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1.3 Majorana Quasiparticles as Topological Quantum Bits 

The concept of particles and antiparticles was introduced by Paul Dirac in 1930.14 The 

positive-energy solutions of his relativistic wave equation for spin-1/2 particles describe 

electrons, and the negative-energy solutions correspond to the particles with the same mass 

and spin, but opposite charge: the positrons. The existence of the positron, the electron’s 

antiparticle, was experimentally confirmed by Carl D. Anderson in 1932.15 Dirac’s fermions 

are described by complex wave functions; the wave function of the positron (the antiparticle) 

being the complex conjugate of the wave function of the electron (the particle). In 1937 

Ettore Majorana considered a special case of the Dirac equation whose solutions excluded 

imaginary numbers, allowing for the existence of an entirely new class of fermions – 

Majorana fermions (MFs).16 Since taking the complex conjugate of a real wave function 

leaves the real wave function unchanged, it follows that MFs are particles, which are their 

own antiparticles. Up to date, no traces of MFs existing as elementary particles have been 

found. 

Nevertheless, MFs have been theoretically predicted to arise as quasiparticles in carefully 

engineered solid-state systems.17,18 The importance of Majorana quasiparticles in condensed 

matter systems stems from their exotic non-Abelian exchange statistics.19 All known bosons 

and fermions obey the following principle: when two indistinguishable particles exchange 

their positions, the ground state of the system remains unchanged. Majorana quasiparticles, 

on the other hand, are so-called non-Abelian anyons: when two Majorana quasiparticles 

exchange positions, the system may transition from one quantum ground state to another 

distinct ground state. This unique exchange behavior could be used to encode information. 

The idea to store quantum information in Majorana quasiparticles originates from Alexei 

Kitaev.20 He thought of spatially separating two Majorana quasiparticles to form a quantum 

bit in which the information is not stored at one single site, but encoded in the two distant 

Majorana quasiparticles. Theoretically, because the quantum information is stored in two 

Majorana quasiparticles, which are spatially separated by a superconducting gap, the qubit 

would be protected against local perturbations, resulting in very long coherence times. This 

is what is often referred to as topological protection. 
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manifold. Moreover, Majorana quasiparticles are each other’s antiparticles: when brought 

together they will annihilate. The minimal circuit for the demonstration of non-Abelian 

Majorana statistics consists of a T- shaped nanowire structure.36,37 Hence, the next 

generation of Majorana experiments asks for more complex nanowire structures – high 

quality, single-crystalline, planar and branched nanowire architectures in which Majorana 

quasiparticles can be braided without the danger of bringing them in close proximity. 

1.5 Outline of the Thesis 

This thesis presents a material scientists’ effort to fabricate complex InSb nanowire 

architectures that meet the strict requirements for use in the next generation of Majorana 

experiments. Further down the road, the structures presented in this thesis might serve as 

hardware of a future topological quantum computer based on Majorana fermions. The 

remainder of this thesis is structured as follows: 

Chapter 2 starts with the description of the two most common epitaxial methods of 

materials’ synthesis - metal-organic vapor phase epitaxy and molecular beam epitaxy – and 

then narrows down to nanowire epitaxy. Finally, the crystal structure of III-V semiconductor 

nanowires is explained. 

Chapter 3 outlines the structural (scanning and transmission electron microscopy) and 

electronical (field-effect mobility measurements and Hall measurements) methods used to 

characterize the InSb nanowire structures. 

Chapter 4 describes the four-step process we have developed to synthesize crossed and T-

shaped InSb nanowires. High-resolution transmission electron microscopy analysis confirms 

that single-crystalline junctions can be achieved by this method if two wires merge under an 

angle of 109.5°. High electron mobility and the ability to induce supercurrent are preserved 

in InSb nanocrosses. 

In Chapter 5 we eliminate the main bottleneck of the 4-step-crosses-synthesis: by employing 

substrate crystallography we force all the wires to meet under the optimal angle for single-

crystal formation (109.5°). The method described in this chapter is generic and can be used 

to synthesize single-crystalline nanowire networks of group III-V, II-VI and IV materials, as 

long as they grow along a <111> direction and crystalize in the zinc-blende structure. 
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In Chapter 6, we report recent developments on structural and electronic properties of 

merged InSb nanowires. We perform aberration-corrected HAADF-STEM analysis of an InSb 

nanobridge and confirm the high quality of the interface between the two merged InSb 

nanowires. In addition, we report the quantized conductance through an InSb nanocross for 

the first time. 

In Chapter 7, we propose a material-oriented approach to engineer a sharp and narrow 

tunnel barrier by synthesizing a thin axial segment of GaxIn1-xSb within an InSb nanowire. By 

varying the precursor molar fraction and the growth time, we accurately control the 

composition and the length of the barriers. We assess the structural and chemical properties, 

as well as strain in barriers, by means of high-resolution TEM (HRTEM), X-ray energy 

dispersive spectroscopy (XEDS) and geometrical phase analysis (GPA). The height of the built-

in tunnel barrier is extracted from transport measurements. 
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2 Crystal Growth 

 

This chapter starts by describing the two most common epitaxial methods of crystal growth 

- metal-organic vapor phase epitaxy and molecular beam epitaxy – and then focuses on 

nanowire epitaxy, detailing the Au-catalyzed Vapor-Liquid-Solid process employed for 

nanowire growth throughout this thesis. Finally, the close-packed cubic and hexagonal 

crystal structures, as well as the most commonly occurring crystal defects relevant for the 

nanowires presented in this work, are explained. 

__________________________________________________________________________ 
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Figure 2.2| Two commonly used MOVPE reactor designs. (a) Vertical reactor chamber with Close Coupled 
Showerhead. (b) Aixtron 200 horizontal reactor chamber. 

In the vertical reaction chamber with Close Coupled Showerhead, the process gases are 

introduced into the reactor from the top, over the entire coating surface, via the water-

cooled showerhead surface. Accordingly, the distance between the showerhead and the 

substrates is very small. The gas inlet is designed in such a manner that the group III and 

group V gases are separated by means of many small tubes until entering the reactor. The 

gases are introduced into the reactor through separate openings in the showerhead to 

achieve an even distribution of process gases. The substrates lie on a rotating susceptor 

heated by a resistance heater. Separate heating zones enable the temperature profile to be 

adjusted in such a manner that the susceptor always has a uniform temperature over its 

entire surface. In the horizontal reaction chamber, the process gases enter from a small inlet 

to the left and expand to approximately laminar flow across the heated susceptor. Uniformity 

is improved by incorporating a rotating disk within a susceptor. Epitaxial reactors may 

operate at atmospheric or reduced (~100 mbar) pressure. Low-pressure operation reduces 

the surface coverage of adsorbed species, increasing their mobility and allowing high quality 

growth at reduced temperatures (50 to 100 °C lower than for atmospheric growth). 

The effluent gases that are carried via the exhaust line to the charcoal gas scrubber system 

are a mixture of hydrogen and/or nitrogen, unreacted precursor vapors and volatile by-








































































































































































































































































