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Unipolar Arc Model 
HERMAN J. G .  GIELEN A N D  DANIEL C. SCHRAM 

Abslruct-A three-dimensional description of an axisymmetric uni- 
polar arc discharge is given. Both sheath and plasma ball effects are 
taken into account. The analysis is based on the simultaneous solution 
of Ohm’s law, Maxwell equations, and the boundary conditions for the 
electric potential at the plasma-sheath interface. These boundary con- 
ditions are dictated by the sheath effects. The potential distribution, 
current distribution, and magnetic fields in the plasma have been de- 
termined for a given electron density profile. These calculations show 
that the unipolar arc arises as a natural consequence of the pressure 
force. 

I. INTRODUCTION 
HE OCCURRENCE of unipolar or plasma-induced T arc discharges has been known since the late 1950’s. 

Robson and Thoneman [ 11 were the first to describe these 
phenomena, and they introduced the term “unipolar arc.” 
Essential for these kind of discharges is that one electrode 
serves both as cathode and anode-this in contrast to nor- 
mal bipolar arcs. In fusion reactors the unipolar plasma- 
wall interaction produces high-2 impurities that cool the 
plasma [2]-[5]. Also, in laser-produced plasmas the effect 
of plasma-induced arcing, known as laser pitting, has been 
studied [6]. 

The basis for the Robson-Thoneman unipolar arc model 
is illustrated in Fig. 1. When no arcing occurs (Fig. l(a)), 
the floating sheath potential 5 prevents all but the higher 
energy electrons in the Maxwellian distribution from 
reaching the surface. If V’exceeds the potential to initiate 
and sustain an arc, then there will be a strong local emis- 
sion of electrons from the cathode spot on the electrode 
into the plasma (Fig. l(b)). In the vicinity of the spot the 
plasma potential will be lowered and more electrons can 
return to the electrode there. The return flow of electrons 
closes the current loop of the unipolar arc. In their origi- 
nal paper, Robson and Thoneman assumed a constant 
electron density and a constant reduction of the sheath 
potential over the whole plasma-wall boundary, contrib- 
uting over a large area of the wall. However, the occur- 
rence of the cathode spot implies an enhancement of the 
electron and ion density near the spot. This concept is 
incorporated in the model of Schwirkze [7], who gives an 
essentially qualitative description of the unipolar arc. In 
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Fig. I .  Unipolar arc model. 

this model, the electric fields induced by the pressure gra- 
dient in the plasma above the sheath determine the char- 
acteristics of the discharge. Other models are given by 
[8]-[lo]. The analysis given by Wieckert [8] does not take 
into account the effects of the plasma above the sheath. 
Ecker et al. [lo] do incorporate to some extent these ef- 
fects in their model. However, this model is essentially 
one-dimensional and no details of the current backflow 
can be derived from it. Ecker et al.’s calculation shows 
that the electromotive force induced in the plasma can be 
more important than the sheath-induced electromotive 
force. The discussion given by Hantzsche [9] extensively 
treats the sheath pheonomena. 

In this paper we give a three-dimensional description of 
an axisymmetric arc in which both sheath and plasma phe- 
nomena are incorporated. The sheath phenomena are re- 
flected in the boundary conditions for the plasma, similar 
to the approach of [8]. The basis for our model is the 
simultaneous solution of Ohm’s law, Maxwell equations, 
and the boundary conditions. The model elaborates upon 
the electric, current density, and magnetic fields in the 
plasma ball above the sheath. Both pressure and magnetic 
effects are included. We will first discuss the sheath phe- 
nomena that will impose boundary conditions on the de- 
scription of the plasma. 

11. SHEATH PHENOMENA 
As we will discuss later, the solution of the electron 

momentum equation assumes an electron density and tem- 
perature profile in the region above the sheath. This den- 
sity profile is given in Fig. 2. We follow [9] by assuming 
an electron density profile which can be considered as a 
superposition of two different plasmas: 1) A background 
plasma of relatively low electron density; and 2) a high- 
density cathode plasma at a temperature of a few eV. 

When the electron temperature of the background 
plasma is high ( > 10 eV),  the arc configuration as given 
in Fig. 2 resembles a plasma-induced arc in fusion de- 
vices. When, however, the background is at a temperature 
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Fig. 2.  The assumed electron density profile. Numbers indicate different 
contour levels. 

comparable to the value in the cathode spot, the discharge 
resembles a vacuum arc. The description of both these 
plasmas is analogous [ l l ] .  They differ in background 
plasma, but the effects associated with the cathode spot 
are similar. The differences in background plasma cause 
the extension of the current backflow region to be differ- 
ent. For the vacuum arc. the constant background density 
can be regarded as an approximation of an essentially 
broader density profile superimposed upon the density 
profile describing the cathode spot. Due to this approxi- 
mation the physical fields far from the spot will need a 
slight modification when an accurate description is needed 
there. The approximation will, however, not essentially 
influence the physics of the region near the spot that has 
our primary interest. 

Here we will consider an isothermal plasma: Both the 
background and cathode plasma have the same electron 
temperature ( 3  eV).  We assume that the sheath thickness, 
which is of the order of the Debye length, is small com- 
pared to the characteristic scale length of the cathode spot. 
Therefore we can incorporate in the description of the 
plasma above the sheath the sheath phenomena in the 
boundary conditions for the electric potential. To show 
this we first consider the current density dependence on 
the sheath potential, given by [ l ]  

j ,  = ; n , e - [ e x p ( s )  1 - e x p ( K ) ] .  -eVf 

Here V, is the potential difference between the sheath edge 
and wall, I means perpendicular to the wall surface, and 
np is the electron density at the plasma-sheath interface. 
All voltages are given with respect to the wall. Vfis the 
floating potential given by 

Vf = (kT,/2e) In (m+/27rm, )  ( 2 )  
where T, is the electron temperature, m ,  is the ion mass, 
and m, is the electron mass. When the sheath edge is at 
this floating potential, there is no net current towards the 
electrode. 

From (1) it is possible to calculate the sheath potential 
V,! for a given perpendicular component of the current 
density. At the cathode spot, however, the voltage drop 

over the sheath equals the cathode fall. For copper, the 
cathode fall V, is of the order of 15 V [ 121. The cathode 
fall is nearly independent of the current [12]. Therefore, 
the fall is kept constant in our calculations; i.e.,  we do 
not assume any dependency on the current density. The 
cathode fall occurs within the crater of the spot. Equation 
(1) describes the current-voltage relation for the sheath. 
This current density has a minimum value j\hcdth.m,n for 
which all of the current is carried by the ions and all the 
electrons are inhibited to cross the sheath due to the high 
sheath potential. The quantity j\hcdth.m,n is given by 

j\heath-mm = JkT,lm,. ( 3 )  

If the actual current density is less than this minimum 
current, we have to assume that arcing occurs there and 
that the sheath potential equals the cathode fall. In the 
iterative procedure described in the next section, used to 
solve the electron momentum equation, the sheath poten- 
tial can be varied depending on the perpendicular com- 
ponent of the current density. This will be discussed fur- 
ther in the next section, where the plasma above the sheath 
is considered. 

111. PLASMA PHENOMENA 
Here we will consider the plasma above the sheath. The 

model described is a two-fluid model. We consider a 
plasma in which only singly ionized atoms play a role. 
The extension to a plasma in which also higher ionized 
atoms occur does not alter quantitatively the basic phys- 
ical processes we want to describe here. We will assume 
that the degree of ionization is high enough to neglect the 
electron-neutral friction in the electron momentum equa- 
tion. The model can be applied to axisymmetric plasmas. 
For the electromagnetic fields, we will assume that dis- 
placement currents can be neglected; i .e . ,  that the quasi- 
static approximation can be applied. Furthermore, we will 
assume that the plasma can be considered static; i .e . ,  that 
the relevant time scales are long enough to assure that the 
electric fields induced by a changing magnetic field are 
small compared to the electric fields induced by charges. 
Then the electric field can be derived from the electric 
potential p P l .  

Neglecting the inertia term, the electron momentum 
equation is given by 

0 = -Vp, - en,E - en,E,. x B + en,qj. (4) 

Here p,. is the electron pressure, E is the electric field, y1 ,. 
is the electron density, E, is the systematic electron ve- 
locity, @ is the magnetic field, TJ is the resistivity, and j 
is the current density. Equation (4) is also referred to a i  
Ohm’s law. In most plasmas that have our interest, the 
current is carried almost completely by the electrons, im- 
plying that 

j = -en,vv,. ( 5 )  

The current in the plasma ball of the cathode spot is car- 
ried for 80-90 percent by the electrons [ 131. Therefore, 
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the motion of the ions has a small influence on the elec- 
tromagnetic fields and is consequently neglected here. 

For a quasi-static plasma V . j = 0. Then condition 
( 5 )  implies that the plasma is sourceless. With the sim- 
plification (3, we can, after division by en, ,  write for the 
electron momentum equation: 

As long as ( 5 )  is valid, the motion of the electrons is not 
directly influenced by the motion of the ions. As far as 
the electron dynamics are concerned, the whole of the 
physics of the interaction of electrons and ions is pro- 
jected in the electric field and the resistivity 7, which is 
temperature- and only weakly density-dependent. As the 
magnetic field i s  determined by the current density, the 
first, third, and the last terms in (6) are known for the 
given electron density and velocity of the isothermal elec- 
tron gas. So the electric field can be expressed in “elec- 
tron gas quantities,” although its origin is found in the 
charge separation between electrons and ions. This im- 
plies that under the simplification (5) the current density 
and magnetic field, as well as the electric field, can be 
determined from the dynamics of the electron gas. This 
means, on the other hand, that the ion gas moves in elec- 
tromagnetic force fields that are known for the given elec- 
tron density and electron velocity. 

This will be the basis for the model to be presented in 
the following. We shall calculate the electromagnetic 
quantities by solving the electron momentum equation. 
We will start from given density and temperature profiles 
for the electrons. In principle, both these quantities are 
measurable. We will use cylindrical coordinates ( r ,  p, z )  
throughout. Due to the axisymmetry, d / d p  = 0 for all 
physical scalar quantities. We want to stress that in gen- 
eral both j and B can have radial, azimuthal, and axial 
components. The radial and axial components together are 
called the meridional component. For example, the me- 
ridional current j - density is given by 

The magnetic field can consist of two parts: It can be 
either sustained by external coils or can be a self-gener- 
ated one due to electric currents in the plasma. So we can 
write, 

Rearranging (6) gives 

It is tempting to consider this equation as a generating 
equation for the electric field. However, (9) merely states 
the formal balance of forces acting on the electron gas and 
gives no information on the charge separation in the 
plasma that actually causes the generated electric field. 

This charge separation can be determined from Cou- 
lomb’s law: 

v . g = P / E O .  (10) 

Here is the permittivity. Neglecting the spatial depen- 
dence of the resistivity, the combination of (9) and (10) 
gives the charge separation in the plasma: 

Through Poisson’s equation this charge separation deter- 
mines uniquely the electric potential prl once the bound- 
ary conditions are given. The boundary conditions on the 
electrode can be determined as given in the first section. 
These boundary conditions will depend on the current 
density j . Equation (1) gives the relation between the 
sheath potential V,  and the normal component of the cur- 
rent density. 

We can then calculate the quantity 3 defined by 

1 3 := - [- vp(, - - j x B - Vp,,  . (12)  
1 1  1 

- 7 en ,  en, - - 

This quantity has the dimension of a current density. For 
given electron density and electron temperature profiles 
and current density j ,  the quantity 3 is determined 
uniquely, since the generated magnetic field can be deter- 
mined from the current density through Ampkre law. Re- 
ferring to (9) we see, however, that if and only if d = j ,  
these quantities describe a physically relevant gasma,  
satisfying Ohm’s law, Maxwell equations, and the cor- 
responding boundary conditions. Our aim is to find that 
current density j which, for the given electron density and 
temperature distribution, yields - -  = j . In the next section 
we will discuss an iterative procedure to determine this 
current density. A more extensive discussion of the so- 
lution strategy and several applications of this method to 
expanding plasmas is given by [ 141. 

Iv. ITERATIVE PROCEDURE 
In this section we will describe an iterative procedure 

to solve the electron momentum equation. The basis for 
the iterative procedure used is the discussion in the last 
section. The electron density and temperature profiles are 
assumed to be known and do not change during iteration. 
For a current density distribution j we can calculate the 
generated magnetic field through Ampkre law. This cur- 
rent density also determines the sheath potential which is 
used in the solution of Poisson’s equation. Then it is pos- 
sible to calculate, using (9)-( 1 l ) ,  the charge separation, 
and through the Poisson equation, the electric potential 
pr l .  All the right-hand side (RHS) terms of (12) are known 
and the quantity 3 can be determined. When this quantity 
equals the currentdensity j , a solution of the electron mo- 
mentum equation is obtained. If not, then the quantity 3 
is taken to be the next approximation for the current den- 
sity in the iterative scheme. This is repeated until conver- 
gence in j and 3 occurs. Then a solution is obtained sat- - - 
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isfying the electron momentum equation, Maxwell 
equations, and the sheath equation (1). 

The iterative procedure is started with a current density 
equal to zero. Then only the pressure term has to be taken 
into consideration and the sheath potential equals the 
floating potential outside the crater of the spot. 

V. RESULTS AND DISCUSSION 
The electron momentum equation has been solved nu- 

merically using finite-element techniques on a VAX 8530 
computer. Here we will give the results of these calcula- 
tions. 

When no external magnetic field is applied, the azi- 
muthal component of 3 vanishes, as can be seen from the 
azimuthal component <f ( 12): 

As the iterative calculation is started with j = 0 ,  both the 
azimuthal current density and the meridional magnetic 
field will remain zero throughout. When the iteration is 
started with a nonvanishing azimuthal current density, the 
converging solution also yields a vanishing one. 

In the spot the gradient length for the electron density 
is much smaller than that for the electron temperature. 
Therefore we can, in evaluating the pressure term in the 
electron momentum equation, effectively assume a con- 
stant electron temperature. 

For the calculations to be discussed we have assumed 
that T, = 3 eV. Furthermore, a homogeneous resistivity 
(7  = lop4 Vm/A)  and a density profile n,, as given in 
the contour plot in Fig. 2 ,  are assumed. The density pro- 
file is presupposed; i.e., the electron density profile is not 
determined self-consistently from the model. The reason 
for assuming the electron density profile as given in Fig. 
2 is that our aim is to describe an expanding plasma and 
to show that such a plasma induces an unipolar arc dis- 
charge. The assumed profiles are qualitatively what is to 
be expected from an expanding plasma driven by the pres- 
sure gradient in the plasma ball region of the spot. 
Changes in the parameters of the expansion do not qual- 
itatively alter this conclusion. 

The lines of constant electron density are ellipses in the 
r-z plane. The axial elongation of the electron density is 
1.23 times the radial elongation. The contour lines are 
equally spaced between the minimum and maximum val- 
ues of the electron density, given in the figure. As we 
assumed axisymmetry, all physical quantities can be rep- 
resented in the two-dimensional r-z plane. Fig. 2 is an 
example of such a representation and shows the region for 
which the electron momentum equation has been solved. 
The region which we used for the calculations extends 1- 
mm radially and 0.2-mm axially. The large radial exten- 
sion of the region is a consequence of the geometry of the 
current backflow to the electrode. The plane z = 0 is the 
cathode. The Poisson equation is solved on the region en- 
closing the whole of the plasma. Its boundary at the cath- 

ode is formed by the edge of the sheath. At this edge the 
boundary conditions for the electric potential are derived 
from the axial component of the current density as given 
by ( 1 ) .  This is, of course, only possible for the region of 
the cathode where the current density exceeds the mini- 
mum current density j\heath.mln as given in (3). When the 
axial current density is less than this minimum current 
density, the potential is taken to be the cathode fall. For 
numerical reasons, we asserted the simplification that 
the cathode fall equals the floating potential, and that 
jsheath.,,,,,, equals zero. For a 3-eV Cu-plasma we find that 
V,,,, = 14.75 V.  As this is of the same order as the cath- 
ode fall (15 V [12]), the first simplification is justified. 
The second simplification will be justified later. These 
simplifications assure that the potential distribution at the 
cathode rim is a smooth one. As no theoretical or exper- 
imental data are available on the potential distribution 
within the spot, the cathode fall is taken to be constant. 
To avoid discontinuities in the potential’s derivative, cor- 
responding to physically impossible infinite-charge den- 
sities, we assume a smooth transition of the potential over 
the crater rim. The occurrence of a potential hump at the 
crater edge cannot be excluded; certainly the mechanism 
of expelled metal fluid particles suggested by [15] could 
be an indication of such potential disturbances. In this 
first-order calculation we will ignore such a possible ad- 
ditional potential disturbance. 

At the other boundaries we assume natural boundary 
conditions for the electric potential: ap, , /dn = 0. At the 
left boundary, corresponding to the discharge axis, this is 
a direct consequence of the symmetry of the discharge. 
The upper and right boundaries are taken far from the spot, 
warranting a vanishing normal electric field there. For the 
numerical calculation the region was covered with a mesh 
of 1032 axisymmetric quadratic isoparametric triangles in 
R 3 .  The coarseness of the mesh increases from the cath- 
ode spot region where the gradient lengths are smallest. 

For the assumed electron density and temperature pro- 
files, the Lorentz term in the electron momentum equation 
is small compared to the pressure force. Therefore we will 
neglect this force term and first consider a simultaneous 
solution of the electron momentum equation with bound- 
ary conditions, only taking the pressure term into ac- 
count. The validity of neglecting the Lorentz term will be 
verified later. The assumed electron density distribution 
along the electrode is plotted in Fig. 3. The radius of the 
plasma ball above the sheath was chosen to be about 30 
pm. As we will discuss later, for this radius the calculated 
current density satisfies the existence criterion for a mode- 
0 spot, as defined in [16]. Therefore the following dis- 
cussion should be considered to be valid for a mode-0 
spot. Were we to have chosen to simulate a nonstationary 
mode-1 spot, a smaller radius would have been necessary 
to satisfy the corresponding existence criterion. A higher 
current density would then result, in better agreement with 
the experimental values. As the governing equations in 
our model are stationary, we have chosen to simulate a 
stationary mode-0 spot in this paper. 
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The electron density profile given in Figs. 2 and 3 de- 
scribes an expanding plasma. The expansion is from the 

5 

origin into a low-density plasma background. The maxi- 
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tion of electrons which are accelerated due to the pressure 
term towards the boundary of the expansion where a sur- 
plus of electrons arises. The charge separation calculated 
is much smaller than the electron density itself so that the 
plasma still can be considered to be quasi-neutral. As the 
axial component of the pressure term vanishes at the elec- 
trode, the plasma as a whole is neutral. 

In the iteration process it is the boundary condition for 
the solution of the Poisson equation at the cathode sheath 
which has to be matched to the axial current density. The 
change in sheath potential, however, will also affect the 
current density, and iteration is continued. In the first step 
of the iteration process the potential at the cathode sheath 
is taken to be the floating potential. The iterative process 
is stopped when the current density matches the sheath 
potential. Then the final solution is obtained. 

The final potential distribution is given in Fig. 5. The 
axial components of the current density and electric po- 
tential at the edge of the sheath are given in Fig. 6. In 
this figure ro represents the minimum radius for which the 
current density can be described by the sheath equation 
(1). For r > ro, the current density matches the potential 
as given by ( I ) .  For r < r,, the current density is less 
than j,,,,,,.,,, and cannot be described by the sheath equa- 
tion ( I ) .  There the potential difference equals the cathode 
fall. The radius ro is a calculated quantity determined in 
the iteration process from the current density and does not 
differ from the minimum radius determined in the first 
step. As was to be expected, ro equals approximately the 
radius of the density profile as given in Fig. 3 .  In Fig. 6 
we also recognize the smooth transition of the potential 

F- 1.O6.6 14.06 

14.75 
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12.68 

A - 1 4  

L / /  r1 -2 9 

I I I I 1 -3.7 
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Fig. 6 .  The final potential and axial current density at the edge of the 
sheath. 

over the crater edge. The axial current density at the ori- 
gin is about -3.7 10' A/m2. This current density is con- 
sistent with the current density in a stationary spot at rest 
on a copper surface as calculated in [ 161. 

In Fig. 7 the potential along the discharge axis is given. 
We see a potential hump of some 18 V in front of the 
sheath, and a minimum of 11 V at the edge of the expan- 
sion region. This potential distribution corresponds to a 
double layer just in front of the cathode surface. The im- 
plications of this potential hump on the ion motion is dis- 
cussed in [ 171. The calculated potential distribution can 
strongly affect the interpretation of the measurements to 
determine the cathode fall. 

From the final current density distribution the current 
flux function can be determined. The result of this cal- 
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Fig. 7.  The electric potential along the axis of the discharge 
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Fig. 8. The final current flux function. Numbers indicate dift’erent contour 
levels. 

culation is given in Fig. 8. The steps in the contour lines 
should be considered to be artificial and can be eliminated 
by reducing the coarseness of the mesh. The meridional 
current density is parallel to the contour lines given in this 
figure. We clearly recognize the unipolar arc structure: 
For r > r0 the electrode acts as the anode; for r < rO, as 
the cathode. The calculated current is approximately 
19 A and satisfies the existence condition for a mode-0 
spot, as given in [16]. As the minimum sheath current 
density j\hedth is small compared to the actual current 
densities, the transition from cathode to anode almost co- 
incides with the change in sign of the normal component 
of the current density. This justifies the simplification that 
j5heath.mln = 0. Although the current distribution is influ- 
enced by the induced sheath potential, the unipolar arc 
structure can already be recognized in the first step of the 
iteration process where the sheath potential equals the 
floating potential all over the electrode. 

From the final current density the azimuthal magnetic 
field can be calculated. This is the only nonvanishing 
component of the magnetic field and is given in Fig. 9. 
As for the current flux function, the steps in the contour 
lines are artificial. The magnetic field has a maximum of 
0.07 T. The combination of this magnetic field and the 
meridional part of the current density causing it gives the 
Lorentz force. The pressure term is a factor 10 to 100 
larger than the Lorentz term. Therefore the neglect of this 
last force component in the electron momentum equation 
is justified. 

rnl\  1 2 ,  10 T 

:lool 0 100 200 300 

ripml 

Fig. 9. The final azimuthal magnetic field. Numbers indicate different 
contour levels. 

In the calculations discussed above we have assumed 
that the electron density and temperature profiles are given 
quantities. They cannot be determined from the electron 
momentum equation. The model calculates the electro- 
magnetic field quantities j , _E, and B ,  which are consis- 
tent with the electron density and temperature profiles 
given. 

VI. CONCLUSIONS 

The aim of the calculation presented is to describe 
unipolar arc phenomena. The electron density profile 
which acts as the starting point for the calculation de- 
scribes a quasi-stationary expansion of a plasma from the 
cathode spot on an electrode surface. For this quasi-sta- 
tionary expansion the electromagnetic field quantities j , 
E ,  and B have been determined. The solution satisfies the 
electron momentum equation, Maxwell equations, and the 
current-voltage relation for the sheath. The most impor- 
tant force term in the electron momentum equation is the 
pressure term. The pressure-induced charge distribution 
has the structure of a double layer. The calculated current 
density is consistent with the sheath voltage. The current 
distribution is that of an unipolar arc: The electrode serves 
both as cathode and anode. The discussion given in this 
paper focuses on unipolar arcs. 

Starting from the discussion given in this paper, the su- 
perposition of an externally applied electric field allows a 
description of bipolar arcs. This is the basis for the cath- 
ode spot model given in [ 171. 
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