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Introduction
Drug-induced liver injury is a leading cause of the failure of novel candidate drugs during
end-stage clinical trials [1]. This drug-induced liver injury occurs despite the compound hav-
ing already successfully undergone a battery of costly and time-consuming tests prior to
human testing. The current gold standard for evaluating a compound for potential adverse
outcomes is the two-year rodent �� ���� bioassay. However, a survey published in 2000
reported that just 43% of the toxic effects of pharmaceutical compounds in humans were cor-
rectly predicted by tests in rodents [2]. Moreover, the two-year rodent �� ���� bioassay is
expensive, time-consuming, and necessitates the sacrifice of large numbers of animals to
screen a single compound. The apparent lack of sensitivity and specificity in predicting poten-
tial adverse outcomes in humans, coupled with growing ethical concerns surrounding animal
testing, has motivated the development of alternatives to the traditional rodent �� ���� bioas-
says, most notably �� ����� cellular models [3]. These �� ����� toxicogenomics approaches often
use human cell lines, eliminating the need for animal testing while aiming to provide a more
relevant prediction of adverse effects for the human system.

Multiple studies have reported promising results in differentiating between subclasses of
carcinogenicity [4, 5] and predicting hepatotoxicity of a novel compound using genomic sig-
natures of human �� ���� disease states [6–13]. Nevertheless, �� ����� assays are not without
their limitations. These cell-line models lack the systemic interplay with other tissues that exist
�� ����. Consequently, the �� ����� models may differ in functionality and metabolism from the
tissues they represent. Moreover, immortalised human cell lines, such as hepatic HepaRG and
HepG2 cells, are frequently used in toxicity testing as they continue to grow and divide indefi-
nitely �� ����� [14]. However, these cell lines are often tumour-derived, and liver-specific meta-
bolic functions tend to vanish as culture time increases [15, 16]. Therefore, genomic signatures
obtained from these cell lines following exposure to a compound may not necessarily reflect
human �� ���� disease states, particularly if we are trying to go beyond the simple classification
of potential toxicants and derive mechanistic insight into modes of action of toxicity. Conse-
quently, there is a need for new methods that can better relate the output from these �� �����
exposure assays to potentially relevant human �� ���� disease states.

A recent study has reported notable success in applying deep learning architectures to
translate time series of hepatic gene expression following an exposure from one domain to
another, predicting both human �� ����� and rat �� ���� gene expression patterns in response
to a previously unseen compound given a measured time series of rat �� ����� gene expression
[17]. However, training deep learning models require large volumes of data. While large data-
bases containing both rat �� ����� and rat �� ���� hepatic gene expression following exposures
to a vast array of compounds are available [18, 19], human �� ���� data is comparatively sparse
as the liver is not readily accessible for sampling. Consequentially, insufficient human �� ����
data is available to effectively train a deep learning model such as those used by O’Donovan
et al. [17] for human �� ���� gene expression predictions.

In many situations, it may be too laborious, costly, or even infeasible to obtain sufficient
data to train a reliable predictor. Transfer learning is a branch of machine learning in which
knowledge gained from solving one problem is re-used while solving another similar problem
[20]. Multiple studies have applied a range of transfer learning or domain adaptation algo-
rithms to the cross-species prediction task [21–24] with mixed success. Transfer learning
approaches have been applied to translate gene expression measured at a single time point
from clinical �� ����� models to primary human tumour profiles to better predict the mutation
status of the tumour [25] or predict a patient’s response to a particular treatment [26]. Ganin
et al. proposed a method to integrate domain adaptation and deep feature prediction in the
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context of a generalisable neural network architecture [27]. This method allows a predictor
model to be trained for an unlabelled target data set using a large, similarly distributed, labelled
data set. Ganin et al. showed their unsupervised domain adaptation method outperformed the
state-of-the-art in image processing and sentiment analysis of natural language [27].

In this study, we integrate domain adaptation within previously validated deep learning
architectures [17] using the method proposed by Ganin et al. We then apply the resulting
domain adaptation network to leverage a large publicly available data set of measured rat ��
����� and �� ���� gene expression following an exposure to a range of compounds from Open
TG-GATEs to facilitate the training of a predictor model of human �� ���� gene expression.
We also evaluate the impact of incorporating the human �� ����� data in the rat �� ����� to rat
�� ���� prediction. Finally, we explore the potential of the reduced dimensional representation
of the data generated by the bottleneck architecture of our deep neural network to classify
compounds based on toxicity.

Materials and methods

Open TG-GATEs
Open TG-GATEs is a large publicly available toxicogenomics database containing gene expres-
sion profiles from �� ����� assays in both primary rat and primary human hepatocytes and ��
���� rats following exposure to 170 compounds [18]. For the �� ����� exposures, gene expres-
sion profiles were measured at three time points (2, 8, and 24 hours) following a single expo-
sure to a given compound at three dosages (low, medium, and high) plus control, with two
biological replicates for each compound-dose combination. For the rat �� ���� experiments,
gene expression profiles were measured at four time points (3, 6, 9, and 24 hours) following a
single exposure to a compound at a low, medium, and high dosage plus a control (Fig 1). Gene
expression profiles for the rat �� ����� and �� ���� samples were generated using the Affymetrix
Rat Genome 230 2.0 Array, and human �� ����� gene expression profiles were measured using
the Affymetrix Genome U133 Plus 2.0. Array data for rat and human �� ����� and rat �� ����
exposures for all compounds were downloaded in the form of CEL files from the Open
TG-GATEs database (https://toxico.nibiohn.go.jp) and pre-processed using Affymetrix Power
Tools using the robust multi-array average normalisation method. Following normalisation,
compounds missing either time points or dosages were removed, leaving a data set of 45 com-
pounds with a complete set of measurements for use in this study (S1 Table in S2 File).

Learning examples
The rat �� ����� and �� ���� data form the source domain and will be used to train a predictor
model for the unlabelled human �� ����� target domain (Fig 1). Learning examples for the
source domain are generated by pairing the time series of gene expression values for a specific
compound-dose combination for the rat �� ����� data with a time series of gene expression val-
ues for the same compound-dose combination in the rat �� ���� data, as described previously
[17]. To maintain the structure of the data in each domain (human and rat �� ����� and rat ��
����) one of the three rat �� ���� replicates is discarded as described in [17]. As each rat �� �����
biological replicate for a given compound-dose combination is a valid match for both rat ��
���� replicates four learning examples can be generated for each compound-dose combination.
With 45 compounds, three dosages plus the control and the pairwise matching of replicates
720 labelled rat �� ����� to �� ���� learning examples are generated for the source domain. The
human �� ����� data (the target domain) is processed in the same manner as the rat �� �����
data producing 720 unlabelled human �� ����� learning examples.
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Gene sets. Microarray data measures the expression of more than 20,000 gene transcripts,
resulting in a high dimensional feature space. While Open TG-GATEs is a comparatively large
database of toxicogenomics data, the 720 labelled learning examples that can be generated
from the data are insufficient to effectively train a model that could predict genome-wide gene
expression. Consequently, it was decided to restrict our analyses to four subsets of genes
reported in literature as being associated with relevant toxicological outcomes [17] namely
gene sets linked to steatosis (developed in-house from the KEGG pathway hsa04932, S3
Table in S2 File), cholestasis [28–30], genotoxicity and carcinogenicity (GTX+C) [6, 7, 31],
and non-alcoholic fatty liver disease (NAFLD) [32]. All gene lists are filtered to contain only
known rat-human orthologs. Complete gene sets are listed in S2-S5 Tables in S2 File.

Fig 1. Overview of toxicogenomics data from TG-GATEs included in this study. Overview of toxicogenomics
measurements available from the TG-GATEs database used in this study. Gene expression profiles were measured for primary
rat and primary human hepatocytes exposed �� ����� at three time points (2, 8, and 24 hours) following exposure to 45
compounds at three dosages (low, medium, and high) plus a control. Two biological replicates were performed for each
compound-dosage combination. Gene expression profiles were measured at four time points (3, 6, 9, and 24 hours) for rat
hepatic tissue exposed �� ���� to 45 compounds at three dosages (low, medium, and high) plus a control. Three biological
replicates are conducted for each rat �� ���� exposure. The model is trained to predict �� ���� gene expression profile following
exposure to a compound given a time series of �� ����� data using the rat data (labelled source domain) and through the use of
domain adaptation the model can also be used to predict human �� ���� gene expression given a measured time series of
human �� ����� gene expression (unlabelled target domain).

https://doi.org/10.1371/journal.pone.0292030.g001
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Model. Previous work has demonstrated the ability of deep artificial neural networks
(ANNs) with a bottleneck architecture to outperform classical machine learning techniques in
translating time series of gene expression from rat to human and from �� ����� to �� ���� in rats
[17]. Here, Ganin et al.’s unsupervised domain adaptation [26] is applied to the previously vali-
dated ANN architecture to train a model to predict human �� ���� gene expression from mea-
sured human �� ����� gene expression (target domain) using a large labelled data set of rat ��
����� and �� ���� gene expression following exposure to a variety of compounds (source
domain). Domain adaptation is achieved through the introduction of a domain classification
arm from a central hidden layer (Fig 2). The network is trained to maximise the loss in predict-
ing the domain label of the input data (rat or human �� �����). The inclusion of a gradient
reversal layer, which leaves the input unchanged during forward propagation but reverses the
gradient during backpropagation by multiplying the gradient by a negative scalar, allows the
domain classifier to be trained in tandem with the �� ���� prediction using the standard back-
propagation algorithm [33]. Through tuning of both the learning rate and the rate at which
human data is introduced into the model (lambda), the network constructs a common latent
space for the rat and human �� ����� data which is indiscriminate to the domain of the data.

The structure of the deep neural network was optimised using a grid search. The final net-
work consists of five hidden layers containing 135, 96, 64, 120, 190 nodes respectively (Fig 2).
All layers use rectified linear unit (ReLU) activation [34], except for the output layer, which
uses sigmoid activation. A single domain classification layer consisting of eight nodes was
introduced at the central hidden layer (Fig 2). The gradient reversal parameter lambda
increases at a logarithmic rate during training from zero to one, as in the original publication
[27]. The domain classification error was calculated using SoftMax cross entropy [27]. The
prediction error was calculated as the sum of absolute errors between the measured rat �� ����
gene expression and the model-predicted gene expression pattern.

The model was trained using Momentum [35], a stochastic-gradient descent algorithm that
accelerates convergence to an optimum solution by accumulating gradients from previous
steps.

Experimental setup. In order to assess how well the model would perform for a previ-
ously unseen compound, while still maximising the number of learning examples available for
training, leave-one-compound-out cross-validation was used. All sixteen instances for a given
compound were removed from the source and target domain. The model was trained on the
remaining data. The excluded instances were then used to validate the prediction accuracy of
the model. This procedure was repeated for all 45 compounds.

When training the network with domain adaptation, the error term was composed of the
sum of the prediction error and domain classification error. The network was also trained
without adaptation, in which case the error term consists of just the prediction error. The vali-
dation error for each compound-dose combination is the mean absolute error between the
model-predicted time series of gene expression and the measured time series of rat �� ����
gene expression for each gene in the gene set. The overall performance of the model was
assessed using the average validation error over all compound-dose instances.

Latent space classification
The bottleneck structure of the neural network generates a reduced dimensional representa-
tion of the time series of both rat and human �� ����� gene expression data. For example, the
GTX+C gene set consists of 76 genes measured at three time points �� �����, resulting in a
228-dimensional feature space in the input layer which is reduced to 64 dimensions in the
third hidden layer. In recent years, a number of studies have evaluated the reduced
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Fig 2. Schema of the implemented unsupervised domain adaptation network. Domain labels are appended to the measured time series of rat (source
domain) and human (target domain) �� ����� gene expression to form the input for the model. The bottleneck architecture of the deep neural network
finds a reduced dimension representation of the data. A one-layer classifier is trained to predict the domain labels (rat or human) from the
64-dimensional latent space. The inclusion of a gradient reversal layer in this domain classifier multiples the gradient by a negative scalar in the
backpropagation step. Thereby maximising the loss in predicting the domain label. Resulting in domain adaptation as the model cannot discriminate
between the source and target domains. Simultaneously the model is trained to reconstruct �� ���� gene expression patterns using the measured time
series of rat �� ����� gene expression. The network architecture was optimised using a grid search to find a well-performing network. The final network,
depicted above, contains five layers consisting of 135, 90, 64, 120, and 190 nodes respectively, with a domain classification layer containing eight nodes.
All layers use ReLU activation, except for the output layer, which uses sigmoid activation.

https://doi.org/10.1371/journal.pone.0292030.g002
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dimensional latent spaces generated by variational autoencoders or non-negative matrix fac-
torisation as novel methods for classification in high dimensional genomic data. These low-
dimension latent space representations have been successfully utilised to identify subclasses of
tumours from RNASeq data [36], predicting drug responses [37], and de-convoluting cell
composition of samples [38]. As a result, we decided to explore the 64-dimensional embedding
of the rat and human �� ����� gene expression data in common latent space as a potential
method for the classification of toxicity of a novel compound under the assumption that com-
pounds that trigger similar responses in gene expression would cluster together in the com-
pressed latent space. Of the 45 compounds included in this study, the carcinogenicity status
(yes/no) is known for 25 compounds [39]. A linear support vector machine (SVM), weighted
to account for the unequal number of class labels (19 carcinogenic versus just 6 non-carcino-
genic), was trained to discriminate between known carcinogenic and non-carcinogenic com-
pounds using the 64-dimensional embedding of the rat and human �� ����� gene expression
for the low, medium, and high dosages for the labelled compounds during leave-out-out cross-
validation. The accuracy of the classification predictions was assessed using the prediction for
the labelled leave-one-out compound. This process was repeated to train a predictor of geno-
toxicity using the 32 compounds for which genotoxicity labels are available [39]. A list of
carcinogenicity and genotoxicity labels used for the compounds can be found in S1 Table in
S2 File [39].

Data availability

• All data analysed during the current study are available from the Open TG-GATEs database
(https://toxico.nibiohn.go.jp).

• All model scripts are publicly available via a GitHub repository at https://github.com/
shauna-odonovan.

• A minimal formatted dataset to reproduce the analysis presented in this study can be found
at https://tue.data.surfsara.nl/index.php/s/ABfvy3so7UaOO8V.

Results

Domain adaptation
Fig 3 demonstrates the effect of domain adaptation on the training of our network. Each row
visualises the rat (blue) and human (red) �� ����� gene expression data along the first two prin-
cipal components for the embeddings for the first three layers of the network.

The encoding of the rat and human data for the network trained without domain adapta-
tion is depicted in the first column. For this network, the rat and human data are clearly sepa-
rable along the first principle component in each layer, which captures at least 90% of the
variance in the data. The second column details the encoding of the rat and human data in the
same network trained with domain adaptation. While the rat and human data are still separa-
ble along the first principal component in the first layer, the first principal component explains
just 36.9% of the total variance. In the second layer, the border between the rat and human
data along the first and second principal components becomes less distinct, with the first com-
ponent accounting for just 18.3% of the total variance in the data. In the third layer, it is no
longer possible to differentiate between the rat and human �� ����� gene expression instances
in the 64-dimensional latent space. The domain classifier predicts the data domain using the
encoding of the rat or human data from this third layer. S1 Fig in S1 File illustrates the progress
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Fig 3. Visualisation of the effect of domain adaptation on the embedding of rat and human data in the network. Visualisation of the embedding of
the rat (blue) and human (red) �� ����� gene expression data in the first three hidden layers of the fully trained network. The first column depicts the
embedding of the rat and human �� ����� data for the network trained without domain adaptation. The second column shows the embedding of the rat
and human data for the same network architecture trained with domain adaptation. The first row shows the embedding of each dose-compound
combination for both the rat and human �� ����� data in the first layer of the network, consisting of 135 nodes, projected along the first two principal
components of the data. The second and third rows depict the embedding of the rat and human data in the second and third layers of the network
respectively. The rat and human data remain disjoint in the first three layers of the network trained without domain adaptation (column one). When
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of the domain adaptation during training, showing that at the mid-way point of training the
domain adaptation has effectively merged the rat and human data.

Human �� ���� predictions
The model utilises �� ����� and �� ���� gene expression data from rats to predict time series of
human �� ���� gene expression given a measured time series of human �� ����� gene expression
following exposure. The network’s human �� ���� predictions differ in gene expression pattern
from the human �� ����� input and the corresponding measured rat �� ���� gene expression
pattern for a given dose-compound combination, as demonstrated in Fig 4. In addition, the
model-predicted gene expression patterns for a given gene are different for different dosages
and compounds, as shown in Fig 4 for a sample gene NR0B2, a transcription regulator
involved in the regulation of NPAS2-mediated hepatic lipid metabolism that has been associ-
ated with hepatic genotoxicity. The model predictions for all 76 genes from the GTX+C gene
set following exposure to the previously unseen compounds hexachlorobenzene and omepra-
zole are shown in S2 and S3 Figs in S1 File No time series of �� ���� human hepatic gene
expression data following exposure to any of the compounds included in this study could be
obtained to validate the model predictions.

Rat �� ���� predictions
Fig 5 depicts the model predictions for rat �� ���� gene expression patterns for a selection of
genes from the GTX+C gene set for a medium dosage of the previously unseen compound
hexachlorobenzene. As before, the measured time series of rat �� ����� gene expression (model
input) is shown in red and the biological replicates of measured rat �� ���� gene expression are
in blue. While the network trained without domain adaptation predicts the general trend of
the rat �� ���� gene expression over the four time points (dashed yellow line), the network
trained with domain adaptation captures more of the finer details in the gene expression pat-
tern, out-performing the model trained without domain adaptation (solid yellow line) (Fig 5).

Comparing the average mean absolute error in predicting rat �� ���� gene expression for
the network model trained with and without domain adaptation indicates that the model
trained with domain adaptation produces more accurate predictions of rat �� ���� gene expres-
sion for each of the four toxicologically relevant gene sets (Table 1). In fact, the average mean
absolute error is significantly lower for the predictions made using the UDA model than using
the model without domain adaptation for the Cholestasis, NAFLD, and GTX+C gene sets (p-
values < 0.05, using a two-tailed paired t-test).

Latent space classification
The training accuracy in predicting carcinogenicity using the latent space embedding of rat
and human �� ����� gene expression for genes in the GTX+C gene set of 85.2% indicates that a
complete linear separation between carcinogenic and non-carcinogenic compounds within
the 64-dimensional latent space of the network is not possible. The accuracy in predicting
carcinogenicity for a previously unseen compound using the network trained with domain
adaptation is 67.3%. Moreover, the specificity and sensitivity of the method (31.9% and 78.5%
respectively) indicate a high false positive rate (Table 2). Predicting genotoxicity labels for a

the network was trained with domain adaptation the embedding of the rat and human data begin to overlap in the second layer, and are no longer
differentiable in the third layer.

https://doi.org/10.1371/journal.pone.0292030.g003
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compound using the latent space proves to be a more challenging task. The training accuracy
drops to 78.5% for the embedding trained with domain adaptation and 73.3% for the network
trained without domain adaptation. The accuracy in predicting genotoxicity status of a previ-
ously unseen compound is just 51%.

Discussion
In recent years toxicogenomic assays have achieved notable success in predicting the hepato-
toxicity of a novel compound [4–13]. However, relating changes in gene expression profiles
from these rodent and cell line assays to relevant human outcomes still proves challenging.
Here, we applied transfer learning to leverage a large publicly available database of �� ����� and
�� ���� gene expression in rats to train a deep learning model to predict human �� ���� gene
expression. We demonstrate that this method has successfully achieved domain adaptation,
with the rat and human data being indiscriminate in the network latent space. Moreover, the

Fig 4. Input data and model predictions for time series of the gene NR0B2 for multiple doses of hexachlorobenzene and omeprazole. The first row
depicts the measured time series of rat �� ����� gene expression (red) and both measured biological replicates of rat �� ���� gene expression for the gene
NR0B2 following exposure to a low (columns 1 and 2) and medium (column 3) dose of hexachlorobenzene (HCB) and a medium (columns 4 and 5)
and high dose (column 6) of omeprazole (OPZ). The model prediction of the time series of rat �� ���� gene expression of NR0B2 for each exposure are
shown in yellow. The second row displays the corresponding measured time series of NR0B2 in primary human hepatocytes exposed �� ����� and the
model predicted time series of NR0B2 for the human �� ���� system.

https://doi.org/10.1371/journal.pone.0292030.g004
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inclusion of the human �� ����� data significantly improved the accuracy of the rat �� ���� gene
expression predictions.

Incorporating human �� ����� gene expression data in the domain adaptation network sig-
nificantly improves the accuracy of the rat �� ���� gene expression predictions for three of the

Fig 5. Data and model predictions for a medium dosage of the validation compound hexachlorobenzene for the UDA network trained with
domain adaptation for the GTX/C gene set. The figure shows the time series of rat �� ����� gene expression (red), the input to the model, and both rat
�� ���� biological replicates (blue) measured following an exposure to a medium dosage of hexachlorobenzene for a selection of genes from the GTX/C
gene set. The model predictions of rat �� ���� gene expression pattern for each gene in shown in yellow. The solid yellow line shows predictions of rat ��
���� gene expression patterns for the network trained with domain adaptation. The dashed yellow lines indicate the predicted rat �� ���� gene
expression patterns for the same network trained without domain adaptation. The rat �� ���� prediction for the model trained with domain adaptation
outperforms those when the model is trained without domain adaptation. When the biological replicates have a similar gene expression pattern the
model performs well (Ccna2, Nr0b2, Rbpms, Ccne1). Given the instance matching used to generate machine learning examples in this study, when the
biological replicates have contradictory gene expression patterns the model predictions are inaccurate (Afp, Gstk1).

https://doi.org/10.1371/journal.pone.0292030.g005

Table 1. Average mean absolute error from leave one out cross validation for the model trained with and without domain adaptation predicting rat �� ���� gene
expression the four toxicologically relevant gene sets identified from literature.

Gene set Number of genes with domain adaptation without domain adaptation p-value
Cholestasis 18 0.0401 � 0.0106 0.0409 � 0.0109 0.0000915��

NAFLD 22 0.0369 � 0.0071 0.0372 � 0.007 0.0339��

Steatosis 50 0.0378 � 0.0055 0.0379 � 0.0064 0.615
GTX/C 76 0.0337 � 0.0087 0.0371 � 0.224 0.00003��

The table shows the average validation error (� one standard deviation) for the network model trained with (column 3) and without domain adaptation (column 4) for
each of the four toxicologically relevant genes sets identified from literature. The validation error is the mean absolute error between the measured time series of rat ��
���� gene expression and the model predicted rat �� ���� gene expression pattern using leave-one-out cross validation for the 45 compounds included in this study. The
fifth column provides the p-value indicating if the difference in average mean absolute error between the network trained with domain adaptation and without domain
adaptation are statistically significant, measured using a two-tailed paired t-test. The model trained with domain adaptation has a lower average mean absolute error
than the model trained without domain adaptation for all gene sets included in these analyses, the error has significantly decreased for the Cholestasis, NAFLD, and
GTX+C gene sets. Column 2 indicates the number of genes included in each gene set.

https://doi.org/10.1371/journal.pone.0292030.t001
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four toxicologically relevant gene sets included in this analysis, illustrated in Fig 5. While the
network trained without domain adaptation predicts the general trend in the gene expression
pattern (Fig 5, dashed yellow lines Ccena2, Nr0b2, Rbpms, and Afp) the improvement in pre-
diction accuracy for the network trained with domain adaptation is evident, with the solid yel-
low lines more closely predicting the dynamics in measured time series of gene expression.
The network trained without domain adaptation was optimised solely to predict the time series
of rat �� ���� gene expression. Therefore, it was somewhat unexpected that training the net-
work to predict both the rat �� ���� gene expression and the domain label would result in a sig-
nificantly improved prediction of rat �� ���� gene expression. We postulate that incorporating
the human �� ����� data introduces additional, relevant information, serving as a form of regu-
lation for the rat �� ����� to rat �� ���� prediction task preventing overfitting.

The deep learning network produces physiologically plausible predictions of human �� ����
gene expression given a measured time series of human �� ����� gene expression following
exposure to a previously unseen compound. However, given the invasive nature of sampling
the liver, no relevant measured time series of human �� ���� gene expression data could be
obtained to validate our model predictions. Nevertheless, the model predicted human �� ����
gene expression patterns differ from the time series of human �� ����� gene expression. Dem-
onstrating that the model is not simply reproducing the input it receives. Moreover, the
human �� ���� predictions also differ from the rat �� ���� predictions for the same gene, indi-
cating that the model is not simply predicting the same output for both the rat and human. In
addition, the predicted human �� ���� gene expression pattern for a given gene alters for differ-
ent exposure conditions (dosages and compounds), demonstrating that the model is not pre-
dicting the same human �� ���� gene expression pattern in all instances for a given gene. While
we do not have the data to validate the quality of our human �� ���� predictions, Ganin et al.’s
method for domain adaptation was shown to outperform the state-of-the-art algorithms in
image recognition and natural language processing In the future, should relevant human ��
���� data become available our model predictions could be validated. Moreover, Ganin et al.’s
method can be easily generalised to semi-supervised learning, allowing even sparse human ��
���� data to be integrated into training to improve human �� ���� predictions [27].

Recent studies have reported some success in separating subclasses of tumours from the
latent space embedding of tumour-derived RNA-Seq data [36] or identifying processes
involved in rare diseases from a reduced dimension latent space trained using large publicly

Table 2. Training and validation accuracy in classifying carcinogenicity and genotoxicity of a compound from latent space embedding of rat and human �� �����
gene expression data.

GTX+C gene set Training accuracy Validation accuracy sensitivity specificity
Carcinogenicity (n = 15)
With domain adaptation 0.0852 0.673 0.785 0.319
Without domain adaptation 0.807 0.590 0.741 0.111
Genotocxicity (n = 31)
With domain adaptation 0.785 0.510 0.299 0.638
Without domain adaptation 0.733 0.559 0.222 0.763

The first section of the above table lists the training and validation accuracies for a linear support vector machine trained to predict carcinogenicity status of a previously
unseen compound using the 64 dimensional embedding of the rat and human �� ����� gene expression from the third hidden layer of the neural network trained for the
GTX+C gene set using leave-one-out cross validation. The linear SVM was trained to predict carcinogenicity for the latent space from the latent space embedding
networks trained both with domain adaptation (row 1) and without domain adaptation (row 2). The lower section presents the training and validation errors for the
linear SVM trained to predicting genotoxicity from the latent space embeddings of the rat and human �� ����� gene expression data.

https://doi.org/10.1371/journal.pone.0292030.t002
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available databases of gene expression data [40]. While our network was trained to predict
time series of rat �� ����� gene expression and not carcinogenicity or genotoxicity status, we
hypothesised that compounds that induce a carcinogenic or genotoxic phenotype would trig-
ger similar temporal gene expression responses and would therefore cluster together in the
reduced dimension common latent space. Consequently, the embedding of the rat and human
�� ����� gene expression data in the 64-dimensional common latent space was explored as a
potential method for the classification of toxicity of a novel compound. Our analysis indicated
it was not possible to get a complete linear separation between carcinogenic and non-carcino-
genic compounds in the common latent space generated by our model, with an accuracy of
just 67.3% in predicting the carcinogenicity status of a previously unseen compound. The
latent space classification falls short of existing classification methods which achieve over 80%
accuracy in classifying carcinogenicity in combination with the Ames mutagenicity assay [6].
Classifying genotoxicity proved to be more difficult, with the SVM trained on the latent space
representation achieving an accuracy of just 51% in predicting the genotoxicity status for a
previously unseen compound. As it currently stands, the reduced dimensional common latent
space generated by our models does not appear to be a viable novel method for the classifica-
tion of compound toxicity. However, our network has been trained using just 720 learning
examples of gene expression for just 76 genes (GTX+C gene set). Green and Way trained their
variational autoencoder to reconstruct transcriptomic profiles of 5,000 genes using RNASeq
data for 10,459 tumour and tumour-adjacent normal samples from The Cancer Genome Atlas
[36]. In future work, the classification accuracy of the reduced dimensional latent space could
be improved by integrating gene expression data from other data sets, increasing the number
of learning examples and, consequently, the number of genes that can be included.

The open TG-GATEs dataset was selected for this study as it is a comparatively large dataset
containing gene expression profiles for �� ����� and �� ���� rat as well as human �� ����� follow-
ing exposure to a range of compounds. In order to maximise the number of learning examples
available to train our model we elected to consolidate data from the 45 available compounds.
While supplementing the data set with data from other sources would have further increased
the number of learning examples, it would also introduce additional variation between the
data due to differing experimental protocols that may negatively impact the domain adapta-
tion. Consequently, we decided to restrict our analysis to just the TG-GATEs data set. Never-
theless, the addition of gene expression profiles from other toxicological databases, such as
DrugMatrix [19], may improve the accuracy of the model predictions of gene expression and
classification of compounds using the reduced dimensional common latent space. The UDA
approach proposed by Gannin et al. provides a highly flexible way to achieve domain adapta-
tion within the context of a generalisable neural network architecture and has been successfully
applied to a number of challenges including image processing [41] and natural language pro-
cessing [27]. In this study, we apply UDA to gene expression data from different species. In Fig
3 we show that without domain adaptation the rat and human data cannot be combined and
occupy distinct regions of the latent space, however when the network is trained with domain
adaptation the rat and human data are indiscriminable. Moreover, we show that the incorpo-
ration of human data significantly improves the temporal accuracy of the rat �� ���� gene
expression prediction. In the future this generalisable UDA architecture could prove to be a
valuable tool for the improved integration of data from multiple sources or data platforms, cor-
recting for batch effects or variation in experimental protocol between the data sets. UDA may
also facilitate the training of predictor models for limited data sets of human �� ���� data by
leveraging larger, publicly available data sets from �� ����� and animal studies.

The domain adaptation network was trained using Momentum, a stochastic gradient
descent algorithm. The gradient reversal parameter (lambda) increased from 0 to 1 at a
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logarithmic rate, as suggested by Ganin et al. [27]. When optimising the network architecture
it was observed that the domain classifier is highly susceptible to mode collapse, whereby the
network maximises the loss in predicting the domain of the input data by simply predicting
human for every case. This may be due to the limited number of learning examples, as mode
collapse was more prevalent when training the network for the larger gene sets. The frequency
of mode collapse was reduced by placing a lesser weight on the domain classification error dur-
ing the early phase of training. In instances when mode collapse occurred, the network was
retrained. We implement the domain adversarial training of a neural network as proposed by
Ganin et al. which necessitated the introduction of a gradient reversal layer to allow the maxi-
misation of loss in the domain prediction to be trained in tandem with the �� ���� prediction.
As we use data with binary labels (rat or human) we hypothesise that minimising the loss on
predicting the incorrect domain label would achieve the same effect on training the network as
maximising the loss on predicting the correct domain label without the need for the gradient
reversal layer.

To conclude, we have successfully applied domain adaptation in the context of a deep neu-
ral network; merging rat and human gene expression data to facilitate the prediction of human
�� ���� gene expression using a large, labelled set of rat data. Incorporation of the human ��
����� gene expression data when training the network significantly improves the accuracy of
the predictions of rat �� ���� gene expression patterns following exposure to a previously
unseen compound. The ability of the reduced dimensional common latent space generated by
our network to discriminate between sub-classes of toxicity was comparable to existing meth-
ods for compound classification. In future work, we anticipate that with sufficient learning
examples the reduced dimension latent space trained in our network would outperform exist-
ing methods for compound toxicity classification.
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