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Abstract

Yield stress uids are known to exhibit a number of highly unusual mechanical properties. Ex-
ploiting these phenomena for new applications requires a thorough understanding of their ow
properties. Despite recent advances in the stationary description of yield stress uids, under-
standing of dynamic phenomena remains limited. To improve this understanding, a uni�ed and
quantitative description of the dynamics of these systems is required. The aim of this thesis is to
develop such a description by using a phenomenological uidity model to study rheological hyster-
esis in yield stress uids. As a distinctly time-dependent phenomenon, rheological hysteresis is an
excellent case study for any dynamic model for yield stress uids. The uidity model used here is
based on an out-of-equilibrium free energy description of the system, where the order parameter is
the uidity. The stationary behaviour is derived from an elasto-plastic description of soft jammed
materials and is then upgraded to a dynamic theory for yield stress uid ows.

To disentangle spatial and temporal e�ects, a simpli�ed homogeneous version of the model was
�rst used to study the origin of rheological hysteresis. Afterwards, spatial e�ects were included
to obtain a detailed description of the rheological hysteresis phenomenon. The model was further
extended to account for visco-elastic e�ects and wall slip to improve experimental comparison.
Finally, the model is improved by including a stochastic noise term, enabling the study of hysteresis
in viscosity bifurcating yield stress uids.

The results show that hysteresis appears due to the slow relaxation of the uidity �eld un-
der weak driving. By comparing the associated rheological signatures, it was concluded that this
interpretation was consistent with the available experimental observations. In addition, further
experiments have been proposed to check these observations. Following this, the spatially re-
solved model was used to derive quantitative predictions for observables that measure the degree
of hysteresis. These predictions were con�rmed by experimental data for slow cycles under smooth
boundary conditions. Future experimental studies may attempt to reproduce the remaining the-
oretical predictions. Finally, it was shown that the viscosity bifurcating model is able to capture
the more complex hysteretic phenomenology. Speci�cally, the model reproduced the maximally
hysteretic cycle time-scale observed in experiment. However, the details of this peak suggest that
the viscosity bifurcating behaviour of the model is di�erent from that exhibited by the commonly
studied attractive gels. Instead, jammed sticky emulsions are proposed as a physical system that
matches the theoretical phenomenology.
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Chapter 1

Introduction

Most people, whether they are aware of it or not, have quite a good understanding of the dynamics
of everyday materials. Very rarely is one surprised by the behaviour of the water coming from
a kitchen faucet, nor will one be caught o� guard by the stretchiness of a spring. It is then
all the more intriguing when one encounters a material whose behaviour is counter-intuitive. A
classic kitchen experiment involves mixing corn starch and water. The resulting suspension has
an increasing viscosity with an increase in stirring speed, even becoming a solid upon sudden
impact. In the literature, such a material is known as a non-Newtonian uid. While this example
may come across as a mere curiosity, more subtle examples that defy the ordinary classi�cation
of solids and liquids can similarly be found in the kitchen. A plate of whipped cream, when held
upside down, will remain in place inde�nitely. However, few people will claim that whipped cream
is more viscous than syrup. These materials and many others are examples of what are known as
complex uids.

Complex uids are mixtures where two (or more) di�erent phases coexist. This phase coexist-
ence appears homogeneous when viewed at a macroscopic scale, but it exhibits structure down at
intermediate scales. This semi-structured phase coexistence leads to some of the highly unusual
mechanical properties encountered above. Whipped cream for example has a smooth, silky tex-
ture when viewed with the naked eye. However, closer inspection reveals a network of air bubbles
surrounded by a matrix of cream [81]. This discrete structure gives the cream both solid and
liquid properties, which makes it a classic example of a yield stress uid (YSF). These amorphous
materials are complex uids that live in-between the elastic solid and the classical liquid. While
capable of supporting elastic deformations when subjected to small loads, they will ow readily
when the forcing exceeds a certain yield stress. First described by E.C. Bingham in 1916 [7], a
formidable body of work has since been dedicated to exploring their rich behaviour and its origin.
Despite this, the connection between their mesoscopic structure and material properties remains
to be fully understood and the physical laws that describe their ow behaviour are still a subject
of investigation.

Aside from their theoretical intrigue, the relevance of these materials to practical applications
should not be understated. They appear throughout many industries, ranging from food processing
[81][80] (whipped cream, mayonnaise) and cosmetics (gels, shampoo), to construction [47] (cement,
clay suspensions) and printing technology [57]. Working with these materials requires a thorough
understanding of their somewhat counter-intuitive mechanical properties. E�ectively designing,
processing and packaging new product applications will require new uid dynamics models that
are able to accurately describe their complex ow behaviour. A better understanding of these
materials is therefore not just of academic interest, but of great practical interest as well.

Numerical Modeling of Rheological Hysteresis in Yield Stress Fluids 1



CHAPTER 1. INTRODUCTION

1.1 Physics of yield stress fluids

The previous examples show some of the de�ning features of yield stress uids. However, they do
not do justice to the wealth of structures and phenomena that can be observed in complex uids
in general, and yield stress uids in particular. While all yield stress uids exhibit a solid-to-liquid
transition when exposed to loading, the precise nature of this transition may still vary from uid to
uid. Indeed, depending on the nature of the material constituents and their mutual interactions,
the physics leading up to the solid-to-liquid phase transition can be quite di�erent. It is therefore
useful to introduce some classi�cations for these materials, based on their microscopic physics.

The �rst important distinction can be based on the microscopic length and energy scales
involved. In this respect, materials may broadly be classi�ed as either Brownian or athermal.
Brownian systems are dominated by thermal uctuations. Under normal circumstances, these
have the e�ect of driving the system towards thermal equilibrium. As the density of these systems
is increased, the relaxation time for this process grows and eventually exceeds any laboratory
timescale. The result is a glass transition that has dramatic consequences for the rheology [70].
The physics of the glass transition are still poorly understood and remain an area of active research
[73]. Examples of such materials include dense molecular solutions and colloidal suspensions. For
athermal systems, the constituents are mesoscopic in size (usually micron-sized) compared to the
Brownian systems, and the typical energies involved in their dynamics largely exceed the thermal
energy scale, kBT . Therefore, thermal uctuations do not play a role here. Their absence means
that these systems are necessarily far from thermal equilibrium, which greatly complicates analysis
by conventional means.

A second distinction can be made based on the type of interactions that are present between
the constituents [66]. When these interactions are strictly repulsive (e.g. micro-gels), jamming
is controlled by a competition between the inter-particle repulsion and the particle softness. The
associated micro-structure can be understood in terms of particles con�ned by the repulsive inter-
actions of their neighbors. The energy needed to break the particles from this structure results in
the macroscopic elasticity of these materials. In the opposite limit, strongly attractive interactions
dominate the dynamics. In this case, the constituents may arrange themselves into a percolated
network structure known as a gel, where the elasticity comes from the energy stored in the net-
work’s bonds. The intermediate regime where both attraction and repulsion play a signi�cant role
is known as an attractive glass. The competition between the attractive and repulsive length-scales
can lead to complex spatio-temporal behaviour that is still poorly understood [31][76].

1.2 Rheology of yield stress fluids

The broad range of physics leading to the emergence of a yield stress suggests a similar richness
for its rheological phenomenology. Indeed, the yield stress is but one feature exhibited by these
materials, and complex uids in general display a wide range of phenomena including, among
others, thixotropy, spatial cooperativity, shear banding, creep, bifurcations, intermittency and
avalanches.

One of the most straight-forward methods of quantifying the rheology of a material, is by
formulating constitutive relationships between shear histories _ and stress responses �. For simple
shear ows at steady state, this information can conveniently be expressed in terms of a ow curve.
Ideal Newtonian uids have a trivial ow curve that is linear, and whose slope corresponds to the
viscosity of the uid, i.e. � = � _. Traditionally, yield stress uids for which such a ow-curve
description is appropriate (i.e. � is a well-de�ned, single-valued function of _) are aptly referred
to as simple yield stress uids. Their steady-state rheology is often well described by the empirical
Herschel-Bulkley (HB) law:

� = �Y +A _n (1.1)

The HB-law includes both a yield stress �Y as well as a generalized power-law rheology above
this yield stress. Depending on the value of n, the uid can be either shear thickening (n > 1),
or shear thinning (n < 1), indicating an increase or decrease in e�ective viscosity with applied
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CHAPTER 1. INTRODUCTION

 0

 1

 2

 3

 4

 5

 0  0.5  1  1.5  2

s

g
.
 

Newtonian
Shear Thinning
Shear Thickening
Herschel-Bulkley

Figure 1.1: Example ow-curves for di�erent classes of materials.

shear. While the HB-law can accommodate both rheologies, most simple yield stress uids are
shear thinning (n < 1).

Even for these materials, the relative simplicity of their stationary response belies the complex-
ity of their dynamics. As increasingly sophisticated experimental techniques have been developed
to probe the local rheology of these materials, it has become clear that this simple yield stress
behaviour can make way for more complicated phenomena at short length and time-scales [62].
Indeed, transient ows can deviate from the HB behaviour over surprisingly long times [18], and
con�nement e�ects may lead to a complete failure of any kind of HB-description of the ow [26].
More generally, it has been noted that a ow-curve description becomes insu�cient once ows
become spatially heterogeneous. In this case, the local ow behaviour of the material will depend
on information from elsewhere in the system and the rheology is said to have become non-local
[26][27]. Such non-locality is demonstrated by a failure of any single ow-curve to describe the
local relationship between shear and stress in a material. One example of ow heterogeneities that
may show up in this case are shear bands. Shear banding occurs when the shear in a system is
localized inside a narrow uidized band, while the rest of the material remains solid. In materi-
als that are traditionally classi�ed as simple yield stress uids, such shear banding is typically a
strictly transient phenomenon [18][15][62]. Depending on the loading conditions, the owing band
will either grow or shrink so as to eventually arrive at a homogeneous steady state.

However, there are also materials that can have more persistent shear bands [51]. These
permanent shear bands can be understood in terms of a theoretical non-monotonic ow-curve [46].
This means that for some range of imposed strain rates _, the stress in a homogeneously sheared
steady state decreases with increasing imposed shear. It can be shown that in this situation, a
homogeneous shear ow is unstable and will decompose into bands of low and high shear [24]. This
phenomenon is also known as viscosity-bifurcation, referring to the di�erent viscosities observed in
the two bands. A consequence of this instability is that the underlying non-monotonic ow-curve
can never be observed experimentally, as the decomposition into bands will maintain a stress below
that of the increasing branch.

A microscopic interpretation of this e�ect is given in terms of a competition between aging
and shear induced rejuvenation. Aging may refer to any mechanism by which the susceptibility to
ow of a material decreases over time, for example, via particle aggregation in attractive systems.
Rejuvenation is the inverse process, where a system becomes more susceptible to ow over time.
When this process is induced by the shearing action this is called shear induced rejuvenation.
It is this type of rejuvenation that may lead to permanent shear banding. When one part of
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CHAPTER 1. INTRODUCTION

the material is sheared more strongly than another, rejuvenation will also be stronger there.
The resulting decrease of this regions viscosity will further increase the shear, creating a positive
feedback e�ect. Meanwhile, the weakly sheared band experiences increased aging to the point of
complete arrest.

All of these phenomena are signatures of a more general property known as Thixotropy, a
time-dependence of the rheological properties of a material. There is some debate in the liter-
ature of whether the time-dependence observed in simple yield stress uids should be classi�ed
as thixotropy, or if this term should be reserved to uids exhibiting some of the more exotic
phenomena discussed above [49][38][25]. Alternatively, it has been argued that any kind of ob-
served time-dependence should be considered as thixotropic behaviour [52]. This discussion can be
side-stepped by avoiding the term altogether and instead characterizing materials by the speci�c
phenomena that they display. Nevertheless, it is clear that the interplay between the ow and
structure of a material can lead to complicated time-dependent e�ects regardless of what name is
used for it. A prime example of this is an e�ect referred to as rheological hysteresis.

Rheological hysteresis occurs in systems that have a �nite memory of their shear-history. It
can be observed by cyclically varying the shear in a system and measuring the stress response.
This produces two ow-curve and the hysteresis shows up as a failure of these two ow-curves to
coincide. While this e�ect has been observed in experiments for many years now [28][10][49], it
is only recently that any serious investigations into it have started to appear [17][34][71]. Recent
experiments have shown that in simple yield stress uids, the hysteretic e�ect diminishes as the
cycle time is increased. Meanwhile, viscosity bifurcating YSFs appear to possess some cycle time
at which the hysteretic e�ect is most pronounced. It has been suggested that this rate de�nes an
intrinsic material time-scale that can be used to quantify the degree of thixotropy in a material
[17].

1.3 Modeling of complex fluids

As should be clear by now, there is no shortage of complexity to be found in the behaviour of yield
stress uids. Given the multi-scale nature of their structure and ow, it should come as no surprise
that no single theory is able to capture all aspects of the rheology of these materials. Instead,
researchers have turned to a hierarchy of complementary models [72] to rationalize and predict
di�erent aspects of their behaviour. These methods di�er both in aim and approach. On the one
hand, microscopic theories for yield stress uids seek to provide a quantitative, �rst-principles ex-
planation of the origin of the yield stress. These are concerned more with the underlying physics
that lead up to the emergence of a yield stress than with the consequences for the rheological
phenomenology. On the other hand, mesoscopic approaches may start by assuming the existence
of a yield stress and explore the consequences this has for the ow behaviour of the material.
Such models invariably involve some degree of coarse-graining and can require considerable phe-
nomenological input. However, their simpli�ed nature allows one to study the ow behaviour at
experimentally accessible length and time scales and focus more on the rheological phenomenology.

1.3.1 Mode Coupling Theory

As far as microscopic theories go, the only truly �rst-principles approach to describing the solid-
to-liquid phase transition in amorphous materials is the Mode Coupling Theory (MCT) of glasses
[35]. It seeks to provide equations of motion for density auto-correlation functions, known as
intermediate scattering functions, from which observable predictions about the glass transition can
be derived. The exact equations of motion are of course completely intractable and this method
uses the mode-coupling approximation to arrive at a self-consistent equation for the scattering
functions. One major success of MCT is its ability to predict the diverging relaxation time
associated with the glass transition. It also correctly describes the di�erent relaxation processes
that occur above this transition. Its most notable failure is that the glass transition occurs at
much higher temperatures than in experiments, commonly attributed to its lack of "hopping"
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dynamics where particles escape their local cages via activated processes. Various attempts have
been made to extend standard MCT in order to remedy these short comings and to tame the
uncontrolled mode coupling approximation. These investigations have been met with varying
degrees of success, and more work is still needed to complete the uni�ed theory that MCT hopes
to provide. While the advantages o�ered by a �rst-principles theory of glasses and yield stress
uids should be clear, the constitutive equations that MCT o�ers can be analytically cumbersome
and hard to interpret. This limits them in their practical use and illustrates the need for more
phenomenological approaches.

1.3.2 Trap Models and Shear Transformation Zone theory

One example of such phenomenological approaches are the Trap Models [9]. Trap models start by
imagining the jammed state in terms of particles trapped in local cages, rather than considering
the dynamics of the individual constituents. It postulates that caging e�ects lead to a potential
energy landscape consisting of many local minima separated by energy barriers. Driven either by
thermal or mechanical noise, the system will explore this potential energy landscape by activated
hopping of these barriers. This (pseudo-)thermally activated process is studied by the Soft Glassy
Rheology (SGR) model [78][77]. By providing a somewhat heuristic account of the properties
of the potential energy landscape and hopping process it is able to capture many experimentally
observed features of yield stress uids. It has been extended in various ways to describe increasingly
complicated setups and even transient phenomena. Despite the abstraction of the details of the
underlying dynamics, the probabilistic nature of the model makes it still quite di�cult to extract
meaningful data from it. Furthermore, this abstraction will lead to di�culty in the comparison
with experimental systems.

Similarly, Kinetic Elasto-Plastic (KEP) models [67][45] start by assuming a jammed state where
ow occurs via localized bursts of plastic deformation known as plastic events. These correspond
to the "hopping" events in the SGR description. Such KEP models imagine a discretized space
where each block experiences elastic loading until a plastic event occurs. The deformation caused
by the plastic event induces stress kicks to the surrounding medium. While this approach is more
physically grounded than SGR models, it also makes them more di�cult to analyze. Mean �eld
approaches have been developed that attempt to remedy this by treating the stress kicks from
distant sites as a stochastic force [8]. When this force is given the form of a thermal noise, the KEP
approach becomes formally equivalent to SGR [60]. Both the KEP [45][44] and SGR [23] models
have been extended to account for viscosity bifurcating e�ects, which highlights the exibility of
these methods.

Finally, although the KEP description is similar to SGR, KEP borrows more strongly from
Shear Transformation Zone (STZ) theory [37]. These theories operate on the basic observation
that ow in YSFs often occurs in-homogeneously in space via localized regions of shear (i.e. shear
transformation zones). While KEP models use this observation in a mesoscopic, coarse-grained
description of the system, STZ theories employ a more microscopic description of the dynamics
of individual shear transformation zones. The degree of phenomenological input into the former
is substantially higher than the latter. The advantages and disadvantages of these models are
analogous to those of SGR and MCT respectively.

1.3.3 Fluidity Models

Lastly, the completely phenomenological lambda- or uidity-models no longer attempt to make
make any direct reference to the underlying microscopic structure of the uid. Instead they
use results obtained from experiments and more microscopic theories. These models operate by
combining traditional models for visco-elasticity with models that account for non-visco-elastic
structural evolution. The two components are coupled by relating the visco-elastic model para-
meters to the state variables of the structural evolution. The structural parameter, in general
labeled � [38], is typically a scalar parameter and potentially a �eld variable [54]. Fluidity models
are related to lambda models by the particular choice of its structural variable in relation to its
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CHAPTER 1. INTRODUCTION

visco-elastic variables. By de�nition, the uidity is the ratio of the shear to the shear stress, the
inverse of viscosity. While completely phenomenological in their approach, these models a�ord a
large degree of exibility and provide an intuitive frame-work for understanding the rheology of
soft glassy materials in terms of the evolution of the uidity �eld. Results can easily be obtained
by numerical integration of the equations of motion, and �eld theories in general are easier to
work with than the other approaches mentioned so far. A conceptual advantage is that they can
accommodate the di�erent types of transient behaviour observed in experiments under a single
framework. The obvious down-sides are the lack of a microscopic information these models yield
and the open question of what the appropriate dynamics of the uidity �eld should be, exempli�ed
by the large variety of such models appearing in literature [49].

1.3.4 Model Selection

As with all tools, the choice of model depends entirely on the application one has in mind. This
is especially true in the �eld of complex uids as open questions exist at all scales. However, from
the point of view of practical application, the more phenomenological models appear to be best
suited for the job. Their coarse grained nature make them the �rst step up from the classical
constitutive laws used to describe non-Newtonian rheologies at hydrodynamic scales. Meanwhile,
new technologies (e.g. micro-uidics [57]) are starting to explore more and more the time- and
length-scales at which classical theories have been shown to break down. As such, the need for
models that are able to go beyond this level of description has become increasingly relevant. In
recent years, signi�cant progress has been made in our understanding of the stationary behaviour
of these materials [11][61][36], yet dynamic modelling of these systems has remained challenging.
While the state of the art for these models is not yet ready for direct practical application, it is
clear that progress in this direction is certainly a goal worth pursuing.

Meanwhile, from a more theoretical point of view, there has been increasing evidence that many
systems with di�erent microscopic properties display rather similar macroscopic behaviours. This
is reminiscent of universality as found in equilibrium statistical mechanics, suggesting the appealing
possibility for a similarly unifying framework for the dynamics of these systems. Unfortunately, the
wide range of phenomena observed in experiments has led to a similar proliferation of theories and
models that attempt to tackle di�erent aspects of this phenomenology. Realizing the hypothesized
universality would require a move towards a more uni�ed description that is able to account for
the various experimental observations at a more quantitative level.

It is for these reasons that this thesis will focus on the use and development of dynamic uidity
models for transient phenomena in yield stress uids. In a recent series of papers [4][6], Benzi et
al. developed one such uidity model with the goal of providing a uni�ed description of dynamic
phenomena in yield stress uids. The model attempts to make concrete the interpretation of
transient uidization as a dynamical phase transition by describing the system in terms of a "free
energy", whose order parameter is the uidity. While other lambda/uidity models have been able
to qualitatively reproduce experimental observations surrounding the uidization transition [54],
their model in particular has shown remarkable quantitative agreement as well [6]. It has been able
to reproduce various scaling exponents characterizing the transient response of simple yield stress
uids as well as the role of transient shear banding in these processes. Furthermore, this framework
has been extended to include mechanical noise, upon which the model was able to account for
permanent shear banding and viscosity bifurcation [4]. While these results are promising, more
work is still needed in order to assess the experimental consistency of this approach and to develop
it into a more general framework.

1.4 Outline Approach

Motivated by the success of the uidity model at describing the transient uidization transition,
the next step will be to investigate its applicability to more general transient phenomena. It is with
this goal in mind that this thesis will study rheological hysteresis in yield stress uids using the
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uidity model introduced by Benzi et al.[4][6] In addition to requiring an accurate description of
the uidization behaviour of YSFs, capturing this phenomenon demands a detailed understanding
of the relaxation behaviour across wide ranges of driving. These features make it an excellent case
study for any model hoping to describe transient ows. Previous investigations [68][71] have used
other phenomenological models to qualitatively describe the hysteresis e�ect in yield stress uids.
The hypothesis is that the uidity model will be able to go one step further and reproduce with
greater accuracy the details of this phenomenon. This may provide new insights into the transient
behaviour of these materials while simultaneously combining the model’s previous successes into
a single framework.

The aim of this thesis is three-fold. The �rst is to provide an interpretation of rheological
hysteresis in simple YSFs in terms of the uidity framework. By building from a minimal version
of the model, the e�ect of di�erent mechanisms on the hysteresis will be investigated. The second
goal is to assess the consistency of our interpretation against experimental results. To this aim,
rheological signatures and quantitative scaling predictions will be identi�ed that can be validated
with experiments. The third goal is to investigate how the model can be extended to account for
the more complex hysteresis phenomena observed in viscosity bifurcating YSFs. The noisy version
of the model presented in [4] will be analyzed as a candidate for such an extension.
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Chapter 2

Preliminaries

This chapter will lay out the experimental and theoretical background for the rest of this thesis.
First, a detailed description of the rheological hysteresis phenomenon is presented from an exper-
imental point of view. Afterwards, the uidity model that will be used to study this phenomenon
is introduced. The goal is to provide a physical background of the uidity model as well as
introducing the technical details of its formulation.

2.1 Experimental Background

The experimental background will consist of two parts. First, the methodology used to study
hysteresis phenomena in yield stress uids is discussed. This is followed by an overview of experi-
mental results found in literature and a brief analysis of these results. The experimental protocol
that will be used throughout this thesis was developed by Divoux et al. [17] and their work will
serve as the main source of experimental data.

2.1.1 Experimental Protocol

Rheological experiments are typically performed in a cylindrical Couette cell. The uid is loaded
between a stationary outer cylinder ("stator") and a rotating inner cylinder ("rotor"). The sample
is �rst sheared at a high shear rate _max in order to ensure that a reproducible initial state is
reached. Such "shear melting" erases the ow history of the sample prior to the experiment.
The hysteresis cycle is then performed as follows: starting from the initial shear _max, the shear
is decreased in N logarithmically spaced steps down to a value of _min. Along the way, each
particular value of the shear is held �xed for a waiting time �t, after which a stress measurement
is performed at that imposed shear. This is identical to the protocol commonly used to determine
the steady state ow-curve of a material. Once the shear reaches _min, the hysteresis cycle is
obtained by reversing the protocol, i.e. the shear is now increased in N logarithmically spaced
steps, back up to a value of _max, where each measurement point is again held for a duration
�t. The two "ow-curves" so obtained coincide in theory for �t ! 1, and in practice for �t
much larger than any intrinsic material time-scale. At any �nite �t, transient e�ects imply the
presence of a hysteresis between the two curves. Additional information can be gleaned from the
velocity pro�les across the gap. Hysteresis in terms of stress measurements is often, if not always,
accompanied by heterogeneous ow pro�les. This protocol has a continuum limit where N ! 1
and �t! 0 while the product:

� :=
N

ln ( _max= _min)
�t � n�t (2.1)

is kept �xed. It is expected that the results depend only on � which de�nes a characteristic time-
scale of the cycle. In order to minimize the number of free parameters of the protocol we require
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that the system is able to reach steady state at _max. This means the hysteresis loop is closed
and the cycle starts from a reproducible initial condition.

In order to quantify the extent of the hysteresis, two observables associated with the cycles are
de�ned. The �rst quanti�es the extent of the rheological hysteresis, as observed in terms of the
measured stress response. Following [17], this quantity is de�ned as:

A� :=
Z _max

_min

j��( _)jd ln _ (2.2)

This simply measures the area between the ow curves, as measured on a logarithmic horizontal
scale so as to give regions of low and high shear equal weight (see for example �gure 2.1). To
quantify the extent of the inhomogeneity of the ow pro�les during the cycle, an analogous ob-
servable is de�ned in terms of the measured velocity pro�les:

Av :=
Z _max

_min

Z L

0
j�v(x; _)jdxd ln _ (2.3)

In this de�nition, �v(x; _) denotes the di�erence between the measured velocity pro�les between
the up-sweep and the down-sweep.

2.1.2 Experimental Results

This section will focus on experimental results for two commonly studied model systems, Carbopol
and Laponite. For both model systems, some background about the micro-structure and rheology
of this material is introduced, after which a number of experimental measurements of rheological
hysteresis are given.

Carbopol

Carbopol is a microgel that consists of particles of highly cross-linked polymers that swell when
suspended in water, which causes a jamming transition. The particles are typically on the order
of about 10 �m across, which makes them large enough to be considered athermal. Furthermore,
because the yield stress arises from the repulsive interactions of the soft particles, this material is
classi�ed as a repulsive glass. Carbopol is commonly used as a model system for simple yield stress
uids [15][16][18][39]. Because of the extensive experimental results available for this system, it
serves as an excellent reference case for model validation.

Turning the attention to rheological hysteresis in Carbopol, the �rst (and most complete)
set of results is taken from [17] and shown in �gure 2.1. The experimental setup is a polished
Plexiglas Couette cell. It has a height of 28 mm, a rotating inner cylinder of radius 24 mm and
�xed outer cylinder of radius 25 mm. The shear is sweeped over a range _ 2 [10�3; 103] s�1

with N = 90 points on each sweep. The insets show velocity pro�les taken at representative
points along the cycle. The stress overshoot on the up-sweep is accompanied by transient shear
banding, similar to what was observed in [16] for overshoots at �xed shear. At around _ � 10�1

s�1 an inection point is observed on the down-sweep and the velocity measurements show that
a plug-ow pro�le develops. The hysteresis areas as measured by the observables A� and Av are
shown in �gures 2.2 and 2.3, respectively. Both show a monotonically decreasing trend for all �t
explored. An approximate power-law �t for Av has been included in anticipation of the discussion
of the theoretical results.

These results are the only dedicated experimental study of rheological hysteresis in Carbopol.
Nevertheless, a few other examples of hysteresis cycles can be found scattered throughout the
literature. One such example is shown in �gure 2.4, which is taken from [15]. These measurements
have been obtained using a plate-plate geometry with a gap-width of 1 mm and a radius of 21
mm. Furthermore, the authors glued sand-paper to the walls as a way of obtaining a rougher wall
than the polished Plexiglas used in �gure 2.1. Unfortunately, these results do not include velocity
measurements. The inection point observed for smooth walls is markedly less pronounced in
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Figure 2.1: Experimental results for Carbopol microgels, taken from [17]. �t equal to a) 16 seconds
and b) 129 seconds

10 Numerical Modeling of Rheological Hysteresis in Yield Stress Fluids



CHAPTER 2. PRELIMINARIES

 0

 5

 10

 15

 20

 25

 30

 35

 40

100 101 102

A
s
 (

P
a)

dt (s)

Figure 2.2: Hysteresis area A� as a function
of �t for Carbopol microgels, taken from [17].
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Figure 2.3: Hysteresis area Av as a function
of �t for Carbopol microgels, taken from [17].
Dotted line is a log-normal �t of the data.

these results, although panel d) hints towards the appearance of such a point at long waiting
times.

Laponite

Laponite is an example of a thixotropic, viscosity-bifurcating yield stress uid. It is a suspension
of nanometer-sized synthetic clay particles in the shape of at disks. When suspended in water,
ion dissociation causes the faces of these disks to pick up a positive surface charge while the
edges become negatively charged. At low weight fractions these opposing charges will lead to
the formation of a gel structure which is responsible for the solid-like properties of the material.
When sheared su�ciently strongly, the gel structure is broken down, resulting in a Newtonian
regime at very large shear. The competition between aging (gel-formation) and shear rejuvenation
makes this uid viscosity bifurcating, which leads to some of the peculiar rheological properties
that were discussed in the introduction. The small particle size means Laponite suspensions are
Brownian yield stress uids and its micro-structure is an attractive gel, both of which are opposite
to Carbopol. The micro-structure of Laponite has been the subject of some debate over the years
[53][56][74][14], as the like-charges present on the particles also induce repulsive interactions. At
su�ciently large weight fractions, it has been argued that these may lead to a repulsive glassy
state, known as a Wigner glass. Nevertheless, in a recent literature review, Suman et al. concluded
that the dominant micro-structure responsible for the solid-like behaviour in Laponite gels is most
likely an attractive gel structure [79]. For the purposes of this thesis, the results for Laponite will
be interpreted assuming that an attractive gel is indeed the correct micro-structure.

Results for hysteresis in Laponite are shown in �gure 2.7. These results are again taken from
[17] and were obtained using the same setup as those in �gure 2.1. That is, a cylindrical Couette
cell with smooth Plexiglas walls and inner and outer radii equal to 24 and 25 mm, respectively.
Compared to the case of Carbopol, some new features emerge. Firstly, the cycles observed here
extend over larger ranges in shear. Looking at the velocity pro�les, the shear banding behaviour
is markedly di�erent. At fast sweeps, little to no shear banding is observed. Meanwhile, at
intermediate sweep rates the results are similar to those for Carbopol, with shear banding occurring
on the up-sweep. At large sweep rates, shear banding shows up even on the down-sweep. This
illustrates the viscosity-bifurcating behaviour of Laponite. As mentioned in the introduction, this
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Figure 2.4: Experimental results shown in [15]. �t equal to a) 2 seconds, b) 10 seconds, c) 30
seconds and d) 70 seconds.
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Figure 2.5: Hysteresis area A� as a function
of �t for Laponite suspensions, taken from
[17].
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Figure 2.6: Hysteresis area Av as a function
of �t for Laponite suspensions, taken from
[17]. Dotted line is a power-law Av � �t1=3.

has notable consequences for the hysteresis area. Plots for A� and Av shown in �gures 2.5 and
2.6 show a bell-shaped curve with a clear maximum for both observables. The characteristic time-
scale n�t� de�ned by the location of the peak is interpreted as a "restructuring time" related to
the gel-formation in Laponite. Divoux et al. [17] proposed that an analogous time-scale may also
be present in Carbopol, but is located outside the experimentally accessible window, which would
explain the monotonic decrease that was observed in �gures 2.2 and 2.3.
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Figure 2.7: Experimental results for Laponite suspensions, taken from [17]. �t equal to a) 3 seconds
b) 10 seconds and c) 100 seconds.
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2.2 Theoretical Background

This section will introduce the uidity model used in this thesis. The theory is based on the Kinetic
Elasto-Plastic description of soft glassy materials [59]. A stationary version of the model will be
derived using this framework [8]. Afterwards, the stationary theory will be upgraded to a dynamic
model for simple yield stress uids. While the static theory is by now relatively well-established,
developing the dynamic theory still requires considerable experimental input. Accordingly, speci�c
modeling decisions will be motivated using experimental observations found in literature.

2.2.1 Stationary Model

The starting point for this discussion will be the KEP picture of yield stress uids. The basic
features of this approach will be recalled here. The �rst step is to �rst discretize the material into
mesoscopic blocks of linear dimension a that are typically several particles across. These blocks
can support an elastic load and each block has an associated microscopic yield stress �c. Once
this yield stress is exceeded, the block will undergo a plastic rearrangement that relaxes the stress
in that block. Furthermore, the local deformation of the material will modify the stress of blocks
throughout the system, a process described by the so-called Eshelby stress propagator [21]. This
mechanism allows plastic events at one location to destabilize nearby regions, thereby inducing
further plastic activity in the vicinity of the original plastic event. The result is that the plastic
activity of a region depends on the activity of its surroundings. This type of non-locality where
plastic events stimulate plastic events elsewhere in the material is known as cooperativity and it
provides an intuitive explanation for the non-local rheology of con�ned YSFs. The main question
is how to connect the notion of plastic activity to the rheology of the material.

To make this connection, consider one such coarse grained block. Any block will experience
a number of plastic events per unit time, denoted by �. Over time, a block will cycle between
high stress right before a plastic event, and low stress right after one. On average however, it
will carry a stress that is proportional to the over-all average stress � in the material. Similarly,
it will carry a stress �pl that is also proportional to � at yielding. The stress can be related to
a shear deformation via the microscopic elastic modulus G. In particular, the stress released in
a plastic event is given by �pl = Gpl where pl is the shear strain that has been accumulated
at yielding. Many such plastic events will add up to a steady shearing motion with a strain rate
equal to _ = pl�. Putting everything together, it is found that the average rate of plastic events
can be related to the macroscopic rheological observables via:

� � _=pl � G _=�pl � G( _=�) � Gf (2.4)

In the last step the uidity f has been identi�ed as the ratio of the shear and the stress, i.e. the
inverse viscosity. The uidity arises naturally from the KEP picture of localized plastic events
and provides a direct connection between the macroscopic rheology and the mesoscopic processes
in the material. The mesoscopic side of this connection tells us that � should obey some non-local
equation. Meanwhile, the macroscopic side tells us the correct bulk-behaviour in terms of the
rheological quantity f . The simplest constitutive law that combines these two observations is
given by:

�2
cr

2f � (fb(�)� f) = 0 (2.5)

This equation quanti�es the cooperative e�ects of � via the length-scale �c, referred to as the
cooperativity length. The fact that these e�ects are most signi�cant in con�ned geometries can
naturally be explained in terms of this length-scale [62]. Finite size e�ects start to become im-
portant once the system size is of the same order of magnitude as the cooperativity length [26].
Meanwhile, this equation also tells us that when these e�ects are negligible, the uidity is given
by some bulk uidity fb. The global HB-behaviour �xes the bulk uidity as:

fb :=
_
�

����
bulk

=

(
_

�Y +A _n if _ �xed
1
�

����Y
A

�1=n if � �xed
(2.6)
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Equation 2.5 has been successfully used to account for the non-local rheology observed in con�ned
systems. Furthermore, the connection between the rate of plastic events and the uidity has also
been con�rmed both experimentally and numerically. At a more formal level, it can be shown
that equation 2.5 can also be derived from a more exact mean-�eld treatment of KEP models
[8]. In addition to putting the phenomenologically proposed equation 2.5 on sounder theoretical
footing, it also provides new information about the nature of these cooperative e�ects. The key
approximation of this approach consists of treating the complicated cooperative e�ects arising from
the stress propagator as a Gaussian mechanical noise. As with any mean-�eld approximation, this
obviously neglects spatial correlations, but it allows us to replace the coupled stress dynamics
of the individual blocks by autonomous stochastic processes. These stochastic processes can be
expressed in terms of a Fokker-Planck equation describing the stress distribution function P (�; r; t)
for individual blocks. This equation reads:

@tP (�; r; t) = �G _(r; t)@�P (�; r; t)�
�(j�j � �c)

�
P (�; r; t) + �(r; t)�(�) +D(r; t)@2

�P (�; r; t) (2.7)

Going over this equation term-by-term, it can be seen that each of the terms represents one of the
basic processes that occur in KEP models. The �rst term on the right hand side represents the
local elastic response of the blocks to a shear _. The second and third terms represent the plastic
events. These are assumed to occur once the block is loaded beyond its microscopic yield stress
�c and they extend over some timescale � . Once yielded, the stress of that block is relaxed to zero
which is represented by the third term. The rate of plastic events � is given by:

�(r; t) :=
Z
P (�; r; t)

�
�(j�j � �c)d� (2.8)

Finally, the fourth term represents the di�usion of stress due to plastic events occurring throughout
the material. The fact that this e�ect can be represented as a di�usive process is a direct result of
the mean-�eld approximation. More speci�cally, it arises from the Gaussian distribution attributed
to the stochastic stress kicks the blocks receive. This also means that the di�usion constant D is in
fact not a free parameter, but rather is related to the rate of plastic events in the material. In their
original analysis of this model, H�ebraud and Leqeux [30] used a spatially homogeneous treatment
of equation 2.7, discarding its spatial dependence. It is assumed that the di�usion coe�cient is
proportional to the rate of plastic events:

D(t) = ��(t) (2.9)

The proportionality constant is related to the properties of the stress propagator as well as the
average stress released during a plastic event. Equations 2.7, 2.8 and 2.9 constitute a closed set
of equations that can be solved for stationary P (�), treating D as a constant. Equation 2.8 then
provides a self-consistency condition for the distribution function P (�). From these results, the
constitutive behavior of the material can be derived by considering the �rst moment of the stress
distribution:

�� :=
Z
�Pi(�)d� (2.10)

It can be shown that for � < 1=2, this model predicts the buildup of macroscopic yield stress
behaviour. The macroscopic yield stress �Y is related, but not equal to the microscopic yield
stress �c and can further be shown to depend on the parameter �.

Non-local e�ects can be included in this description by retaining the spatial dependence in
equation 2.7 and upgrading the proportionality relation in equation 2.9 of D to a gradient expan-
sion in �. To leading order, this modi�es the de�nition of D to:

D(r; t) = ��(r; t) + �2r2�(r; t) (2.11)

With � a length-scale related to the details of the propagator and the local yielding behaviour.
It quanti�es the range of inuence of plastic events and has been shown to be on the order of
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2-3 times the size of the microscopic constituents [5]. The analysis that follows is essentially the
same, although slightly more complicated than for the local case. Equation 2.7 can be solved for
(statistically) stationary P (�; r). This solution can then be expanded for small shear and small
�. The results presented here are the leading order terms in this expansion. Starting with the
constitutive law, it can be derived from the expansion of P (�; r) and equation 2.10 and is given
by:

�� = G _=(6�) (2.12)

This result con�rms the previously argued result that the uidity and � are indeed proportional.
The self-consistency condition for D is now given by a di�erential equation for � via equation 2.11.

�2@2
x� = c1(�Y � ��)� + c2�3=2 (2.13)

Where c1 and c2 are, for our purposes, unimportant constants that depend on �, �c and � . In
addition to re-establishing the link between plastic activity and uidity, these results also provide a
higher-order description of the non-local rheology characterizing con�ned yield stress uids. Using
the fact that � � f , and linearizing equation 2.13 around its homogeneous solution, fb, equation
2.5 is obtained when we make the identi�cations:

�2
c =

2�2

c1(�� � �Y )

fb(��) = 6
�
c1�Y
c2

�2

(�� � �Y )2
(2.14)

This reveals that the bulk rheology of the model is of HB-type with exponent n = 1=2. Fur-
thermore, it shows that the cooperativity length diverges as �c � j� � �Y j�1=2 � _�1=4, which is
consistent with experiment [36].

As far as stationary theories go, the approach detailed above has been very successful. A
number of its predictions have been con�rmed both experimentally [36] and numerically [5][58]
and several studies have been dedicated to investigating the robustness of its assumptions [1][69]. In
addition to providing further motivation for equation 2.5, the micro-to-macro derivation presented
above also revealed new information about the uidity-description in general. In particular, it is
noted that the solution of equation 2.13 is the minimum of the "free energy"-like functional:

F [f ] =
Z
dx

�2

2
(@xf)2 �

1
2
c1(�� � �Y )f2 +

2
5
c2f5=2 (2.15)

This result provides further weight to the analogy of the uidization transition as a non-equilibrium
dynamic phase transition. A connection with the much better understood theory of dynamic phase
transitions could provide new tools to study and explain the physics of soft glassy materials and
various authors have suggested connections to critical phenomena [19][40][41]. In the same spirit,
our method attempts to exploit this analogy to develop a dynamic theory of the uidization
transition.

2.2.2 Dynamic model

The dynamic theory for YSF ows is formulated by taking seriously the "free energy" of equation
2.15 and assuming that it describes the dynamics of the system. That is, we start by assuming
that the stationary behaviour of the system is described by the variational problem:

�F
�f

= 0 (2.16)

Next, using the standard assumptions of the theory of dynamic critical phenomena [33], so-called
model A dynamics are invoked for the uidity �eld. These assumptions are that the uidity is the
non-conserved order parameter of a solid-to-uid dynamic phase transition and that its evolution

Numerical Modeling of Rheological Hysteresis in Yield Stress Fluids 17



CHAPTER 2. PRELIMINARIES

is determined by a relaxational process towards the minimum of equation 2.15. In this case, the
equation of motion for f is given by:

@tf = �k
�F
�f

(2.17)

This equation is still very general and the remainder of this section will be spent specifying the
remaining details of the model.

Units

As a �rst step, the choice of units are discussed. The free energy in equation 2.15 has been derived
using the KEP description, and this meant that units were used that are suitable for a microscopic
description of the system. To make closer connection with experiment, a more appropriate system
of units is chosen and the free energy is re-written in the form that it will be used throughout this
thesis. Therefore, the unit of length will be the macroscopic system size (typically the gap size of
a Couette cell). The unit of stress is given by the macroscopic yield stress of the material under
consideration. Finally, the unit of time is �xed by demanding that the HB-law takes the following
dimensionless form:

� = 1 + _n (2.18)

The corresponding transformations from experimental to dimensionless quantities are given by:

� ! �=�Y

_ ! (A=�Y )1=n _

t! (�Y =A)1=n t
x! x=L

(2.19)

In terms of these units, the microscopic free energy 2.15 is re-scaled to the phenomenological
free-energy:

F [f ] =
Z
dx

�2

2
(@xf)2 �

m
2
f2 +

2
5
f5=2 (2.20)

With m given by:

m2 :=
(� � 1)2

�
(2.21)

Such that the bulk solution of the uidity is given by:

fb = m2 =
(� � 1)2

�
=

_HB
�

(2.22)

Mobility

The most important part of equation 2.17 is the function k. It tells us how quickly the system
relaxes towards its stationary state. In the language of dynamic phase transitions, it is referred to
as the "mobility". The main challenge of describing dynamic problems with this equation comes
from trying to infer the mobility in terms of the control parameters and state variables of the
system. According to [6], k is assumed analytic in f , i.e. k has a regular power-series expansion
around f = 0. In addition, it is assumed that:

lim
f!0

k(f) = 0 (2.23)

These assumptions mean that, to leading order, k / f . Combined with the de�nition of the free
energy this gives the following equation of motion:

@tf = ~kf
�
�2@2

xf +mf � f3=2
�

(2.24)
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The assumptions are motivated by a number of experimental observations. The �rst clue is given
by the diverging lifetime of transient shear bands [15][18]. The model can explain this in terms of
the vanishing limit of k in the non-uidized state. The arrested band will remain arrested, only
growing via a coarsening of the owing band where f is non-zero [6]. Next, the leading order
behaviour of k is �xed by the creep dynamics observed in experiments. During the initial stages of
uidization, a creep regime is observed where the strain in the system is found to scale as  � t1=3
[15]. This power-law creep is known as Andrade’s creep and is a rather common observation in
plastically deforming materials [2][50]. The model is able to account for this e�ect via the action of
the aging term �f3=2 and the Andrade-exponent follows directly from the leading order exponent
of k(f) [6]. The choice k / f also has an interpretation in terms of plastic activity. When f is
interpreted as a rate of plastic activity, the inverse uidity de�nes a time-scale that is taken as
the time-scale of the uidity evolution itself.

The f -independent function ~k can still depend on any combination of the remaining physical
parameters. In order to describe the hysteresis protocol introduced in section 2.1.1, the model
will be used under shear-controlled operation. It would seem natural then to focus on the _-
dependence of this function and to infer this from experiment, which is done in [6]. Benzi et al.
show that the choice k / _ yields the correct scaling behavior of the transient uidization time �f .
However, this de�nition runs into problems when dealing with a time-varying shear, as will be the
case when hysteresis cycles are discussed. For example, when a highly sheared system is quenched
to a very low shear, the uidity may remain high for arbitrarily long times. This suggests that
a more appropriate de�nition of k should have some degree of "memory", or, equivalently some
response time. In the context of a cyclical variation of the shear, the case k = _ corresponds to the
limit where k responds instantly to a change in shear. The opposite limit is when k = h _i where
the angular brackets denote the average value over the entire cycle. For a �xed shear window
( _min; _max) this value is a constant. For simplicity, its value is set to 1.

This discussion can be summarized by writing k = _� with � = f0; 1g. All results will be
discussed for both values of �. It will be treated as a free parameter, however, one should keep
in mind the physics it represents. Furthermore, the fact that only these values are investigated is
not to say that these are the only possible values, nor that either one is "correct". However, in
order to keep the results somewhat focused, the scope of this thesis will be restricted to these two
choices as representative limits of the parameter space.

Finally, the equation of motion for f that will be used throughout the following chapters is
explicitly given by:

@tf = _�f
�
�2@2

xf +mf � f3=2
�

(2.25)

Visco-Elasticity

So far, the dynamics of the stress-�eld � have remained unaddressed. Under shear-controlled
conditions, some way is needed to describe this quantity. In this thesis, it will be assumed that
locally, the material can be described by a single-mode visco-elastic Maxwell model. The plastic
deformation of the material is governed by the uidity and, using its de�nition this can be related
to the stress:

_pl(x) := f(x)�(x)pl (2.26)
The elastic deformation rate is simply that which remains after accounting for this plastic deform-
ation rate:

_el(x) := _(x)� f(x)�(x)pl (2.27)
The stress associated with the elastic deformation is given by an elastic modulus G:

el(x) :=
1
G
�el(x) (2.28)

Finally, assuming that the plastic and elastic stresses are equal to the total stress �(x), these three
equations can be combined to obtain the following local description of the stress.

@t�(x) = G( _(x)� f(x)�(x)) �
1
�

( _(x)� f(x)�(x)) (2.29)
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In this context, the elastic modulus appears as a time-scale in equation 2.29 that governs how
quickly the stress responds, and to make this interpretation explicit a visco-elastic time-scale
� has been introduced. Next, it is assumed that under typical loading conditions, momentum
di�usion occurs over time-scales much shorter than those resolved by the model. This means that
the stress is spatially homogeneous so that �(x) = �, neglecting any stress heterogeneities due to
the experimental geometry. This fact can be used to simplify equation 2.29 by taking a spatial
average. Because all of the remaining terms are linear, the following simple Maxwell equation in
obtained:

@t� =
1
�

( _ � hfi�) (2.30)

Where it was that under imposed shear, h _(x)i = _. The fact that the stress is homogeneous
in space also means that the elastic strain is homogeneous in space via equation 2.28. In turn
this means that the elastic shear is homogeneous in space, which can be used to determine an
expression for the local shear:

_(x) = _pl(x) + _el(x) = f(x)� + ( _ � hfi�) (2.31)

Velocity pro�les can be determined by integrating this expression. Finally, when visco-elastic
e�ects are negligible (i.e. � ! 0) equation 2.30 can be assumed to be in steady state and hence:

� = _=hfi (2.32)

Boundary Conditions

An important but under-developed issue is the choice of boundary conditions for phenomenological
models in general. The spatial derivatives in equation 2.25 imply that two boundary conditions
for the uidity �eld are required. However, there is no general theory available for expressing
these in terms of the other model parameters. This can be attributed to the wide range of factors
that contribute to the surface rheology and its connection to the bulk properties of the material.
Consider for example an emulsion in a Couette cell. The walls, when su�ciently rough, will induce
plastic activity at and near the boundaries [64], implying a large wall uidity. This e�ect is most
pronounced when the typical size of the wall roughness is comparable to the typical size of the
droplets [43]. In addition to the mechanical properties of the walls, the chemical properties may
play a role as well. Depending on the wettability of the wall, the droplets may become attached
to the wall. In this case, a layer of hemispherical droplets may populate the walls, creating a
self-induced surface roughness, despite the actual wall itself being smooth [63]. Conversely, a non-
wetting surface may lead to the formation of a lubrication layer of interstitial liquid, which ends
up being preferentially sheared under the right conditions. A rheological experiment may end up
simply probing the rheology of these slip layers rather than the bulk of the material [65], leading
to a failure of many rheological models.

This discussion highlights some of the non-trivial problems associated with describing the
inuence of boundaries on the ow of complex uids. Previous applications of equation 2.5 have
simply �tted the wall uidity to experimental results to show that the equation is able to describe
bulk rheology. The boundary conditions are then considered free parameters of the model. We
will take a similar approach to what was done for the mobility. Two generic boundary conditions
will be considered that are taken as representative of two limiting behaviours, one with strong
boundary inuence and one with weak boundary inuence.

In a system that is being forced from the walls, it is not unreasonable to consider a Dirichlet-
type boundary condition at the walls. Assuming that the eventual steady state of the system
is the homogeneous HB-solution, a natural choice would be to set fw = m2(�). This boundary
condition naturally accommodates shear-band nucleation from the wall as any transient stress
overshoots will lead to a large uidity at the wall that will trigger shear banding [16]. This is also
the approach taken in [6] to describe shear banding using the uidity model.

The opposite limit is using a Neumann zero-gradient boundary condition at the walls. Rather
than nucleate shear banding at the walls, this approach relies on a di�erent mechanism for uidizing
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a system. In [55], the authors provide a set of criteria for the onset of transient shear-banding in
generic models for soft glassy materials. There it was shown that transient stress-overshoots imply
an instability to the formation of transient shear bands. In order to trigger this instability, we
follow [71] and impose a slight stress-variation across the system, mimicking the stress variations
present in Couette setups. Rather than taking into account the exact inuence of the radial stress
variation, we impose a variation given by:

�(x) = �� (1 + � cos(�x)) (2.33)

With � a parameter characterizing the strength of the hetereogeity. The quantity �� will still
evolve according to 2.30, but we will use �(x) as the stress in 2.25. This description should be
good enough provided that � is not too large.

Numerical Methods

The coupled equations of motion in equations 2.25 and 2.30 are solved using a Fortran 90 imple-
mentation of a fourth order Runge-Kutta scheme. The solutions have been checked to be stable
to decreases in time-step size. The strong non-linearities mean that relatively small time-steps are
necessary to obtain a converged solution, but no e�ort has been made to optimize this process.
The spatial resolution is kept �xed at 512 grid-points.
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Homogeneous Model

The following chapters will focus on describing rheological hysteresis in simple yield stress uids
using the uidity model introduced in the previous chapter. This investigation will approach
the problem from two sides. On the one hand, we will attempt to reproduce the experimental
observations using the uidity model, while the results from the uidity model will be used to gain
insight into the mechanisms responsible for hysteresis in experiments. Therefore, we will start with
a minimal version of the model that is capable of describing some form of hysteresis. Speci�cally,
it is assumed that the spatial e�ects (i.e. shear-banding) observed in the experiments are merely
the signature of an inherent time-dependence of the ow. In this case, the emergence of hysteresis
can be found, at least qualitatively, in a system that is constrained to remain homogeneous. By
�rst studying the homogeneous system, the contribution of spatial heterogeneities to the hysteresis
e�ect can be isolated in order to better understand the origin of hysteresis in the uidity model.

Within this homogeneous framework, rheological hysteresis may emerge in a number of ways.
Almost trivially, hysteresis can be inserted by assuming that two di�erent processes describe
the up- and down-sweep of a cycle. By using two di�erent equations of motion, any type of
hysteresis may be reproduced. However, as mentioned in the introduction, the goal is to provide
a uni�ed description of these materials. Invoking two equations for just the hysteresis problem
would be counterproductive to this goal. Within the context of the model introduced in section
2.2.2, hysteresis may still arise in two di�erent ways. The �rst is via a time-dependence of the
uidity �eld as described by equation 2.25. Alternatively, the necessary time-dependence may
also come from the visco-elastic timescale appearing in equation 2.30. This chapter will start by
discussing each of these two limits separately. Additional features will then gradually be added
to improve experimental agreement, while simultaneously highlighting the role of these features
in the experimental results. Along the way, quantitative results will be derived that can be used
for further validation of the results against future experiments.

3.1 Elastic Limit

In the limit where the uidity dynamics are assumed to be fast, any time-dependence of the ow
can be attributed entirely to the presence of a long visco-elastic time-scale. The uidity �eld is
assumed to be equal to its steady state value f = m2 for all times. Inserting this in equation 2.30
results in the following non-linear visco-elastic equation:

@t� =
1
�
�

_ � (� � 1)2� (3.1)

Figure 3.1 shows a typical hysteresis cycle obtained by integrating equation 3.1. The parameters
are given by �t = 0:5, n = 30 and � = 10, while the shear is con�ned to _ 2 [10�3; 102]. Equation
3.1 is able to predict some hysteresis due to the fact that the up-sweep is not able to reach the
solution � = 1 + _1=2 on timescales �t. The hysteresis vanishes as �t!1. However, in contrast
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with the experimental observations, this leads to the up-sweep falling below the down-sweep rather
than above it. This e�ect will be referred to as "negative hysteresis".

Furthermore, despite the remarks in section 2.1 about requiring closed cycles, the up- and
down-sweep do not meet at _max. This is a typical feature of equation 3.1. Because it has a single,
rather well-de�ned time-scale � , two regimes exist: � � � and � � �. The former will result in
a system where the stress is continuously catching up with the growing shear. When the shear is
very large, the right hand side will be su�ciently large to restore the system to its steady state.

Based on these observations it concluded that time-dependence in the uidity �eld is a necessary
ingredient for the appropriate hysteretic e�ect to be observed. Rather than further investigate
this type of hysteresis now, the inelastic limit is discussed �rst. The role of visco-elastic e�ects
will be returned to in section 3.3.
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Figure 3.1: Hysteresis cycle in the visco-elastic limit. �t = 0.5, n = 30 and � = 10.

3.2 Inelastic Limit

In the opposite limit, � ! 0, the visco-elastic Maxwell equation can be replaced by its steady state
solution, equation 2.32. This means that the stress in the system can be directly related to the
shear as � = _=hfi. Because the uidity �eld is homogeneous, the spatial average hfi is simply
equal to f . This can be used to simplify equation 2.25 to:

@tf = _�
�

_1=2f3=2 � (1 + _�1=2)f5=2
�

(3.2)

3.2.1 Numerical Results

As a reference case, �gure 3.3 shows numerical results for � = 1, �t = 10, n = 30 and _ 2
[10�3; 101]. The typical phenomenology obtained in most hysteresis cycles is analyzed �rst. Ini-
tially, the large uidity and shear lead to rapid equilibration of the system. This process slows
down as the shear and uidity decrease. Eventually, the uidity starts to deviate from its steady
state value, which marks the start of the hysteretic part of the cycle. Two phases can be identi�ed
here. The �rst will be referred to as the relaxation phase: it is the period where the uidity is
larger than its steady state value (see �gure 3.2). During this period, the shear is sweeped faster
than the uidity can respond and it will spend this time decreasing as it attempts to reach steady
state. On the up-sweep, the HB-solution increases with the increasing shear (see the dotted line in
�gure 3.2), while the uidity continues to decrease. Eventually the two meet and the cycle enters
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its second phase: the overshoot. The time spent during the relaxation phase has over-relaxed the
uidity to a value that is lower than it would have been able to achieve on time-scales �t. Despite
reaching steady state at this point, the uidity dynamics again cannot keep up with the sweep
rate �, and the uidity ends up smaller than than its steady state value. As long as this remains
the case, the stress will be larger than the HB-curve. This continues until eventually, the driving
force for the uidity becomes large enough to restore the system to equilibrium.

By increasing the waiting time per point, the system is able to reach steady state at lower
values of the shear. Likewise, the system returns to its steady state at lower shear on the up-
sweep. The result is that the hysteretic part of the cycle moves down along the ow-curve. This
is illustrated by the results in �gure 3.4, where the same hysteresis cycle is plotted, but with a
waiting time per point �t = 1000. In terms of uidity, the increased waiting time moves the entire
relaxation phase down to lower values. On its own, this would lead to a larger overshoot. However,
the system also spends more time at each point of the overshoot. A competition emerges between
the increasing relaxation and shrinking overshoot, which controls the extent of the hysteresis as �
is varied. As a more quantitative measure of this time-dependence, �gure 3.5 shows the hysteresis
area A� as a function of the time-scale � := n�t, de�ned by equations 2.2 and 2.1, respectively.
The hysteresis area is a weak but monotonically decreasing function of �. Furthermore, the results
for A� collapse when plotted against � while n is increased, con�rming that � is the only relevant
control parameter. The fact that the results converge for n > 60 suggests that the deviations for
small n are due to the discrete integration of the hysteresis loop area. Unless mentioned otherwise,
n will be �xed at 30 for the remainder of this thesis.

Figures 3.7 and 3.8 show two more hysteresis cycles but with � = 0. The phenomenology is
largely the same. Due to the absence of the additional factor of _, the system follows the HB-curve
longer before displaying a hysteresis phenomenon that is qualitatively similar to that for the case
of � = 1. The hysteresis area A� is a much stronger function of �t and shows a power-law decay
with �. This result will be analyzed shortly.

It can be concluded from these results that the qualitative origin of the hysteresis lies in
the slowing-down of the system dynamics at small shear. In the model, this is achieved via a
state-dependent mobility k / f , but more general functional forms may yield the same e�ect.
Furthermore, the current model consistently predicts a monotonic decrease of the hysteresis area
A� with �. This is in fact a very general feature of the model. To see why, the asymptotic scaling
behaviour of this quantity will be derived next. As discussed above, the behaviour of this quantity
is determined by the competition between relaxation and overshoot. The speci�c balance of this
competition will be shown to be related to the steady state rheology of the material.

3.2.2 Theoretical analysis

Because of the simpli�cations to the model, the asymptotic behaviour at � � 1 and � � 1 can
be explored analytically. Appendix A.1 provides a detailed analysis of the scaling behaviour of
equation 3.2. The main results of this analysis are summarized and compared to the numerical
results of the previous section. Finally, these conclusions are then generalized to show that A�
will always be decreasing with �.

The �rst step of this analysis, and every analysis that follows, is to take the strain rate cycle
to its continuum limit, i.e. n ! 1 and �t ! 0 while their product � is kept �xed. In this case,
the down-sweep shear varies in time as:

_(t) = _maxe�t=� (3.3)

The left hand side of 3.2 can be rewritten as:

@tf = (@t _)@ _f = �
_maxe�t=�

�
@ _f = �

_
�
@ _f (3.4)

The same thing can be done for the up-sweep, which only results in a change in sign. Combining
these two equations results in the following continuum equation of motion:

_@ _f = �� _�
�

_1=2f3=2 � (1 + _�1=2)f5=2
�

(3.5)
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Figure 3.2: Fluidity cycle corresponding to the hysteresis cycle in �gure 3.3. � = 1,
n = 30 and �t = 10.
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Figure 3.3: Hysteresis cycle in the inelastic limit. � = 1, n = 30 and �t = 10.
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Figure 3.4: Hysteresis cycle in the inelastic limit. � = 1, n = 30 and �t = 1000.
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Figure 3.5: Hysteresis area A� as a function
of n�t =: � for � = 1 and _ 2 [10�3; 101].
Note the linear scale on the y-axis.
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Figure 3.6: Hysteresis area A� as a function
of n�t =: � for � = 0 and _ 2 [10�3; 101].
The dotted line is a power-law �t for the
initial decay.

Where the plus- and minus-signs apply to the up- and down-sweep, respectively. This reformu-
lation eliminates time and reduces the problem description to three relevant variables: �, _ and
f .

The scaling behaviour of this equation can now be studied. As illustrated by the numerical
results, when � is very large, the part of the cycle relevant to the hysteresis is located at small _.
Based on this, the HB-solution for the uidity can be approximated by _=(1 + _1=2) � _. In this
limit, the equation of motion in equation 3.5 is invariant under the scale transformation:

� ! ��

f ! ��1=(1+�)f

_ ! ��1=(1+�) _

(3.6)

Similarly, for small �, the HB-solution is approximated by _=(1+ _1=2) � _1=2 and the appropriate
scale transformation is given by:

� ! ��

f ! ��2=(3+4�)f

_ ! ��4=(3+4�) _

(3.7)

These scale transformations show that an increase in � ensures that the system follows the HB-
curve longer, as increasing � is equivalent to decreasing _. To determine what this means for the
behaviour of A�, the model with � = 1 is discussed �rst. Appendix A.1 shows that in this case,
the uidity approaches a non-zero constant as _� ! 0. In addition, provided _min � ��1, the
appendix also shows that the knowledge about the scale transformations in equation 3.6 and 3.7
is su�cient to �x the � dependence of the solution �( _), i.e. the results do not depend on _min or
_max. Because A� is proportional to �, A� and � have the same � dependence (up to logarithmic
corrections from the scaling of _). Therefore, equation 3.6 can be used for small � and � = 1 to
obtain:

A� � � � _=f � ��4=7=��2=7 � ��2=7 (3.8)
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Figure 3.7: Hysteresis cycle in the inelastic limit. � = 0, n = 30 and �t = 10.
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Figure 3.8: Hysteresis cycle in the inelastic limit. � = 0, n = 30 and �t = 100.
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Likewise, for large �, equation 3.7 tells us that:

A� � � � _=f � ��1=2=��1=2 � �0 (3.9)

For � = 0, it is shown that f no longer approaches a constant at small shear, which leads to _min
dependent corrections to the scaling predicted by equations 3.6 and 3.7. The details of how these
corrections a�ect the scaling of A� can be found in appendix A.1. The main result is that for
small �, the scale transformation of equation 3.7 holds up to logarithmic corrections. Provided
that 1� _min � ��1, it is found that A� depends only logarithmically on _min which leads to:

A� � ��2=3 (3.10)

Moreover, for large � this cut-o� causes A� to follow the same scaling as for small �, despite
the scale transformations in equation 3.6 predicting A� � �0. Furthermore, the cut-o� implies a
power-law dependence of A� on _min. These results can be summarized as:

A� �

8
>>><

>>>:

��2=7 � = 1 and 1� _min � ��1 (3.11a)
�0 � = 1 and _min � ��1 � 1 (3.11b)
��2=3 � = 0 and 1� _min � ��1 (3.11c)
��2=3 � = 0 and _min � ��1 � 1 (3.11d)

The results from �gures 3.5 and 3.6 can be re-interpreted based on these theoretical predictions.
The hysteresis cycles used to obtain those results were mainly evaluated for � such that the
hysteresis takes place at _ < 1 (see for example �gure 3.4). Accordingly, only a weak, logarithmic
scaling is observed for � = 1 (�gure 3.6), which is in agreement with equation 3.11b. On the other
hand, equation 3.11d predicts an exponent � = �2=3 when � = 0, similar to the numerical value
� � �0:72 (as shown in �gure 3.6). Deviations from the theoretical value can be attributed to an
imperfect separation of scales. Indeed the inequalities necessary to observe the scaling of equation
3.11d are only satis�ed approximately ( _min = 10�3 and 10�1 < ��1 < 10�3). Appendix �gures
A.5 through A.13 show that the scaling relations predicted by equation 3.11a through 3.11d indeed
hold, provided the appropriate separations of scales are respected.

These results show that the model will always predict a decreasing behaviour of A� with �.
However, the same approach outlined above may be used to prove this fact more generally. To see
this, the speci�c equation of motion 3.5, may be generalized to describe any power-law rheology
� � _n and generalized mobility function k � _qfp:

_@ _f = � _qfp
�

_1�n � f
�

(3.12)

The scale-transformations that describe this equation are given by:

_ � ��1=(1+p(1�n)+q)

f � ��(1�n)=(1+p(1�n)+q)
(3.13)

The resulting (naive) scaling of A� is given by:

A� � � � _=f � ��n=(1+p(1�n)+q) (3.14)

This shows that for any power-law rheology with n > 0, the generic single-variable uidity frame-
work will yield a decreasing behaviour of A�. However, as already demonstrated by the uidity
model with � = 0, the naive scaling need not hold due to �nite size e�ects from the observation
window, speci�cally from _min. Although the mathematical steps necessary to derive the precise
scaling that results from these �nite size e�ects can be model speci�c, they will always act to
further decrease the hysteresis amplitude. These results also show that when n < 0, i.e. the ow-
curve is decreasing, the hysteresis area may be increasing with �. In practical terms, this suggests
that viscosity bifurcating YSFs, for which the ow-curve is decreasing up to some critical shear,
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Figure 3.9: Hysteresis area A� as a function
of � for � = 0 and _ 2 [10�2; 102].
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Figure 3.10: Hysteresis area A� as a func-
tion of � for � = 0 and _ 2 [10�2; 102].

may in theory exhibit an increasing hysteresis area, in agreement with the results of a previous
numerical study [71]. For the time being however, the focus will be kept on simple yield stress
uids while a detailed investigation of this e�ect is reserved for chapter 5.

Finally, it is mentioned that relaxing the condition that the system reaches steady state at
_max may also lead to increase of A� at short waiting times. This is analogous to the �nite
size e�ects induced by _min. As the sweep rate increases, the hysteretic part of the cycle shifts
towards _max. The overshoot phase then falls outside the observation window, which leads to
a decrease in hysteresis area. To demonstrate this e�ect, the observation window is reduced to
_ 2 [10�2; 102] and A� is measured as � is varied over several orders of magnitude. Figure 3.9
shows the results for � = 0. The �gure shows that A� can be described by two power-laws, one
increasing and one decreasing and a cross-over point occurs at some value of � that depends on
the observation window ( _min; _max). To make further contact with the peaked cycles obtained
for Laponite (see �gure 2.5), the same results are plotted on semi-logarithmic axes in �gure 3.10.
It is emphasized however that because the cycles used to obtain these results are not closed, this
e�ect is fundamentally di�erent from that in Laponite suspensions. The non-monotonic behaviour
observed by [68] in their numerical study can be attributed to this failure of hysteresis cycles to
close and this has been addressed in [71]. Nevertheless, the precise way open cycles lead to a
vanishing hysteresis area does still contain information about the system and the scaling relations
describing the hysteresis process. This e�ect, while not suitable as an explanation of why A�
is peaked in Laponite, may therefore still be of use for purposes of model validation or material
characterization. This approach is not pursued here, however, and for the remainder of this thesis
only results for closed cycles will be considered.

3.2.3 Experimental Comparison

The results of the previous sections showed that the transient behaviour of the uidity �eld is
essential for the "positive" hysteresis observed in the experiments. This provides a clear interpret-
ation of the hysteresis phenomenon in simple yield stress uids. However, the fact that the model
predicts hysteresis does not necessarily mean that it is the same type of hysteresis as observed in
the experiments. To con�rm that the uidity framework is indeed compatible with experimental
observations, rheological signatures should be identi�ed that can be used to validate the results of
the uidity model. Therefore, this section will �rst review the numerical results looking for such
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Figure 3.11: The experimental results shown in 2.1 b) on double-logarithmic axes with the small- _
scaling of the stress highlighted.

signatures before discussing these in the context of the experimental results.
One of the most striking features observed both for � = 0 and � = 1 was the inection point

and drastic decrease in stress that occurred at low shear. This is caused by the slowing down of
the dynamics, which meant that the uidity would remain large. Meanwhile, the decrease in shear
resulted in a decrease in stress, the details of which depended on how fast the uidity continued to
relax. The asymptotic analysis in appendix A.1 showed that when � = 1, the uidity approaches
a constant at small shear. This leads to a sharp stress decrease via � � _=f � _. Meanwhile
for � = 0, the uidity was shown to decay as f � _2=3 and so, for small shear, the stress only
decreases as � � _=f � _1=3. Finally, the location of this inection point ( _ss) was shown to
depend on �. The scale transformations for large theta (equation 3.6) predict that _ss scales as
��1=(1+�). What is useful about these features is that they are a direct consequence of the bulk
rheology of the material, i.e. they are una�ected by the absence of spatial e�ects from the model.

Let us now turn to the experimental results. The case that appears most similar to the
numerical results is that shown in �gure 2.1. As in the model, an inection point is observed at
_ � 10�1. However, this is also when total wall slip occurs. Because the simpli�ed model does not
account for wall slip, it is important to determine if it is responsible for the inection point. There
are two things that suggest that this is indeed the case. The �rst is that the small- _ decrease of
the stress in �gure 2.1 follows � � _1=2, as is highlighted in �gure 3.11. This matches neither of
the theoretical predictions given above. Secondly, while �t is increased by one order of magnitude
between the two panels in �gure 2.1, the location of the inection point remains �xed. Meanwhile,
according to the theoretical predictions, _ss should scale at least as ��1=2. These observations
point towards a di�erent explanation of the observed inection point where wall slip plays an
essential role. This is further con�rmed by the experimental results shown in �gures 2.4. There,
hysteresis is found to occur without any clearly identi�able inection point, suggesting that this
point is not necessary for hysteresis to appear.

Finally, the behaviour of A� will be discussed briey. The discussion up until this point has
mainly been concerned with details related to the down-sweep. As will be shown in chapter 4, these
results are una�ected by the homogeneous assumption. However, it is clear from the experimental
results that the up-sweep shows strong spatial e�ects such as shear banding. As a result, it would
be premature to compare the results of section 3.2.2 directly to experiment. Nevertheless, it is
expected that our conclusions with regard to the decreasing behaviour of A� will remain valid,
even when spatial e�ects are introduced.
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Further experimental validation that takes into account the full cycle will be provided in chapter
4 when the spatially resolved model is introduced. The remainder of this chapter will be dedicated
to addressing some of the points raised above using the homogeneous model. First, a non-zero
elastic time-scale � is introduced. Afterwards, the model is extended to account for wall slip.

3.3 Finite visco-elasticity

Although the results of section 3.1 showed that visco-elastic e�ects could not be responsible for the
hysteresis observed in the experiments, it is still interesting to consider how the presence of such
e�ects modify the inelastic hysteresis discussed in the previous section. Therefore, representative
numerical results are presented, followed by a detailed analysis. Afterwards, the role of visco-elastic
e�ects in experiments are discussed based on the numerical results.

3.3.1 Numerical Results

Visco-elastic e�ects are included by solving equations 2.25 and 2.30 simultaneously. As a reference
case, the value of � is �xed at 50. Figure 3.12 shows a hysteresis cycle with � = 1, n = 30
and �t = 100. Rather than only a single hysteresis loop, a double loop is now observed, one
positive and one negative. In the previous section it was shown that when � = 1, the uidity
will approach a constant as _��1 ! 0. When this happens, the only time-dependence comes from
the visco-elastic e�ect described by � . The negative hysteresis cycle is analogous to that observed
in �gure 3.1. One subtle di�erence is that in the present case, the uidity remains �xed below
_ � 10�1, whereas before it would decrease according to f = m2. As the shear is increased again,
an overshoot occurs that is qualitatively similar to that observed in the inelastic model. The
overshoot leads to a second positive hysteresis loop. This kind of double hysteresis has also been
observed in [71] when visco-elastic e�ects were included. Analogous results are shown in �gure
3.13 with � = 0. As discussed in the previous section, the uidity evolution does not slow down
as much when � = 0. Accordingly, the negative hysteresis loop is not nearly as pronounced as it
was when � = 1. Nevertheless, the inclusion of a non-zero � did prevent the stress-drop observed
at low shear.

Next, the e�ect of � on the behaviour of A� is discussed. The case � = 0 will be used to
illustrate some of the new physics that appear when visco-elastic e�ects are included. To get
a complete picture of how A� depends on � , results for � = 1, 10 and 100 are given in �gures
3.14, 3.15 and 3.16. To facilitate comparison to �gure 3.6, the same cycle parameters have been
used, i.e. _min = 10�3, n = 30 and �t 2 [1; 100]. For each �, _max is �xed such that closed
cycles are obtained. At � = 1, � is su�ciently large to ensure that the visco-elastic e�ects are
essentially negligible. Therefore, the results are similar to those in section 3.2. The visco-elastic
e�ects show up when � is comparable to �, at � = 10. The hysteresis appears to be suppressed
at short waiting times. It is emphasized that the "negative hysteresis" arising from visco-elastic
e�ects still contributes positively to A� because of the absolute signs used in its de�nition (see
equation 2.2). The decrease in A� is thus due to an overall decrease in hysteresis area. Finally,
when � = 100, transient e�ects become dominated by elasticity and a situation similar to the
elastic limit explored in section 3.1 is approached. Note that in order to ensure that the cycles
remained closed for all �, _max had to be increased up to 106 at � = 100, which highlights how
maintaining closed cycles can be a rather subtle issue.

These results suggest that as � is increased, a cross-over is observed from an f -dominated
regime to a � -dominated regime. This is further illustrated by �gure 3.17, which shows A� for
�xed � over a large range of �. It is not obvious that changing � should be the same as changing
� , as the former a�ects the uidity dynamics while the latter does not. Appendix A.2 discusses
the mathematical details, but it can be shown that the visco-elastic e�ects induce an e�ective
� -dependent time-scale for the uidity dynamics given by (�=�3)�1=2. Meanwhile, the Maxwell
equation is described by a time-scale �=� . This shows that for waiting times much shorter than
� , the uidity is a fast variable, and the dynamics are dominated by visco-elastic e�ects. In
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Figure 3.12: Hysteresis cycle with � = 50, � = 1 and �t = 100.
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Figure 3.13: Hysteresis cycle with � = 50, � = 0 and �t = 100.
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Figure 3.18: Hysteresis area A� as a func-
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this regime it is shown that A� � ��1. Because the time-scales describing the stress and uidity
evolution scale di�erently with � and � , two cross-over points exist: one where the uidity becomes
slow, �f , and one where the stress becomes fast, ��. As a result, an intermediate cross-over regime
exists which shows up in �gure 3.17 as a plateau in A�. Depending on the details of the cycles,
it may occur that �f < ��. In this case, the appearance of hysteresis in the uidity dynamics
precedes the vanishing of the visco-elastic hysteresis. This may result in a temporary increase of
A� with � as both types of hysteresis exist simultaneously. This is demonstrated in �gure 3.18,
where _min has been reduced to 10�9. In this case, the uidity hysteresis becomes su�ciently
strong to induce an increasing branch in A�.

3.3.2 Experimental Comparison

The conclusions of the previous section can now be revisited in light of these new results. One of
the main signatures of the inelastic limit was that a stress drop would occur at small shear. With
the inclusion of � , this e�ect is not obtained when � > �. Speci�cally, when � = 1, its inclusion
led to a second, negative hysteresis loop at small shear. In addition, the sustained relaxation of f ,
in combination with the delayed response of �, produced a stress response that remained relatively
stable at small shear. This last observation is consistent with the results shown in �gure 2.4a. No
stress-drop is observed at low shear and a small, negative hysteresis loop occurs before the main
positive hysteresis starts. This e�ect disappears as the waiting time is increased, which would
indicate that the visco-elastic time-scale is relatively short.

As for the behaviour of A�, several new e�ects were observed. At small �, the elastic e�ects
were shown to become dominant while the uidity simply followed its steady state solution f = m2.
As a result, the short-time behaviour in the presence of visco-elastic e�ects were identical to that
of section 3.1. This shows how the small-� scaling of A� that was proposed in section 3.2 is not
observed for materials that posses a non-negligible degree of elasticity. As � becomes larger, the
system may enter a cross-over regime, where in addition to the elastic hysteresis, the slower uidity
dynamics can lead to an additional overshoot. It was shown that this cross-over regime may lead
to non-monotonic behaviour of A� as the uidity-hysteresis becomes increasingly important. This
suggests that a su�cient condition for a peak in A� to occur was the presence of two types of
hysteresis. More generally, the presence of two time-scales, � and f , each with their own hysteretic
e�ect, implied that an increasing regime was possible.

The fact that a second time-scale is a su�cient condition for an increasing hysteresis area has
previously been suggested in a numerical study by Puisto et al. [68]. However, as mentioned,
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the authors did not adjust _max to ensure that hysteresis cycles remained closed. This led to
them observing a peak even without visco-elastic e�ects, exactly analogous to what was found in
�gure 3.10. When visco-elastic e�ects were then included, the authors observed a second peak at
intermediate �t. Meanwhile, in [71] the authors did ensure closed cycles were obtained but failed to
observe an increasing branch when including � . The fact that the increasing branch is associated
with partial "negative" hysteresis suggests that this is not the same mechanism responsible for
the peak in Laponite, as there, the cycles remained strictly positive (see �gure 2.7). Nevertheless,
this observation does open up the more general possibility of peaked cycles whenever two or more
time-dependent e�ects are at play. This will be revisited in chapter 5.

3.4 Wall Slip

The last feature that will be explored before moving on to the in-homogeneous model is the
inuence of wall-slip. As discussed in section 3.2, the stress cycles in �gure 2.1 show a similar
inection point at low shear as observed in the numerical results, especially for � = 1. However,
there are two things that suggest that the experimental inection point is di�erent from that
observed in �gure 3.4. The �rst is that the shear at which the inection point occurs in the
experiments does not depend on �t. Meanwhile, the model predicts that this point shows a
distinct power-law dependence on �t via the scale transformations in equation 3.6. More notably,
the experiments show that the inection point was accompanied by the onset of total wall slip,
i.e. the velocity pro�le at small shear is a plug ow while the shear is con�ned to two slip layers
at the walls. Because the model is homogeneous and does not account for any shear banding,
it is to determine if the slip is in any way essential to the hysteresis in the experiments or if
it is simply a signature of a bulk e�ect. The fact that experiments with rough boundaries show
hysteresis suggests that slip may not be necessary for hysteresis in Carbopol, but additional velocity
measurements that prove that slip is eliminated are required to demonstrate this. Nevertheless, if
it is indeed the case that slip is inessential for hysteresis to occur, it is still interesting to consider
if the slip can be accounted for within the uidity framework in order to study how its presence
a�ects the previous conclusions. This section will propose a toy model to tackle this problem.

3.4.1 Background

Wall slip in yield stress uids is a well-known, yet poorly-understood issue that often complicates
analysis of experimental results. One of the reasons wall-slip is such a di�cult phenomenon to
account for is that its e�ects are strongly entangled with bulk e�ects. Distinguishing the inuence
of wall-slip from that of cooperative e�ects can be challenging [63], as both e�ects act over similar
microscopic length-scales that are di�cult to directly assess experimentally. Nevertheless, in the
following a sharp distinction between these e�ects will be maintained. This means that the bulk of
the material is described by the uidity model used thus far and the e�ect of slip will be coupled
to this model.

The model is formulated as follows. First, it is assumed that the rheology of the bulk is
described by the uidity and Maxwell equations that have been discussed so far. Next, the bulk
rheology is coupled to two separate slip layers located at the walls that have their own separate
rheology. These slip-layers are modeled as two viscous dash-pots placed in series to the bulk of
the material (see �gure 3.19). In [48], the authors study the steady state ow-curve of a Carbopol
gel that exhibits to wall slip. The ow-curve they obtained is strikingly similar to the down-sweep
reported in �gure 2.1. The authors point out that the ow-curve obtained after total wall-slip has
occurred can be well described by a secondary HB-equation:

�slip = �y;res +Aslip _1=2
slip (3.15)

Indeed, this is in excellent agreement with the experimental results on hysteresis cycles, as is
illustrated by �gure 3.11. The residual yield stress �y;res is typically much smaller than the
bulk yield stress and for our purposes it is simply taken equal to zero. The authors suggest an
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Figure 3.19: Schematic representation of the model including wall slip.

interpretation of this non-linear (�slip � _1=2) dissipation behaviour in terms of a lubrication
theory of the ow between the microgel particles and the wall. Although strictly this relationship
has only been con�rmed in stationary systems, it will be assumed to hold in general. The rheology
of the viscous dash-pot used to model slip is assumed to be given by:

�slip = � _1=2 (3.16)

Where � is a parameter characterizing the e�ective viscosity of the slip layer. Using the fact that
the stress in all three components of the visco-elastic model should be equal and their respective
shear rates should add to the imposed shear rate, a di�erential equation analogous to equation
2.30 can be formulated that includes the rheology of the slip layers (see appendix B for details).

@t� =
1
�
�

_ � �hfi � (�=�)2� (3.17)

The steady state ow-curve associated with this equation is shown in �gure 3.20. It accurately
captures the inection point without relying on any transient e�ects. This is di�erent from the
transient inection point that shifts to lower shear as the waiting time is increased. In general,
the slip point is related to � via _slip � ��2. Note that a secondary wall-slip regime exists for
systems below the jamming point [65]. This regime is characterized by a slip-stress that obeys
�slip � _ rather than equation 3.16. In this case, the mechanism responsible for the drag in the
slip layer is simply the stokes ow around the particles near the wall. This secondary regime
can easily be included in this framework by adding additional components to the Maxwell model.
However, because this investigation is concerned with jammed systems, only the non-linear regime
is considered here.

3.4.2 Numerical Results

The slip-parameter is �xed at � = 10 to produce a slip-point _slip equal to 10�2, comparable to
experimental observations. The results for � = 0, � = 1, �t = 1000 and n = 30 are shown in
�gure 3.21. Because of the long waiting time, the uidity is able to approach steady state near
the critical shear _slip. Below this point, the steady state stress lies below the yield stress and the
uidity will relax to zero. By the time the cycle reaches the inection point on the up-sweep, the
uidity will be very small compared to the down-sweep and an overshoot occurs. Re-uidization
appears to occur very abruptly. In reality, because of the low rate of plastic activity in the bulk
(due to the low uidity), the stress measurements continue to probe the slip rheology until the
sample has already become signi�cantly uidized. Furthermore, since uidization occurs super-
exponentially (via +mf2 in equation 2.25) the �nal stages of uidization are very rapid, and this
results in a dramatic stress drop after the overshoot. As is shown in �gure 3.22, the results are
similar when � = 1, except that the waiting time should be much larger in order to observe the
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Figure 3.20: Steady state ow curve for the model including slip with � = 10.

same e�ect because of the additional time-scale _. Furthermore, the overshoot is smaller because
the uidity di�erence between the up-and-down sweep is less pronounced. This is reected in the
fact that A�, shown in �gure 3.24, is about 10 times smaller than when � = 0 (see �gure 3.23).
Furthermore, the wall-slip caused A� to become logarithmically dependent on �t for both values
of �, compared to the power-law that was observed before.

Qualitatively speaking, the reason for this behaviour is that changing � both decreases the
uidity at the start of the overshoot, but also increases the rate at which the system re-uidizes
at this point. In the particular case of wall slip in the homogeneous model, these two competing
e�ects balance for both � = 0 as well as � = 1. Compared to the phenomenology described
in section 3.2, the presence of the slip point means that the increase in � does not decrease the
relaxation phase as it did before. Instead, it pins both the start and end of this phase to the point
_slip. The only e�ect of increasing � is then to extend the temporal duration of this phase, leading
to a deeper relaxation rather than a weaker one as it did without slip. During the overshoot,
the system still spends more time approaching steady state per point, decreasing the size of the
overshoot.

3.4.3 Experimental Comparison

The slip model introduced above appears to e�ectively account for the role of wall slip in the
hysteresis phenomenon. As seen in the previous sections, wall slip is not strictly necessary for
hysteresis to occur. However, its presence has the tendency to obscure rheological signatures that
could otherwise be used for model validation and replaces them with new ones. By including
wall-slip, even in a rather simpli�ed setting, these new signatures could be studied. Below the slip
point, the system will start probing the rheology of the slip layer while the bulk of the material
is allowed to relax freely, provided that the waiting time is su�ciently long. The fact that the
stress-curves start to coincide below _slip for large waiting times is accurately captured by the
model, and can be attributed to the time it takes for the uidity to relax below the slip point.

The homogeneous model predicts that a balance between the increasing relaxation of f and
the increasing time spent on the up-sweep leads to a hysteresis area that remains roughly constant
for very long waiting times. As a result, varying �t reveals relatively little information about
the system. If this prediction is veri�ed experimentally, it may be more interesting to consider,
for example, the _min dependence of A� instead. Alternatively, the onset of wall slip may be
circumvented by using very fast cycles, although in this limit one is likely to start probing the
visco-elastic hysteresis rather than that of the uidity. As was already concluded, the homogeneous
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Figure 3.21: Hysteresis cycle using the in-homogeneous model in the inelastic limit. � = 0, � = 10,
� = 1 and �t = 103.
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Figure 3.22: Hysteresis cycle using the in-homogeneous model in the inelastic limit. � = 1, � = 10,
� = 1 and �t = 105.

38 Numerical Modeling of Rheological Hysteresis in Yield Stress Fluids



CHAPTER 3. HOMOGENEOUS MODEL

 1

 10

 100

103 104

A
s

ndt

n =  60

Figure 3.23: Hysteresis amplitude A� as a
function of n�t := � using the homogeneous
model in the inelastic limit including slip.
� = 10 and � = 0.

 0.1

 1

107

A
s

ndt

n =  120

Figure 3.24: Hysteresis amplitude A� as a
function of n�t := � using the homogeneous
model in the inelastic limit including slip.
� = 10 and � = 1.

predictions for the up-sweep can be expected to be inaccurate because of its un-physical uidization
mechanism. This is clearly reected in the exaggerated stress overshoot and sudden re-uidization
seen in �gure 3.23. The discussion of the in-homogeneous model in the next chapter will make
more substantial predictions about the consequences of slip.

3.5 Conclusion

The results of the homogeneous model have yielded considerable insight into the behaviour of the
uidity model and the way hysteresis emerges from it. The basic model contains two time-scales
that can each contribute to a hysteresis e�ect, namely visco-elasticity and the uidity. Based on
the rheological signatures present in the experiments, it was concluded that the time-dependence
of the uidity �eld was responsible for the hysteresis e�ect. In this case, the uidity-dependent
mobility provided the memory e�ect necessary to produce the distinct rate-dependent hysteresis
observed in experiment. The associated phenomenology could be understood in terms of an over-
relaxed uidity that resulted in an overshoot on the up-sweep. Nevertheless, visco-elastic e�ects
may play an important role in producing some of the �ner features observed in experiment. At
short waiting times, they may obscure the dynamics of the uidity �eld, erasing some rheological
signatures while simultaneously introducing new ones (e.g. double hysteresis loops). Similarly,
it was shown that wall slip is a key factor in determining both the appearance and quantitative
behaviour of the cycles. While the homogeneous assumption places strict limits on the accuracy
of the results, the presence of hysteresis as well as some of its basic properties could already be
determined at this level of description. Within these limits, the phenomenological picture of the
uidity model was shown to be consistent with current experimental observations.

To further determine the accuracy of the model, a complete description of the uidization
behaviour is necessary. The experimental results show that shear banding and spatial e�ects may
play a key role here. As a result the detailed predictions of the homogeneous model are not
yet suitable for direct experimental comparison. Nevertheless, these results provide a point of
comparison for when spatial e�ects are considered and already contain a lot of information about
the dynamics of the model. The observable A� provided a convenient way of expressing this
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information. As a general result, it was derived that for simple yield stress uids, the hysteresis
produced by the uidity equation is strictly decreasing with �. A more thorough analysis provided
detailed predictions for the scaling relations describing this decrease.

In the large-� limit, the choice � = 1 resulted in a divergence of the relaxation time at small
shear. This meant that the hysteresis area decreased only weakly with �. However, when � was
su�ciently large, the �nite value of _min began to introduce a cut-o� for the over-relaxation of
the uidity, speeding up the decreasing behaviour of A�. This result highlights the potential role
of the observation window ( _min; _max) in determining the behaviour of the cycles, something not
addressed in previous studies. The results for � = 0 further demonstrate this e�ect. In this case,
it was shown that lim _!0 f = _1=3, marking a dramatic shift in relaxational behaviour of the
model. A direct consequence of this was that the cut-o� e�ect of _min was present for all � and for
any _min. Accordingly, the asymptotic behaviour of A� with � was found to be a much stronger
power-law. Furthermore, it revealed a similar power-law dependence of A� on _min.

Meanwhile, the small-� limit was shown to become obscured by visco-elastic e�ects in any
realistic material. The resulting hysteresis was characterized by a hysteresis area that exhibited a
power-law in � with exponent � = �1. While both of these limiting behaviours are decreasing with
�, it was also shown that when both visco-elastic e�ects and uidity transients become important,
A� may exhibit an increasing branch during a cross-over regime. Notably, the behaviour of A� in
this regime depended on the value of _min.

Finally, when wall slip was included it was shown that the large-� asymptotics for both choices
of � converge to a very weak � dependence of A�. In this case, the _min dependence of A�
became the only dependence that could be probed by the experimental protocol. While this
prediction is expected to be sensitive to the potentially incorrect uidization mechanism of the
homogeneous model, it demonstrates how the presence of wall slip may a�ect the scaling behaviour
of macroscopic observables.

3.6 Discussion

While the homogeneous model provided a simpli�ed setting in which the dynamics of the uidity
model could be explored, it is also clear that this approach has its limitations. The results of
the previous section were presented with the understanding that spatial e�ects may modify the
details of the conclusions. Obvious discrepancies such as the exaggerated overshoots and very
sudden yielding behaviour can be attributed to the homogeneity constraint and are expected to
be alleviated when the spatially resolved model is discussed. Likewise, the quantitative results are
expected to change when spatial e�ects are taken into account. Nevertheless, it is not expected
that the basic phenomenology is a�ected by the homogeneous assumption, and discrepancies in
this respect should therefore be addressed here.

The main way in which the experimental consistency of the results has been checked is via
rheological signatures of the cycles. One such signature that consistently showed up in both
the current uidity model as well as similar �-models [71] is the inection point and stress drop
observed at small shear. This is a signature of the relaxation phase of the cycle and it is essential
for the appearance of hysteresis. Its absence in experimental results was explained either by visco-
elastic e�ects or the onset of wall slip. However, this does not mean that these are the only possible
explanations, nor does it necessarily imply that they are correct. Further investigations into the
relaxational behaviour are needed to ensure that the framework of a slowly relaxing "uidity"
is consistent with experiment. Within the context of rheological hysteresis, future experimental
studies may attempt to probe the dependence of the results on the observation window ( _min; _max)
or even consider the small-� visco-elastic response to gain further insight into the experimental
phenomenology. If the results do not depend on _min, this could indicate a � = 1 type dynamics.
Alternatively, a more general model where f = 0 is non-singular may explain this as a complete
relaxation of f prior to _min. This highlights how determining the correct mechanisms can be a
subtle issue. To gain more information, a combined experimental-numerical study may consider
the hysteresis phenomenon under stress-controlled operation, something not considered in this
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thesis. A more focused investigation of the relaxational behaviour could instead attempt to use
the uidity model to describe aging in Carbopol microgels [16], or creep e�ects below the yield
stress [39] as a way of disentangling these features from the complexity of hystersis cycles.

Apart from the possible discrepancies associated with the uidity model itself, the auxiliary
models used to describe visco-elasticity and wall slip may also break down in extreme situations.
For example, additional time-scales associated with momentum di�usion may become important
for fast cycles. More generally, at the level of the Maxwell description it may turn out that
a single relaxational mode is insu�cient for describing the linear response of the material. A
future investigation may focus on the linear rheology of the uidity model while drawing upon
the extensive experimental literature [16] to validate the results. Likewise, the simpli�ed wall-slip
model assumed that the rheology of the slip-layer developed over much shorter time-scales than
visco-elasticity and the uidity. Transient e�ects in the development of the slip-rheology may lead
to more complex behaviour, but these e�ects are best addressed in a dedicated study of the physics
of wall slip.
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Chapter 4

Inhomogeneous Model

The previous chapter already explored much of the phenomenology associated with rheological
hysteresis in simple yield stress uids. However, as discussed, spatial e�ects are essential for an
accurate description of the complete cycle. In order to make meaningful predictions, these e�ects
should be accounted for. This chapter will perform an analysis of the in-homogeneous model to
investigate how our previous conclusions are modi�ed by the introduction of spatial e�ects, and
to study what new features may emerge. Starting from an inelastic version of the model, the
phenomenology of shear banding and its role in hysteresis cycles is discussed. Afterwards, the
extensions previously explored at the homogeneous level will be applied to the in-homogeneous
model.

4.1 Inelastic Limit

To study the e�ect of spatial heterogeneities and shear banding on the hysteresis cycles, a value
of � should be chosen. As mentioned, previous investigations [5] have shown that � is typically on
the order of 2-3 particle diameters, representing the size of a region involved in a plastic event.
Because the system size is used to de�ne the unit of length, the choice of � is a statement about
the relative size of the microscopic constituents compared to the rheometer gap width. Assuming
Carbopol particles are about 25 �m across and the gap size is 1 mm as in the experiments, the
value of � is found to be approximately equal to 0:04. � will be kept �xed at this value throughout
the remainder of this thesis. An investigation into the inuence of � falls outside the scope of this
thesis and is left for future work.

As discussed in section 2.2.2, two sets of boundary conditions will be considered here. The �rst
is the Dirichlet boundary condition fw = m2, imposed at the right boundary in order to promote
shear banding there. Afterwards, the system is studied using Neumann boundary conditions,
where shear banding is induced by stress heterogeneities instead. In both cases, the only stable
state of the system is the homogeneous HB-solution f(x) = m2. As a result, the elastic limit,
where the uidity dynamics are assumed to be fast, is completely una�ected by the inclusion of
spatial e�ects. Therefore, this chapter will start by discussing the in-homogeneous model in the
inelastic limit.

4.1.1 Numerical results I: Dirichlet

Figure 4.1 shows a hysteresis cycle with � = 0, �t = 10, n = 30 and � = 1. Little is changed
compared to the homogeneous model in terms of stress signatures. This suggests that shear
bands are not very important at this stage. This is con�rmed by the insets, which compare the
normalized velocity pro�les on the up- and down-sweeps at di�erent points along the cycle. The
velocity pro�les do not show true shear banding but rather a slight bowing of the pro�les is
observed after the stress crosses the yield stress. The uidization process is further illustrated by
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the uidity pro�les shown in �gure 4.3. The �gure shows that the uidity, and hence the shear,
in the "arrested" band is still relatively large. This explains the weak shear banding observed in
�gures 4.1. After a period of transient shear band growth, the �nal uidization occurs when the
arrested band uidizes homogeneously.

Figure 4.2 shows how this picture evolves when �t = 1000. One qualitative di�erence is that
the stress overshoot on the up-sweep is suppressed compared to the homogeneous results in �gure
3.4. The shear band that forms when fw > hfi causes a sharp increase in uidity near the wall.
The increase in plastic activity relaxes the stress that would have otherwise built up to a larger
overshoot. In addition, the overshoot takes slightly longer to relax than it did in the homogeneous
model. The same stress release that decreased the overshoot amplitude also stabilizes the bulk,
which in turn takes longer to uidize. Consequently, the hysteretic part of the cycle is slightly
wider. Despite these di�erences, most of the information in terms of the stress response was
already present at the homogeneous level, which is reected in the fact that A� shows the same
weak �-dependence as before (see �gure 4.5). In addition, the spatial information provided by
the in-homogeneous model can be used to calculate the second hysteretic observable, Av. Despite
the lack of distinct shear banding, Av still quanti�es the degree of bowing of the pro�les. This is
shown in �gure 4.6, where Av is plotted as a function of �. It shows a more distinct scaling with
� than A�. In particular, an apparent power-law dependence Av � �� with exponent � � �0:3 is
observed. The origin of this exponent will be discussed shortly, but before doing so, these results
are �rst contrasted with those for � = 0.

A typical hysteresis cycle for � = 0 is shown in �gure 4.7, where �t = 10. As was clear from
the homogeneous model, the uidity is able to relax much further for � = 0 than for � = 1. At
the homogeneous level, this resulted in a much larger overshoot on the up-sweep. When spatial
e�ects are included, the large overshoot is replaced by an extensive period of shear banding. The
phenomenology is qualitatively the same as for � = 1. As before, the onset of shear banding on
the up-sweep decreases the stress overshoot via a plastic release of stress. Furthermore, this stress
release again stabilizes the arrested band. Because the uidity in the arrested band is much lower
than for � = 1 it will not uidize homogeneously. Instead, uidization occurs entirely due to the
unstable transient shear band growing to �ll the gap. Again, this is illustrated by the uidity
pro�les shown in �gure 4.4. Finally, �gures 4.8 and 4.9 show how the observables A� and Av vary
with �t. Both are well-described by power-law �ts of the data.

4.1.2 Theoretical Analysis I: Dirichlet

To explore the origin of some of the observed scaling laws, and to make predictions for their
asymptotic forms, the analysis of section 3.2.2 will be extended to account for the e�ect of shear
banding. The details of this analysis are provided in appendix A.3 and again, only the main results
are presented here.

The �rst thing to keep in mind is that the non-local term does not a�ect any of the results
of the previous section regarding the down-sweep. Its presence only changes the way the system
uidizes after fw = m2(�) > hfi, thereby changing the overshoot dynamics of the cycle. When
the uidity �eld becomes in-homogeneous, it is no longer true that � = _=hfi = _=f , as f is not
necessarily equal to its average value. Instead, it is assumed that the uidity is localized in a band
of size lb with a magnitude that is proportional to m2. Figure 4.4 shows that this assumption
is valid when � = 0 and in appendix A.3 it is shown that this is true in general for large �.
Therefore, the case � � 1 will be considered �rst. It can be shown that under these assumptions,
the system is described by the following equation of motion:

_@ _f = _��
�
f@2

xf + ( _=lb)1=2f2 � f5=2
�

(4.1)
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Figure 4.1: Hysteresis cycle using the in-homogeneous model with Dirichlet BCs in the
inelastic limit. � = 1 and �t = 10. The insets show velocity pro�les (normalized by the
shear) on the up and down-sweeps at the corresponding markers in the cycle.
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Figure 4.2: Hysteresis cycle using the in-homogeneous model with Dirichlet BCs in the
inelastic limit. � = 1 and �t = 1000. The insets show velocity pro�les (normalized by
the shear) on the up and down-sweeps at the corresponding markers in the cycle.
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Figure 4.3: Fluidity pro�les during the tran-
sient uidization process on the up-sweep of
�gure 4.1.
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Figure 4.4: Fluidity pro�les during the tran-
sient uidization process on the up-sweep of
�gure 4.7.
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Figure 4.7: Hysteresis cycle using the in-homogeneous model with Dirichlet BCs in the inelastic
limit. � = 0 and �t = 10. The insets show velocity pro�les (normalized by the shear) on the up
and down-sweeps at the corresponding markers in the cycle.
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model with Dirichlet BCs, � = 0 and _ 2
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The scale transformation that leaves equation 4.1 invariant is given by:

� ! ��

_ ! ��3=(6+3�) _

f ! ��4=(6+3�)f

x! �1=(6+3�)x

(4.2)

� is then eliminated from equation 4.1 by letting � = ��1.

_@ _f = _�
�
f@2

xf + ( _=lb)1=2f2 � f5=2
�

(4.3)

The scaling behaviour of the shear band is determined by the non-local term in equation 4.3.
The role of the bulk terms is to maintain the condition that the band uidity is proportional
to m2. Based on this it can be shown that the shear banding solution exhibits a spatial scaling
x � _(1+�)=3. Combining these results, it is found that the shear at which the band has �lled the
gap (denoted by _f ) scales as:

_f � ��1=(1+�) (4.4)

Av can be determined directly from equation 4.4. If it is assumed that shear banding occurs via
some universal pro�le _~v(x), it implies that

R
dxj�vj � _. Furthermore, if the shear banding is

con�ned to a region [ _s; _f ], we can write:

Av =
Z _max

_min

d ln _
Z
dxj�vj �

Z _f

_s

_d ln _ =
Z _f

_s

d _ � _f � ��1=(1+�) (4.5)

Where the second-to-last step used the fact that typically _f � _s. The appendix also shows that
A� exhibits a logarithmic decay for both values of �. The onset of shear banding keeps the stress
close to the yield stress, which then becomes the dominant contribution to ��. As a result, A�
does not show any distinct power-law behaviour in �.

The previous results are valid for large �. For small �, uidization does not occur via shear
banding, but rather via bulk uidization, much like it did for the homogeneous case. Therefore,
the same scaling relations are obtained as in the homogeneous model. The results of this analysis
are summarized below:

A� �

8
>>><

>>>:

�0 � = 0 and _min � ��1 � 1 (4.6a)
�0 � = 1 and _min � ��1 � 1 (4.6b)
��2=3 � = 0 and 1� _min � ��1 (4.6c)
��2=7 � = 1 and 1� _min � ��1 (4.6d)

Av �

8
>>><

>>>:

��1 � = 0 and _min � ��1 � 1 (4.7a)
��1=2 � = 1 and _min � ��1 � 1 (4.7b)
��4=3 � = 0 and 1� _min � ��1 (4.7c)
��4=7 � = 1 and 1� _min � ��1 (4.7d)

These predictions can again be used to interpret the numerical results shown in �gures 4.5, 4.6,
4.8 and 4.9. For � = 1, the logarithmic decrease of A� matches the asymptotic prediction.
Meanwhile, Av shows a scaling that is weaker than either of the asymptotic results. The reason
for this is somewhat subtle. As � is increased, the scaling behavior of _f shows a crossover from
�4=7 to �1=2, which suggests an exponent in-between these limiting values. In addition to this
crossover, the uidization mechanism also changes from homogeneous bulk uidization (shown for
example in �gure 4.3) to a growing shear band (see �gure 4.4). As it does so, Av increases via an
increase in �v that is separate from its proportionality to _. This crossover implies a break-down
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Figure 4.10: Velocity di�erence between up-
and down-sweep normalized by the shear for
various � when � = 1.
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Figure 4.11: Velocity di�erence between up-
and down-sweep normalized by the shear for
various � when � = 0.

of the scaling Av � _f and as a result, an intermediate scaling with exponent weaker than either
asymptotic result is observed. This is demonstrated in �gure 4.10, which shows �v normalized by
_ for various �. The peak grows for increasing �, indicating that the shear banding e�ect grows
stronger as � is increased. This is to be contrasted with appendix �gure A.18, where it is shown
that for fully developed shear banding, the only e�ect of increasing � is to shift this peak.

For � = 0, both A� and Av show exponents that correspond to the limit � � 1. This is
unexpected, because � assumes intermediate values, closer to the � � 1 limit than the � � 1
limit. As a result, one would expect an exponent in-between these two limiting values. However,
the relatively large value of _min introduces a cut-o� for the relaxation phase of the cycle and the
amplitude ends up decreasing faster than predicted by the asymptotic results. This is reected
in the plots of _�1�v( _) shown in �gure �gure 4.11. The �gure shows how the extent of shear
banding decreases faster than _f , which is opposite to what is observed for � = 1. A similar
e�ect was observed in the homogeneous model, where this _min cut-o� also introduced a scaling
for A� faster than the asymptotic prediction (see section 3.2.2). This further highlights the need
for a su�ciently large observation window in order to observe the asymptotic results described
above. Appendix �gures A.20-A.23 show how the asymptotic predictions are valid, provided the
necessary separation of scales is respected.

4.1.3 Experimental Comparison I: Dirichlet

Lastly, the physical interpretation of these results is discussed. As mentioned, the details of the
down-sweep are una�ected by the presence (or absence) of spatial e�ects. The discussion of these
e�ects presented in chapter 3 remains valid, and this will therefore not be repeated here. Instead,
this discussion will focus on the rheological signatures that show up on the up-sweep. In this
respect, a qualitative di�erence is observed between � = 0 and � = 1. The fact that shear banding
was relatively weak for � = 1 meant that the results resembled those of the homogeneous model,
while the faster relaxation of the bulk uidity for � = 0 led to stronger shear banding and wide
hysteresis cycles. This also reduced the unphysical stress overshoots observed in the homogeneous
model. Nevertheless, the same low-shear discrepancies as observed in the homogeneous model also
imply that neither of these results agree particularly well with experiment. This will be addressed
when visco-elasticity and wall slip are discussed.

In addition to the rheological signatures, the spatially resolved model also provides information
about the shear banding behaviour of the material. The strong shear banding observed in �gure
2.1 appears, naively, to be best described by the results for � = 0. However, the asymptotic
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analysis in appendix A.3 revealed that shear banding also becomes dominant for � = 1 when �
is su�ciently large. In fact, this transition was already visible in �gure 4.10. This means that
the distinction between � = 0 and � = 1 in terms of shear banding amplitude will eventually
disappear, so that both values of � are still potentially consistent with experimental results.

Another qualitative feature of the experimental shear banding in �gure 2.1 is that it occurs after
the peak of the stress overshoot. By contrast, the model results show that shear banding starts
before the stress reaches its peak. This discrepancy can be rationalized in one of two ways. The
�rst is that the numerical results are in fact correct. In this case, the absence of shear banding prior
to the peak of the overshoot can be attributed to the �nite spatial resolution of the experimental
velocity measurements. In particular, the spatial resolution of 40 �m [17] implies that shear bands
smaller than about 1/25th of the system size do not show up in the measurements. Alternatively,
it could be argued that the Dirichlet boundary condition overestimates the role of the boundary in
the uidization of the sample. If this is indeed the case, the Neumann boundary condition would
be more suitable. This will be investigated in the next section.

As the up-sweep dynamics are now at least plausible, i.e. they include spatial e�ects, the
behaviour of the observables A� and Av can be compared to experiment. The �rst notable result
was that the presence of shear banding reduced the � = 0 power-law asymptotics of A� to a
logarithmic dependence, in agreement with experiment. Furthermore, it provides a new potential
interpretation of this scaling as being a direct consequence of the shear bands that limit the stress
overshoot to values close to the yield stress. However, the homogeneous results already showed
that wall slip may change the scaling behaviour of A�. Conclusions about experimental agreement
with [17] are therefore reserved until wall slip is considered. On the other hand, it was shown that
the small-� limit was una�ected by the presence of shear banding. However, as discussed in
section 3.3, this limiting behaviour is likely to be obscured by visco-elastic e�ects. Furthermore,
it is doubtful that the uidity theory will hold when _ !1. Therefore, these results will not be
investigated further.

Meanwhile, the newly available observable Av showed distinct power-law behaviour regardless
of the choice of �. This is related to the fact that its scaling behaviour followed directly from
the "horizontal" scaling of the hysteretic window. Interestingly, the behaviour of this observable
in the large �-limit was determined entirely by the shear band growth and not by the relaxation
of the uidity �eld, i.e. the relaxation phase of the cycle is irrelevant to the scaling of Av. The
reason for this is that the scaling of the shear band does not depend on the initial state of the
uidity. Mathematically, this quantity dropped out of the analysis when it was assumed that
hfi � lbm2, i.e. the uidity in the bulk is neglected. This suggests that the scaling behaviour
of Av is particularly robust, which makes it an excellent candidate to probe the validity of the
large-� asymptotics. The experimental data is shown in �gure 2.3. Divoux et al. [17] originally
provided a logarithmic �t of the data, however, our predictions suggest a power-law might be more
appropriate. A power-law �t Av � �� returns an exponent � equal to roughly �1=3. This does
not match the large-� asymptotic prediction � = �1=(1 + �) exactly, but it is relatively close to
the �1=2 prediction for � = 1.

4.1.4 Numerical Results II: Neumann

Next, the results for Neumann boundary conditions are discussed in the inelastic limit. Figure 4.12
shows results with Neumann boundary conditions, analogous to those in �gure 4.7 with Dirichlet
boundary conditions, i.e. � = 0, �t = 10, n = 30 and � = 0. In this case, shear banding occurs
because the part of the system with high stress uidizes faster than that at low stress. Despite
the appearance of shear banding, the way the high stress region uidizes is still the same as in the
homogeneous model, i.e. via the +mf2 term in the equation of motion. As a result, the stress
response is very similar to that shown in �gure 3.7. There are however, two qualitative di�erences
compared to the homogeneous results. The �rst is that the stress increase near the wall has the
e�ect of speeding up uidization, slightly decreasing the peak stress on the overshoot. The second
is that, as it did in the Dirichlet model, the onset of shear banding stabilized the arrested bulk,
resulting in a long hysteretic tail on the up-sweep. The system returns to steady state once the
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Figure 4.12: Hysteresis cycle using the in-homogeneous model with Neumann BCs in the inelastic
limit. � = 0 and �t = 10. The insets show velocity pro�les (normalized by the shear) on the up
and down-sweeps at the corresponding markers in the cycle.

shear band has grown to uidize the entire system.
The insets in �gure 4.12 show how the heterogeneous stress �eld leads to a heterogeneous

shear �eld, even in steady state. Furthermore, it is found that despite the initial uidization
taking place via the homogeneous mechanism, the �nal uidization of the system occurs due to
the growth of the unstable shear band. Figure 4.13 shows this uidization scenario in terms of
several uidity pro�les taken on the up-sweep. The process is not too di�erent from that observed
in the Dirichlet model. The uidity near the wall remains roughly equal to m2, even without
the Dirichlet BC present to enforce this. This produces a pseudo-boundary condition for the
non-uidized part of the system which leads to the same uidization behaviour once the shear
band has developed. The reason for this behaviour is that the uidity-dependent mobility implies
that uidized regions evolve quickly and will therefore remain close to the steady state solution
f = m2. This is illustrated by the open markers in �gure 4.13, which show the value of m2(�) on
both ends of the system. Notice also that near the yield stress, a small, 10% stress gradient leads
to a much larger di�erence in steady state uidity, which explains the strong shear banding.

The observable A� shown in �gure 4.15 further highlights the similarities with the homogeneous
model. It shows essentially the same behaviour as in �gure 3.6, with a scaling exponent � slightly
larger than the asymptotic result �2=3. On the other hand, the mechanism for shear band growth
is identical to that of the Dirichlet model, and as a result, the observable Av obeys the same
scaling behaviour as predicted by equation 4.7a.

Finally, results are also shown for � = 1 in �gure 4.17, with �t = 50 as an illustrative
example. Because of the slow relaxation, the uidity remains large throughout the cycle. Once
the overshoot starts, both the low- and high-stress regions uidize at roughly the same time, which
is demonstrated by the uidity pro�les in �gure 4.14. The red uidity pro�le taken at _ = 10�1

corresponds to bowing pro�le indicated by the red circle in �gure 4.17. This further demonstrates
the small e�ect of the slight delay in uidization. The results are therefore virtually identical
to those of the homogeneous model. The scaling behaviour of the observables A�=v is shown in
�gures 4.18 and 4.19. As for � = 0, the behaviour of A� is completely una�ected by the spatial
e�ects, and shows a logarithmic decrease with increasing �. Meanwhile, the observable Av shows
a power-law, similar to that in �gure 4.6. Because in this case the role of shear band growth is
negligible, a theoretical scaling prediction for Av is given by Av � _f � ��1=2, where the last
relationship is obtained from the large-� scaling of _ in the homogeneous model (see equation 3.6).
Notice that this is the same scaling behaviour as expected when uidization does occur via shear
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Figure 4.13: Fluidity pro�les during the
transient uidization process on the up-
sweep of �gure 4.12.
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transient uidization process on the up-
sweep of �gure 4.17.
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Figure 4.17: Hysteresis cycle using the in-homogeneous model with Neumann BCs in the inelastic
limit. � = 1 and �t = 10. The insets show velocity pro�les (normalized by the shear) on the up
and down-sweeps at the corresponding markers in the cycle.

banding (see equation 4.7b). The deviation from these predictions can be explained in precisely
the same way as it was for the Dirichlet BC: as � is increased towards the large-� limit, the extent
of shear banding increases which leads to a similarly increasing contribution to Av. Away from
this cross-over regime Av will exhibit a ��1=2 scaling.

For completeness, the asymptotic scaling predictions for the Neumann case are summarized
below. All results for A� are taken directly from the homogeneous model, while all results for Av
are taken from section 4.1.2.

A� �

8
>>><

>>>:

��2=3 � = 0 and _min � ��1 � 1 (4.8a)
�0 � = 1 and _min � ��1 � 1 (4.8b)
��2=3 � = 0 and 1� _min � ��1 (4.8c)
��2=7 � = 1 and 1� _min � ��1 (4.8d)

Av �

8
>>><

>>>:

��1 � = 0 and _min � ��1 � 1 (4.9a)
��1=2 � = 1 and _min � ��1 � 1 (4.9b)
��4=3 � = 0 and 1� _min � ��1 (4.9c)
��4=7 � = 1 and 1� _min � ��1 (4.9d)

4.1.5 Experimental Comparison II: Neumann

The results of the previous section showed that the Neumann boundary conditions tended to
underestimate the inuence of the boundaries. This is not very surprising, as this setup was
speci�cally chosen to represent systems where the boundaries have little e�ect on the uidization
of the sample. Practically speaking however, these systems are likely to also exhibit wall slip. The
results of this section will therefore be revisited when the e�ect of wall slip is considered. It can
still be concluded however that although the model overestimates the size of the overshoot, the
shear banding that follows it is in good agreement with the results in �gure 2.1. In particular,
shear banding starts after the peak of the overshoot and quickly �lls a large portion of the gap.
After this initial development, the band takes relatively long to completely uidize the gap. These
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results are best illustrated by those in �gure 4.12 for � = 0, but this scenario is also expected to
show up for � = 1 when � is su�ciently large.

In terms of scaling behaviour, the Neumann boundary conditions yield very di�erent scaling
rules than the Dirichlet case. In particular, the results showed how A� may still exhibit power-law
behaviour, while simultaneously accounting for spatial e�ects. However, it is expected that as in
the homogeneous model this result will be modi�ed by the presence of wall slip.

4.2 Model Extensions

Finally, the extensions from chapter 3 are applied to the spatially resolved model to produce results
that can be compared directly to experiment.

4.2.1 Finite Visco-elasticity

Section 3.3 showed how visco-elastic e�ects may obscure the rheological signatures associated with
the slow uidity dynamics at low shear. To demonstrate this e�ect in combination with spatial
heterogeneities, �gure 4.20 shows results for � = 0, � = 10, �t = 50 and Dirichlet BCs. As
discussed, shear banding only starts to become important once m2 > hfi. As a result, none of the
conclusions regarding the down-sweep are a�ected by the presence of spatial e�ects. In particular,
shear banding plays no role during the negative visco-elastic hystersis at the start of the up-sweep.
As in the inelastic limit, the onset of shear banding suppresses the large overshoot on the up-
sweep, and a growing shear band gradually returns the system to steady state. The results are in
excellent agreement with the experimental results shown in �gure 2.4. Unfortunately, no velocity
measurements are available to further validate the results, but the stress signatures suggest that
the model indeed captures the essential physics.
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Figure 4.20: Hysteresis cycle using the in-homogeneous model including visco-elasticity with Di-
richlet BCs, � = 0, �t = 50 and � = 10. The insets show velocity pro�les (normalized by the
shear) on the up and down-sweeps at the corresponding markers in the cycle.

4.2.2 Wall Slip

The results in chapter 3 demonstrated that although wall slip was not essential for hysteresis to
be observed, it was clear that the details of the cycles were strongly a�ected by its presence. Some
of the most obvious up-sweep discrepancies occurred when wall slip was included. The strong
relaxation of the uidity after the onset of wall slip resulted in large stress overshoots and very
abrupt re-uidization. This can be resolved when shear banding is included, as this allows for
uidization to occur gradually in space.

This is demonstrated in �gure 4.21, which shows results for � = 0, � = 10, �t = 100 and
n = 30 with Dirichlet BCs. The up-sweep now features a smooth uidization back to steady state.
The stress overshoot is very weak because the Dirichlet boundary condition uidizes the sample
as soon as the yield stress is exceeded. The insets further illustrate the onset of total wall slip at
low shear, in agreement with experiment. A discrepancy that was already present in the inelastic
model was that the strong shear banding induced by the boundary condition overestimates the
rate of uidization in the sample. As a result, the model underestimates the size of the overshoot
at time-scales � that are large enough to close the hysteresis cycle below the slip point. This is
even more clear in �gure 4.22. �t = 1000 is now large enough for the ow-curves to coincide below
_slip, in agreement with the second panel of �gure 2.1. However, shear banding starts as soon as
the system crosses the yield stress, leading to a very small overshoot.

These e�ects are reected in A� and Av as a steady decrease towards vanishing hysteresis, which
is shown in �gures 4.23 and 4.24. Note that because the ow-curves coincide below _slip, the only
contribution to the hysteresis area A� is now from the overshoot on the up-sweep. This means the
appropriate scaling for A� is given by A� � (�� 1) for large � (see section 4.1.2) which decreases
as a power-law with �. The Dirichlet model can therefore not predict a logarithmic decrease of
A� when wall-slip is present, as this result previously relied on the large constant contribution to
�� from the down-sweep. These results can be contrasted with those of the homogeneous model,
where the slow re-uidization meant that a non-zero hysteresis was observed, even at very large
�t. The observable Av is accurately described by the theoretical prediction Av � ��1 from the
inelastic model, because, as was concluded in section 4.1, the additional relaxation of f below the
slip point is irrelevant to the rate of shear band growth. The results are similar when � = 1, for
which the observables A� and Av are shown in �gures 4.25 and 4.26, respectively. As before, the
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Figure 4.21: Hysteresis cycle using the in-homogeneous model including slip with Di-
richlet BCs, � = 10, � = 0 and �t = 100. The insets show velocity pro�les (normalized
by the shear) on the up and down-sweeps at the corresponding markers in the cycle.
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Figure 4.22: Hysteresis cycle using the in-homogeneous model including slip with Di-
richlet BCs, � = 10, � = 0 and �t = 1000. The insets show velocity pro�les (normalized
by the shear) on the up and down-sweeps at the corresponding markers in the cycle.
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theoretical scaling prediction Av � ��1=2 from the inelastic model accurately describes the results.
These results can be compared to the Neumann case, where the boundaries do not induce any

shear banding. Results for a typical cycle with � = 1 are shown in �gure 4.27. At �t = 1000,
the sweep rate is not quite fast enough to close the cycle below _slip, which is similar to what
was found in �gure 4.21. After the slip point, an overshoot occurs that is again very similar to
that in the homogeneous model (see �gure 3.22), in agreement with the results from section 4.1.4.
The overshoot is followed by a period of shear banding which eventually uidizes the sample.
Qualitatively, this scenario is in excellent agreement with experiment. However, as was observed
in the Dirichlet case, the large waiting time necessary for the system to display a clear slip point
also means that the shear banding phase that follows the overshoot is relatively brief. As a result,
the e�ect of shear banding is obscured in the velocity pro�les by both the partial wall slip and the
strong stress heterogeneities present at the low strain rates where banding occurs. Nevertheless,
it is clear that this model captures the essential physics of the uidization scenario in the presence
of wall slip. This is further con�rmed by looking at the behaviour of the observables A� and Av as
shown in �gures 4.18 and 4.19, respectively. The observable A� is controlled by the homogeneous
uidization of the model, and therefore shows a similar logarithmic decrease as in �gure 3.24.
Deviations from an exact logarithmic scaling are due to the gradual closing of the cycle below
the slip point and are expected to vanish as � is increased further. Meanwhile, Av is found to
decrease with a ��1=3 power-law very similar to that observed experimentally. Deviations from the
theoretical ��1=2 prediction can be attributed the long waiting times, which limit the shear banding
regime to shear values very close to the slip point. The relatively strong stress heterogeneities and
partial wall slip that are present here induce deviations from the theoretical predictions. It is
expected that similar e�ects may explain the experimental scaling results.
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Figure 4.27: Hysteresis cycle using the in-homogeneous model including slip with Neumann BCs,
� = 10, � = 1, n = 720 and �t = 1000. The insets show velocity pro�les (normalized by the shear)
on the up and down-sweeps at the corresponding markers in the cycle.
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4.3 Conclusion

This concludes the analysis of the basic uidity model and its application to rheological hysteresis
in simple yield stress uids. This chapter studied how some of the discrepancies associated with the
homogeneous model could be resolved by including spatial e�ects, and how their inclusion modi�ed
our previous results. The results showed that neither the origin of hysteresis nor the relaxation
phase of the cycle were a�ected by the presence of spatial e�ects. Therefore, the discussion mainly
focused on how spatial e�ects a�ected the uidization dynamics of the up-sweep. In this respect,
the results were shown to be reasonably consistent with experiment, although some discrepancies
still remain.

In chapter 2 it was discussed how the choice of mobility and boundary conditions were expected
to depend non-trivially on the experimental conditions. In order to obtain a complete picture
of the possible dynamics, this thesis focused on studying the limiting cases for these modeling
decisions. The model was shown to accurately describe experimental results representative of these
limits. In particular, two variations of the mobility were considered here. One was assumed to be
representative of systems that responded very slowly to the changing external drive (� = 0), while
the other represented systems that respond very quickly (� = 1). For fast cycles, the mobility
does not have time to respond to the changing shear. Accordingly, the results showed that this
case was best described by � = 0. The opposite was found for slow cycles, where � = 1 was more
appropriate. Similarly, results for two di�erent boundary conditions were presented. The Dirichlet
boundary conditions were expected to represent systems with strong boundary inuence, whereas
Neumann boundary conditions represented systems where this inuence was weak. Rough walls
induce a large uidity in their vicinity [64]. Accordingly, the Dirichlet boundary conditions best
described experiments with rough walls while for smooth walls, Neumann boundary conditions
were more appropriate.

Furthermore, by considering these limiting cases, the role of di�erent mechanisms in the hys-
teresis cycles could be studied. It was shown that because Av is controlled directly by the growth
of shear bands in the bulk, the choice of boundary condition did not a�ect its scaling behaviour.
Meanwhile, the overshoot dynamics were strongly dependent on the degree of uidization induced
by the walls. The fast shear band nucleation observed for Dirichlet boundary conditions resulted
in very small overshoots. With wall slip, this led to a strong power-law decrease of A� with �.
However, for rough walls, slip is expected to be minimal, and in this case, A� decreased logarith-
mically. As in the homogeneous model, a faster decrease is possible when visco-elastic e�ects are
important, or when cut-o� e�ects from _min start to play a role. Meanwhile, the Neumann BCs
did not contribute to shear band nucleation. Instead, uidization started in the bulk, similar to
the homogeneous case. This resulted in the the same large stress overshoots as found in chapter 3.
Because uidization occurred in the bulk, the details of the overshoot were sensitive to the state of
the bulk prior to the overshoot. By extension, this means that systems with smooth walls are more
sensitive to the relaxational behaviour of the material. As in the homogeneous model, this could
potentially lead to power-law behaviour of A�. However, these boundary conditions are expected
to be associated with strong wall slip. When this was accounted for, the scaling behaviour was
reduced to a weak logarithmic decrease. These results show that the boundary conditions more
strongly a�ect the stress response than the shear banding behaviour.

4.4 Discussion

While the results of this chapter showed how the di�erent limiting behaviours described by the
model contributed to the experimental observations in hysteresis cycles, it remains challenging to
account for all of these e�ects simultaneously. A clear example of this could be found in section
4.2.2. The Neumann model with wall slip and long-time mobility � = 1 was able to account for
the general uidization scenario that followed the overshoot as well as the scaling behaviour of the
macroscopic observables. Nevertheless, the choice � = 1 slows down the relaxational behaviour
to the point that excessively long waiting times are necessary to reach steady state near the slip
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point. These long waiting times meant that once re-uidization started, the system would return
to steady state much faster than in the experiments. From a physical point of view, using the
shear to describe the mobility in a system that is not being sheared at that rate (due to wall
slip) can be expected to give incorrect results. More generally, while the choice � = 1 yields
the correct uidization time scaling [6], it is unlikely that the imposed shear should govern the
rate of relaxation in a system. This further highlights the need for a better understanding of the
relaxational behaviour of the model, something that was also discussed in section 3.6.

Likewise, although the Neumann boundary conditions predict the correct shear banding be-
haviour, the overshoot is exaggerated compared to experiment. It is likely that the walls do play
some role in shear band nucleation, although not to the extent predicted by the Dirichlet boundary
conditions. The particular choice of boundary condition was shown to strongly a�ect the scaling
behaviour of the stress overshoot. A detailed study of the overshoot dynamics in start-up ows
[16] could provide a way to investigate this phenomenon without the need to consider other aspects
of the hysteresis cycles. On the other hand, the results showed that these e�ects do not inuence
the scaling behaviour of Av, which makes this observable particularly robust to such details of
the model. The fact that the model correctly predicts this scaling behaviour is likely a direct
consequence of its ability to describe uidization times at �xed shear [6].

Overall, the hysteresis phenomenon provides a very complete way of probing the dynamic
response of a material, and is therefore also an excellent validation case for the uidity model.
However, because of the large number of phenomena involved in its description, it can be di�cult
to determine what mechanisms are responsible for speci�c observations. The approach of this
thesis was to deconstruct the model into simpler limiting cases to separately study the role of
these mechanisms. In this case, the predictions for the observables characterizing the cycles often
followed directly from more basic quantities such as the stress overshoot and the uidization
shear. Rather than validating these results indirectly via hysteresis cycles, a better way would be
to consider directly the scaling predictions derived here for these quantities. Furthermore, such
an approach could be aided by more focused experimental protocols that provide more detailed
information on the phenomenon that is being studied. This is the primary recommendation for
future work based on the results of the previous chapters.
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Chapter 5

Noisy Model

The previous chapters have focused on studying rheological hysteresis in simple yield stress uids.
The results showed that, although some quantitative discrepancies remained, the uidity model
was able to provide a conceptual framework for understanding the experimental observations.
Much of the discussion was dedicated to understanding the detailed dynamics of the model and
using it to interpret the experimental phenomenology of simple yield stress uids. However,
the fundamental reason for why hysteresis was observed had already been derived in section
3.2. The choice of mobility k / f provided a state-dependent time-scale which was responsible
for the eventual overshoot on the up-sweep. Furthermore, the quantitative behaviour of the
hysteresis area, as described by A�, was shown to result from a competition between relaxation
and uidization processes. For inelastic simple YSFs, it was shown that this competition always
leads to a monotonic decrease of the hysteresis area with the cycle-time �.

However, the analysis of the homogeneous model also revealed two cases where non-monotonic
behaviour of A� could be observed. The �rst of these relied on the presence of two time-scales. In
particular, an increasing branch of A�(�) became possible when a second visco-elastic time-scale
was included in the model. The visco-elastic time-scale became increasingly relevant at short
cycle times and eventually obscured the hysteresis produced by the uidity dynamics. This e�ect
resulted in a (temporary) decrease in A� when � was decreased, therefore causing the appearance
of a peak at some characteristic time-scale ��. Furthermore, the results showed that this time-
scale was directly related to the secondary time-scale � . These observations are consistent with
the hypothesis put forward in [17] regarding the origin of a peaked hysteresis area. The authors
proposed that while simple yield stress uids exhibit decreasing hysteresis at experimentally ac-
cessible waiting times, the presence of a short material time-scale means a peak will be observed
at similarly short waiting times. The results of section 3.3 suggest that this time-scale could be
identi�ed with the visco-elastic time-scale � .

As a second potential explanation of the peak, it was found that a model with only a single
time-scale may still produce a peaked hysteresis amplitude if the associated steady state ow curve
is decreasing. Such a decreasing ow curve is the de�ning property of a viscosity bifurcating yield
stress uid. This second interpretation of the peak is consistent with the fact that Laponite also
exhibited viscosity bifurcation [17] [46]. Furthermore, it has similarly been proposed in [71] that it
is indeed this aspect of the Laponite rheology that is responsible for the peaked observables A�=v.

These results highlight two sides of a possibly uni�ed explanation for the emergence of peaked
hysteresis amplitudes. On the one hand, visco-elastic e�ects can connect the monotonic and peaked
behaviours of the observables by decreasing the peak time-scale �� as � approaches zero. On the
other hand, experimental results [17] and previous numerical studies [71] suggest that viscosity
bifurcation is important for the appearance of peaks in the hysteresis amplitude. Notably, viscosity
bifurcation is typically associated with a large material time-scale [12]. This invites the possibility
that the material time-scale responsible for the small-� peak in simple YSFs is the same as that
responsible for viscosity bifurcation in systems such as Laponite. If this is indeed the case, the
peak time-scale �� would provide a measure for the continuous transition from simple YSFs (small
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��) to viscosity bifurcating YSFs (large ��). However, it is clear that a large � will not induce
viscosity bifurcation in simple yield stress uids. The question is then if there exists a more general
time-scale that may interpolate between simple and viscosity bifurcating yield stress uids while
simultaneously causing the expected shift in ��. In the context of the KEP picture used to derive
the original uidity model, it has been argued that the presence of a long restructuring time
following local yielding events may be responsible for steady state shear banding and viscosity
bifurcating e�ects in jammed systems [12][45]. It is interesting to consider if a similar extension
of the uidity framework is able to account for the more complex phenomenology.

This chapter will attempt to address these questions by extending the uidity model discussed
in the previous chapters to account for viscosity bifurcating e�ects. The extended model is then
applied to hysteresis cycles in order to assess if the viscosity bifurcating model can account for the
peak in hysteresis area. Finally, the model is used to investigate the connection between simple and
viscosity bifurcating yield stress uids using the peak time-scale ��. The model will be extended
following the approach outlined in [4]. There, it was shown that the presence of mechanical noise
can cause viscosity bifurcating behaviour. Notably, this extension means that the model still
operates in a similar KEP picture as the original uidity model. Meanwhile, the micro-structure
of Laponite (see section 2.1) likely does not �t this framework. Therefore, while the experimental
results for hysteresis cycles in Laponite will serve as a guide for experimental comparison, they
will do so only at the level of being representative of hysteresis in viscosity bifurcating YSFs.
This chapter will start by introducing the extended model and providing background on how the
extensions modify the phenomenology of the model. Afterwards, the extended model is applied
to hysteresis and the results are analyzed.

5.1 Background

As mentioned, the uidity model will be extended by the addition of mechanical noise. It was
shown in [4] that noise stabilizes the transient shear bands and produces a viscosity-bifurcating
instability in the uidized state. This section will start by discussing how noise is introduced in the
model, followed by an overview of the new phenomena that emerge upon addition of noise. This
discussion follows that in [4]. The observations are related to phenomena in viscosity bifurcating
yield stress uids.

5.1.1 Equation of motion

To include the noise, the free energy F is �rst written in terms of ’2 � f . The resulting free
energy is given by:

F [’] = 2
Z
dx
�
�2’2(@x’)2 �

m
4
’4 +

1
5
j’j’4

�
(5.1)

The absolute signs are necessary to ensure that the free energy remains positive as ’ ! �1.
Next, the equations of motion are expressed in terms of ’ as:

@t’ = � _� �F
�’

(5.2)

So far, this is exactly equivalent to equation 2.25. However, notice that the equation of motion
2.25 can be expressed in terms of ’ as a simple model A dynamics without the uidity-dependent
time-scale. Furthermore, unlike f , ’ is a signed quantity. This means that the uctuations induced
by the noise will not lead to problems regarding the sign of the order parameter. The equation of
motion is then extended by the inclusion of an additive, white noise:

@t’ = � _� �F
�’

+
p
�w(x; t) (5.3)

Where the noise has the property:

hw(x; t)w(x0; t0)i = �(x� x0)�(t� t0) (5.4)
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Finally, the equation of motion is given by:

@t’ = _� ��2’2@2
x’+ �2’(@x’)2 +m’3 � ’4�+

p
�w(x; t) (5.5)

This will be the basic equation of motion that will explored in this chapter. The following sections
will provide further background on the behaviour and interpretation of equation 5.5.

5.1.2 Phenomenology

To derive the static behaviour of the extended model, the analytical approach used in [4] will
be followed. The main di�culty in analyzing equation 5.5 comes from the non-local terms and
the way these interact with the noise. Therefore, the corresponding term in the free energy is
approximated by splitting o� di�erent contributions coming from the uctuations. This is done
by writing:

’2(@x’)2 � h’2i(@x’)2 + h(@x’)2i’2 (5.6)

With the brackets representing ensemble averages over the noise. This transforms the free energy
to:

F [’] = 2
Z
dx
�
D
2

(@x’)2 +
r
2
’2 �

m
4
’4 +

1
5
’4j’j

�
(5.7)

Where two new parameters have been introduced:

D := 2�2h’2i r := 2�2h(@x’)2i (5.8)

To derive the stationary behaviour of the system, D and r are considered as constants whose
values are to be determined self-consistently. For constant D and r, the behaviour of the model
can loosely be understood in terms of the new potential appearing in 5.7. Because states with
’! �’ are equivalent, it is assumed that ’ > 0. In this case the potential is given by:

V (’) =
r
2
’2 �

m
4
’4 +

1
5
’5 (5.9)

In the noise-free case, r = 0 and the potential has two minima, ’ = 0 and ’m = m, the latter of
which is stable for all m > 0. This remains the case for small, non-zero r and su�ciently large
m, but the value of the minimum is shifted to ’ � m � r=m2 +O(r2). At some critical value of
m� � r1=3, the value of the potential at ’m becomes larger than zero, and the global minimum
is now the non-uidized state ’ = 0. Nevertheless, ’m is still a local minimum and the potential
barrier separating the two minima ensures that the system remains uidized even below m�. As
m is decreased further still, this potential barrier shrinks until it eventually vanishes at some
critical value mc. At this point, the uidized state becomes unstable, and the system becomes
de-uidized. Figure 5.1 shows this progression of the potential landscape as m is varied. The
discontinuous uid-to-solid transition from zero to �nite shear that occurs at mc signi�es the fact
that the addition of noise has rendered the phase transition �rst-order, compared to the second
order transition that previously occurred at m = 0.

Using this potential energy picture, a theoretical ow-curve can be constructed. Plugging in
the de�nition of the plastic shear _ = �’2 into the de�nition of m, the potential function can be
rewritten as:

V (’) =
r
2
’2 �

_1=2

4
’3 +

�
1
5

+
1

4 _1=2

�
’5 (5.10)

The (real-valued) minima of this potential can be calculated and designated as either stable or
un-stable based on the sign of V 00(’). Plotting the corresponding values of the stress results in
a ow curve as given in �gure 5.2. It can be seen that some critical shear _c exists below which
the ow curve is decreasing with shear. The system has become viscosity bifurcating. In addition
to this minimum, there is a second critical shear _c > _� that de�nes a region where the owing
state is meta-stable, i.e. it is still a local minimum of the potential but no longer the global
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Figure 5.1: Potential function V (’) as m is varied through the critical point.

minimum. When approached from above, the system will ow until it reaches _c. Maintaining a
homogeneously owing state below _c would imply that the uidity occupies the unstable branch.
The system will instead develop a shear band with an e�ective shear that lies on the stable branch
and an arrested band which occupies the similarly stable non-owing state, ’ = 0.

Now, as mentioned, r is not actually constant, but rather is state-dependent via its dependence
on h(@x’)2i. More uidized states will have a stronger drive to suppress order parameter uctu-
ations leading to smaller values of r. In [4], it is shown that by linearizing the EOM around the
state ’ = m, it can be derived that r � �kM

m2 , with kM the short wave-length cut-o� scale of the
noise. The dependence on m reects the fact that r decreases with increasing degree of uidiza-
tion. This state-dependence of the renormalizing e�ect of the noise mainly introduces quantitative
corrections, but the qualitative picture described above remains valid.

These results show that the model upon inclusion of noise becomes viscosity bifurcating, in-
cluding the usual hallmarks of such behaviour: a non-monotonic ow-curve and the appearance
of steady state shear bands. While these are the most important aspects of the phenomenology
for the purposes of this chapter, additional features of the phenomenology are derived in [4]. The
stationary response is in excellent agreement with that of typical viscosity bifurcating yield stress
uids, including Laponite [46].

5.1.3 SDE interpretation

Before discussing the results obtained using equation 5.5, the interpretation of the noise is discussed
briey. Benzi et al. originally introduced the variable ’2 = f to alleviate the restriction that
f > 0 so that a simple additive noise could be included in the dynamics. However, the physical
interpretation of ’ is unclear, which makes a formulation in terms of f desirable. To achieve this,
equation 5.5 can be rewritten using Ito’s lemma to �nd:

@tf = _�f
n
�2@2

xf +mf2 � f5=2
o

+ �+
p

4�fw(x; t) (5.11)

The multiplicative noise is expressly given the Ito interpretation for stochastic di�erential equa-
tions. Furthermore, the � term serves to provide a small but non-zero expectation value of the
uidity, even when m = 0. This non-zero expectation value reects the uctuations of ’ around
zero, which in terms of f are all positive. Although this equation is exactly equivalent to equation
5.5, it does not derive nearly as naturally from the free energy framework as equation 5.5. How-
ever, more insight can be gained by noting that the Ito SDE above is equivalent to the following
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Figure 5.2: Steady state ow curve for �xed r = 10�2.

Stratonivich SDE [22]:

@tf = _�f
n
�2@2

xf +mf2 � f5=2
o

+
p

4�f � w(x; t) (5.12)

When written in this way it becomes clear that all of the properties of the noise derived in
section 5.1.2 can also be derived entirely within the uidity-framework by adding a Stratonovich
multiplicative noise to the deterministic evolution of f . In this case, the multiplicative noise could
potentially be interpreted as self-induced uidity kicks due to coarse grained plastic events. The
central limit theorem tells us that this sampling yields a square-root variance, consistent with the
noise correlator above. The delta-correlated noise in equations 5.11 and 5.12 are approximations of
processes with a �nite but small correlation time and for such processes the natural interpretation
is that of Stratonovich.

Finally, the control parameter for the noise, �, is related to the material time-scales responsible
for hysteresis. As mentioned in the introduction, it has been proposed that a large restructuring
time following local yielding events may lead to viscosity bifurcating behaviour in soft jammed
systems [12]. This time-scale would then provide a continuous connection between both types yield
stress uid behaviour. In the current model, the noise strength plays the role of such a continuous
connection, where a system with zero noise behaves as a simple yield stress uid, and viscosity
bifurcation appears as the noise strength is increased. It is therefore proposed here that the
noise strength acts as a proxy for this growing restructuring time. In this case, the hypothesized
connection between simple and viscosity bifurcating YSFs can be expressed as:

� � �struc � �� (5.13)

5.2 Results

Next, equation 5.11 is used to study hysteresis cycles. The parameters are �xed at � = 10�7, � = 0
and � = 0:04. This noise-strength corresponds to a critical shear in the range _c 2 [10�2; 10�1],
depending on the value of �. In order to prevent the system from getting stuck in the arrested
state, Dirichlet BCs will be used throughout this chapter. The results for � = 1 will be analyzed
�rst and then contrasted with results for � = 0.
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Figure 5.4: Av as a function of n�t := � for
� = 1 and � = 10�7.

5.2.1 Numerical Results I: ∆ = 1

Rather than starting with the hysteresis cycles, the behaviour of the observables A� and Av is
discussed �rst. These are shown in �gures 5.3 and 5.4. A number of features are found to be in
agreement with experiment. Most importantly, a clear peak can be observed for both quantities.
These results con�rm that the viscosity bifurcating model can predict a peaked hysteresis area.
Furthermore, it is found that the location of both peaks coincide at around �� � 300, indicating
the existence of a single time-scale responsible for the peak. Meanwhile, neither A� nor Av appear
to approach zero as � ! 0. This leads to an asymmetry in the peaks that is reminiscent of the
peak observed when � was introduced (see �gure 3.18). Finally, as in experiment, the results show
that the peak for Av is signi�cantly sharper than that for A�. To investigate the origin of these
observations, the underlying hysteresis cycles are discussed next.

Figures 5.5, 5.6 and 5.7 show hysteresis cycles for � = 30, 300 and 3000 respectively. Starting
with the case � = 30, a cycle is observed that is essentially the same as that observed without
the noise (see, for example, �gure 4.1). At such short time-scales, the noise has not yet had the
chance to signi�cantly destabilize the system and therefore, the results are not inuenced by its
presence. The results of chapter 4 showed how the noise-free model exhibited a hysteresis e�ect
which increases with decreasing �. Because the results of the model with and without noise are
identical in the limit � ! 0, a similarly increasing behaviour of A� and Av is expected as � ! 0,
which is observed. This means that the maxima observed for A� and Av are only local, similar to
the visco-elastic model in section 3.3.

When � is increased by one order of magnitude, the e�ect of the noise starts to become clear.
Strong shear banding is observed on the up-sweep and the cycle is much wider than it was before.
As discussed in section 3.2.2, the uidity approaches a constant as _ ! 1. While the uidity
dynamics slow down, the noise continues to destabilize the �eld by inducing growing uctuations.
When the shear is increased again, the uidity responds to these uctuations which induce a
down-ward force on the �eld via the non-local term f@2

xf . This is analogous to the role of r
in section 5.1.2. Eventually, this causes the uidity �eld to drop to a small but non-zero value
determined by the noise strength. Importantly, this collapse occurs during the up-sweep, meaning
that the down-sweep remained relatively una�ected by the noise. The fact that an arrested band
formed during the up-sweep means that re-uidization must now occur via shear banding. Not
only does this take longer, leading to an increase in A�, the shear banding also shows up as a
dramatic increase in Av. This further illustrates why the peak in terms of Av is sharper than that
of A�: hysteresis can occur without signi�cant shear banding. A similar e�ect was also observed
in section 4.1, where a gradual transition from homogeneous uidization to shear banding resulted
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in an e�ective exponent for Av smaller than either of its limiting values. In the presence of noise,
this transition is su�ciently sharp to lead to a local maximum in the hysteresis area.

Finally, as � is increased further, two new features emerge. The most notable change is that
shear banding now also occurs on the down-sweep. This is a completely new e�ect that arises
because the long waiting times provide the noise with su�cient time to destabilize the bulk during
the down-sweep. The authors in [17] suggest that this is the reason that the hysteresis area
decreases again as �t!1. However, this argument is somewhat misleading when applied to the
numerical results and in particular to Av. The main reason for its decrease is that the point where
the shear band has grown to �ll the gap is shifted to smaller shear. This is the exact same reason
Av was shown to decrease in the model without noise and this can again be attributed to the fact
that

R
dx�v is proportional to _. Av is dominated by the shear banding at large shear rather

than at low shear. While it is true that Av is decreased by the steady state shear banding below
_c, this contribution is negligible compared to what occurs at large shear.

These results show that under the right conditions, the viscosity bifurcating model is capable
of showing peaked observables, similar to those in experiment. Next, the inuence of the noise
strength is considered. Figures 5.8 and 5.9 show analogous results, but with � = 10�6. The peaks
are qualitatively very similar to those in �gures 5.3 and 5.4, but their amplitude has increased and
the location of the peaks has shifted to �� � 30. The characteristic time-scale �� shows an inverse
dependence on the noise level �, i.e. �� � ��1, but this relationship is not further investigated here.
If the noise strength is taken as a proxy for a hypothetical growing restructuring time that controls
the transition from simple to viscosity bifurcating YSF, this result contradicts the interpretation
that the peak time-scale �� is a measure of this material time-scale. This was already suggested
by the fact that simple YSF hysteresis was observed as the small-� limit regardless of the noise
strength, which would imply that the hypothetical peak was still located at zero �.

A di�erent way of interpreting this result is that while the noise may theoretically be caused
by a growing material time-scale, its e�ect on the dynamics is to introduce a new instability
time-scale associated with the transition to the de-uidized state below the critical shear. This
time-scale is shorter when the noise strength is increased, which is precisely the opposite behaviour
of the hypothetical material time-scale. The instability time-scale directly controlled the location
of the peak, just as the visco-elastic time-scale did in section 3.3. The simple YSF hysteresis
was recovered when the peak location shifts to in�nity, which indicates that this picture is not
consistent with the interpretation that simple yield stress uid behaviour derives from a "fast"
time-scale.

The origin of these discrepancies can all be attributed to the fact that the viscosity bifurcating
behaviour and its associated hysteresis are super-imposed on the simple YSF behaviour. This
e�ect is further illustrated by the results for � = 0, which are discussed next.

5.2.2 Numerical Results II: ∆ = 0

The observables A� and Av are shown for the case � = 0 in �gures 5.10 and 5.11. Neither A�
nor Av exhibit the clear peak they did for � = 1. Again, the hysteresis cycles reveal the origin of
this behaviour.

The faster uidity dynamics lead to extensive shear banding, even at fast sweeps, as shown in
�gure 5.12. Consequently, no transition between homogeneous and in-homogeneous uidization is
observed. As � is increased, the mean-�eld value of _f starts to approach _c. When it does so,
the shear bands below _c are stabilized, and as a result, the shear bands take slightly longer to
uidize the sample. This e�ect shows up as a small plateau in A�=v, indicated by the arrows in
�gures 5.10 and 5.11. The fact that Av is controlled by _f (see the discussion in section 4.1.2) is
particularly clear here, as indicated by the ��1 decay both before and after the bump in �gure
5.11.

The di�erence in the role played by the noise should be clear. Whereas before, shear banding
occurred speci�cally due to the noise, in the � = 0 case the noise only stabilized the shear bands
that were already present. These results demonstrate that because the simple YSF hysteresis is
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Figure 5.5: Hysteresis cycle with noise strength � = 10�7 and � = 1. �t = 1.
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Figure 5.6: Hysteresis cycle with noise strength � = 10�7 and � = 1. �t = 10.
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Figure 5.13: Hysteresis cycle with noise strength � = 10�7, �t = 10 and � = 0.

more pronounced for � = 0, the viscosity bifurcating e�ects of the noise are obscured compared
to the case � = 1.

5.3 Conclusion

As discussed in the introduction, the aim of this chapter was two-fold. The �rst was to test
the hypothesis that the viscosity bifurcating behaviour of the extended model is su�cient for
a maximally hysteretic time-scale to be observed. The second was to relate this e�ect to the
monotonic decrease in hysteresis observed for simple yield stress uids.

The viscosity bifurcating model was shown to yield the peaked hysteretic behaviour expected
for such materials. This provides further evidence that viscosity bifurcation is a su�cient condition
for peaked hysteresis observables. Unlike in chapter 4, no detailed experimental comparison was
performed here. Nevertheless, the model is able to qualitatively capture the phenomenology
associated with viscosity bifurcating cycles, including the progressive onset of shear banding during
the up- and down-sweep.

Furthermore, the model provides a continuous connection between simple and viscosity bifurc-

70 Numerical Modeling of Rheological Hysteresis in Yield Stress Fluids



CHAPTER 5. NOISY MODEL

ating YSF behaviours by tuning the noise amplitude �. Because a vanishing noise strength implied
simple YSF behaviour, an analogy was proposed with a growing restructuring time responsible
for viscosity bifurcation [12]. Based on this it was expected that the peak time-scale �� would
be a measure of this growing time-scale, such that � � �struct � ��. However, the results showed
that �� � ��1. From this, it is concluded that either, the peak time-scale is not representative
of a growing restructuring time, or, a growing restructuring time is not necessary for viscosity
bifurcating behaviour. The model results are, however, un-conclusive about which conclusion is
correct.

5.4 Discussion

The results of this chapter showed that the viscosity bifurcating version of the model was able
to account for much of the phenomenology associated with hysteresis cycles in these materials.
However, the model was not able to account for the connection between the noise and the peak
time-scale ��. As explained in the conclusion, the results implied that either, the peak time-
scale is not representative of a growing restructuring time, or, a growing restructuring time is not
necessary for viscosity bifurcating behaviour. This section will focus on the interpretation of this
result.

First, the connection between the restructuring time and the peak time-scale is considered.
In a numerical study of attractive colloidal gels, Jamali et al. found that the peak time-scale ��
decreased when the attraction strength between the particles was increased [34]. In this context,
it is clear that the restructuring time, which is the time-scale for bond formation, is directly
controlled by the attraction strength. Furthermore, it is likewise clear that this restructuring time
directly controls the peak time-scale ��. Although repulsive glasses such as Carbopol have quite a
di�erent micro-structure from these systems, a formal analogy could be made where the jamming
after fast, local plastic events is equivalent to an in�nitely short time-scale for bond formation. In
this case, Carbopol could indeed be interpreted as the limit where �� is decreased to zero.

These observations can be related to the role of the noise in the uidity model. Just like
the attraction strength, the noise amplitude was inversely proportional to the peak time-scale
��. However, unlike the attraction strength, the simple YSF limit corresponds to a vanishing of
the noise amplitude, whereas in the model of Jamali et al. it corresponds to in�nite attraction
strength. What this suggests, is that although both the noise and the attraction strength control
a transition from simple to viscosity bifurcating YSF behaviour, they do so in manifestly di�erent
ways.

The simplest interpretation of this result is that the noise does not represent a growing re-
structuring time. Because there is no clear microscopic interpretation of the noise, the association
with a growing material time-scale is purely an assumption based on the fact that simple YSF
behaviour is recovered for vanishing noise strength, in analogy with the restructuring time pro-
posed in [12]. It is entirely possible, however, that the noise strength is related to a shrinking
material time-scale. The results of section 5.2.1 suggested that a more appropriate way to view
the relationship of the noise and viscosity bifurcation is in terms of an instability time-scale. This
time-scale was found to shrink as the noise strength was increased and it is this time-scale that is
reected by the peak time-scale ��.

It appears that the noise induces a di�erent type of viscosity bifurcation, super-imposed on the
jammed micro-structure described by the mean-�eld uidity model. A physical interpretation for
this phenomenon may be the presence of secondary interactions among the jammed constituents
described by the uidity model. An example of a controlled version of such a system would be
jammed, sticky emulsions where the attractive interactions between the droplets may underlie the
hypothetical instability time-scale. These can then be tuned by varying the amount of surfactant
added. In fact, such systems have already been used to study the transition from simple to
viscosity bifurcating YSF behaviour [3] [13]. From a microscopic point of view, Lattice Boltzmann
methods may provide a way of studying the detailed microscopic physics of such emulsions, as has
been done in the past for simple yield stress uids [75] [5]. A combined numerical-experimental
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study may provide a better understanding of this phenomenon and potentially even reveal how it
relates to the dynamic uidity model.
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Conclusions

This thesis has focused on studying rheological hysteresis using a phenomenological uidity model.
The uidity model is based on a Kinetic Elasto-Plastic (KEP) description of jammed materials.
From this KEP description a "free-energy" functional is derived that governs the stationary beha-
viour of the system. Guided by experimental observations, this free energy was used to develop a
dynamic model for yield stress uids. By comparing the numerical results to experimental studies,
the predictions of the uidity model could be validated. Meanwhile, these predictions provided
insight into the speci�c mechanisms responsible for the experimental observations. This investiga-
tion therefore served both to improve understanding of rheological hysteresis as well as to further
the development of the uidity model.

A spatially homogeneous version of the model was used to investigate the origin of rheological
hysteresis. The uidity framework provides a natural interpretation of the rate-dependent hys-
teresis observed in simple yield stress uids. Its appearance was attributed to the slow transient
dynamics of the uidity �eld. Key to this interpretation is the presence of a state-dependent
mobility for the uidity, which provided the memory e�ect necessary to describe hysteresis. The
phenomenology could be understood in terms of an over-relaxation of the uidity �eld on the
down-sweep, which led to an overshoot when the shear was increased. The quantitative properties
of the cycles derived from a competition between the relaxation and uidization dynamics. In
addition to the uidity dynamics, visco-elastic e�ects were included to account for the dynamics
on short time-scales. Furthermore, an auxiliary model for wall slip was derived and implemented
to account for the strong wall slip present in experiments. When these extensions were included,
the interpretation of hysteresis in terms of the uidity dynamics was shown to be consistent with
experimental observations.

Spatial e�ects were included in order to more accurately describe the uidization behaviour
and to make quantitative predictions that could be compared to experiment. The investigation
considered limiting cases for the remaining free parameters of the model in order to obtain a
complete overview of the possible dynamics. In particular, hysteresis was investigated for systems
with very rough and very smooth boundaries and for very fast and very slow cycles. For very short
cycles, it was shown that the dynamics would become dominated by linear visco-elasticity. As a
result, the hysteresis caused by the uidity dynamics was either partially or completely replaced
by hysteresis induced by visco-elastic e�ects. Meanwhile, the uidity dynamics were shown to
depend strongly on the particular choice of boundary conditions. Systems with smooth walls
tend to exhibit wall slip and the model predicts large-amplitude cycles. Meanwhile, systems with
rough walls were found to re-uidize much more quickly which results in smaller hysteresis cycles.
Despite these di�erences however, the shear band growth that leads to uidization is a bulk e�ect
which was found to not be inuenced by the choice of boundary conditions. Analytical scaling
predictions were derived for observables that quanti�ed the extent of hysteresis in all of these
regimes. These predictions were used for detailed experimental comparison with results available
in literature, which yielded good agreement.

A key property that was found consistently throughout this analysis was that the hysteretic
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amplitude was decreasing with increasing cycle times, in agreement with experimental results for
simple yield stress uids. However, the model also presented two exceptions to this trend. Firstly,
when a visco-elastic time-scale was included, the model was found to be capable of displaying a
local maximum in hysteresis area. The maximum occurs as the system transition from a regime
dominated by visco-elastic dynamics to a regime dominated by the uidity dynamics. During the
cross-over regime where both e�ects are important, the hysteresis amplitude was found to increase
with increasing cycle times.

Secondly, it was derived that viscosity bifurcating yield stress uids could potentially exhibit
hysteresis that increased as the cycle time was increased, in agreement with both experimental and
numerical studies. To further test this, an extended version of the model that included mechanical
noise was used to study the more complex phenomenology associated with hysteresis in viscosity
bifurcating yield stress uids. The extended model could continuously interpolate between simple
and viscosity bifurcating yield stress uid behaviour by tuning the noise strength, analogous to the
restructuring time proposed in [12]. Upon inclusion of the noise, it was shown that the hysteretic
amplitude indeed reached a peak at a speci�c cycle time, in agreement with experiment. However,
this cycle time moved to larger values as the noise strength was decreased and the uid became
a simple yield stress uid. This contradicts the results of a previous numerical analysis [34], and
suggests that the model describes physics distinct from the attractive colloidal systems considered
there. It is proposed that sticky emulsions may be used as a model system to further investigate
this possibility.
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Chapter 7

Discussion and Outlook

The results of this thesis have demonstrated the ability of the uidity model to describe complex
transient phenomena in yield stress uids. It is, however, clear that there is ample opportunity
for future research and further improvements. The complexity of the hysteresis cycles made this a
very complete validation case for the dynamic model. Capturing this phenomenon required an ac-
curate description of both the relaxational and uidization behaviour of the system. By exploring
variations of the model, the importance of di�erent processes in determining the phenomenology
could be investigated. However, the same complexity that made hysteresis cycles such a compre-
hensive validation case also made it di�cult to validate more detailed predictions of the model.
Furthermore, the phenomenological nature of the uidity model meant that the connection to
the microscopic physics was often lacking. Based on these short-comings, two primary avenues
for future research are identi�ed. The �rst is to use combined numerical-experimental studies to
describe other phenomena in yield stress uids using the uidity model. The second is to use
microscopic simulation methods to establish a closer connection between the microscopic physics
and the mesoscopic model. Both of these approaches will be elaborated upon here.

7.1 Phenomenological Research

Throughout this thesis, the description of hysteresis cycles started with a distinction between a
relaxation phase and a uidization phase. By studying how the balance between the these two pro-
cesses changed as the waiting time and observation window were varied, quantitative predictions
could be made about the observables that characterized the cycles. However, this does not provide
any information about either of these processes separately, only their competition. The primary
recommendation for future development of the uidity model is to investigate these processes
separately using focused experimental setups that can provide more more detailed information.

The transient uidization behaviour had already been studied in [6], and the quantitative
success of that investigation was one of the motivating factors behind attempting the more am-
bitious goal of describing hysteresis cycles. This success was reected in the accurate scaling
predictions for the observable Av, which were shown to be a direct consequence of the transient
uidization behaviour and the associated scaling laws. Nevertheless, experimental data for start-
up ows in Carbopol gels [19] suggest that uidization mechanisms other than transient shear
band growth may also play a role. In particular, it was found that transient uidization leads
to a rapid avalanche-like uidization of the arrested band, similar to what was observed during
some numerical hystersis cycles. A more detailed investigation of this competition between shear
band growth and bulk-uidization would be an interesting subject for future research. In addition
to the long-time dynamics of the uidization transition, the results also highlighted the role of
shear band nucleation. The precise scaling behaviour of the up-sweep overshoot was shown to
depended strongly on the particular choice of boundary conditions. While a complete description
of the physics at the boundary will likely remain out of reach, a better understanding of shear
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band nucleation would certainly contribute to improving the description of transient uidization
processes. Transient stress overshoots such as those observed in Carbopol [16] may provide useful
information about the short-time dynamics.

Meanwhile, the relaxational behaviour of the uidity model has so far received much less
attention. Despite this, it is precisely the slow relaxation behaviour that was responsible for
hysteresis in the �rst place. This highlights the importance of a better understanding of this
aspect. Dedicated studies could focus on describing the creep dynamics below the yield stress [39]
or the role of sample age on the overshoot dynamics [16]. Alternatively, the short-time transient
stress response to step-wise changes in shear could be studied, as has previously been done to
validate similar phenomenological models [20].

This thesis has also provided a number of predictions regarding the hysteresis phenomenon that
could not be veri�ed on the basis of the available experimental data. Future experiments may
attempt to consider parameter ranges such that the asymptotic scaling results are observed. Fur-
thermore, these predictions were typically derived from more basic quantities such as the overshoot
amplitude and uidization shear and may therefore also be validated without considering the en-
tire hysteresis process. Nevertheless, it is still important to validate the relationship between these
basic quantities and the hysteretic observables in order to ensure that the uidity interpretation
of the hysteresis is indeed consistent with experiment. Examples include studying the inuence of
the observation window ( _min; _max), or directly validating the scaling relations described in this
thesis.

7.2 Microscopic Research

While the phenomenological nature of the uidity model makes it particularly well-suited for
describing complex transient phenomena, it also makes it di�cult to address its shortcomings on
the basis of physical arguments. At the mean-�eld level, this was exempli�ed by the way in which
key aspects of the model such as the mobility and boundary conditions had to be inferred from
experiment. While the uidity model is at its strongest when such simple descriptions turn out to
be su�cient to capture the essential physics, it also makes it particularly di�cult to improve the
model when it fails. In this case, more microscopic modelling approaches may provide key input
for the development phenomenological models.

Some examples of such approaches exist in the literature. At the stationary level, the uidity
model has been validated and extended by considering directly the underlying Kinetic Elasto-
Plastic picture [29]. In turn, more direct simulation methods such as molecular dynamics [32][42]
and Lattice Boltzmann models [5] have successfully been used to validate the assumptions of the
mesoscopic KEP model. Future research may similarly attempt to establish a connection between
the microscopic physics and the dynamics of the uidity model. A speci�c, although somewhat
specialized example of this would be to investigate the viscosity bifurcating behaviour encountered
in chapter 5 by using a model system more similar to that represented by the uidity model.
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Appendix A

Asymptotic analysis of hysteresis
cycles

This appendix will cover the mathematical details of some of the results quoted in the main text.
In particular, this discussion will mainly be concerned with the asymptotic scaling properties of
some key features of the hysteresis cycles. The inelastic, homogeneous case in appendix A.1 is
addressed �rst.

A.1 Homogeneous model

For the asymptotic analysis of the inelastic hysteresis cycles will use the simpli�ed equation of
motion that was derived in the main text (equation 3.2):

@tf = _�
�

_1=2f3=2 � (1 + _�1=2)f5=2
�

(A.1)

The di�culty in analyzing this equation arises from the pre-factor of the last term, which represents
the transition between the shear thinning power-law rheology for large shear (f � _1=2) and the
yield stress at small shear (f � _). When _ is either very small or very large, this term can be
simpli�ed by focusing on the former or latter contribution respectively. Transforming this equation
in terms of the shear via the continuum limit for hysteresis cycles described in the main text (see
equation 3.5) yields:

@ _f = � _��1�
�

_1=2f3=2 � (1 + _�1=2)f5=2
�

(A.2)

Where the plus/minus sign refers to the up/down-sweep respectively. To streamline this discussion,
these two limiting rheologies � � 1 and � � _1=2 are represented by an exponent � associated
with the pre-factor of the �nal term on the RHS. That is, equation A.2 is written as:

@ _f = � _��1�
�

_1=2f3=2 � _(��1)=2f5=2
�

(A.3)

Where � = 0 for small _ and � = 1 for large _ . It is straightforward to check that this equation
is invariant under the following scale transformations:

� ! ��

_ ! ��1=(1+���=4) _

f ! ��(1��=2)=(1+���=4)f

(A.4)

For convenience, the numerical values corresponding to these exponents are summarized in
table A.1. The scale transformations allow us to analyze equation A.3 in the relevant limits.
Because it was assumed that _max was large enough for the system to attain steady state there,
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� = 0 � = 1
� = 0 -1 -4/3
� = 1 -1/2 -4/7

(a) Numerical values of the limit-
ing exponents for _.

� = 0 � = 1
� = 0 -1 -2/3
� = 1 -1/2 -2/7

(b) Numerical values of the limit-
ing exponents for f .

the initial condition for the up-sweep is given by f( _max) = fHB = _max=(1 + _1=2
max) � _1��=2

max .
It is straight-forward to see that this initial condition is invariant under the scale transformations
in equation A.4. Hence, the initial condition of equation A.3 is invariant under the same scale
transformation as the equation of motion itself and therefore, so is its solution. Consequently,
the entire down-sweep is described exactly by these scale transformations. Strictly speaking, this
requires _max to be decreased as � is increased, but as mentioned, because the system follows the
HB-curve above the re-scaled _max, its precise value does not matter.

A similar consideration applies to the up-sweep. The initial condition for this part of the
cycle may depend on _min and because this quantity is not re-scaled when � is varied, the scale
transformations do not necessarily apply to the up-sweep. Thus, to check if the scaling A.4 is
applicable it should be checked if the uidity at the end of the down-sweep fmin depends on _min.
The result depends on the value of �, so each case will be considered separately.

Case I: � = 1

Starting with the case � = 1, the phenomenology of the uidity cycle proceeds as follows. For some
time, the uidity reaches the steady state solution which is asymptotically equal to fHB = _1��=2

(see for example �gure A.1). Eventually the solution will start to deviate from this value. From
the scaling relations it is known that the shear where this happens scales as _ss � ��1=(1+���=4).
For su�ciently small shear, f � fss = _1��=2 and the equation of motion can be approximated
by discarding the �rst term on the RHS. For � = 1, this gives:

@ _f = � _(��1)=2f5=2 (A.5)

Integrating this equation from f( _ss) := fss to f( _min) := fmin it is found that:

fmin =
�

_�3=2(1��=2)
ss +

3�
� + 1

( _(�+1)=2
ss � _(�+1)=2

min )
��2=3

(A.6)

Where we used the fact that fss = _1��=2
ss . Notice that _min has a positive exponent, which means

it vanishes as _min gets small. Using the fact that _ss � ��1=(1+���=4), it can be shown (after
some re-arranging) that as long as:

_min � _(5�+2)=(2�+2)
ss (A.7)

the third term in square brackets is negligible compared to the others, and the _min dependency
drops out of the equation. That is to say that as long as _min is su�ciently small, its precise value
does not a�ect the �nal state of the down-sweep and its value may just as well be taken to be
_min = 0. Furthermore, the �nal uidity approaches some non-zero, �-dependent constant that
scales as:

fmin = A�(4�2�)=(8��) (A.8)

Where A is some �-dependent constant. All of this means that the initial condition of the of
the up-sweep (which is the �nal state of the down-sweep fmin) is invariant under the same scale
transformation as the equation of motion. Consequently, the entire cycle, e.g. both the up- and
down-sweep, is described exactly by the same scale transformations A.4 as the equation of motion
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