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Abstract
At ultrahigh field strengths images of the body are hampered by B1-field inhomoge-

neities. These present themselves as inhomogeneous signal intensity and contrast,

which is regarded as a “bias field” to the ideal image. Current bias field correction

methods, such as the N4 algorithm, assume a low frequency bias field, which is not

sufficiently valid for T2w images at 7 T. In this work we propose a deep learning

based bias field correction method to address this issue for T2w prostate images

at 7 T. By combining simulated B1-field distributions of a multi-transmit setup at 7 T

with T2w prostate images at 1.5 T, we generated artificial 7 T images for which the

homogeneous counterpart was available. Using these paired data, we trained a neural

network to correct the bias field. We predicted either a homogeneous image (t-Image

neural network) or the bias field (t-Biasf neural network). In addition, we

experimented with the single-channel images of the receive array and the

corresponding sum of magnitudes of this array as the input image. Testing was car-

ried out on four datasets: the test split of the synthetic training dataset, volunteer

and patient images at 7 T, and patient images at 3 T. For the test split, the perfor-

mance was evaluated using the structural similarity index measure, Wasserstein dis-

tance, and root mean squared error. For all other test data, the features

Homogeneity and Energy derived from the gray level co-occurrence matrix (GLCM)

were used to quantify the improvement. For each test dataset, the proposed method

was compared with the current gold standard: the N4 algorithm. Additionally, a ques-

tionnaire was filled out by two clinical experts to assess the homogeneity and con-

trast preservation of the 7 T datasets. All four proposed neural networks were able

to substantially reduce the B1-field induced inhomogeneities in T2w 7 T prostate

images. By visual inspection, the images clearly look more homogeneous, which is
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confirmed by the increase in Homogeneity and Energy in the GLCM, and the ques-

tionnaire scores from two clinical experts. Occasionally, changes in contrast within

the prostate were observed, although much less for the t-Biasf network than for the

t-Image network. Further, results on the 3 T dataset demonstrate that the proposed

learning based approach is on par with the N4 algorithm. The results demonstrate

that the trained networks were capable of reducing the B1-field induced inhomoge-

neities for prostate imaging at 7 T. The quantitative evaluation showed that all pro-

posed learning based correction techniques outperformed the N4 algorithm. Of the

investigated methods, the single-channel t-Biasf neural network proves most reliable

for bias field correction.

K E Y W O R D S

7 T, bias field removal, deep learning, neural networks

1 | INTRODUCTION

Imaging at ultrahigh field strength (UHF) provides higher SNR and is known to improve functional mechanisms such as BOLD, SWI, MRA,

and MRS.1-3

Although UHF MRI is frequently applied for brain imaging applications, body imaging at UHF is rather sparse. One of the reasons is the partic-

ularly strong B1-field inhomogeneity, resulting in signal and contrast inhomogeneities within the image (see, e.g., Figure 1A). Such inhomogeneities

clearly reduce the attractiveness for the clinical user and may hinder the detection of anomalies. In addition, automatic image post-processing

(e.g., segmentation) can experience difficulties as a result.4,5 Reduction of these inhomogeneities is expected to facilitate the adoption of 7 T for

clinical body imaging applications.

In the literature on bias field correction algorithms,6,7 often an MR image V xð Þ is regarded as a multiplication of a homogeneous MR image of

the anatomy U xð Þ with a distribution of inhomogeneities, referred to as the bias field B xð Þ, and an additive noise term � xð Þ.7 The following equa-

tion is used as a model for MR images throughout this work:

V xð Þ … U xð Þ �B xð Þ þ� xð Þ: ð1Þ

Bias field correction algorithms can be divided into two classes: prospective and retrospective methods. Prospective methods are based on

altering the acquisition, potentially with additional hardware. At 7 T, the most used method is B1 shimming,8 which can be combined with time

interleaved acquisition of modes (TIAMO), where pairs of B1 shim settings are used to improve the homogeneity.9 More sophisticated methods

homogenize the distribution of the flip angle using an RF pulse that has been optimized for the interplay of gradients and RF waveforms.10

Retrospective methods (for example, the methods N3,11 N4,12 and BiCal13) are all based on the assumption that the bias field behaves as a

smoothly varying and low frequency field. Other methods assume that the bias field follows a specific function or distribution.7,14-16

Most scanner vendors also offer a retrospective homogeneity algorithm such as CLEAR or PURE. These methods require a brief surface coil

sensitivity calibration scan prior to imaging. The obtained receive array sensitivity maps are then used to correct the image for the inhomogeneous

sensitivity patterns of each coil array element, resulting in an image with improved homogeneity. The transmit field inhomogeneities, however,

F I G U RE 1 Left, Example of a T2w prostate acquisition at 7 T. Note the hyper-intense regions in the subcutaneous fat layer and the low
signal regions surrounding the femoral heads, which are characteristic of T2w images at 7 T. Right, Example of the mediocre effectiveness of the
N4 algorithm on a 7 T image.
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are not corrected by this method. Also, the method is less optimal at 7 T because of the absence of a so-called body coil to acquire the homoge-

neous reference image. For more examples we refer to Vovk et al.6 for a complete review of classic bias field correction methods.

In recent years learning based methods have increased in popularity and it has been demonstrated that this methodology can excel in various

tasks. In this work, we trained four neural networks for bias field correction of prostate images at 7 T to alleviate the B1-field induced signal inho-

mogeneities. To train a neural network that can correct for the bias field, we require a dataset that pairs an inhomogeneous image to its homoge-

neous version or bias field. However, both the ground truth bias field B xð Þ and homogeneous image U xð Þ are unattainable via measurements at

the MRI scanner at 7 T and above (the MRI scanners with a field strength of <7 T can effectively use a body coil to acquire near-homogeneous

images.) Therefore, an approximation of these variables is needed to facilitate the neural network training.

The following works all used a deep learning approach for bias field corrections but used different strategies to create a dataset for

training. Venkatesh et al.17 used a set of basis functions to generate a bias field for brain images from BrainWeb; the work of Dai et al.,18 Chuang

et al.,19 and Gaillochet et al.20 used the results from the N4 algorithm as substitute for a ground truth image to train a neural network; in the work

of Wan et al.,21 a neural network was trained to remove the bias field in conjunction with a segmentation task to avoid the need for a homoge-

neous ground truth image; in the work of Goldfryd et al.,22 the bias field was generated by third order polynomials; Simk�o et al.23 used a Gaussian

covariance model to generate a bias field; Nelamangala et al.24 used a bias field obtained from the Human Connectome Project, which used the

T1 weighted (T1w) and T2 weighted (T2w) brain images to approximate a bias field.25

In this work we created a synthetic 7 T dataset of T2w prostate images, which was based on simulated B1 distributions of the eight-element

coil array shown in the work of Raaijmakers et al.,26 and T2w prostate images obtained at 1.5 T. Note that this paper focuses only on T2w spin

echo sequences as they are the workhorse for diagnosis and treatment planning of prostate cancer.

The goal of this study was to correct the B1 induced bias field in prostate images acquired at 7 T. To this end, we trained four neural networks

on the synthetic 7 T dataset. For evaluation we used patient data acquired at 7 T and to demonstrate the generalizability of this method we also

evaluated the trained networks on a 3 T patient dataset.

A last note about terminology in this work. The words neural networks and networks are used interchangeably, as well as input image,

uncorrected image, and inhomogeneous image. The corrected image will always refer to the bias field corrected image. When we refer to (prostate)

images we refer to T2w prostate images unless stated otherwise.

2 | METHODS

The goal of this study was to correct the B1 induced bias field in prostate images acquired at 7 T.

To this end, we compared the performance of four neural networks trained on the synthetic 7 T dataset with images corrected by the N4

algorithm.

These four neural networks differ from each other in two aspects. Two of them used a different input image: one used individual

single-element receive array images as input (multi-channel network) and one required a coil-combined image as input (single-channel network).

In addition to this, we varied the type of target image during training: the network either was trained to predict the homogeneous image U xð Þ

directly (t-Image neural network) or predicted the bias field image B xð Þ instead to perform the bias field correction (t-Biasf neural network).

For evaluation we used the test split of the synthetic 7 T dataset, and two datasets acquired at 7 T: one contains prostate images from seven

healthy volunteers, the other contains prostate images of four patients diagnosed with prostate cancer. Further, to demonstrate the generalizabil-

ity to the clinical field strength, we also evaluated these networks trained on synthetic 7 T data on eight patients at 3 T.

For these datasets, the ground truth image is unknown and thus quantitative performance evaluation is challenging.27,28 To address this prob-

lem, we used features derived from the gray level co-occurrence matrix (GLCM)29 when a target image was absent. Additionally, two clinical

experts graded the four patient images and seven volunteer images at 7 T by filling out a questionnaire about the contrast and homogeneity of

the corrected images of two trained neural networks.

To validate the robustness of the neural networks we performed the bias field correction iteratively to measure the convergence behavior of

our method.

The creation of the synthetic dataset is explained first, followed by the details of the training procedure. Next, we discuss the post-processing

steps for the bias field correction, and we conclude with the evaluation procedure.

2.1 | Training data creation

In this section we will elaborate on the definition of each term of Equation (1), since this equation was used as the basis for the creation of the

training data.

HARREVELT ET AL. 3 of 19
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As a substitute for the homogeneous image U xð Þ we used T2w prostate images at 1.5 T. Here, we assumed that the 1.5 T image serves as a

substitute for a perfectly homogeneous image at 7 T. Despite the change in contrast, we consider the difference between homogeneous images

at 1.5 T and 7 T to be minor in comparison with the RF-field induced inhomogeneities at 7 T.

These images come from an existing dataset of 40 patients, which was obtained from our in-house patient database. Retrospective use of

clinical image data for this study was approved by our local medical ethical committee (20-519). These images contained T2w prostate images

with 90 slices, where the field of view ranged from (400 mm � 400 mm) to (446 mm � 446 mm). See Table 2 (later) for the acquisition parame-

ters and Figure 2 for a schematic overview of the data creation.

The bias field B xð Þ was based on simulated RF transmit (Bþ
1 ) and receive (B�

1 ) field distributions of the eight-transceive-coil array by

Raaijmakers et al.26 These simulations were obtained using Sim4Life (ZMT, Zurich, Switzerland) and a set of 23 body models.30 Each of the 23 sim-

ulations contained the Bþ
1 and B�

1 distribution of a fractionated dipole antenna array with eight elements.

These B1-distributions were transformed to a bias field that is associated with a turbo spin echo acquisition and follows the body contours of

a 1.5 T image.

To this end, the following steps were performed.

First, a registration step was needed to align a simulated B1-distribution to one of the 1.5 T images. To accomplish this, we registered the

body mask of the B1-distributions to the body mask of the 1.5 T image using elastix.31,32 The registration optimized a rigid and affine transforma-

tion map that was subsequently used to transform the B1-distributions.

To ensure decent quality registrations the result was only accepted when a Dice score of 0.90 or higher was obtained between the body

mask of the 1.5 T image and the body mask of the transformed B1-field distribution.

Second, realistic Bþ
1 � field distributions were constructed from the individual coil array element Bþ

1 � field distributions. For this purpose, the

phase distributions of the eight Bþ
1 � fields were normalized to that of the first coil array element, after which a shimming procedure was per-

formed.8 The following objective function was used to optimize the real valued phase settings �n:

max�n

� f �nð Þð Þ
� f �nð Þð Þ

: ð2Þ

Here, � �ð Þ is the mean operation and � �ð Þ the standard deviation of the spin echo signal function f �nð Þ, which is defined as

F I G U RE 2 Schematic representation of the processing pipeline to create synthetic 7 T images from a homogeneous 1.5 T image. First, the
simulated 7 T RF field distributions are registered to the body contour of the 1.5 T prostate image, followed by a RF shimming routine on the
Bþ

1 -field distributions. Second, the obtained transmit field is input to the signal model to imitate the signal of a T2w image. By multiplying the
obtained signal with the registered receive sensitivities (B�

1 -fields) we obtained the bias field per coil. Note that the colored (blue and orange)
boxes act as target images for the neural networks.
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f �nð Þ … sin3 ��
X8

n…1
exp �nið ÞBþ

1,n xROIð Þ

�����

�����

 !

ð3Þ

where � is the gyro-magnetic ratio and � is the pulse duration. These are set to scale the average flip angle to 90� in the region of interest xROI,

which defines a close region around the prostate.

This ROI was chosen as a square region with size 10% of the maximum width or length of the image, where the center of the ROI coincides

with the center of the pelvis.

Third, a flip angle map � xð Þ was approximated from the shimmed Bþ
1 distribution by the following linear scaling:

� xð Þ … C
X8

n…1
exp �nið ÞBþ

1,n xð Þ

�����

����� ð4Þ

where the scalar C is set such that the region xROI had an average flip angle of 90�.

Fourth, the signal model shown in Equation (5) was used to approximate the signal received by a turbo spin echo with N refocusing pulses33

given a certain flip angle map �.

S �ð Þ … exp TE=T2ð Þ
sin �ð Þ 1� cos �ð Þð ÞN exp �TR=T1ð Þ�M N,�,�ð Þ

� �

1� cos �ð Þ cos �ð Þð ÞN exp �TR=T1ð Þ
ð5Þ

where

M N,�,�ð Þ …
XN

m…1
1� cos �ð Þð Þ cos �ð Þð ÞN�m exp � TR � 2m�1ð ÞTE=2ð Þ=T1ð Þ: ð6Þ

Here, � … 2� and N is the TSE factor, which was set to 15. The T1 and T2 values in Equations (5) and (6) were based on the average between

the values of subcutaneous fat and muscle at 7 T: a T1 value of 1067.5 ms and a T2 value of 34.5 ms.34 The TR was set to 2500 ms and the TE to

90 ms,35 which corresponds to the acquisition parameters of our T2w scans at 7 T.

Note that both Equations (3) and (5) model a signal response, where the former represents a spin echo and the latter a turbo spin echo with

N refocusing pulses. For the sake of simplicity (independence from TR, TE, T1, and T2) we used Equation (3) to optimize the RF shimming coeffi-

cients �n and not Equation (5).

Finally, given the signal response to the flip angle map � we obtain the bias field per coil j by multiplying this with the simulated B�
1

distributions.

Bj xð Þ … B�
1,j xð Þ �S �ð Þ, j … 1,�,8: ð8Þ

The noise term �j xð Þ followed a complex valued normal distribution N 0,�2� �
with a fixed variance for all coils and no noise correlation, and

the imaginary and real parts followed the same distribution. The variance of this distribution was set to 2
4�	ð ÞncoilSNR2, where the SNR ranged

between 8 and 20. Here, we used no correlation between the individual coil elements; per coil element, the real and imaginary noise components

had equal variances.

With the defined homogeneous image U xð Þ, bias field Bj xð Þ, and noise term �j xð Þ per coil j, the synthetic 7 T image is given by

Vj xð Þ … Bj xð Þ �U xð Þþ�j xð Þ, j … 1,�8: ð9Þ

The set of images defined by Equation (9) was used to train the multi-channel neural network. For training of the single-channel network we

used the sum-of-magnitude image as input:

V xð Þ …
X8

j…1
Vj xð Þ
�� ��: ð10Þ

Here, the sum of magnitudes of the individual coil array element images was taken to reduce any destructive interference over the receive

channels.

2.2 | Training procedure

The resulting synthetic dataset was based on 23 sets of simulated B1-field distributions and 40 prostate images at 1.5 T. We performed the data

split such that each of the 23 models and 40 patients resides in either the training (70%), test (20%) or validation (10%) dataset. In case of

HARREVELT ET AL. 5 of 19
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rounding errors, we favored the training set. For example, this means that the training set is created by combining 17 unique B1 distributions and

data from 28 patients. Since each patient has 90 slices this resulted in 42 840 synthetic 7 T training images. By separating the B1 distributions

and patient data before the creation of the synthetic 7 T data we guarantee that there is no information leaking into the test or validation set.

We trained four neural networks with the input and target according to Table 1. The neural networks used a ResNet-18 architecture36 with

EvoNorm normalization. This network had 22 048 449 parameters. The perceptual style loss37 was used for optimization in combination with the

L1 loss for the homogeneous networks and a relative difference Lrel loss with a smoothing factor in the denominator for the bias field networks:

Lrel ytrue,ypred
� �

…
ytrue �ypred
�� ��

1þytrue
: ð11Þ

This relative difference loss was implemented to make the single- and multi-channel bias field network more robust to large intensity varia-

tions that can be present in the bias field. Since in some areas of the predicted bias field the value is equal or close to zero, the +1 term in the

denominator was added to avoid explosion of the loss term for small values of ytrue.

The overall loss is then given by the following equation:

L ytrue,ypred
� �

… 
1H iepoch �nepoch
� �

LX ytrue,ypred
� �

þ
2Lpercp ytrue,ypred
� �

: ð12Þ

Here, the parameters (
1, 
2) were chosen empirically to be (5, 15) and (2, 24) when training a t-Image network and t-Biasf network, respec-

tively. The function H :ð Þ is the Heaviside step function, which is active when iepoch �nepoch is larger than zero, so an additional loss was used in a

later stage of the training process. The LX loss is Lrel when training a t-Biasf network, or the L1 loss when training a t-Image network. When we

trained the t-Biasf network we used a lag in the Heaviside step function of five epochs, which was needed for additional stability of the training process.

The Adam38 optimizer was used with a starting learning rate of 1 � 10�4 on an NVIDIA Tesla V100 32 Gb. During training the following data

augmentations were used: 10 phase shim settings that were optimized according to Equation (2) with a slight perturbation to xROI to prevent

over-fitting on a single Bþ
1 distribution in the input; randomized order of individual coil images; TorchIO39 random affine function for cropping and

resizing of the image to make the network robust to size variations. For this transformation the following parameters were used: scale ranges from

0.25 to 4, degrees from �10� to 10�, and image translation for both x and y from �50 to 50 pixels. The rotation is performed around the center,

the default padding value is zero, and isotropic scaling is used. Given the range of the random affine function and the varying shim settings, we

expect to bridge the distance between the number of model parameters and the number of unique training examples.

Each network was trained for a maximum of 500 epochs. After each epoch the validation loss curve was used as a stopping criterion. If the

current validation loss did not improve the average validation loss curve over the previous 20 epochs for 20 consecutive epochs, then the training

was finished. In practice, this resulted in a training range of 250�500 epochs.

Finally, all images were resized to (256, 256) after data augmentation to limit GPU memory usage.

Note that the adapted phase shim settings for the data augmentation sometimes result in decreased Bþ
1 levels inside the prostate. Since the

time duration of the pulse is set such that the prostate receives a 90� flip angle, for such cases the periphery of the anatomy would show more

severe inversion bands and inhomogeneities.

2.3 | Post-processing

During inference, a patch and stitch approach is used, with a patch size of (256, 256) and stride of 128.

For the t-Biasf neural networks the sums of magnitudes of the input image(s) were divided by the output (bias field) to obtain a bias field

corrected image.

T A B L E 1 Overview of the used models and their associated input and target images.

Model name Input Target

Single-channel t-Image (neural) network
V …

P8

n…1
Vj xð Þ
�� �� U xð Þ

Multi-channel t-Image (neural) network Vj xð Þ, j … 1::8 U xð Þ

Single-channel t-Biasf (neural) network
V …

P8

n…1
Vj xð Þ
�� �� B xð Þ

Multi-channel t-Biasf (neural) network Vj xð Þ, j … 1::8 B xð Þ

6 of 19 HARREVELT ET AL.
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To reduce the chance of visible hallucinations from predictions of the t-Image neural networks, we used a smoothed bias field for the correc-

tion of the input image. This smoothed bias field was obtained by first dividing the sum of magnitudes of the input image(s) by the predicted

homogeneous image, which resulted in a bias field. Then this bias field was smoothed by a square averaging kernel of size M=32b c, where M is the

maximum width or height of the image. This specific kernel size was obtained via trial and error. After this, the sums of magnitudes of the input

image(s) were divided by the smoothed bias field to obtain the final bias field corrected image.

2.4 | Evaluation

Evaluation was performed on the test split from the synthetic dataset, two datasets acquired at 7 T and one at 3 T. Apart from the test split, we

lacked a ground truth image, which posed a challenge to the evaluation task. To tackle this, we used three quantitative metrics and a qualitative

assessment by two clinical experts. Both experts have more than 5 years of experience at the UMCU in abdominal radiology.

For the evaluation on the test split we used the structural similarity index measure (SSIM40), the Wasserstein distance (WD41), and the root

mean squared error (RMSE) between the homogeneous target image and the corrected image. On datasets without a ground truth, we used fea-

tures derived from the GLCM29 and a relative change of these features.

The qualitative assessment consisted of a questionnaire on all 7 T data with three questions per subject that were related to the change of

contrast in the prostate, homogeneity in the prostate and surrounding tissue, and homogeneity over the full body. The clinical experts graded

images that were corrected by both the single-channel t-Biasf and t-Image neural networks.

A GLCM is calculated for non-overlapping patches, which have a size of 33% of the minimum width or height of the corrected image. Each

patch is min�max normalized and cast to an 8-bit image to make it compatible with the implemented GLCM module.

Each GLCM contains a distribution of co-occurring pixel values at a given offset. These offsets are given by a distance and angle. In this work

we chose a distance range from 1 to 5 mm with 1 mm increments and used six angles with increments of 60�.

This results in a matrix of size (256, 256, 5, 6), where the first two dimensions correspond to the number of pixel values (=28) and the last

two to the distance range and angles covered. Using this GLCM we derive the Homogeneity and Energy:

Homogeneity … �mn

X Pijmn

1þ i� jð Þ2

 !

ð13Þ

Energy … �mn

X
P2

ijmn

� �
ð14Þ

where Pijmn is a single element of the GLCM and the function �mn :ð Þ takes the average over the patches and offsets denoted by m and n. Homoge-

neity is a feature that corresponds to images with a GLCM that has values that are close to the main diagonal, and the Energy feature captures a

level of uniformity in the image. These features were chosen since they do not correlate with each other.42

These features derived from the GLCM offer no absolute interpretation as an RMSE would give. Therefore, we define a relative change

between the GLCM-derived feature values of two images. In practice this means that we evaluate the relative change of the corrected image to

its uncorrected image.

Xrelative …
X �Xreference

Xreference
ð15Þ

where X and Xreference contain the GLCM-derived feature values of an image and its reference image. This feature shows how much an

uncorrected image has improved in terms of the selected GLCM feature.

For the test split, for which the target image was present, we also calculate the relative change between the target images and the

uncorrected images.

The volunteer dataset at 7 T used the coil setup as demonstrated in the work of Raaijmakers et al.26 This dataset consists of seven volunteers,

for whom we acquired one slice per subject. This small study was approved by the local medical ethics committee and all subjects signed informed

consent prior to inclusion in the study. These images were acquired without SENSE or CLEAR reconstruction. The exported data contained the

complex images per coil element to test the multi-channel networks.

The patient dataset at 7 T was acquired with a similar coil setup as to that demonstrated by Steensma et al.43 This coil array contains addi-

tional loop receivers compared with the coil array by Raaijmakers et al.26 This involves a multi-slice acquisition of four patients diagnosed with

prostate cancer that contains 18 slices. During acquisition a SENSE factor of 2.5 was used, and CLEAR to improve homogeneity. For reconstruc-

tion all 24 receive elements were used. Here, the data were exported to the DICOM format, making it applicable only to the single-channel net-

works. A majority of these images are more heavily affected by RF inhomogeneities due to suboptimal RF shimming of the prostate.
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The dataset acquired at 3 T consists of eight patients and 720 slices in total. This dataset was acquired as a treatment planning scan for

patients who were scheduled for prostate cancer radiotherapy. We used this dataset to demonstrate the generalizability of the trained networks

to a clinical field strength. Retrospective use of clinical image data for this study was approved by our local medical ethical committee (20-519).

We refer to Table 2 for the acquisition parameters per dataset.

To demonstrate the robustness of the neural networks we performed the bias field correction in an iterative fashion for the trained neural

networks. Convergence to zero of the difference between subsequent corrected images demonstrated the stability of the method.

3 | RESULTS

The results are presented per dataset, where we show the quantitative metrics and four examples of bias field corrected images. Note that the

target image in this section refers to the homogeneous image U xð Þ, and not the bias field B xð Þ.

3.1 | Test split

In Figures 3 and 4, we show four synthetic test images to give a visual impression of the correction. The bias field correction is most visible in the

subcutaneous fat layer, where we observe a greater reduction from the results of the t-Image neural networks and a somewhat lesser reduction

from the t-Biasf neural networks. However, in Figure 4, it is visible that the prostate tissue has changed for most results of the t-Image neural

networks.

Performance metrics for the bias field correction on the test split are presented in Table 3. The inhomogeneous images in this dataset have

an average Homogeneity and Energy of 0.07 and 0.04, respectively, whereas all the target images have an average Homogeneity and Energy of

T A B L E 2 Overview of the scan parameters for the test datasets. Note that ranges are indicated when the imaging parameters vary over the
dataset.

Dataset TR (ms) TE (ms) Pixel spacing (mm2) Slice thickness (mm) Number of images

1.5 T 1535�1635 120�278 0.582�0.882 2 3600

3 T 1635�5392 80�360 0.582�0.832 2�3 720

7 T volunteer 5000 90 0.492�0.682 3 7

7 T patient 10 000 140 0.282 3 70

F I G U RE 3 Four examples of corrected images from the test split data set. For each example, the sum of magnitudes of the input images, the
result of the N4 algorithm, and the results of the four proposed neural networks are presented. In general, all investigated networks are able to
significantly reduce the inhomogeneity patterns for the synthetic 7 T images. The results from the t-Image neural networks show fewer residual
artifacts in the reconstructed image, although these methods can be affected by contrast changes inside the prostate, as in the second and fourth
examples. The results from the t-Biasf neural networks are affected by reconstruction errors due to inaccuracies in the predicted bias field. These
manifest themselves as hyperintensities.
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