account the constant-phase criterion we know that
t0;max=� = 1=3. Hence, the expression for the maximum momentum shift simplifies to

∆pz;max �
3

5

h̄’0

c�
: (4.25)

To calculate the spread in the object plane, we first calculate the scattering angle �z = ∆pz=p0 and
multiply it with the focal length f . Using the aforementioned parameter settings, we find for the spread
in the object plane ∆z = f�z;max = 0:44 Å. This value is thus linearly proportional to the focal length f
and the reciprocal of the pulse length 1=� . Before we draw any conclusions on the corresponding effect
of this spread let us first perform similar calculations for the y-direction.
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y-deflections

Next, we will discuss the momentum shift in the y-direction. Similarly, setting z = 0 and using the
approximation of a constant laser waist, the y-momentum shift follows as the gradient of the phase delay

∆py = 4h̄
’0

w2
0

ye�
t20
�2 e
�2 y

2

w2
0 ; (4.26)

which is an odd function in y. This means that for y > 0 there is positive y-deflection and for y < 0
there is negative y-deflection. Unlike the z-direction, the y-deflection is thus mainly determined by the
transverse offset y (but also by t0). In this case, we cannot simply ignore the y-offset as the width of
the phase profile in the y-direction is much tighter than in the z-direction. Hence, for the same offset
�r, the gradient will be much steeper and consequently, the deflection will be larger. Setting t0 = 0, and
linearizing the y-dependent part of the expression around y=w0 � 1, the maximum momentum shift for
this direction is given by

∆py;max �
18

5

h̄’0

w2
0

�r: (4.27)

Accordingly, the spread in the object plane can be calculated similarly as before, giving ∆y = f�y;max =
0:31 Å. Hence, the spread in both directions is on the same order of magnitude.

Information delocalization

We have now properly characterized the transverse spread in the object plane of the zero-order beam,
caused by effects that are present in realistic TEM setups. The order of magnitude for this spread is � 0:5
Å for the given setup parameters. The effect of this spread can be neglected and hence, no modification
has to be made to the phase mask. The reason for this is relatively subtle. First of all, there is no
information present in the zero-order beam (it is the reference wave). Secondly, the image is formed by
the interference of the reference wave with the higher frequency components. Deflections applied to the
reference wave will hence only cause distortions if the deflection is on the order of the sample size. The
point is that then, the reference wave is deflected to such an extent that part of the image cannot be
formed anymore because the reference wave is absent; it has been deflected. However, as the deflections
are � 0:5 Å and the sample sizes are generally on the order of microns, the zero-order beam deflections
can be disregarded.
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4.5 Phase mask

In this section, we will briefly summarize the most important points of the previous parts and elaborate
more upon the correct description for a pulsed laser phase plate mask.

In section 4.3, we have derived the phase delay induced on the electrons ’(r; t0) as a function of transverse
position and offset time. However, as the phase plate is located in the back focal plane, we want to define
the phase mask in terms of the sample frequencies ’(u; t0). The transverse coordinates in the back focal
plane (zbf; ybf) are related to the spatial frequencies of the sample (uz; uy) as

�
zbf

ybf

�
= f�e

�
uz
uy

�
: (4.28)

This directly allows us to define the phase mask in the frequency domain ’(u; t0), which is one of the
most crucial expressions in this work. It describes the correct phase delay given to a single electron at
offset time t0 in the frequency domain. In Figure 4.2, two plots are shown of the phase mask in the
frequency domain at offset times (a) t0 = 0 and (b) t0 = ��=3. The phase mask is rather elongated in
one dimension. Moreover, for t0 = 0 the phase mask is inversion symmetric ’(�u; 0) = ’(u; 0). On the
contrary, at t0 6= 0 the inversion symmetry is broken.

(a) t0 = 0 (b) t0 = ��=3

Figure 4.2: Phase mask for (a) synchronized electron t0 = 0, and (b) unsynchronized electron t0 = ��=3. In
(a), the phase mask is inversion symmetric whereas for (b), the phase mask is asymmetric.

As discussed in Chapter 2, we can define the total phase shift as �(u; t0) = ’(u; t0) + �(u), taking
into account the time-dependence, and calculate the correct information transfer with the wave transfer
function WTF(u; t0) = D(u)ei�(u;t0). The image intensity for a single electron i with offset time t0;i can
then be calculated as

Iim(r; t0;i) = jF�1[WTF(u; t0;i)spec(u)]j2: (4.29)

As mentioned, bunched electrons will be injected into the TEM setup. Moreover, we have explained that
to adequately describe bunched electrons of length �e we will have to investigate the behavior of the
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light-electron interaction for a set of offset times in the range of t0 2 [��e; �e]. Hence, the total image
intensity formed with an electron bunch will be

Itot(r) =

NX
i=1

Iim(r; t0;i) (4.30)

=

NX
i=1

jF�1[WTF(u; t0;i)spec(u)]j2: (4.31)

Here, we imply incoherent summation of the image intensities. With the summation term
PN
i=1 we imply

summation over N , equally spaced electrons inside a single bunch, with the offset time ranging from ��e
to �e. The single-electron intensity Iim(r; t0;i) is modulated only by self-interference of the single-electron
wave function. That is to say, the electrons do not interact with each other. The total intensity is then
modulated only by the summation of the single electron intensities. In other words, we cannot take the
summation inside of inverse Fourier transform in Eq.(4.31). Hence, we are not allowed to calculate a
total wave transfer function that describes the correct transfer for a full electron bunch. Each electron,
arriving at a different time, has a unique wave transfer function.

Lastly, we have discussed the electron deflections (momentum shifts) due to interaction with the pulsed
laser. In general, the deflections are taken care of by the phase gradients in the phase mask ∆p? =
h̄r’(y; z). The curvature of the wavefront after interaction corresponds one-to-one with the single elec-
tron scattering paths. Furthermore, the small longitudinal electron acceleration caused by the pulsed
laser does not lead to any additional phase shift. Lastly, the additional deflections present in an exper-
imental setup were also considered and deemed not significant. Hence, no additional effect has to be
added to describe electron scattering. Imaging with electron bunches and a pulsed laser phase mask is
correctly described by Eq.(4.31), using ’(u; t0) as a phase mask for the transfer function.
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5 j Pulsed laser phase contrast

In the previous chapter, we have characterized the interaction between a pulsed laser beam and an
electron bunch. In this chapter, we use this knowledge to investigate the achievable phase contrast using
a pulsed laser phase plate. The chapter is split up into two parts. First, we perform a one-dimensional
characterization of the phase contrast quality using elementary phase-only (weak phase) object waves.
Thereafter, we perform a two-dimensional characterization, using more realistic object waves. For the
one-dimensional case, we first discuss the phase contrast transfer for single-electron interactions with
the pulsed laser phase plate and compare it to that of an ideal phase plate and for Scherzer defocus.
Furthermore, we elaborate upon the length scales over which phase contrast is transferred adequately.
Additionally, we discuss several methods which can increase these length scales. Then, instead of single
electrons, we investigate how using electron bunches will affect the phase contrast transfer. At last,
aberrations are added. Finally, in a similar manner, the phase contrast is characterized using two-
dimensional (weak phase) object waves with correlated amplitude and phase information, created with
sample data of an atomic crystal structure.

5.1 One-dimensional imaging

5.1.1 Phase contrast transfer function

In Section 4.5 we discussed that the total image intensity is formed by the incoherent sum of many single
electron image intensities. We also mentioned that therefore, the wave transfer function for every single
electron has to be considered separately, implying that no time-averaged wave transfer function can be
constructed. For the same reason, we have to consider for every electron, a separate phase contrast
transfer function. Consequently, we will now investigate the PCTF for a single synchronized electron
(t0 = 0). Recalling the definition given in Chapter 2:

PCTF(u) = D(u) sin(�(u; 0)� �(0; 0)) (5.1)

= D(u) sin(�(u) + ’(u; 0)� ’0); (5.2)

we calculate the two-dimensional contrast transfer function modelling the damping function D(u) as a
Gaussian envelope with a HWHM of wd = 5 nm�1. Moreover, the spherical aberration constant is set
to Cs = 1:3 mm and the aforementioned focal length is used f = 3:5 mm. The corresponding optimal
phase plate defocus is equal to ∆f = 0:73

p
�eCs = 41:7 nm. The absolute value of the resulting two-

dimensional PCTF is shown in Figure 5.1a. In the center, the shape of the phase mask can be observed
(see Figure 4.2). The weakly scattered electrons that hit the pulsed laser will obtain an undesired phase
shift, decreasing the phase difference with the zero-order beam. Hence, for these low-frequency compon-
ents, the phase contrast is minimal jPCTFj � 0, represented by darker shades. Around the dark region,
there is a circular-shaped area with high constant phase transfer jPCTFj � 1, represented by brighter
shades. In this area, there is approximately a �=2 phase difference compared to the zero-order beam.
This area is bordered by bright and dark rings representing oscillations between amplitude and phase
contrast transfer, caused by the strong effect of aberrations on the phase shift for the high-frequency
components.

To compare with greater ease the phase contrast of the pulsed laser phase plate with, e.g., the phase
contrast at Scherzer defocus, we are interested in a one-dimensional PCTF. Therefore, we calculate the
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(a) jPCTF(u)j (b) PCTF(juj)

Figure 5.1: (a) Absolute value of two-dimensional PCTF for pulsed laser phase plate. (b) Angularly averaged
PCTF of pulsed laser phase plate, with aberrations (red, solid) and without (red, dotted). PCTF with aberrations
at Scherzer defocus (black) and for ideal phase plate at phase plate focus (red, dot-dash).

angular averaged PCTF [14], for which we average over all angles � = arctan (uy=uz). The result is an
averaged contrast transfer function dependent only on the magnitude in spatial frequency PCTF(juj),
and can be represented by the integral

PCTF(juj) =
1

2�

Z 2�

0

PCTF(juj; �)d�: (5.3)

This will allow for an easier characterization of cutoff frequencies in a similar manner to the discussion
about Scherzer defocus. The averaging was performed numerically. In Figure 5.1b the result is plotted
together with the phase contrast transfer function for an ideal phase plate and at Scherzer defocus to-
gether with noise values �0:1. One can clearly see that the pulsed laser phase plate leads to an increase
in phase contrast for the low frequencies. For the minimum frequency that has phase contrast above
noise levels we find jujmin = 0:047 nm�1, corresponding to maximum length scales of around �max = 21
nm. For Scherzer defocus, jujmin = 0:43 nm�1. For the pulsed laser phase plate we find that at higher
frequencies, it follows the same curve as the ideal phase plate. Hence, the pulsed laser phase plate has an
instrumental resolution limit of jujres = 3:7 nm�1, corresponding to a minimum length scale of �min = 2.7
Å. However, it may be helpful to remind the reader that this resolution limit is not directly determined
by the phase plate. It is mainly the effect of the aberrations in the system. Hence, this resolution can be
improved by aberration correction. Which we will not touch upon in this report.

Phase plates mainly influence the low-frequency behavior of the information transfer. A pulsed laser
phase plate will provide some initial phase contrast for length scales of �min = 21 nm, However, at these
length scales, the amplitude contrast transfer will still be dominating and thus, phase information will
still be difficult to interpret. To adequately define the length scales for which phase contrast is dom-
inant over amplitude contrast, we introduce the cutoff frequency jucj, which is specifically defined as
PCTF(jucj) = 0:962. This choice for cutoff frequency has been rather arbitrary but serves as a good
indication for optimum phase contrast. The corresponding value for the amplitude contrast transfer is
ACTF(jucj) = 0:273. In the following sections, we will observe that this definition for the cutoff frequency
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is adequate. Using this cutoff frequency we can define the contrast length scale as �c = 1=jucj; information
up until this length scale is definitely transferred with good phase contrast. Up until now, for complete-
ness, we have always included the effect of aberrations. However, to fundamentally investigate the quality
of phase contrast transfer of the pulsed laser phase plate, we will omit the aberrations in subsequent dis-
cussions. In Figure 5.1b, the one-dimensional PCTF without aberrations is plotted using a red dotted
line. From this graph we can determine that the cutoff frequency has a value of jucj = 1 nm�1, implying
that length scales of �c = 1 nm are transferred with good phase contrast. We will now investigate the
phase contrast quality by observing the image intensities of one-dimensional phase objects of various sizes.

5.1.2 Phase contrast length scales

Similar to what was done for the phase contrast transfer function, we can calculate the angular averaged
wave transfer function WTF(juj) in terms of the absolute value of the frequency. Omitting aberrations,
the averaged wave transfer function is equal to

WTF(juj; t0) =
1

2�

Z 1
�1

ei’(juj;�;t0)d�: (5.4)

Consequently, we can create one-dimensional image intensities Iim(jrj; t0) affected accordingly by the
information transfer properties of the pulsed laser phase plate:

Iim(jrj; t0) = jF�1[WTF(juj; t0)spec(u)]j2: (5.5)

In the following part, we will characterize the phase contrast transfer over various length scales for syn-
chronized single-electron interactions Iim(jrj; 0). At this moment in time, we would like to make a remark
regarding the order of averaging in Eq.(5.5). We have no mathematical justification for whether it is
allowed to perform the angular averaging before the Fourier transform. However, we have good reasons
to believe that it produces similar results as averaging after the Fourier transform. Moreover, the one-
dimensional treatment serves more for building intuition about the problem than for obtaining the true
behavior.

To investigate over which length scale phase information is adequately transferred we will perform pulsed
laser phase contrast imaging using (weak phase) object waves a(r)ei�(r) with constant amplitude and
(negative) block-shaped phase information of radius B

a(r) = 1 (5.6)

�(r) =

(
�2�=10; if jrj � B
0; if jrj > B:

(5.7)

In the previous section we have found for the cutoff frequency jucj = 1 nm�1, implying a contrast length
scale of �c = 1=jucj = 1 nm. We now define a dimensionless parameter M for the effective size of the
phase information

M =
�c
B
: (5.8)

This parameter tells us how many times the radius of the phase information B, fits in the contrast length
scale �c. For M < 1, the phase information is present over a length scale larger than the contrast length
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scale, meaning that not all information may be transferred correctly. For M � 1, the phase information
is present for length scales equal or smaller than the contrast length scale, implying that phase contrast
transfer will dominate and the intensity will be modulated mainly by the phase information.

We form image intensities assuming a single synchronized electron, with wave transfer function WTF(juj; 0),
for initial object waves with phase information radii equal to B = 0:2 nm, B = 1 nm and B = 5 nm. For
�c = 1 nm, these radii result in the respective values for the effective size: M = 5, M = 1 and M = 0:2.
All three images are plotted in Figure 5.2 as a function of scaled distance jrj=B, together with the image
intensity formed with an ideal phase plate.

Figure 5.2: Phase contrast image intensity for pulsed laser phase plate of step function phase information of
relative sizes M = 5 (large dash), M = 1 (solid) and M = 0:2 (small dash). The same settings were used for the
ideal phase plate without aberrations (black).

Overall, the difference in image intensities between the length scales can be categorized into two parts.
First, is the decay of the profile. For M = 5 (red, large dash) the image intensity is close to the ideal case
(black). For M = 1 (red, solid), the block shape can be recognized as the decay in intensity is small. On
the other hand, for M = 0:2 (red, small dash), the intensity at jrj=B = 0 has almost fully decayed. For
phase information larger than this length scale of � 5 nm, phase information is not transferred anymore.
The second difference is the height between the maximum and minimum value of the profile at jrj=B = 1.
As M decreases, so does this height. Hence, for objects with larger widths, the phase contrast at the
edges decreases with respect to the ideal case.

Additionally, for M = 0:2 only the edge of the block-shaped phase information is transferred. Moreover,
we see that this edge is imaged with tail-like decaying profiles on both sides. These tail-shaped profiles
are approximately equal to the radius of the block B. The length of B for M = 0:2 is five times larger
than the contrast length �T = 5�c. Hence, we can conclude that step function phase information will be
transferred to the image intensity with tails of length �T = 5�c (� 5 nm for the standard settings).

The phase onset of the pulsed laser phase plate is smooth, as can be seen in Figure 5.1. Therefore, there
are no high-frequency fringe artifacts, similar to Volta phase plates [11]. From the figure, we can clearly
see that this leads to smooth image intensity profiles without any high-frequency oscillations.
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We can now conclude that information on the scale of the contrast length �c is transferred adequately.
Furthermore, the amplitude of the phase contrast decreases for longer length scales. Moreover, the transfer
of phase information occurs up until length scales of around �T = 5�c. Hence, if we can determine the
contrast length scale, we directly know the maximum length scale over which phase contrast is achieved.
We will now elaborate more upon other choices of setup parameters that can optimize these length scales.

5.1.3 Optimization

In previous calculations, a focal length f = 3:5 mm and laser waist w0 = 2� were chosen. The focal
length corresponds to the actual focal length of the objective lens present in the TEM. The laser waist
of w0 = 2� will be an experimental challenge but should be achievable within a reasonable amount of
time. Overall, these values were selected based on the relative ease of implementation in our current
TEM setup. However, in this subsection, we will investigate how choosing different values for the focal
length and waist will influence the phase contrast transfer.

Let us start by elaborating some more on the choice of laser waist. In this report, all phase and momentum
shift calculations have been performed using the paraxial ponderomotive potential approximation. For
a waist of w0 = 2�, the phase shift has been characterized and furthermore, it has been concluded that
longitudinal momentum shifts do not produce any problems. In the meantime, within our group more
extensive calculations have been performed using a simulation program with more realistic field descrip-
tions at tight laser focusing. These have provided more insight into the exact behavior of the phase and
(longitudinal) momentum shift (see Appendix A). Having the results of these calculations, we can state
with certainty that a waist of w0 = 2� is a safe option. At this waist size, the paraxial ponderomotive
model holds very well. Meaning that the effect of the polarization, as well as the effect of the phase of
the light, is negligible. However, the calculations have also provided additional insight. Namely, that
at standard TEM electron energies, a waist of w0 = � is also allowed. Where ’allowed’ means that the
correct phase shift is applied and longitudinal and transverse momentum shifts do not become too large.
Consequently, as the Rayleigh length scales as � w2

0, a tighter laser focus results in a smaller and more
spherically symmetric phase plate, resulting in better phase contrast. Additionally, the required pulse
energy also decreases. Due to these additional benefits, it is an interesting option to explore.

Besides tightly focusing the laser, there is another method that can be implemented to increase the phase
contrast transfer. With a modification to the current transfer optics in the TEM, it is possible to magnify
the diffraction plane. In this case, the phase plate is not placed in the back-focal plane of the objective
lens at f = 3:5 mm. Instead, it is placed in the magnified diffraction plane located at the effective focal
length f̄ = Ff , which is thus larger compared to the original focal length by a factor of F . This technique
is applied by the aforementioned group which built the first working continuous-wave laser phase plate
[14]. Hence, we choose to use an effective focal length similar to their value f̄ = 21 mm, corresponding
to a magnification of F = 6. Note that the magnification of the diffraction plane reduces the effective
size of the phase plate by a factor of F = 6. Hence, for a pulsed laser in the magnified diffraction plane,
the phase contrast length scales mentioned in the previous section can be multiplied by F . We will now
discuss more precisely the effect on the phase contrast transfer of both procedures mentioned above.

We will discuss three cases. First, the original case where w0 = 2� and f = 3:5 mm (case 1). Thereafter,
the case where w0 = � and f = 3:5 mm (case 2) and where w0 = � and f̄ = 21 mm (case 3). The
angular averaged PCTF for all three cases is shown in Figure 5.3. From this figure, we can observe the
relative sizes of the phase masks in the back focal plane. We again calculate the cutoff frequencies and
the corresponding length scales for the two new cases. The results are summarized in Table 5.1.
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Figure 5.3: Phase contrast transfer function for three setup cases: (1, solid) w0 = 2� and F = 1, (2, large dash)
w0 = � and F = 1, (3, small dash) w0 = � and F = 6.

Table 5.1: Cuto� frequencies and corresponding length scales for three di�erent setup cases.

w0 f̄ [mm] jucj [nm]�1 �c [nm] �T [nm]
2� 3.5 1 1 5
� 3.5 0.43 2.3 11.5
� 21 0.072 13.8 69

Firstly, the results indicate that a waist reduction of 2 leads to a cutoff frequency reduction by a factor
of 2.3. The transverse waist w0 becomes 2 times smaller, while the Rayleigh length zR becomes 4 times
smaller. Taking into account the already present non-circular shape of the phase mask, angular aver-
aging leads to the mentioned effective reduction in the phase mask size. Furthermore, increasing the focal
length by a factor of F = 6 results in an additional reduction of the same factor. This latter effect is
attributed to the linear relation between the focal length and the transverse coordinates of the sample
frequencies in the back focal plane given in Eq.(4.28). Overall, it can be concluded that there can be an
increase by a factor of 13:8 in the length scales over which phase contrast is present by focusing more
tightly to w0 = � and magnifying the diffraction plane by a factor of F = 6.

Adjusting the focal length by a factor of F changes the scale of the contrast transfer curve while not
modifying its shape. Adjusting the waist size also changes the transverse (y; z) aspect ratio of the phase
mask and therefore changes the shape of the eventual averaged phase contrast transfer function. This,
in turn, affects the shape of the image intensities shown in Figure 5.2. We have implicitly assumed that
this change in intensity profile is so small, that we can neglect the effects. Hence, we still use for case 2
and case 3, the relation �T = 5�c, determined originally for case 1.
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5.1.4 Electron bunch imaging

In Chapter 3 we have discussed that an electron bunch can be viewed as a series of single electrons, which
can be differentiated by a value of t0. Moreover, in Section 4.5 we have shown that the phase mask at
t0 6= 0 will be different from the phase mask at t0 = 0. Therefore, the total image intensity formed by an
electron bunch, with each electron observing a different phase mask, will vary from the single electron
image intensity. In this section, we will investigate the image intensity for various electron bunch lengths,
and compare them to the previously found single-electron intensity, for the same block-shaped phase
information as before.

We use Eq.(5.4) and Eq.(5.5) to calculate the total angular averaged image intensity Itot(jrj; t0). In doing
so, we will vary the range of offset times t0 2 [��e; �e], or so to say, vary the electron bunch length. In
Chapter 3 we have also introduced the constant-phase criterion which states that for a minimum of 90%
phase shift across the whole electron bunch, its length must be �e � �=3. We will now calculate the image
intensities for the effective bunch lengths �e = 0, �e = �=3, �e = � and �e = 2� , respectively. We consider
the original parameter settings w0 = 2�, f = 3:5 mm and use the same object wave as before with step
function phase information for value M = 1. In Figure 5.4, the results are plotted together with the case
for single-electron imaging using an ideal phase plate.

Figure 5.4: Phase contrast image intensity of step function phase information of relative size M = 1 for pulsed
laser phase plate with electron bunches of size �e = 0 (solid), �e = �=3 (large dash), �e = � (medium dash),
�e = 2� (small dash). Same for ideal phase plate image intensity (black)

From comparing �e = 0 and �e = �=3, we can see that the latter is a safe option regarding any decrease
in quality due to the use of electron bunches. The profile is only minimally affected for electron bunch
lengths �e = �=3. For longer bunch lengths �e = � and �e = 2� , the intensity is lowered, whilst the profile
slightly flattens. This result indicates that although the constant-phase criterion serves as a good target
for optimal phase contrast, larger bunch lengths or source jitter leading to larger effective offset ranges
will not necessarily be detrimental to the phase contrast. It can be concluded that the main effect on the
intensity is a decrease in the contrast, whilst the shape of the profile remains roughly similar. The height
between the maximum and minimum point at jrj=B = 1 decreases. Hence, a long offset time range (large
bunch length/source jitter) corresponds to less phase contrast.
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5.1.5 Aberrations

Lastly, we perform similar steps as in Section 5.1.2 and image elementary object waves with effective
sizes M = 0:2, M = 1 and M = 5. Now, however, we include the effect of aberrations (Cs = 1:3 mm,
∆f = 41:7 nm). The result is plotted in Figure 5.5.

The aberrations affect mostly the high frequencies and introduce oscillations in amplitude and phase
contrast. These oscillations in the transfer functions result in high-frequency oscillations in the image
intensities, which can be observed in the figure. For M = 1 and M = 0:2, the phase objects have
length scales corresponding to frequencies below the instrumental resolution limit < juresj = 3:7 nm�1.
For these length scales, even with aberrations, the phase contrast is still dominant over the amplitude
contrast and interpretation of the information is still manageable. The decrease in high-frequency phase
contrast can also be observed at the edges. For M = 1, the sharp edge in the phase information has not
been fully carried over. Instead, a more smooth transition occurs. This effect can very clearly be seen
for the M = 5 block. For this size, the phase information is composed of frequencies greater than the
instrumental resolution limit > juresj. Therefore, the block shape phase information is almost completely
lost and correct interpretation of the results will be difficult.

Figure 5.5: Phase contrast image intensity for pulsed laser phase plate including aberrations (Cs = 1:3 mm,
�f = 41:7 nm) of step function phase information of relative sizes M = 5 (large dash), M = 1 (solid) and
M = 0:2 (small dash). The same settings were used for the ideal phase plate without aberrations (black).
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5.2 Two-dimensional imaging

In the following, we will perform two-dimensional pulsed laser phase contrast imaging of a realistic crys-
tal structure. An object wave function was simulated based on the crystallographic information of this
structure, using the corresponding atomic potentials [23]. The magnitude of both the amplitude and
phase information was scaled to fit the criteria for weak phase objects (see Section 2.1). Moreover, the
dimensions of crystal structures are generally on the order of several Ångströms to nanometers. However,
we are interested more in longer-range behavior corresponding to the length scales of biological structures.
Therefore, we will adjust the size of the phase information to fit our preference. The aim of this section
is thus, not to simulate image intensities of true crystal structures but to use enlarged, realistic sample
data as a model for larger length scales such as biological specimens. With ‘realistic’ meaning that there
is a strong correlation between amplitude and phase information.

Figure 5.6: Crystal structure composed of potassium (K, green, 0.5), selenium (Se, red, 0.5) and tin (Sn, orange,
0.57) or indium (In, blue, 0.43). Here, the last value in the brackets denotes the occupancy. Two-dimensional
square unit cell (dashed) between K atoms has dimensions a = b = 8:2 �A.

The crystal structure that will be imaged is composed of potassium (K, green), selenium (Se, red) and tin
(Sn, orange) or indium (In, blue) and is depicted in Figure 5.6. The occupancy of potassium is 0.5 indic-
ated by the half-filled green sphere. The occupancy of tin is equal to 0.57 whereas the occupancy of indium
is 0.43, again indicated by the respective colored filling of the orange and blue spheres. These occupancies
are mentioned for completeness but are given no further attention. The two-dimensional square unit cell is
indicated by the dashed lines between the potassium atoms and has, originally, dimensions a = b = 8:2 Å.

In Figure 5.7 the image intensities are shown for normal imaging and for phase contrast imaging using an
ideal phase plate, with the true crystal dimensions a = b = 8:2 Å. The effect of phase contrast imaging
is clear and follows expectations. In the phase contrast image, the crystal structure with its individual
atoms can be more easily recognized than in an image created with normal imaging. In this image, the
intensity is modulated by the amplitude information which is lower in amplitude. Hence, there is less
contrast. In all following images, the horizontal and vertical directions correspond to the z-axis and the
y-axis, respectively, as indicated in Figure 5.7a.

5.2.1 Phase contrast length scales

Similar to the one-dimensional case, we perform pulsed laser phase contrast imaging of the crystal struc-
ture for three length scales using case 1, for which w0 = 2� and f = 3:5 mm. Moreover, the images are
produced assuming single synchronized electrons only, i.e., a static laser phase plate. First, the original
crystal structure dimensions a = b = 8:2 Å were used. Next, the radius of the phase information of a
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0.8 nm

(a) Amplitude contrast

0.8 nm

(b) Phase contrast

Figure 5.7: Image intensities of crystal structure with (a) amplitude contrast and (b) phase contrast, using an
ideal phase plate.

single K-atom was equal to B = 1:1 Å, corresponding to a relative size of M = 9:1. Furthermore, the
crystal dimensions were scaled such that the K-atom had relative sizes M = 1 and M = 0:2. The results
can be found in Figure 5.8.

For Figure 5.8a, the result is in line with expectations based on the one-dimensional result. Namely,
at this small dimension, we expect an image with effectively ideal phase contrast. Furthermore, in Fig-
ure 5.8b significant phase contrast is still present and the image is easily interpretable. However, the
spherical asymmetry of the phase plate starts to appear. In the y-direction, bright vertical stripes are
present. This can be attributed to the fact that in the y-direction, the phase plate is smaller than in
the z-direction. The contrast in the z-direction is slightly worse, and therefore the background is slightly
darker. Moreover, the phase contrast in the y-direction is better, resulting in bright vertical stripes at the
location of the localized phase information (atoms). However, although there is spherically asymmetric
phase contrast, the image is still interpretable. Furthermore, for the relative size M = 0:2 in Figure 5.8c
we expect some, but minimal phase contrast. One can see that these expectations are met. Although
the locations of the atoms are still easily visible, the image is much less clear than the other ones. Only
a little phase contrast is present, and the bright vertical stripes are even more clearly visible.

To compare cases, we also create one phase contrast image using case 2, w0 = � and f = 3:5 mm. We
scale the structure such that the radius is B = 2:3 nm, corresponding to M = 1. In Figure 5.8d the result
is shown.

The result is very comparable to the result of Figure 5.8b (M = 1, case 1). However, the bright stripes
are less apparent. This result agrees nicely with the expectations stated earlier. For a tighter focus, the
phase plate will be more spherically symmetric. Hence, the phase contrast will be more comparable in
all directions. Therefore, for the same relative size scale M = 1, case 2 produces an image with more
equal contrast in all directions compared to case 1.

We do not display any images formed with case 3. The reason for this is the simple scaling factor of
F = 6. We know that case 3 can transfer phase contrast for objects 6 times larger than case 2. Hence, if
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0.8 nm

(a) Case 1: M = 9:1 (real dimensions)

7.5 nm

(b) Case 1: M = 1

37.5 nm

(c) Case 1: M = 0:2

17.3 nm

(d) Case 2: M = 1

Figure 5.8: Phase contrast image intensities of crystal structure with pulsed laser phase plate at two di�erent
system setup cases, and scaled sizes of the K-atom: (a) case 1: M = 9:1, (b) case 1: M = 1, (c) case 1: M = 0:2,
(d) case 2: M = 1.

the structure was scaled such that B = 13:8 nm, case 3 would produce the same image as in Figure 5.8d,
but with different axis values. Hence, case 3 can produce two-dimensional images with very good phase
contrast for phase information length scales of B = 13:8 nm.

5.2.2 Electron bunch imaging

Again, similar to the one-dimensional case we perform phase contrast imaging for several electron bunch
lengths. We use case 1, with a relative phase information length scale of M = 1 and vary the bunch
lengths �e = 0, �e = �=3, �e = � , and �e = 2� . Here, �e = 0 implies single-electron imaging. We assume
spatial synchronicity for all electron bunches. The results are plotted in Figure 5.9.
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Again, the difference is very small between single-electron imaging �e = 0, seen in Figure 5.9a and the
constant-phase criterion bunch length �e = �=3, seen in Figure 5.9b. It is difficult to observe any visible
change in intensity. On the other hand, for longer bunch lengths e.g. �e = � , the effect is clear. Namely,
the overall contrast in the image decreases. For �e = � , the phase information, although less clear, is
still interpretable, as can be observed in Figure 5.9c. However, for �e = 2� the image mostly displays
amplitude information, shown in Figure 5.9d.

7.5 nm

(a) �e = 0

7.5 nm

(b) �e = �=3

7.5 nm

(c) �e = �

7.5 nm

(d) �e = 2�

Figure 5.9: Simulated phase contrast image intensities of crystal structure at relative size M = 1, imaged with
the pulsed laser phase plate (case 1) for various electron bunch lengths (a) �e = 0, (b) �e = �=3, (c) �e = � , (d)
�e = 2� .

The phase contrast clearly decreases for longer bunch lengths and is in line with expectations derived from
the one-dimensional case. These results hence indicate that the constant-phase criterion is a condition
worth pursuing for optimal phase contrast. Moreover, they indicate that reducing the source and laser
jitter, and hence the effective range of offset time, will be valuable for the phase contrast quality.
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5.2.3 Aberrations

Lastly, we include aberrations to investigate the corresponding effect. For this, we perform phase contrast
imaging for the original crystal structure size M = 9:1 and for the base-line M = 1. For both, we use case
1 and an electron bunch length of �e = �=3, corresponding to the constant-phase criterion. Moreover, we
used the aforementioned values for the aberrations (Cs = 1:3 mm, ∆f = 41:7 nm). In Figure 5.10 the
result is shown.

0.8 nm

(a) case 1: M = 9:1

7.5 nm

(b) case 1: M = 1

Figure 5.10: Phase contrast image intensities of crystal structure with scaled sizes (a) case 1: M = 9:1, (b) case
1: M = 1 using a pulsed laser phase plate including aberrations Cs = 1:3 mm, �f = 41:7 nm.

The image for the original crystal dimensions is affected significantly due to the aberrations. The informa-
tion is no longer interpretable and aberration correction would be required. On the other hand, the image
with M = 1 is not affected significantly, and hence, interpretation of the information is still possible.
Overall, we can conclude that phase contrast imaging using a pulsed laser phase plate in combination
with bunched electrons leads to good results for structures on the order of 1 nm, even with aberrations.

40



6 j Summary & conclusion

This chapter provides a summary of the most important findings of this work. Corresponding conclusions
are added in the form of bullet points, given in bold text. Finally, an overall conclusion of this thesis is
given.

6.1 Individual findings

This work discusses the feasibility of a pulsed laser phase plate for phase contrast imaging. The mathem-
atical framework most often used for microscopic imaging is Fourier optics. The main aim was to work
out how to properly incorporate the pulsed laser phase plate into this framework. In doing so, a bunched
electron source beam had to be considered. Having established an appropriate phase mask model, the
phase contrast quality of the pulsed laser phase plate was subsequently characterized. The individual
steps of this process are now elaborated upon.

Before Fourier optics, which exploits the wave-like nature of electrons, was utilized the electrons were
treated as point-like particles. In this framework, we calculated the phase shift for a single electron
traveling through the pulsed laser beam. The interaction between the electrons and the pulsed laser was
modeled using the paraxial ponderomotive approximation (quasi-relativistic). Accordingly, the phase
shift as a function of transverse coordinates was calculated. This provided a two-dimensional expression
for the phase delay applied by the pulsed laser beam. It became clear that for a ��=2 phase shift, pulse
energies � 10 nJ are required.

� Proper ��=2 phase shifts can be applied to relativistic electrons (200 keV) with stand-
ard laser systems (� = 800 nm, � = 100 fs, W = 17 nJ, w0 = 2�, frep = 75 MHz).

The fact that in our setup, the source beam is pulsed led to specific terminology such as (spatial) syn-
chronization, characterized by the variable t0, the offset time. The offset time denotes the time at
which the electrons interact with the pulsed laser (which crosses the electron propagation axis at t = 0).
Consequently, the interaction between electron bunches and the pulsed laser could be characterized by
investigating the behavior for a range of offset times. For the phase shift, this led to the ‘constant phase
criterion’. This criterion suggests that for optimal i.e. approximately constant, phase shift across the
whole electron bunch, the electron bunch length is limited by the laser pulse length. Specifically, for a
minimum of 90% phase shift, the bunch length must be �e � �=3.

Besides the phase shift, the momentum shifts for the central beam were also characterized for a range of
offset times. This was specifically done at an offset of �r = 10 nm. Due to the finite transverse emittance,
the zero-order electron beam will have a finite spot size in the back focal plane. Hence, the transverse
components of the momentum shifts were analyzed and understood for this finite-sized zero-order beam.
It was found that the z-momentum shift had a sweeping-like motion as a function of offset time, and was
not dependent on transverse offset. For the y-momentum shift the behavior was similar to a diverging
lens, strongly dependent on transverse offset whilst the dependence on offset time was less. Correspond-
ing deflections were calculated and both lead to delocalization in the object plane on the order of 0.5
Ångströms for standard system parameters. Considering the magnitude of these deflections and the fact
that the zero-order beam is the reference wave, the effect of this delocalization can be neglected.
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� The delocalization of the finite-sized zero-order electron beam due to deflections from
the pulsed laser phase plate will not influence the image intensity and its effect can
therefore be neglected

The transverse momentum shifts for the remaining electrons were deemed to be incorporated in the
phase delay. The position-dependent phase delay applied in the back focal plane leads to phase gradients
in the electron wavefront. These phase gradients can be related to the transverse momentum shifts
∆p?(y; z; t0) = h̄r’(y; z; t0). Hence, the point-like electron deflections will be properly encoded in the
phase profile of the electron wavefront. Thus, no additional effect representing transverse deflections is
needed for a proper description of the phase mask.

� The point-particle electron momentum shifts are well described by the phase gradients
in the electron wavefront. Hence, any deflections caused by the pulsed laser phase plate
are incorporated in the phase mask description of the laser beam.

The longitudinal momentum shift was considered in much depth. The time-dependent nature of the
pulsed laser beam led to inelastic scattering of the electrons from the photons, leading to longitudinal
electron acceleration. The question arose whether this longitudinal electron acceleration would influence
the electron phase after the interaction with the pulsed laser phase plate. Hence, the phase shift of an
accelerated electron was analyzed. The actual calculations and simulation results are omitted from this
work’s main body for the sake of brevity but are fully worked out in Appendix B. The results proved
that the longitudinal acceleration induced by the pulsed laser phase plate with normal parameter settings
does not produce any additional phase shift along the trajectory. This validated the use of a solely two-
dimensional, transverse phase mask model for the pulsed laser phase plate. Meaning that no additional
longitudinal phase effect had to be included in the phase mask description .

� For standard laser parameters, the longitudinal momentum shift does not lead to
electron phase drift. Hence, the two-dimensional transverse phase delay ’(y; z; t0) is
an adequate phase mask model.

Having determined the correct description of the pulsed laser phase mask, we were able to investigate
the resulting phase contrast quality. First, a one-dimensional treatment was considered. Analyzing the
one-dimensional PCTF, a cutoff frequency was introduced jucj. The reciprocal of this cutoff frequency
was defined as the contrast length scale �c = 1=jucj, the length scale over which phase information can
be transferred well. For the standard setup parameters mentioned in the first bullet point �c = 1 nm.
Then, for standard setup parameters, the single-electron phase contrast was characterized at various
length scales. These length scales were denoted by a dimensionless parameter M = �c=B, which links the
contrast transfer length scale, to the size of the phase-information B. The one-dimensional phase contrast
image intensities were calculated for step function phase information profiles with various radii B. From
these images, it was determined that for M = 1, there is adequate phase contrast free of high-frequency
fringe artifacts. Moreover, it became clear that step function phase information could only be transferred
up to a certain length. The phase contrast intensity seemed to decay with tails of length �T = 5�c. Hence,
it was concluded that with a pulsed laser phase plate, samples with phase variations up until � �T (=
5 nm) can be imaged. However, for more optimal phase contrast, samples with phase variation on the
order of �c should be used.

� With a pulsed laser phase plate, good phase contrast free of high-frequency fringe
artifacts is achieved for phase variation on the order of the contrast transfer length
�c (= 1 nm for standard setup parameters). Phase information is transferred up until
lengths scales of around �T = 5�c (= 5 nm).
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Additionally, some methods were discussed to increase the contrast transfer length. Namely, a tighter
laser focus and diffraction plane magnification. Decreasing the laser waist by a factor of 2, led to an
increase in contrast transfer length of 2.3. This can be attributed to the fact that the Rayleigh length
scales as 1=w2

0. Moreover, diffraction plane magnification by a factor of F led to an increase in contrast
transfer length of the same amount.

Next, the effect of the electron bunch length on the phase contrast was investigated. For the original case
(w0 = 2�; f = 3:5 mm), phase contrast image intensities were formed using step function phase informa-
tion of size M = 1. To simulate imaging with electron bunches, the single-electron image intensities for
a discrete set of offset times in the range t0 2 [��e; �e] were averaged incoherently. This was done for
�e = 0, �e = �=3, �e = � , and �e = 2� . The main effect of using longer electron bunches was an overall
decrease in the contrast intensity. Moreover, although no hard cutoff, electron bunch lengths �e � �=3
provide near-optimal phase contrast.

� For the pulsed laser phase plate, longer electron bunch lengths lead to a decrease in
phase contrast intensity

� Electron bunch lengths �e � �=3 are a safe option for near-optimal phase contrast

Finally, we performed a similar analysis with two-dimensional images of realistic sample data obtained
from open-source datasets of crystal structures. Specifically, we used a (K-Se-Sn-In) crystal. The data
was scaled to fit the weak phase approximation. The structure was scaled to unrealistic dimensions such
that the largest atom (K) had similar widths to the one-dimensional step function information. Firstly,
using case 1 (w0 = 2�, f = 3:5 mm) images were created using the original crystal dimensions (B = 0:92
Å M = 9:1, and for scaled dimensions M = 1 and M = 0:2. The results were in agreement with
expectations based on the one-dimensional calculations. For M = 9:1, the phase contrast was similar
to an ideal phase plate. For M = 0:2 the phase contrast was present, but only minimally. For M = 1,
there was good phase contrast. However, the spherical asymmetry of the pulsed laser phase plate was
noticeable. Specifically, bright vertical stripes were present. Consequently, an image of same relative size
(M = 1) was formed with case 2 (w0 = �, f = 3:5 mm) which has a tighter laser focus. Due to the tighter
laser focus and the corresponding decrease in Rayleigh length, the spherical symmetry of the pulsed laser
phase plate is increased. Hence, the bright stripes were less apparent. Besides that, the phase contrast
was of similar quality.

� The spherical asymmetry of the pulsed laser phase plate can be observed in the two-
dimensional image intensity as bright vertical stripes, but is not detrimental

� For tight focus w0 = � and phase information on the order of nanometers, the effect
of the spherical asymmetry is negligible

Additionally, two-dimensional imaging was performed for several bunch lengths (�e = 0; �e = �=3; �e = �;
�e = 2�) using case 1 and a crystal structure size M = 1. The effect was clearly visible and manifested as
an overall decrease in intensity. For �e = �=3, the image intensity was nearly similar to the synchronized
single-electron intensity. For �e = � , the contrast was much lower, but interpretation of the information
was still possible. For �e = 2� , the phase contrast decreased significantly and consequently, the amp-
litude contrast seemed to dominate. Overall, these results served as extra backing for the constant-phase
criterion and matched the findings of the one-dimensional treatment.

Lastly, we also included aberrations (Cs = 1:3 mm, ∆f = 41:7 nm) for the two-dimensional images.
Using case 1 and an electron bunch length �e = �=3, images were formed for the true crystal dimensions
M = 9:1 and for scaled dimensions M = 1. The image of the true crystal size was deformed significantly
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due to the high-frequency distortions caused by the aberrations. Interpreting the information at these
length scales becomes difficult, if not impossible. The scaled image with length scales M = 1 showed
good phase contrast which was affected minimally. Hence we can conclude that even with aberrations,
a pulsed laser phase plate in combination with bunched electrons will produce good phase contrast for
phase information on the order of nanometers.

� A pulsed laser phase plate (w0 = 2�;f = 3:5 mm) in combination with bunched elec-
trons of length �e � �=3 will produce good phase contrast for phase information � 5
nm, where aberrations will determine the lower limit of this range

6.2 Overall conclusion

Standard laser systems (e.g., � = 100 fs, � = 800 nm, w0 = 2�, W = 17 nJ) can induce a ��=2
ponderomotive phase shift to relativistic electrons (Ek = 200 keV) incident under an angle of 90�. For
electron bunches of length �e � �=3, good phase contrast is achieved for phase information � 5 nm. The
length scale over which phase contrast is present can be increased with tighter focusing, which in turn
reduces the effect of the spherical asymmetry observable in the image intensity as bright vertical stripes.
The effective size of the pulsed laser phase plate (y � 1 �m, z � 10 �m) is larger than existing types such
as the thin film and Volta phase plates (y = z � 1 �m). However, as opposed to the latter, the pulsed laser
phase plate applies a constant phase shift and remains unaffected by charge contamination. Moreover,
similar to Volta phase plates, no high-frequency fringe artifacts are present in the image intensity due
to the smooth onset of the pulsed laser phase profile. Hence, a pulsed laser phase plate is a suitable
option for stable phase contrast imaging in an ultrafast transmission electron microscope, technically less
demanding and more cost-efficient than a continuous-wave laser phase plate.
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7 j Outlook

In this chapter, suggestions are provided for future research based on the current state of this work and
ideas that have not yet been fully explored.

Holography

By varying the optical power of the pulsed laser, the peak electron phase shift can be varied ’0 2 [0;�2�].
Therefore, the pulsed laser phase plate is an interesting option for in-line holography with a variable phase
plate such as proposed in the work of van Dyck [24]. With amplitude or phase contrast imaging, one can
only obtain the amplitude or phase information, respectively, or a combination of both. With holography
rather, the aim is to obtain the complete amplitude and phase information of the object wave. Moreover,
the method proposed by van Dyck does not assume weak phase objects. This method thus enables the
complete imaging of arbitrary phase objects. For future work, we propose to investigate this method of
holography using the pulsed laser phase plate. Initial results were obtained and included in Appendix C,
but due to time constraints not worked out in full detail. By adding the initial results we hope to aid
future research.

New interaction schemes

In Appendix D we discuss several new interaction schemes. They display interesting behavior which
could be utilized for coherent light-electron manipulation, however, it is still debatable whether these
interactions are applicable for a phase plate. We now briefly outline the main points and discuss the
possible pitfalls regarding implementing these schemes for a phase plate.

Originally, new interaction schemes were investigated to possibly increase the interaction time. However,
in doing so we learned that by injecting the laser under the velocity matching angle �vm = arcsin(v=c)
with respect to the normal scheme, the transverse z-deflections could be minimized. This angle �vm

matches the velocity component of the pulsed laser in the direction of propagation of the electrons, to
the electron velocity. This minimizes any time-dependent effects of the ponderomotive potential in the z-
direction and, consequently, the z-deflections. Moreover, the interaction time is increased at this injection
angle by 
 = 1:39. Hence, this velocity matching scheme aroused interest due to a larger interaction time
and minimized deflections. Currently, we understand that these deflections do not pose any problems,
however, at the time of these discoveries, the deflections were regarded as a problem. Regardless, the
minimization of deflections may still be interesting for other applications.

Further improvements in the method consisted of using a pulse-front-tilted beam. Results indicated that
the intensity profile could be tilted so that the phase shift behavior was similar to the long pulse limit
behavior of the perpendicular scheme. This allows for reshaping the aspect ratio of the pulse, without
having to meet the long pulse limit criterion. Overall, this velocity-matched and pulse-front-tilted scheme
allows for very short pulses while minimizing z-deflections and increasing the interaction time compared
to the perpendicular scheme. Hence, less pulse energy is required for the correct phase shift.

For the perpendicular scheme, we developed a two-dimensional phase mask that could be implemented
in the framework of Fourier optics. Consequently, we could characterize the phase contrast of the pulsed
laser phase plate. For the new schemes, doing something similar is more challenging. First, since the laser
and the electron wave are velocity-matched, the interaction will occur over a larger longitudinal distance
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than the original scheme. This implies that the electron wave interacts with the pulsed laser before
reaching the back focal plane. If these distances are sufficiently large, the framework of Fourier optics,
which assumes interaction specifically in the back-focal plane, may not be correct. Hence, in future work,
it should be investigated whether more extensive treatments are required, such as simulating the entire
light-electron interaction or calculating the propagation of the electron for more arbitrary distances with
the Huygens integral.

Assuming that Fourier optics can be used for the velocity-matched scheme, the next step should be
developing a correct two-dimensional phase mask description that fits into the Fourier optics framework.
Finally, pulse front tilt should be added.

Relativistic phase shift description

In this work, we assumed that the relativistic behavior of the light-electron interaction is well-described
with an additional factor of 1=
 to the classical description of the ponderomotive potential. This assump-
tion is backed by results obtained through simulations performed using more realistic field configurations,
without assuming a ponderomotive potential (see Appendix A). However, we suggest performing a similar
derivation as in the work of Schwartz [14] for a more robust, analytical framework of the phase shift be-
havior. In this paper, they set up the (non-relativistic) quasiclassical phase shift integral in the electron’s
comoving frame and subsequently perform a Lorentz transformation on the fields to find a relativistically
correct expression for the phase shift in the lab frame. Similar calculations for the pulsed laser phase
plate increase comprehension of the light-electron interaction and hence of the future capabilities.

Crossover regime long pulse limit

While deriving the appropriate phase mask for the pulsed laser phase plate, the long pulse limit, � � �t,
was assumed. This assumption holds well for tight focusing of the laser beam and standard laser pulse
lengths. However, it would be interesting for further research to investigate the boundaries of this limit
better and to understand what happens to the phase and momentum shifts when entering the regime
where � � �t.

Object wave simulation

In this work, open datasets were used to obtain more realistic sample data for the object wave functions.
However, these wave functions were generally not weak-phase objects and did not represent the most
interesting objects for phase contrast microscopy (which are biological specimens). Hence, the magnitude
and position of the amplitude and phase information was scaled accordingly to fit the description of weak
phase objects provided in Chapter 2. We suggest writing a simulation program to calculate object wave
functions using atomic potentials for future work. Ideally, the wave functions could be automatically
calculated by loading the corresponding information of a crystallography information file (‘.ciff’). This
would increase the ease of performing imaging simulations of various molecule monolayers. Moreover, in
this case, the weak phase limit can be directly met without needing any intermediate adjustments.

Optical fiber microknots

For a novel optical phase plate design, we propose to research optical fiber microknots. If one reduces
the size of specially designed optical fibers below a certain threshold, most of the power will be situated
in the evanescent fields, outside of the cladding [25]. These thin fibers can then be tied into knot-like,
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circular shapes, creating resonators on the micrometer scale. Due to the high Q-factor of these resonators,
the field strengths can become very large. This offers interesting possibilities for highly localized phase
modulation of electrons inside a TEM, using widely-available laser systems.
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A j Rigorous simulations

In this chapter, we discuss the main results of the more exact simulation program. With this program,
we have calculated the electron phase shift and momentum shift using a non-paraxial electromagnetic
field description. The results are compared with a paraxial field description and with the calculated
ponderomotive model to test the validity of the paraxial approximation. Mainly, we are interested in
large deviations from this approximation. The results presented in this chapter are from a forthcoming
article.

Because of the tight focus on the order of an optical wavelength, the paraxial approximation no longer
holds. The transverse potentials and fields of the pulsed laser cannot all be described with Gaussian
profiles. Moreover, the potentials and fields along the propagation axis of the electrons become non-zero.
Consequently, different results for the phase shift and momentum shift can arise for these field configur-
ations than for the paraxial approximation. Hence, a more accurate field (and potential) description is
required.

Within the simulation program, various field descriptions were possible. Using the exact same descriptions
as in the forthcoming article, three of those field configurations are:

� A Gaussian distribution of the x-component of the electric field Ex with zero Ey. This leads to a
not-quite-Gaussian

� A Gaussian distribution of By with zero Bx. This leads to a not-quite-Gaussian distribution of the
Ex with non-zero

� The symmetrized choice, consisting of the average of the previous two choices.

The other field components for general z then directly follow from Maxwell’s equations.

In the following treatment, the first (Gaussian Ex) and third (Symmetrized Ex, By) option are chosen.
Furthermore, a completely paraxial model is used, for which the electromagnetic field and the vector po-
tential are described by Gaussian distributions. For axial and transverse polarization, the electric fields
were chosen to be in x- and y-direction, respectively

Using these field configurations, the trajectory of the electrons was calculated using the relativistic equa-
tions of motion. From these trajectories, the momentum shifts could directly be evaluated. Furthermore,
together with the vector and scalar potentials along these trajectories, the quasiclassical phase shift was
calculated using Eq.(B.2). We will now first evaluate the results for the phase shift.

A.1 Phase shift

In Figure A.1, the results for the calculated quasiclassical (normalized) phase shifts are shown. Standard
laser settings were used (� = 800 nm, � = 100 fs) in combination with a range of electron energies (20
eV - 20 MeV). The results for waist sizes 0:75�, � and 1:25� are shown for three values of the initial
phase of the field (0, �=2 and �). The pulse energy is adjusted such that each time a phase shift of
��=2 is obtained using the analytical ponderomotive (paraxial) model of Eq.(4.15). Hence, the results
of the analytical model correspond to a constant line equal to the value 1 in these plots. At a waist
size of 0:75�, the analytical model starts to break down and the phase shift starts to become strongly
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APPENDIX A. RIGOROUS SIMULATIONS

dependent on the specific field configuration and polarization. At low to moderate energy, the paraxial
field equations produce results in line with the analytical model, independent of polarization. On the
other hand, the two other field models produce results that are polarization-dependent. Specifically, for
axial polarization, the phase shifts become considerably larger. At higher energies, the phase shift even
becomes dependent on the phase of the field, implying a breakdown of the ponderomotive potential at
short interaction times (the temporal averaging over many optical cycles is not allowed). For transverse
polarization, no such effects are observable, and all field configurations produce results in line with the
analytical model. For a waist of �, no considerable problems arise for energies < 800 keV, independent
of polarization. For a waist size 1:25�, the maximum deviation between simulations and the analytical
model is 3%. Moreover, only a small dependence on the field’s phase �0 can be observed. These three
waist sizes depict in which regimes the paraxial approximation, as well as the ponderomotive potential
approximation, hold. The crossover seems to be around w0 � �, for high electron energies. Decreasing
the waist size increases the severity of these deviations and lowers the required energy. At a focus of 0:5�,
a well-functioning pulsed laser phase plate is only possible for electron energies < 50 keV.
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FIG. 2: Phase shift in units of � p /2 as a function of electron energy from simulations. Gaussian laser pulses with wavelength
l = 800 nm, pulse duration t = 100 fs and perfect synchronization (t0 = 0). Left frames: laser polarized along x–axis (electron beam
propagation axis), right frames: laser polarized along y–axis. Waist sizes are 0.75l (top frames), l (middle frames) and 1.25l (bottom
frames). The laser pulse energy is chosen for each simulation to give a phase shift of � p /2 according to the analytical model. In each
frame, the results for three different �eld con�gurations and three different values for j 0 are shown: blue symbols and lines represent

the paraxial �eld model, red the angular spectrum model for a Gaussian distribution of Ex (for axial polarization) or Ey (for
transverse polarization), and green the angular spectrum model for the symmetrized Gaussian Ex – GaussianBy (resp. GaussianEy –

Gaussian Bx) distribution. Circles represent j 0 = 0, + symbols j 0 = p /2 and � symbols j 0 = p . For the phase shift, j 0 = 0 and
j 0 = p results coincide.

Figure A.1: Phase shift in units of �=2 as a function of electron energy from simulations. Gaussian laser pulses
with wavelength � = 800 nm, pulse length � = 100 fs and perfect synchronization (t0 = 0). Left frames: laser
polarized along x{axis (electron beam propagation axis), right frames: laser polarized along y{axis. Waist sizes
are 0.75� (top frames), � (middle frames) and 1:25� (bottom frames). The laser pulse energy is chosen for each
simulation to give a phase shift of �=2 according to the analytical model. In each frame, the results for three
di�erent �eld con�gurations and three di�erent values for �0 are shown: blue symbols and lines represent the
paraxial �eld model, red the angular spectrum model for a Gaussian distribution of Ex (for axial polarization)
or Ey (for transverse polarization), and green the angular spectrum model for the symmetrized Gaussian Ex

{ Gaussian By (respectively Gaussian Ey { Gaussian Bx) distribution. Circles represent �0 = 0, + symbols
�0 = �=2 and Ö symbols �0 = �. For the phase shift, �0 = 0 and �0 = � results coincide.
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A.2 Momentum shift

For similar parameters as in Figure A.1 the velocity changes, vx, vy, and vz, are shown in Figures A.2-
A.4, respectively. The analytical ponderomotive model predicts no velocity changes for offset time t0 = 0
and transverse offset y0. Hence, all present velocity changes arise due to the interaction of the electrons
with the non-paraxial fields. Again, strong dependencies can be observed at different focus strengths.
At a focus of 0:75�, the velocity in the x- and y-direction can increase by around 600 m/s, while in the
z-direction the velocity change can increase up to 2500 m/s. For w0 = �, changes in the y- and z-velocity
are present for energies Ek > 200 keV, depending on the polarization, field phase, and field configuration.
With transverse polarization, the maximum velocity change is around 2 m/s for electron energies > 200
keV. For w0 = 1:25�, no significant velocity changes are present for both polarization directions and all
electron energies. Overall, it is clear that pulsed laser phase plates will function optimally at waist sizes
w0 � � or slightly larger, regarding detrimental deviations of the electron velocity and phase shift.
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FIG. 4: Change in axial velocity vx as a function of electron energy from simulations. Laser parameters and identi�cation of curves
the same as in Fig. 2.Figure A.2: Axial velocity shift vx as a function of electron energy from simulations. Laser parameters and

identi�cation of curves are the same as in Figure B.2
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FIG. 5: Change in transverse velocity vy as a function of electron energy from simulations. Laser parameters and identi�cation of
curves the same as in Fig. 2.

Figure A.3: Axial velocity shift vy as a function of electron energy from simulations. Laser parameters and
identi�cation of curves are the same as in Figure B.2
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FIG. 6: Change in transverse velocity vz as a function of electron energy from simulations. Laser parameters and identi�cation of
curves the same as in Fig. 2.Figure A.4: Axial velocity shift vz as a function of electron energy from simulations. Laser parameters and

identi�cation of curves are the same as in Figure B.2
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B j Additional phase effect

In Section 4.4.2 we have discussed that the electrons can get accelerated longitudinally, due to the
interaction with the pulsed laser. Hence, the question arises as to what happens to the phase difference
if one of its possible paths experiences a longitudinal acceleration and thus, a corresponding change
in energy. We first analyze this question using the quasiclassical path integral method in Section B.1.
Thereafter, we solve the Schrödinger equation numerically for the ponderomotive laser pulse potential
in Section B.2. Lastly, in Section B.3, we provide some analytical, non-relativistic calculations of wave
packet interference at slightly different energies (or momentum).

B.1 Path integral

A semi-classical approach to calculating the phase ’ of an electron along a certain trajectory is by making
use of the following integral

’ =
1

h̄

Z
Ldt; (B.1)

where L is the Lagrangian. For a relativistic electron inside some general potential (field) the Lagrangian

is given by L = �mc2

 � ev �A + eV , which lets us write the phase as

’ =
1

h̄

Z ��mc2


� ev �A + eV

�
dt: (B.2)

Let us now consider two possible paths for the electron when propagating through the TEM. Along path
1, the electron interacts with the pulsed laser, obtaining an initial phase shift ’0 and a velocity shift ∆v.
Let us also say that after the interaction with the potential, the electron can be in a different potential
eV . We can then calculate the phase for path 1, ’1, by splitting the integral into two parts

’1 =
1

h̄

Z ��mc2


� ev �A + eV

�
dt (B.3)

= ’0 +
1

h̄

Z ��mc2

f

+ eV

�
dt (B.4)

Notice the change in Lorentz factor 
 ! 
f in the kinetic term due to the longitudinal acceleration.
Along path 2, the electron does not interact with the pulsed laser and hence propagates freely. The path
integral is then solely comprised of the kinetic term, giving for the phase ’2 along path 2

’2 =
1

h̄

Z ��mc2



�
dt: (B.5)

Now that we have both path integrals, we can calculate the difference in phase along the two paths as
∆’ = ’1 � ’2 � �’:

∆’ = ’0 +
1

h̄

�Z ��mc2

f

+ eV

�
dt�

Z ��mc2



�
dt

�
� �’ (B.6)

= ’0 +
1

h̄

Z �
�mc2(

1


f
� 1



)

�
dt+

1

h̄

Z
(eV ) dt� �’ (B.7)

= ’0 + ’T + ’V � �’ (B.8)
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Here we have split up the phase shift into kinetic and potential terms. The first integral in Eq.(B.7)
is the contribution to the phase shift resulting from the longitudinal acceleration, corresponding to ’T .
Moreover, the second integral accounts for the possibility of there being a potential difference between
the two paths, after the interaction, corresponding to a possible phase shift ’V . Note that in our TEM
system this potential factor will equal to zero, as there will be no variation in potential aside from the
pulsed laser potential which is represented by the main phase shift ’0.

So, due to the kinetic energy difference along the two paths, a contribution to the phase ’T will arise:

’T =
1

h̄

Z �
�mc2(

1


f
� 1




�
dt (B.9)

� 1

h̄

Z �
�mc2∆v � d

dv
(
1



)

�
dt (B.10)

= 
mv �∆v∆t: (B.11)

However, we have to compare the phase of the electron at the same time, but also at the same position.
After the propagation time ∆t however, the accelerated electron path will extend a distance ∆r = ∆v∆t
further than the path along which the electron propagates freely. That is where the term �’ comes in.
It is the position correction term and accounts for the phase difference caused by the separation ∆r
stemming from the velocity difference, and is given by

�’ = kf �∆r (B.12)

=

fmvf
h̄

�∆r (B.13)

=

fmvf
h̄

�∆v∆t (B.14)

�
�

mv

h̄
+

3m∆v

h̄

�
�∆v∆t (B.15)

� 
mv

h̄
�∆v∆t: (B.16)

Where in the first step kf is the wavenumber of the accelerated electron. And in the last step the
assumption ∆v2 � 0 is used. Now we can immediately see that when calculating the phase shift, the
kinetic term of the phase drops out against the position correction term. Hence, the phase shift can
ultimately be written as

∆’ = ’0 + ’V (B.17)

= ’0 +
1

h̄

Z
(eV ) dt: (B.18)

This is a very interesting result as it tells us that there will be a phase difference between the two electron
paths only if there is a potential difference after the interaction region. As there is no potential difference
for the remainder of the trajectory in the TEM system, this result tells us that the phase shift applied
by the phase plate will stay constant, even if there is a small longitudinal velocity shift.

Important: In literature oftentimes the term ‘potential’ is used for both the electromagnetic scalar
potential V and the resulting potential energy U . For electrons, the relationship between the two is
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given by U = �eV . Hence, mixing the terms can become confusing when stating that a potential is e.g.
positive. Thus, we notify the reader that in the remainder of this report the term ‘potential’
is used only for the potential energy. For clarity we rewrite Eq.(B.18) for a potential difference
∆U = �eV

∆’ = ’0 +
1

h̄

Z
(�∆U) dt: (B.19)

An increase in potential will thus correspond to a decrease in phase.

This result is quite fascinating, but we would like to compare the results to those obtained using other
methods. Therefore, in the following sections, we elaborate on simulations of the one-dimensional
Schrödinger equation including various kinds of potentials. Namely, a Gaussian ponderomotive potential,
representing the pulsed laser phase plate, and also a positive and negative step potential that produce
the same momentum shift as the ponderomotive potential, but also leads to a potential difference for the
remainder of the trajectory. Finally, we will show a fully quantum mechanical derivation of interference
for wave packets with a small difference in momentum.

B.2 Schrödinger simulations

For the Schrödinger equation simulations the problem is approached in a similar manner as for the
path integral method: let an electron propagate along two paths; along one path the electron interacts
with a potential, thereby obtaining a momentum shift. Along the other, the electron propagates freely.
Then, calculate the phase difference between the two paths. Numerically working with the Schrödinger
equation can, however, be quite cumbersome. To aid this some rescaling tricks can be performed, which
are discussed first. Thereafter, the specifics regarding the potentials are elaborated upon. Furthermore,
the general simulation setup is explained. Lastly, the results are discussed and compared with the path
integral method.

B.2.1 Scaling

The well-known one-dimensional Schrödinger equation for an electron with mass m and wave function Ψ
inside a potential U(x; t) is given by

ih̄
@Ψ(x; t)

@t
=

�
� h̄2

2m

@2

@x2
+ U(x; t)

�
Ψ(x; t): (B.20)

We will assume an initial Gaussian electron wave packet Ψ(x; 0) given by

Ψ(x; 0) =

�
1p
2��

� 1
2

e�
x2

4�2 eik0x; (B.21)

where � is the spatial width and k0 the wavenumber of the electron wavepacket. Solving this equation
numerically can be quite cumbersome for high-energy electrons traveling through very localized and weak
potentials. Therefore, we will perform some modifications. We introduce a scaled position coordinate

x̄ =
x� vt
�

; (B.22)
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where v is the group velocity. The coordinate x̄ denotes the (scaled) distance from the center of the
original wave packet. Furthermore, we introduce a scaled time

t̄ =
h̄

2m�2
t =

t

�s
; (B.23)

where �s = 2m�2

�h is the characteristic time in which the electron width disperses by a factor of
p

2, in
free propagation. Additionally, we remove the fast oscillations from the electron wave packet

Ψ0 = Ψe�i(k0x�!0t) (B.24)

where !0 =
�hk2

0

2m is the radial frequency of the electron. Combining all the above leads to an expression
for a scaled Schrödinger equation with zero-frequency solutions Ψ0:

i
@Ψ0(x̄; t̄)

@t
=

�
� @2

@u2
+ Ũ(x̄; t̄)

�
Ψ0(x̄; t̄); (B.25)

where Ũ = �s
�h U is the scaled potential. This scaling introduces multiple numerical benefits. Firstly, the

spatial array is only required to span the scaled width of the electron wave packet x̄ 2 [�6; 6]. So, not the
whole trajectory x 2 [0; L], where L is the length of the trajectory, as would have been the case without
rescaling. Secondly, the short timescale of the system is enlarged by a factor of 1=�s, decreasing the
chance of numerical error. Moreover, all natural constants are removed from the equation, save from the
potential term. The potential term will be increased by a factor of �s=h̄, which is generally very large. As
we will use weak potentials, increasing the weight of the potential term will benefit numerical accuracy.
Lastly, the solutions do not contain the very large spatial and radial frequencies k0, !0. Implying that the
wave function solutions will be standard Gaussian curves absent of any spatial or temporal oscillation.
This drastically reduces the numerical resolution required. After proper scaling, the initial electron wave
function Ψ0(x̄; 0) becomes

Ψ0(x̄; 0) =
1

(2�)1=4
e�

�x2

4 : (B.26)

B.2.2 Potentials

To verify the result obtained in the previous chapter, we will solve the Schrödinger equation for three
potentials. Firstly, for the Gaussian time-dependent ponderomotive potential representing the pulsed
laser beam. Secondly, for a positive (uphill) and negative (downhill) step potential, which will be scaled
to produce a momentum shift equal in magnitude to the ponderomotive potential. For the ponderomotive
and negative step potential, the electron will be in zero potential after acceleration. The result of the
previous section suggests that then, the momentum shift alone should not result in any additional phase
along the trajectory. Conversely, for the positive step potential, the accelerated electron will be in a
potential with respect to the freely propagating electron. Hence, the results suggest that there should
be an additional (negative) phase shift for the positive step potential. We will now elaborate more on
the potentials and the corresponding momentum shifts. Additionally, all potentials will also be properly
scaled to coordinates x̄ and t̄. We will now start with the ponderomotive potential.

Ponderomotive potential

In one dimension the potential of Eq.(4.2), delayed by an (laser) offset time t0l and translated a distance
x0, is given by
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Up(x; t) = U0e�
(t�t0l)

2

�2 e
�2

(x�x0)2

w2
0 : (B.27)

This potential is shifted to the right by an amount x0 = vt0e because the electron starts out at x = 0
in the simulation setup. Similar to the offset time t0 that we found in previous chapters we now have
∆t0 = t0l� t0e, the difference in offset times of the laser pulse and the electron. Similarly, if ∆t0 = 0, we
speak of a synchronized electron. For asynchronized electrons, the momentum shift ∆px can be calculated
again with the ponderomotive force. For an electron with initial momentum px, a small momentum shift
of ∆px leads to a kinetic energy shift of ∆Ek � px

m∆px. Moreover, the potential energy shift after the
interaction with the potential is ∆U = 0. The potential is time-dependent and can therefore transfer
energy to the electron. Hence, the law of energy conservation is not broken but energy is transferred
between the electron and the electromagnetic field.

Rewriting the one-dimensional ponderomotive potential using scaled variables u and t̃ gives

Up(x̄; t̄) = U0e
� �

2
s (�t��t0l)

2

�2
l e

�2
(��x+v�[�t��t0e])2

w2
0 : (B.28)

This potential is used in the scaled Schrödinger equation Ũ = �
�hUp(x̄; t̄).

Step potential

A potential step Us, centered around x0, can be made using the error function, which has the form

Us(x) =
U0

2

�
1 + erf(�x� x0p

2ws
)

�
; (B.29)

where ws is the width of the potential step. Note that, for general x, erf(�x) is uphill for positive x
and downhill for negative x, hence we call them the positive and negative step potential, respectively.
Rewriting again using scaled coordinates gives

Us(x̄; t̄) =
U0

2

�
1 + erf(��x̄+ v�d(t̄� t̄0e)p

2ws
)

�
: (B.30)

The momentum shift of U = �Us can be scaled to the momentum shift of the ponderomotive potential
∆px by a certain scaling parameter �. Then, plugging Ũ = �s

�h �Us into the scaled Schrödinger equation
will give the same momentum shift to the electron as for the ponderomotive potential. For the positive
and negative step potential this corresponds to a kinetic energy shift of ∆Ek = �jpxm∆pxj, respectively.
These potentials are not time-dependent and therefore transfer no energy to the electron. Hence, energy
conservation says that the potential energy shift for the positive and negative step potential is equal to
∆U = �jpxm∆pxj, respectively.

B.2.3 Simulation setup

In this section, the complete simulation setup will be discussed. Specifically, we will elaborate on some
details regarding numerical precision, and specify the standard parameter settings. As mentioned, the
electron propagation was simulated using the scaled Schrödinger equation including various potentials.
In Figure B.1 a schematic of the setup is shown. The electron travels in the x-direction with velocity
v, along a trajectory that is split up into two (temporal) regions, characterized by different magnitudes
for the time increments. In region I the electron interacts with the potential. As the ponderomotive
potential is very localized, the interaction requires high numerical resolution. Hence, the grid spacing in
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Figure B.1: Schematic of simulation setup of interaction between electron and Gaussian laser pulse.

region I is set smaller than in region II. All three potentials were initialized such that their center was
located at x0 = vt0e. The length of region I was generally set (in time) to 2t0e. The ponderomotive
potential was initialized such that it would be maximum at time t0l. In region II no potential is present,
so the numerical resolution required was lower, hence, the grid spacing was set larger. Specifically, the
ratio of the grid spacing was around �t1

�t2
� 1000. The complete length of the trajectory was tL = L=v,

with L = 0:25 m. The length of region I was on the order of a few millimeters.

If not mentioned otherwise, the simulations were performed using an electron wave packet with kinetic en-
ergy Ek = 200 keV and width � = 60 �m , combined with a laser of wavelength � = 800 nm, pulse length
� = 2 ps and pulse energyW = 48 nJ focused to a waist of w0 = 2�. The system was asynchronized with
an offset time of ∆t0 = 1:5 ps, and the total propagation length was L = 0:25 m. For the ponderomotive
potential and the negative step potential we expect to see no phase shift, as the accelerated electron is
in zero potential after acceleration. For the positive step potential the electron will be in a potential
of strength ∆U = px

m∆px. Calculating ∆U for the settings specified above and working out Eq.(B.19)
(assuming ’0 = 0), results in an expected phase shift of ∆’ � �30�.

A single simulation consisted of solving the Schrödinger equation twice: once with and once without a
potential. From this, the time evolution of the phase difference could be easily tracked. Moreover, by
summing the wave functions the total intensity distribution could be calculated along the whole trajectory.
Any arising phase evolution should emerge as a time- and space-dependent modulation in the intensity
distribution.

B.2.4 Results & discussion

In Figure B.2 the phase difference evolution together with the two-electron instensity distributions are
shown for all three potentials, in scaled coordinates u and t̃. The results agree with the expectations
based on Section B.1. For the positive step potential, the phase evolution in Figure B.2d appears to be
decreasing linearly with time, with a minimum value in line with expectation ∆’ � �30�. The intensity
distribution in Figure B.2c shows in turn an interference pattern (beat in time). There is no significant
phase shift for the negative step and the ponderomotive potential. The phase evolution plots only show
a small deviation from zero at the beginning of the trajectory due to the initial interaction with the
potential. However, the momentum shift did not lead to any further phase shift along the trajectory, as
is expected from Section B.1.

These results indicate good agreement between the relativistic semi-classical path integral approach
and the Schrödinger equation simulations. The Schrödinger equation is generally non-relativistic. The
potential terms, however, were modulated with a factor of 
 to account for relativistic effects. This is a
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good approximation as the electron energy was relatively low (200 keV, 
 = 1:39). Moreover, we used
a position-correction term which may seem counter-intuitive at first but is actually required to properly
track the phase difference along two paths.
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Figure B.2: Respectively, the intensity distribution and phase evolution for the ponderomotive potential (a, b),
positive step potential (c, d) and negative step potential (e, f).
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B.3 Launched wave packet interference

In the following section, we try to back up the previous results with the help of an analytical derivation of
wave packet interference. Again assume two propagating, one-dimensional Gaussian wave functions Ψ1

and Ψ2 of same width � with a momentum p and p + ∆p, respectively. These wave functions represent
two possible states for a single electron:

Ψ1(x; t) =

�
1p

2��[1 + i(t=�g)

� 1
2

e
� x2

4�2(1+i(t=�g)
+ i

�h

px� p2

2m
t

1+i(t=�g) (B.31)

Ψ2(x; t) =

�
1p

2��[1 + i(t=�g)

� 1
2

e
� x2

4�2(1+i(t=�g)
+ i

�h

(p+�p)x� (p+�p)2

2m
t

1+i(t=�g) (B.32)

= Ψ1(x; t)e
i
�h

�px� p�p
m

t

1+i(t=�g) : (B.33)

One can simplify the exponential in Eq.(B.33) by defining a ‘phase’ term ∆�(x; t) = 1
�h (∆px � p�p

m t)
and a normalized time T = t=�s. Here �s is the characteristic time in which the electron wave packet
disperses by a factor of

p
2 in free propagation. In our case Tmax � 10�5. Calculating the total intensity

distribution gives

jΨ1 + Ψ2j2 = jΨ1(1 + e
i

1+iT ��(x;t))j2 (B.34)

jΨ1 + Ψ2j2
jΨ1j2

= j1 + e
i

1+iT ��(x;t)j2 (B.35)

I(∆�; T ) = 1 + e
�i

1�iT �� + e
i

1+iT ��| {z }
1

+ e[ i
1+iT + �i

1�iT ]��| {z }
2

(B.36)

Working out parts 1 and 2 separately gives, starting with 1

: = e
�i

1�iT �� + e
i

1+iT �� (B.37)

= e
�i+T
1+T2 ��

+ e
i+T

1+T2 ��
(B.38)

= e
�T

1+T2 ��
(e

�i
1+T2 ��

+ e
i

1+T2 ��
) (B.39)

= 2 cos (
∆�

1 + T 2
)e

T
1+T2 ��

: (B.40)

Furthermore, working out part 2 gives

: = e[ i
1+iT + �i

1�iT ]�� (B.41)

= e
[
i(1�iT )

1+T2 +
�i(1+iT )

1+T2 ]��
(B.42)

= e
2T

1+T2 ��
(B.43)

Now, we can write Eq.(B.36) as

I(∆�; T ) = 1 + 2 cos (
∆�

1 + T 2
)e

T
1+T2 ��

+ e
2T

1+T2 ��
(B.44)

� 2(1 + ∆�(x; t)T )(1 + cos ∆�(x; t)); (B.45)
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where in the last step we performed a Taylor expansion around T = 0. This expression tells us that for a
point moving along with the group velocity of the non-accelerated wave function x = p

m t, the ‘phase’ term

becomes ∆�( pm t; t) = 0. Moving along with the accelerated gives for the phase term ∆�(p+�p
m t; t) � 0

as we assume that ∆p2 � 0. Hence, in the co-moving frame of both electrons, the intensity distribution
becomes effectively constant, meaning that there is no interference and hence no phase shift along the
trajectory.
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C j Holography

In the following, we discuss the article on holography using a variable phase plate by van Dyck [24].
First, we outline the main idea and present some of the formulas. Moreover, additional an analytical
interpretation of the formulas is given. Then, the first one-dimensional results are shown for an ideal
phase plate and for a pulsed laser phase plate. Lastly, suggestions for future steps are given.

C.1 Theoretical background

Consider a phase plate in the back focal plane, with an aperture function

A(u) =

(
1; for u in central area

0; for u outside central area:
(C.1)

Letting the electron wave in the back focal plane  (u) interact with the phase plate, which applies a
phase shift ’0 to the central area, we can write the resulting electron wave after transmission Ψ(u; ’0)
as

Ψ(u; ’0) =  (u)A(u)ei’0 +  (u)[1�A(u)]: (C.2)

In the image plane, found by inverse Fourier transformation, the electron wave becomes

Ψ(r; ’0) = [ (r) � p(r)ei’0 ] +  (r)�  (r) � p(r): (C.3)

Here, p(r) is the inverse Fourier transform of A(u) and � denotes a convolution product. Here, the
variable p(r) is the point spread function of the phase plate’s aperture function, with a size inversely
proportional to the size of A(u). Its convolution product with the electron wave results in an averaged
wave function h (r)i, denoted as

h (r)i =  (r) � p(r): (C.4)

The difference between the original and average wave function �(r) is then given by

�(r) =  (r)� h (r)i: (C.5)

These definitions allow us to write Eq.(C.3) as

Ψ(r; ’0) = h (r)iei’0 + �(r); (C.6)

implying that the intensity can be written as

I(r; ’0) =
�
h (r)iei’0 + �(r)

��
h (r)i�e�i’0 + ��(r)

�
; (C.7)

yielding

I(r; ’0) = jh (r)ij2 + j�(r)j2 + 2 cos(’0)Re(h (r)i��) + 2 sin(’0)Im(h (r)i��): (C.8)

Now integrating this expression with a weighted cosine and sine function, respectively, yields

66



APPENDIX C. HOLOGRAPHY

hI1(r)i =
1

2�

Z 2�

0

I(r; ’0) cos(’0) d’0 = Re(h (r)i��); (C.9)

hI2(r)i =
1

2�

Z 2�

0

I(r; ’0) sin(’0) d’0 = Im(h (r)i��): (C.10)

In a real experiment, the sinusoidal weighting can be done by measuring the imaging intensity for a time
proportional to cos(’0) and sin(’0), respectively.

Thus, from the averaged intensities hI1(r)i and hI2(r)i we can derive h i��, something directly related
to the original wave function. Van Dyck mentions that we can reconstruct the wave function from this,
and separate h i and � with a high-pass filter. However, all efforts to do this properly have been to no
avail. Below, the current (analytical) interpretation of these statements will be given, hopefully aiding
future research.

C.2 Interpretation

In this section we will investigate the exact form of hI1(r)i and hI2(r)i to obtain a better understanding
of the variable h i��. As a starting point, we will assume a weak phase object

 = 1� t+ i�; (C.11)

composed of the amplitude t and phase � information of the crystal structure along the y-axis (see Figure
5.7). For notational ease, we will write a = 1� t.

To begin, we first expand h i�� into terms of  only:

h i�� = h i�
�
 � h i

�
(C.12)

= h i� � jh ij2 (C.13)

Using the wave function of Eq.(C.11) we can rewrite Eq.(C.13), yielding

h i�� = hai
�
a� hai

�
+ h�i

�
�� h�i

�
+
�
hai�� ah�i

�
i; (C.14)

where hai and h�i denote the convolution of the amplitude and phase information with the point spread
function p, respectively. Hence, the averaged intensities in Eq.(C.9) and Eq.(C.10) are given by

hI1i = hai
�
a� hai

�
+ h�i

�
�� h�i

�
; (C.15)

hI2i = hai�� ah�i: (C.16)

From these expressions, it is not directly clear how the amplitude and phase information can be extracted
to reconstruct the original object wave function. However, it can be noted that hI1i has a similar form
to the absolute value squared of the wave function in Eq.(C.11)

hI1i = hai
�
a� hai

�
+ h�i

�
�� h�i

�
� a2 + �2 = j j2: (C.17)

However, for hI1i the components are a combination of low frequency hai, h�i and high frequency
h
�
a � hai

�
i, h
�
� � h�i

�
i components. For hI2i, no clear relation to, for instance, the phase of the wave

function in Eq.(C.11) can be identified yet. All efforts to find a clear relationship have been to no avail.

67



APPENDIX C. HOLOGRAPHY

C.3 Results

While a clear relation between the amplitude and phase information of the object wave function and
the averaged intensities has not yet been established, some interesting results still arise when comparing
them. In this section, we will first perform holography with an ideal phase plate, numerically. Thereafter,
we will perform similar numerical calculations with the one-dimensional pulsed laser phase plate mask.
Specifically, we will try to reconstruct the object wave function of Eq.(C.11).

C.3.1 Ideal phase plate

We calculate, numerically, the integrals in Eq.(C.9) and Eq.(C.10) with an ideal phase plate, using the
wave function of Eq.(C.11), to find hI1i and hI2i. In Figure C.1, the amplitude a and phase information �
of the wave function are plotted against the reconstructed amplitude 1+hI1i and phase hI2i, respectively.
The term 1 + hI1i is shifted by unity as the average intensities are averaged around 0, while the actual
amplitude information is averaged around 1. The length of the jrj-axis is arbitrary, as changing its scale
does not influence the result while using an ideal phase plate.
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(b) � vs hI2i

Figure C.1: Amplitude a and phase � information of object wave function (black) vs. reconstructed amplitude
1 + hI1i and phase hI2i information (red) using holography with an ideal phase plate.

Whilst the relation between the amplitude and phase information and the averaged intensities is not
directly clear from observing the expressions found in Eq.(C.15) and Eq.(C.16), there seems to be a good
agreement between them in the presented plots. Hence, it seems that the reconstructed wave function

 rec = 1 + hI1i+ hI2ii; (C.18)

is already quite a good approximation of the object wave function  . Here, it has to be mentioned that
the dimensions [hI1i] = [hI2i] = [m�1] do not agree with the actual dimensions of the wave function
[ ] = [m�1=2].
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C.3.2 Pulsed laser phase plate

We now perform similar calculations to above, using the (angular averaged) pulsed laser phase mask (see
Section 5.1.2), with standard settings (w0 = 2�, f = 3:5 mm). In this case, the length of the jrj-axis
matters, as this influences the size of the respective Fourier transform, and hence the corresponding size
of the phase plate. We set the (relative) size of the information to M = 1, for which the average (phase)
radius of one atom is equal to B = 1 nm. Moreover, the integration range was set to ’0 2 [0 � 2�],
considering the phase delay of the pulsed laser. The results are plotted in figure C.2.
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Figure C.2: Amplitude a and phase � information of object wave function (black) vs. reconstructed amplitude
1 + hI1i and phase hI2i information (red) using holography with a pulsed laser phase plate at standard settings
(w0 = 2�, f = 3:5 mm).

The result seems, as expected, similar but worse than the case of an ideal phase plate, due to the rel-
atively large size of the pulsed laser phase mask. Furthermore, the phase reconstruction is better than
the amplitude reconstruction. Overall, the result seems to indicate that holography with a pulsed laser
phase plate is possible. However, a smaller phase mask is required to more accurately reconstruct the
wave function.

Similar calculations are performed for the optimized pulsed laser phase plate settings (w0 = �, f̄ = 21
mm). The size of the sample is kept constant. In Figure C.3 the results are shown. They display the cap-
ability of a pulsed laser phase plate for holography, as for these settings, the reconstruction is much better.
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Figure C.3: Amplitude a and phase � information of object wave function (black) vs. reconstructed amplitude
1 + hI1i and phase hI2i information (red) using holography with a pulsed laser phase plate at optimized settings
(w0 = �, �f = 21 mm).

C.4 Future work

For this discussion, only a weak phase object was assumed. However, one additional benefit of holography
is that it works with arbitrary phase objects. We propose to contact the author, D. van Dyck [24], to
discuss in what manner the object wave function can correctly be reconstructed from h i��. Furthermore,
we propose to investigate different methods of variable phase plate holography such as the one mentioned
in the work of Gamm [26]. Overall, the initial results presented above indicate that holography with a
pulsed laser phase plate is possible.
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D j New schemes

In this work, we have only discussed perpendicular orientation between the pulsed laser beam and the
electrons. In this appendix, we discuss non-perpendicular schemes and show the apparent benefits.

D.1 Non-perpendicular schemes

We now investigate non-perpendicular (NP) schemes i.e. schemes in which the laser is incident on the
electron under an angle � with respect to the original perpendicular scheme (P). We will only work in
the (z; x)-plane. A schematic of the proposed NP-scheme can be seen in Figure D.1.

Figure D.1: Schematic of non-perpendicular scheme

The ponderomotive potential of a pulsed laser incident under an angle � can be described in a rotated
coordinate system (z0; x0) as

Unp(z0; x0; t) =
U0

1 + z02

z2
R

e�
(t�z0=c)2

�2 e
�2 x02

w(z0)2 (D.1)

To define the potential in the zx-plane we have to rotate the coordinates using the rotation matrix�
z0

x0

�
=

�
cos � sin �
� sin � cos �

��
z
x

�
; (D.2)

For now, we will assume that for on-axis electrons the width is approximately equal to the laser waist
w(z0) � w0, making the equations a lot more straightforward to calculate analytically. Subsequently, the
ponderomotive potential for the NP-scheme for arbitrary incident angle � can be written as

Unp(x; z; t; �) = U0e�
(ct�z cos ��x sin �)2

c2�2 e
�2

(x cos ��z sin �)2

w2
0 (D.3)

Let us now analyze the momentum shift in the z-direction. Similar to before we can calculate the
momentum shift for an on-axis electron interacting with a laser delayed by offset time t0, but now as a
function of incident angle
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∆pz(�) = �
Z 1
�1

dtrUnp(u(t� t0); 0; t; �) (D.4)

= �2
p
�U0

�i(�)

�d(�)2

t0
c cos (�)

�
1� c

v
sin(�)

�
e
� t20
�s(�)2 (D.5)

Now, the interaction time �i(�) and decay time �d(�) are dependent on the incident angle. We will not
give the full expressions here (see Section 4.3 for the original expressions of the perpendicular scheme).
From Equation (D.5) it is apparent that at an incident angle sin(�vm) = v=c, the z-momentum shift is
zero. At this angle, the velocity component of the laser which is parallel to the electron propagation is
exactly equal to the electron velocity. Fittingly, this angle will be called the velocity matching angle.
Due to its practical significance in that it eliminates the z-deflections, we will from now on solely focus
on the behavior of the other parameters (’;∆px) at this specific velocity matching angle �vm and thus,
omit all other incident angles.

Before further discussion, we state that at �vm, the following relations hold

sin (�vm) = v=c = � (D.6)

cos (�vm) =
p

1� v2=c2 = 1=
 (D.7)

Meanwhile, the ponderomotive potential becomes

Uvm(x; z; t) = Unp(x; z; t; �vm) (D.8)

= U0e�
(ct�z=
�x�)2

c2�2 e
�2

(x=
�z�)2

w2
0 (D.9)

Performing the action integral similar to before, the phase shift for this scheme can be derived to be

’vm =
�p�U0�i;vm

h̄
e
� t20
�2
d;vm ; (D.10)

Another interesting characteristic of the velocity matching angle can be found in the interaction time
�i;vm, as it is given by

�i;vm =
1q

1

2�2

t
+ 1


4�2

� 
�t (D.11)

where the approximate sign indicates that we again assume to be in the long pulse limit. Apparently,
the interaction time is increased by a factor of 
. For decay time �d;vm, nothing changes

�d;vm =
q
�2 + �2

t =

2 � �; (D.12)

allowing us to write the phase shift as
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’vm � 
’0e�
t20
�2 (D.13)

(D.14)

For the VM-scheme the phase shift increases by a factor of 
 with respect to the P-scheme. From
Eq.(D.11) it is clear that this increase in phase is to be attributed to a longer interaction time. Eq.(D.12)
indicates that the synchronization dependence for the VM-scheme is the same as for the P-scheme. Let
us investigate what exactly contributes to the increased interaction time. Let us momentarily define a
new transit time for this scheme � 0t = w0p

2v0
. In Figure D.2, a schematic is drawn for the interaction at

the velocity matching angle in the comoving frame of the electron. In this frame the pulse moves towards
the electron at velocity v0 = c cos (�vm) = c=
. In crossing the laser, the electron traverses a distance
w0 � w0= sin (�vm) = w0=�. Together, the new transit time for this scheme becomes

� 0t =
w0p
2v0

=
(w0=�)p
2(c=
)

= 

w0p
2v

= 
�t: (D.15)

The specific value for the new transit time is thus a combination of a longer interaction path length and
a different velocity. In the bonus section (Section (ref)) we provide a mathematical explanation as to
why the electron does not obtain a momentum shift in the z-direction for the velocity matching angle.

Figure D.2: Caption

Simulations

To verify the theory, simulations were performed using the simulation program which calculates electron
trajectories in more exact electric fields The code was now adjusted such that the incident angle of the
laser pulse was equal to �vm, to match the VM-scheme. Simulations were then performed that calculated
the phase shift as a function of offset time t0. The results were compared to the analytical model given
by Eq.(D.14), where the maximum phase shift was set to ’0 = �=2. The results, shown in Figure D.3,
indicate good agreement between the analytical model and the simulations. Discrepancies can partly
be attributed to the fact that in defining the ponderomotive potential, the waist was assumed constant
w(z0) � w0. However, due to the finite incident angle, this approximation is less accurate than for the
P-scheme.
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Figure D.3: Analytical (blue line) vs. simulated (red dot) normalized phase shift for the velocity matching
scheme.

The transverse z-deflections were also calculated as a function of t0, using the simulation program. For
the P-scheme, the deflection angle at t0 = 300 fs was equal to �z � 1 nrad. For the VM-scheme, the
deflection angle was equal to �z � 20 prad, a reduction by a factor of 50. Again, the momentum shift
is not equal to zero due to the laser-waist approximation. However, the reduction in magnitude of the
momentum shift is still very significant.

Longitudinal momentum shift

For the momentum shift in the x-direction in the NP-scheme, the expression changes similar to the
z-direction:

∆px(�vm) = �2

v

p
�U0�i;vm

�2
d;vm

t0e
� t20
�2
d;vm (D.16)

� �2h̄

v


’0

�2
t0e�

t20
�2 (D.17)

� 
∆px(0) (D.18)

This shows that also the longitudinal momentum shift gets enlarged by a factor of 
. As these longitudinal
momentum shifts are generally quite small, an increase by a factor of 
 will have no severe consequences
on the effectiveness of the phase plate. This was discussed in Appendix B

D.2 Pulse front tilt

We will now discuss another new scheme that builds upon the VM-scheme. Specifically, it is a scheme
with incident angle �vm, together with a pulse front tilted laser pulse. We will now briefly explain what
pulse front tilt (PFT) is.

When (short) laser pulses acquire angular dispersion, by for instance a prism or a grating, the intensity
profile is tilted with respect to the propagation direction, such that there is a correlation between arrival
time and transverse position. This is called pulse front tilt. A schematic of a short pulse obtaining
angular dispersion (AD) and consequently being tilted by an angle �t is shown in Figure D.4a. Note that
usually, the direction of propagation is affected due to most devices that cause AD (for simplicity this is
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neglected in this figure).

(a) Pulse front tilt (b) Short pulse scheme

Figure D.4: (a) The phenomena of pulse front tilt. (b) The short pulse scheme making use of pulse front tilt.

The scheme that will be investigated is shown schematically in Figure D.4b. It is called the short pulse
(SP) velocity matched scheme in which the orientation of the intensity front, is changed such that the
shape of the pulses matches the P-scheme.

D.2.1 Short pulse

To a good approximation, the intensity It of a laser pulse with pulse front tilt p is equal to the intensity
profile of a standard pulse with an additional spatio-temporal correlation t ! t � px0. Hence, we can
write the tilted intensity distribution as

It(x
0; z0; t) = Inp(x0; z0; t� px0) (D.19)

= I0e�
(t�px0�z0=c)2

�2 e
�2 x

02
w2

0 (D.20)

where the pulse front tilt is given by p = tan (�t)=c. For positive �t the tilt is counter-clockwise, while
for negative �t the tilt is clockwise.

For this scheme, we want to tilt the pulse anti-clockwise such that the intensity fronts are parallel to the
z-axis. This means that the tilt angle as has to be equal to �t = �=2 � �vm. The tilted ponderomotive
potential can hence be derived using the intensity distribution

USP(x; z; t) = U0e
�2

(x=
��z)2

w2
0 e�

(ct�x=�)2

c2�2 (D.21)

We again calculate the phase shift for this scheme

’SP =
�p�U0�i

h̄
e
� t20
�2
d (D.22)

(D.23)
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and find for the two time scales, the expressions

�i;SP = 
�t (D.24)

�d;SP = �: (D.25)

This looks very similar to what we found before but note the important difference! For this scheme, the
timescales are exactly equal to the values found for the VM-scheme after having assumed to be in the
long pulse limit.

For the x-direction the form is again similar, namely

∆px = �2h̄

v

’0
�t
�2

t0e�
t20
�2 (D.26)

= 
∆px(0) (D.27)

Again note that equal signs are used as opposed to the other schemes where approximate signs were
present to indicate the assumption of being within the long pulse limit. The momentum shift in the
z-direction is again equal to zero due to the velocity matching of pulse and electron.

Aspect ratio

The former results indicate that the SP-scheme produces the same behavior as the long pulse limit of
the VM-scheme. For the SP-scheme however, no assumptions of any kind have to be made regarding the
pulse length compared to the transit time. This means that for instance in the regime where � � �t,
the behavior is still governed by the behavior that first only emerged in the long pulse limit. This gives
us the freedom to reshape the pulse without having to worry about remaining in the regime of the long
pulse limit; the behavior is fixed.

Let us now investigate what happens then, if we were to reshape the aspect ratio of the pulse i.e. the
ratio between the waist and the pulse length. To make an appropriate comparison to the other schemes
we say that under this transformation, the peak intensity I0 / W

w2
0�

has to be conserved. This condition

implies that every decrease of pulse length by a factor of n, � ! �=n is accompanied by an increase in
waist size w0 !

p
nw0. This means directly that the timescales change to

�i;SP =
p
n
�t (D.28)

�s;SP = �=n (D.29)

This in turn, means that the phase can be written as

’SP =
p
n
’0e�n

2 t
2
0
�2 : (D.30)

This displays that the increase in waist size results in a larger phase, as it increases the interaction time.
However, this comes at the cost of a higher sensitivity to synchronization as the allowed electron bunch
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length reduces proportional to the pulse length.

Optimally, for a phase plate, we would not like to increase the waist as this would lead to less phase
contrast for a larger range of frequencies. Therefore, we propose to only shorten the pulse length by a
factor of n. Then, the phase shift can be written as

’SP = n
’0e�n
2 t

2
0
�2 : (D.31)

The increase in phase comes from the increase in intensity due to the shorter pulse length.

The momentum shift in the x-direction for shorter pulse lengths becomes

∆px =
2h̄

v

n2
’0

�2
t0e�

t20
�2 (D.32)

which indicates an apparent disadvantage of reducing the pulse length. Namely, the magnitude of the
longitudinal momentum shift is increased by a factor of nr, as the gradients become steeper. However,
from what we have discussed in Chapter B we can deduce that an increase of one or two orders of
magnitude will not have any destructive effect on the phase shift properties of the pulsed laser.

Conclusion

The SP-scheme combines PFT with the velocity matching scheme. In this scheme, the behavior of phase
and momentum shift is equal to the long pulse limit � � �t of the velocity matching scheme. With the
SP-scheme however, no limit has to be taken. Hence, this allows for shorter pulse lengths in the range
of the transit time �=n � �t. Using a shorter pulse length in turn means that the pulse energy required
for the specific phase shift reduces as well. If for the P-scheme, the pulse energy required is Wp, then for
the SP-scheme with a reduced pulse length, the required pulse energy is equal to

Wsp =
Wp


n
: (D.33)

The SP-scheme can hence be used to increase the quality of the interaction between the laser and the
electron, to allow for lower-power laser systems.
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