
 Eindhoven University of Technology

MASTER

Remaining Useful Lifetime (RUL) Estimation for Predictive Maintenance in Semiconductor
Manufacturing

Adaloudis, Max

Award date:
2024

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/1ef0cc50-e5af-4401-b0f8-d9ab2d01465d

Department of Industrial Engineering & Innovation Sciences - OPAC Group

Department of Mathematics and Computer Science - Data Mining Group

Predictive Maintenance & Diagnostics Group - D&E SW DDP DATA department (ASML)

Remaining Useful Lifetime (RUL) Estimation for Predictive Maintenance in
Semiconductor Manufacturing

Master Thesis

Max Adaloudis

Graduation supervisors
Dr. C. Fecarotti

Dr. J. Lee
Prof. Dr. M. Pechenizkiy

Dr. S. Schwanz Dias

Company supervisors (ASML)

Dr. H. Rostami
Dr. P. v. Hertum

Ir. J.M. Gonzalez Huesca

January 10, 2024

Abstract

In semiconductor manufacturing, sensors are widely used for monitoring and quality control purposes.
However, these sensors are subject to degradation over time due to various factors, such as exposure to high
temperatures and radiation, which can lead to defects and malfunctions. Therefore, accurate estimation of
the Remaining Useful Lifetime (RUL) of alignment sensors is crucial to prevent unexpected failures, reduce
downtime, and improve productivity.

In this thesis, a method is proposed for RUL estimation of a component using autoencoders and LSTM
networks. Autoencoders are a type of neural network that can learn a compressed representation of
input data, which can capture the underlying patterns and features in the data. The first step is to an
autoencoder to learn the feature representations of the signal data obtained from the sensors. The encoded
features are then used as input to an LSTM network, which can model the temporal evolution of the
sensor’s degradation.

The proposed approach has several advantages over existing methods. First, it can effectively capture the
complex and subtle patterns in the alignment sensor data, which are difficult to detect using traditional
statistical methods. Second, it can handle the sequential nature of the data and capture the temporal
dependencies between the sensor’s degradation and its operational history. Third, it can handle missing
data and adapt to different operating conditions, which makes it more robust and generalizable.

The proposed method is evaluated on a real-world dataset of component degradation and lifetime from
customers of the company, and compared with several baseline methods, including linear regression and
auto regressive models. The experimental results showed that the proposed method outperformed the
baseline methods in terms of RUL estimation accuracy and robustness to missing data. We also performed
a sensitivity analysis to evaluate the impact of different hyperparameters on the performance of the method.

In summary, the proposed method is a promising approach for RUL estimation of alignment sensors in
semiconductor manufacturing, which can help improve the reliability and efficiency of the manufacturing
process. The method can be easily adapted to other types of sensors and equipment in various industries,
where proactive maintenance is critical for avoiding unexpected failures and reducing downtime.

Keywords: RUL, autoencoders, LSTM, prognostics, predictive maintenance

i

Preface

Firstly, I would like to extend my thanks to my university supervisors, in particular M. Pechenizkiy and C.
Fecarotti, for the help and support during this thesis. In addition, I would like to thank the university for
challenging me throughout my academic career and I am grateful to have had so many opportunities to
learn valuable aspects of the research area that I am passionate about. The expertise and feedback of my
professors and fellow students have been instrumental in shaping my thesis and enabling me to complete
this thesis successfully. I am grateful to the entire faculty and staff of Eindhoven University of Technology,
for providing a stimulating academic environment and the resources needed to conduct this thesis.

I would also like to express my appreciation to my company supervisor, Dr. Rostami, for her support and
collaboration on this project. Their insights and expertise have been crucial in providing practical insights
into the industry context and helping me to develop a real-world perspective on my research during my
thesis. In addition, I would like to express gratitude to the Predictive Maintenance & Diagnostics Group
within ASML Development & Engineering, for providing a cohesive and welcoming environment that made
me feel part immediately, and several people in this group whose support was vital in my thesis research.

In conclusion, I am truly grateful for the support and encouragement of all those who have been part of
my academic journey. Their contribution has been invaluable in enabling me to complete this thesis, and I
am confident that the skills and knowledge I have gained through this experience will serve me well in my
future endeavors.

ii

Contents

Abstract i

Preface ii

Contents iii

List of Figures v

List of Tables vii

Glossary viii

1 Introduction 1
1.1 Motivation . 1

1.1.1 ASML Semiconductor Manufacturing . 1
1.1.2 Alignment . 1
1.1.3 Predictive Maintenance . 2

1.2 Research Questions . 2
1.3 Thesis approach . 5
1.4 Outline and contribution of the thesis . 6

2 Domain Knowledge 7
2.1 Domain Knowledge . 7

2.1.1 Semiconductor Manufacturing . 7
2.1.2 The Alignment Process . 9
2.1.3 Component X . 12

2.2 Maintenance Policy . 13
2.2.1 Corrective Maintenance (CM) . 13
2.2.2 Preventive Maintenance (PM) . 14

3 Related Work 17
3.1 Predictive Maintenance Approaches . 17

3.1.1 Data-driven approaches . 17
3.1.2 Physical model-based approaches . 18
3.1.3 Knowledge-based approaches . 19
3.1.4 Hybrid Approaches . 20
3.1.5 Comparison of approaches . 21

3.2 RUL Models . 21
3.2.1 Similarity models (Run-to-Failure Data) . 21
3.2.2 Degradation Models (Threshold Data) . 23
3.2.3 Survival Models (Lifetime data with/without covariates) 25

3.3 Auto-encoder Networks . 27
3.3.1 Variational Autoencoders (VAE) . 28

iii

CONTENTS iv

3.4 Recurrent Neural Networks (RNN) . 29
3.4.1 Gated Recurrent Units (GRU) . 30
3.4.2 Long-Short-Term-Memory (LSTM) Networks . 31

3.5 Maintenance Optimization . 33

4 Problem Description 35
4.1 Reliability and Maintenance Policy . 35
4.2 RQ1: Dimensionality Reduction of High-Dimensional Signal Data 36
4.3 RQ2: Prediction of Health Indicator Trajectories . 37
4.4 RQ3: Estimating RUL from the Reliability Function . 38
4.5 RQ4: Using RUL estimations in maintenance policy . 40

5 Solution Approach 42
5.1 CRISP-DM Methodology Applied in RUL Estimation Master Thesis 42
5.2 Prognostic RUL Pipeline . 44

5.2.1 Phase I - Dimensionality Reduction AutoEncoder Network 44
5.2.2 Phase II - Health Trajectory LSTM Network . 47
5.2.3 Phase III - RUL Prognostic Estimator . 49
5.2.4 Phase IV - Application of RUL-estimation for maintenance policy 49
5.2.5 Definition of data-driven maintenance policy using the Prognostic Tree-Based RUL

Estimator . 50

6 Experimental Study 51
6.1 Introduction . 51
6.2 Data . 51

6.2.1 Alignment data . 52
6.2.2 Maintenance Data . 52

6.3 Phase I - Dimensionality Reduction . 54
6.4 Phase II - Health Trajectory Prediction . 58
6.5 Phase III - RUL Prognostic Estimator . 63
6.6 Phase IV - Application of RUL-estimation for maintenance policy 66

7 Conclusions 70
7.1 Summary of the results . 70
7.2 Research Contributions . 71
7.3 Limitations and Future research . 71

Bibliography 73
Further References . 83

A Swap date correction algorithm 85

B Predictive Maintenance Pipeline 86

List of Figures

2.1 Semiconductor Manufacturing - Front/Back End (FE/BE) phases [19] 7
2.2 The Semiconductor Manufacturing process using Photolithography 8
2.3 ASML with location of wafer stage [25] . 9
2.4 Wafer stage in ASML’s TWINSCAN machines [26] . 10
2.5 Wafer stage technologies: XT and NXT [30] . 11
2.6 Alignment (Measurement, Exposure) in ASML’s TWINSCAN machines [28] 11
2.7 Hierarchy of Maintenance Policies . 14
2.8 Maintenance Policies with asset condition . 15
2.9 Remaining Useful Lifetime in the component degradation curve [79] 16

3.1 Overview of PdM methods for RUL prediction by modeling approach [86] 17
3.2 Overview of PdM methods for RUL prediction by available data [121] 18
3.3 Physics Based cumulative fatigue damage model microelectromechanical systems (MEMS) [127] 19
3.4 Knowledge-based fuzzy logic system for predictive maintenance [134] 20
3.5 Similarity-based RUL estimation using Run-to-Failure data [121] 22
3.6 Degradation based RUL estimation using known failure thresholds [121] 24
3.7 Survival-based RUL estimation using Lifetime Data [121] . 26
3.8 Illustration of censored data [167] . 26
3.9 Structure of AE networks [171] . 28
3.10 Comparison between a GRU and LSTM network [172] . 33

5.1 The CRISP-DM Process Diagram . 42
5.2 Predictive Maintenance Model Pipeline . 44
5.3 AE Encoder (architecture . 46
5.4 AE Decoder architecture . 47

6.1 Distribution of component lifetimes . 53
6.2 Correction in swap times shown a corrected date (blue) . 54
6.3 Autoencoder Convergence Plot with d = 4 . 54
6.4 Autoencoder Convergence Plots for different dimensions . 56
6.5 Comparison between PCA and AE for different latent dimensions 57
6.6 Autoencoder (d = 4) sMAPE system-to-system variation and histogram 57
6.7 Correlation (kendall-tau) between input alignment metrics and output AE health indicators

(d = 4) . 58
6.8 Temporal stability of error for PCA baseline (d = 10) and the AE (d = 4) 58
6.9 Convergence plots of GRU and LSTM health trajectory prediction models (d = 4) 60
6.10 Example of LSTM results for two different health indicators (HI1, HI2) for a component 61
6.11 Example of a ’bad’ LSTM trajectory prediction for two different health indicators (HI1, HI2) of

a component . 62
6.12 Histogram and Kernel Density Estimated distribution of Fréchet Distances of LSTM and Baseline 63
6.13 Fitted Decision Tree on Failure classification yt;i 2 f0; 1g . 64
6.14 Impact of max. tree depth on balanced accuracy . 64
6.15 Example of RUL estimation with d = 4 health indicators . 65
6.16 Predicted vs. Observed RUL estimation bias . 66

v

LIST OF FIGURES vi

6.17 Cost simulation results for various pain ratios (cc=cp) . 67
6.18 Comparison of alpha/beta risk and SD/USD time between maintenance policies 69

List of Tables

1.1 Failure modes observed for the alignment phase(s) of component X between 2020-2022 2

6.1 Results of Dimensionality Reduction on train and validation dataset 55
6.2 Fréchet Distance metrics for LSTM and Baseline Model . 62
6.3 Average Fréchet Distance per health indicator for LSTM and Baseline Model 63
6.4 Results of RUL prediction used Prognostic Estimator . 65
6.5 Comparison of Model-Based PM vs. Time-Based PM for various pain ratio’s. 68

vii

Glossary

AE An autoencoder is a type of artificial neural network that learns to encode data and reconstruct it
from a lower-dimensional representation, typically used for unsupervised learning and dimensionality
reduction tasks. 27

CBM Maintenance policy where maintenance is performed based on the current observed machine or
component condition. 13, 14

CM Maintenance performed after the machine or component has failed. 13

HI A health indicator is a metric or measurement used to assess and monitor the overall health or
performance of a system, process, or organization. 3

LSTM Type of recurrent neural network that is capable of learning long-term dependencies and is often
used for sequence modeling and natural language processing. 31

MTTR Average time it takes to repair a failed system or equipment. 2

PdM Maintenance policy where maintenance is performed based on the predicted future machine or
component condition. 13–15

PM Maintenance performed before the machine or component has failed. 13, 14

R2F Run-To-Failure, the act of using machines/components until they break down. 13

RUL Remaining Useful Lifetime. 1, 15

TBM Maintenance performed on regular fixed intervals. 13

viii

Chapter 1

Introduction

1.1 Motivation

1.1.1 ASML Semiconductor Manufacturing

Predictive Maintenance presents a major opportunity for capital-intensive industries whereby component
health is a significant cost driver [1], [2]. Failure of critical assets has been identified by manufacturers
as bearing the single most significant risk factor in operational performance. [3]. Predictive maintenance
strategies can help these capital-intensive industries to maximizing Remaining Useful Lifetime (RUL),
reduce overall maintenance costs by preventing unnecessary inspections, and improve safety and plant
reliability by monitoring, and thereby modeling, component health [3]–[5]. Moreover, predictive maintenance
has shown significant application in the semiconductor industry [6] for extending RUL.

ASML is a major Dutch multinational corporation in development and manufacturing of photolithogra-
phy systems, used in the Front-end-of-line (FEOL) processing phase in the semiconductor industry [7].
Photolithography is a critical step within FEOL semiconductor manufacturing, and involves the optical
imaging of patterns onto a silicon wafer that is covered by a thin layer of photoresist material. ASML’s
systems project deep ultraviolet (DUV) or extreme ultraviolet (EUV) light through the reticle that holds
the blueprint of the pattern to be printed. This light is then shrank by an optics system (lenses in DUV,
mirrors in EUV) and focused on the wafer’s photoresist layer [8].

1.1.2 Alignment

Alignment System. A crucial part of this process is ensuring alignment between the wafer and the
imaged reticle markers with respect to the sensor location. This is done in several ways, such as alignment
between the wafer and the wafer chuck (wafer align), alignment between the chuck and the wafer stage
(stage align) and alignment of all of the aforementioned with respect to the reticle (reticle align). The
wafer stage in ASML’s TWINSCAN machines uses two wafer chucks, containing an alignment side and a
exposure side on diagonal ends. While one wafer is being measured/aligned on the alignment side, the other
wafer is being exposed on the exposure side [9]. These alignments rely on positional measurements done by
several sensors, such as the SMASH [10] and ORION [11] sensors, as well as several image sensors that use
markings on the chuck to calculate metrics such as X/Y position, level and tilt, as well as metrics related
to wafer mapping [12], [13]. One such sensor, referred to as component X, is used in this alignment
process to calculate metrics using several alignment markers during several stages of alignment, and is
therefore critical in production.

Component Failure. If component X fails, it is no longer possible to ensure proper wafer alignment
for lithographic exposure, so that the alignment system and therefore entire semiconductor manufacturing
process halts. When this happens, a component X module cannot be repaired and has to be swapped
entirely. After a swap, additional time is spent on restarting the manufacturing process, calibration, and
refitting, during which throughput is severely limited. Major customers use component X in many

1

1.2. Research Questions

different production sites worldwide for altogether more than a thousand ASML lithography systems. The
maintenance activities relating to component X issues are tracked by these customers in a so-called swap
list, which contains historical information with preventive and corrective maintenance for each equipment.
Based on this swap list, between 2020 and 2022, many such maintenance events were observed and logged
by these customers, approximately 70% of which were related to alignment failures, with the rest being
planned downtime or other various reasons. Of the observed failures, the vast majority were caused by
issues with component X. As 1.1 indicates, the vast majority of failures were related to alignment issues
with component X.

Failure Type Failure Mode Relative Frequency

component X
Alignment Mark issue 66.1%
Alignment Sensor issue 15.7%
Other issues 10.4%

non-component X
Issue in other components (collateral) 3.5%
Material deformation 2.0%
Other 2.3%

Table 1.1: Failure modes observed for the alignment phase(s) of component X between 2020-2022

1.1.3 Predictive Maintenance

Maintenance costs (man hours) are incurred and logged for each swap, but the cost of downtime due to
loss of production is not included, which is orders of magnitude greater. One measure used in semiconductor
manufacturing and by many customers is a cost of downtime of ¿20 per second, or ¿72k per hour [14]–[17].
Using this metric and based on the Mean-Time-To-Repair (MTTR) and logged maintenance costs in
2020-2022, labor/maintenance costs are insignificant compared to downtime costs. That is, the cost of
corrective maintenance (downtime) cc is orders of magnitude greater than the cost preventive/planned
maintenance cp, or cc � cp. This illustrates that reliability is critical for a component X module, and
preventing unplanned downtime can yield significant cost savings.

Although system availability relies on many components aside from component X to function, component
X is shown to be a major cause of system downtime. Therefore, tracking equipment health with respect
to component X and applying maintenance at the right time can yield economic benefits by reducing
downtime and preventing unnecessary maintenance. Basic condition monitoring is currently used to
estimate the state of the component X in terms of component health, but estimating its Remaining Useful
Lifetime (RUL) is currently on of the biggest challenges for three reasons. First, since unplanned downtime
is significantly more costly than planned downtime, estimating RUL for component X can reduce the
costs of downtime, thereby yielding economic benefit [18]. Second, if RUL can be modeled, maintenance
can be adjusted to be applied only when it leads to a demonstrable improvement in component health,
thereby preventing unnecessary inspections. Third, if RUL and therefore component health can be modeled
for component X, this can be vital information for tracking component health of related components,
since health degradation within component X can corrupt both the measurement and exposure side.
Therefore, this research project aims to tackle the problem of RUL estimation for component X, treating
it as a system.

1.2 Research Questions

Several wafer alignment metrics are logged for each system on a daily basis, which is used an indication
of component health. These metrics measure alignment performance with so called alignment marks,
which can be seen as reference points. Therefore in practice, a deviation from normal conditions in these
metrics is almost always an indication that something is wrong, signalling the need for maintenance
on-site. Currently, a so-called ’traffic light model’ is used, which assigns a green (healthy), orange (possible
degradation), or red (unhealthy/degraded) classification to the component. However, this model only

2

1.2. Research Questions

tells whether a component is currently healthy, but not how long it takes before the component condition
becomes unhealthy. As previously mentioned, this time until a component’s condition goes from healthy to
unhealthy is known as Remaining Useful Lifetime (RUL), typically denoted as a random variable
TR. Since the current traffic light model does not extrapolate to the future and looks at current or or
very short term future state, ASML and customers cannot plan maintenance efficiently. Whenever the
traffic light model indicates an unhealthy state, it is already too late (reactive maintenance). The goal is
to have a prediction mechanism that can predict RUL or TR so that maintenance can be planned to use as
much useful lifetime as possible (maintenance too early) while also avoiding excessive unplanned downtime
(maintenance too late). This leads to the following main research question:

RQ: Can ASML reduce long term expected maintenance costs and scanner unplanned downtime
due to component X failure by predicting RUL based on signal data?

Given that RUL is represented by TR as a stochastic unknown variable, this involves estimation of the
probability that TR is at least t, i.e. P[TR � t]. This is also known as the reliability function R(t), with
R(t) � 0 for all t � 0.

However, the probability that the system will remain to function for some time t would depend on the
current condition (known) and expected future condition (unknown). A system showing widely fluctuating
behavior or out-of-specification alignment metrics is less likely to survive as long as a system indicates
healthy alignment metrics. Therefore, the signal data can be as a set of predictor variables on the probability
of failure as outcome variable. In the context of predicting RUL (remaining useful lifetime) based on
signal data, we are not considering external features because the alignment metrics primarily measure
the state of the component itself and not any external variables. Consequently, the future values of the
health indicator(s) should be dependent on their past values. This characteristic aligns with the concept of
autoregressive modeling. Although this high dimensional signal data of component X alignment metrics
can be seen as a proxy of health useful in predicting TR directly, there are several problems. First, the raw
signal data contains lots of noise since alignment markers can be affected by many other processes and are
only a proxy of component X condition. Moreover, they do not provide an easy-to-understand indication
of component health in a lower dimensional space which an engineer can use to decide when to perform
maintenance. Ideally would be defined with a single or a few main component health indicators (HI) that
capture signal drift and relations between signals (multicollinearity). This leads to the first sub research
question:

RQ1 Does there exist a lower dimensional representation of raw component X alignment
metrics that can be used to predict failure?

For RQ1, given K input signals of alignment performance signals, the goal is to find a mapping of X 2 RjKj
to Z 2 RjDj, where D is a set of reduced features such that jDj < jKj. Let fD : RjKj ! RjDj be such
dimensionality reduction function, with Z := fD(X) denoting the lower dimensional representation or
encoding of X using fD. Then f�D1 : RjDj ! RjKj denotes the inverse of such function that converts
the lower dimensional representation back to the original K features. Now X̂ := f�D1(Z) denotes the
reconstructed signals using the lower dimensional representation. The goal is to ensure that the difference
between the reconstruction X̂ and the original X is small while at the same time using as little dimensions
as possible, so that jDj is as small as possible.

Although a representation of component health at a given time can be helpful to engineers in making
immediate decisions, it does not provide a future outlook on how the component health is likely to evolve.
To estimate RUL therefore, it is critical to find a prediction mechanism of this component health indicator
into the future, given observed signals up until some time t. Given such prediction mechanism, the only

3

1.2. Research Questions

remaining requirement for predicting RUL is finding a rule or threshold for these health indicators that
predicts a probability of survival (failure). Therefore, obtaining a robust prediction mechanism for (derived)
component health indicators from raw signal data is the second step in reducing maintenance costs, leading
to the following research question:

RQ2 How does component health evolve over time, and can its trajectory be predicted based on
historical observed signal data?

From the previous research question we assume that from signal data X there exists dimensionality
reduction function fD that can transform X to a lower dimensional representation Z of features that
measure component health. Suppose signal data is collected over time in fixed an ordered time unit interval,
so that Xt and denotes the value(s) of the original set of K signals at time unit t 2 N. Similarly, let
Zt := fD(Xt) denote the value(s) of the reduced dimensional set of D health indicators at time t 2 N by
applying the dimensionality reduction function fD from RQ1. Suppose we make use of the last w values
to predict the next p values. Thus w denotes the observation window size and p denote the trajectory
forecast horizon. Then RQ2 asks to find a trajectory prediction function fT : Rw�jDj ! Rp�jDj, such that
we have a mapping h

Zt�w+1; : : : ;Zt
i
!
h
Ẑt+1; : : : ; Ẑt+p

i

Moreover, note that since Zt := fD(Xt), if we let f̂D(Xt) denote the forecasted prediction of the outcome
of applying the dimensionality reduction function fD we can write this mapping as

h
fD(Xt�w+1); : : : ; fD(Xt)

i
!
h
f̂D(Xt+1); : : : ; f̂D(Xt+p)

i

Ideally, w should be as small as possible, since larger w means that more data must be collected before
a forecast can be made. However, as w decreases, it becomes more difficult to forecast health indicator
trajectories accurately since there is less available information. The forecast horizon p should ideally be as
large as possible since it allows ASML to predict the health of component X further ahead. However, as
p increases, it becomes more difficult to predict health indicator trajectories over a longer horizon due to
uncertainty over time.

With RQ1 responsible for finding a lower dimensional representation of the component health and RQ2
responsible for predicting this representation into the future, the third step is finding a mapping or function
of health indicator features to probability of survival until some time t, i.e. R(t). One such rule could
be a simple threshold-based rule, but any rule that maps a set of health indicators to probability of
failure/survival could be used. Currently, field engineers sometimes already use such a simple judgement-
based rule, where if a certain type of alignment metric drops below a threshold, preventive maintenance
should be performed. This rarely happens, so that in reality little preventive maintenance is performed and
often the component is used until failure, even though the cost of corrective maintenance cc is orders of
magnitude greater than the cost of preventive maintenance cp. Given that data is collected that measures
the alignment signal data of systems, health indicator features can be extracted. Moreover, given that
data is collected on the historical failures of systems due to component X, it is possible to infer relations
between health indicator features and failure behavior, so that probability of failure and RUL can be
predicted. The goal is therefore to find a mapping of component health indicators to probability of survival
R(t), leading to the following research question:

RQ3 How can RUL be estimated based on observed component health up until now and future
predicted component health trajectories?

4

1.3. Thesis approach

From the previous research questions, assume that from signal data Xt with features K a lower dimensional
health indicator representation using D features exists, denoted by Zt with jDj < jKj. Furthermore, given
a series of observations during a window, assume trajectories can be predicted into the future for a certain
window size and forecast horizon. Data is collected that logs both the historical measurements of signal
values of systems with component X. For those systems that signal data is collected, historical data is also
collected that logs the failures and therefore lifetimes of systems with failures due to component X. This
research question aims to infer patterns in a reduced dimensional representation of this signal data that
predict the failure and RUL of these machines. Let R(t j tnow) denote the conditional probability that a
system with component X will survive until time t given current time tnow. To tackle RQ3, the objective
is to develop a function g : RjDj ! [0; 1] such that g(t; tnow) denotes R̂(t j tnow) based on information until
tnow. Thus, g(t; tnow) gives an estimate of the probability that a system will survive until time t based on
health indicator features at time tnow. The expected RUL can then be estimated from evaluating g at many
time points. Reliable estimation of RUL can yield economic benefits since production and capacity planning
can be adjusted if the failure time of a system is known with some degree of certainty. Additionally, if
a component’s predicted functional lifetime does not meet customer requirements, changes to its design
specifications could be suggested. However, the main reason for predicting RUL is to subsequently optimize
maintenance policy, i.e. when to perform maintenance to minimize the long term average cost per unit
time due to corrective costs cc and preventive costs cp. This leads to the final sub research question:

RQ4 How does a data-driven maintenance policy using RUL prognostics compare against
current time-based maintenance policy?

To avoid confusion when talking about multiple instances of component X in separate machines, as
mentioned previously, ’system’ refers to the subsystem in scope using component X. Assume a set of n
systems with failure times tR1 ; tR2 ; : : : ; tRn , where a cost cc is incurred for corrective/reactive maintenance
and a cost cp is incurred for preventive maintenance, with cc � cp.

As a baseline policy, a baseline, maintenance is scheduled at intervals of length � in days. Thus for a
system i with lifetime tRi , if tRi � � cost cc is incurred over a cycle of length tRi , and if tRi > � cost cp
is incurred over a cycle of length � . In contrast to the baseline policy based on a fixed time interval of
length � , a data-driven maintenance policy � assigns a maintenance time �i to each system i using the
estimated probability of failure R̂(t j tnow) until time t at time tnow, which can be computed from g(t; tnow)
from RQ3. Thus, � : [0; 1] ! R+, is a function that maps a probability of failure to a maintenance
time �i 2 R+. To map the predicted failure probability from to a maintenance time, a hyperparameter
denoting the probability threshold � 2 [0; 1] is used. Since we now do not have one maintenance interval
� for all systems but instead a maintenance time �i for each system i, cost per system is given by
ci(�i) = 1ftRi � �ig �

�
cc=tRi

�
+ 1ftRi > �ig � (cp=�i). Let C(�) denote the average long-term maintenance

cost per time unit. The objective of RQ4 is to find the optimal probability threshold �� := argmin� C(�)
that minimizes the average maintenance cost.

1.3 Thesis approach

We propose a multi-stage methodology for RUL estimation of based on signal data using autoencoder
networks for signal dimension reduction, LSTM models for health indicator trajectory prediction, and a
prognostic survival function estimator for RUL. The reduced dimensionality of derived health indicator
information enables efficient and effective trajectory prediction using LSTM models. The prognostic
survival function estimator for RUL then utilizes these predicted trajectories from the LSTM and relevant
covariates to estimate the Remaining Useful Lifetime. Finally, simulation-based optimization is used to
implement a data-driven maintenance policy using the prognostic failure estimator and stochastic sampling
is used to find the optimal probability threshold hyperparameter. This data-driven maintenance policy is
then compared against a baseline time-based maintenance policy across various metrics.

5

1.4. Outline and contribution of the thesis

This method is suitable to solve the problem because it takes into account the high-dimensional nature of
the data and the need for efficient and accurate feature extraction. The autoencoder networks allow for
non-linear dimensionality reduction and complex relationships between variables, which can capture the
underlying structure of the degradation profile and give an understanding of the health of the component.
The LSTM network is able to distinguish between long term degradation and short term effects to predict
the health indicator trajectories, which is crucial for accurate RUL estimation. Finally, the prognostic
survival estimator allows for the incorporation of additional relevant covariates and enables the estimation
of RUL while accounting for censoring and other forms of incomplete data.

1.4 Outline and contribution of the thesis

This thesis starts with two sections to provide a contextual (Chapter 2) and technical background (Chapter
3), after which the research problem can be formulated (Chapter 4) and tackled (Chapter 5) as a Machine
Learning problem.

Chapter 2 covers preliminaries relevant to the problem description and methodology in this research. This
includes domain knowledge (lithography process in semiconductor manufacturing, wafer alignment sensors)
and useful concepts within the research area of maintenance in manufacturing.

Chapter 3 gives an overview of the latest academic literature on predictive maintenance, RUL prognostic
methods, deep neural networks in their application to predict RUL, and finally maintenance optimization
models. This section contains all the tools and technologies that will be used in the next chapters.

Chapter 4 gives a mathematical formulation of the research problem of predicting RUL, with defined
(stochastic) parameters, mathematical lemmas/corollaries that will be used later on, and finally an objective
function for expected long-run maintenance cost.

Chapter 5 dives into the modeling of the predictive maintenance model pipeline (PdM), with sequential
phases for (I) dimensionality reduction, (II) health trajectory prediction and finally (III) RUL prognostics.
Subsequently, phase IV illustrates the efficacy of using RUL prognostics in data-driven maintenance policy
compared with a traditional time-based policy.

Chapter 6 describes the implementation, training and hypertuning and evaluation/validation for each of
the three components in the PdM prediction pipeline.

Finally, Chapter 7 outlines the main organizational implications of the development and application of
the PdM pipeline in going from raw signal data (information) to maintenance policy (action), as well as
limitations and directions for future research.

6

Chapter 2

Domain Knowledge

2.1 Domain Knowledge

2.1.1 Semiconductor Manufacturing

The semiconductor manufacturing process can be divided into a Front End (FE) where pattern images are
created onto silicon wafers and a Back End (BE) where chips are assembled (soldering), package, tested
and ultimately distributed [19]. The process is shown in Figure 2.1.

Figure 2.1: Semiconductor Manufacturing - Front/Back End (FE/BE) phases [19]

Photolithograpy is the main technology in the FE stage and revolves around a manufacturing process that
uses light to produce miniscule patterned films of material over a substrate, i.e. a round silicon wafer. More
precisely, deep ultraviolet (UV) light is beamed through a reticle mask containing a pattern to convert a
geometric design image (mask) to a physical light-sensitive chemical (photoresist) printing on the substrate.
When exposed to UV light, the photoresist coating either hardens or breaks down depending on the type
of chemical used. The accuracy in creating patters onto wafers is limited by the wavelength of the light,
which is why ASML uses extreme ultraviolet light (EUV), which has a wave-length of just 13.5 nanometers,
14 times shorter than DUV light [8]. Once this layered pattern in the photoresist material has been created
with UV exposure, a process called etching is used to remove the softer parts of the coating, so that the
hardened/solid parts reveal the desired pattern. Finally to make the transistors, the layered pattern after
exposure and etching is treated to give it electrically conductive/insulative properties where needed. The
resulting dies are then sliced from the wafer and further processed in the BE manufacturing phase. Figure
2.2 shows a diagram of the semiconductor manufacturing process with the key steps:

7

2.1. Domain Knowledge

Figure 2.2: The Semiconductor Manufacturing process using Photolithography

� Cleaning and preparation During this step, the silicon wafer is treated chemically with hydrogen
peroxide to remove any particles and contamination accumulated during transportation or handling.
[20]. In addition, the wafer substrate is heated to high temperature to remove any moisture, and a
liquid material is applied to promote adhesion of the photo-resist deposition for the next phase [21].

� Deposition. In this step, a thin layer of photo-resist material are deposited onto the silicon layer.
This is done with a method known as spin coating, where the wafer is spun rapidly while the
photoresist material is deposited to ensure a thin and uniform coating [22].

� Exposure. This is the step where the photo-resist layer is beamed by a powerful UV light source
through a lens and pattern (reticle mask) that contains an image to be transferred onto the wafer
(photolithography). The photoresist material responds to this UV exposure so that precise parts of
the material either harden or become soft according to the image. The softened material becomes
soluble and when these parts are removed using chemicals in the next step, the pattern from the
image emerges on the wafer. [23]

� Etching. During this step, the degraded resist material is removed to reveal the intended pattern.
The wafer baked and developed, with some of the resist being washed away to reveal a (3D) pattern
of channels that matches the exposed pattern.

8

2.1. Domain Knowledge

2.1.2 The Alignment Process

Since extremely high precision is required in the lithography process, it is important to ensure that the
wafer is precisely where it needs to be, so that during exposure the desired pattern is created exactly
within the photo-resist [24]. Within lithography machines, the movement of wafers with respect to the
light source and mask (reticle stage) and lens system (optics) occurs on a wafer stage, shown on Figure 2.3.

Figure 2.3: ASML with location of wafer stage [25]

The wafer stage is a complex system of sensors to measure position and motors to move the wafer precisely.
During exposure, bursts of UV light are beamed through the reticle stage and optics onto the wafer at
high intervals, whereby a so called wafer stage chuck containing the wafer moves the wafer to ensure that
the correct parts of the wafer are exposed to UV light.

Fundamental to the wafer stage is the alignment system, which uses sensors to measure position (X/Y) and
leveling (tilt) using alignment marks [26], [27]. ASML uses a concept called TWINSCAN, where the wafer
stage has a measurement (metrology) side and an exposure side, so that two wafer chucks can be processed
at the same time and swapped when needed [26]. On the measurement side, stage align (alignment of chuck
to the wafer stage) and wafer align (alignment of wafer to chuck) are performed, whereas on the exposure
side, next to stage alignment, reticle alignment is performed (alignment of chuck to reticle). Figure 2.4
shows a TWINSCAN wafer stage with two wafers (round silicon disks), each carried by a chuck (square
case that contains the wafer disk). The chuck on the left is at the measurement side, whereas the chuck on
the right is at the exposure side.

9

2.1. Domain Knowledge

Figure 2.4: Wafer stage in ASML’s TWINSCAN machines [26]

During both measuring and exposure, alignment is a critical factor for production, with each side (measure-
ment/exposure) following a sequence of interdependent alignment steps. Figure 2.6 shows this sequence
of steps for the measurement and exposure side of the wafer stage. The alignment system refers to the
high-level process that covers both sides on the wafer stage. For the measurement side, a so called Advanced
Alignment system (AA) goes through a stage align, wafer align and wafer mapping phase [28]

There are two types of wafer stage systems employed by ASML, being XT and NXT, shown in Figure
2.5. In XT systems, the chucks are mounted onto horizontal bars (H drive) on the side of the wafer stage,
whereas on the newer NXT systems, a magnetically based movement system is directly integrated into the
chuck so that the chuck itself moves across the wafer stage. System throughput is mostly determined by
the time needed to swap the chuck from measurement side to exposure side, with the newer and lighter
NXT platform able to perform this swap faster [29]. Both XT and NXT platforms use alignment sensors
whereby alignment marks on the chuck are optically measured to compute position and tilt of the wafer
with respect to the chuck, wafer stage and reticle.

10

2.1. Domain Knowledge

Figure 2.5: Wafer stage technologies: XT and NXT [30]

Figure 2.6: Alignment (Measurement, Exposure) in ASML’s TWINSCAN machines [28]

On the Measurement side, a sequence of several types of alignment are performed to ensure wafer-stage
alignment:

� Stage align [27], [31]. In this phase the wafer chuck is aligned with respect to the wafer stage that
it will be moved on during production. The stage align consists of several level (tilt) and alignment
(positional) sensors that measure markings on the chuck and use these measurements to compute
alignment metrics.

11

2.1. Domain Knowledge

� Coarse Wafer Align (COWA) [32], [33]. During Coarse Wafer Align (COWA), the position of
the wafer within the chuck is of concern. During wafer handling and related production processes,
the wafer may not be precisely aligned within the chuck, so during this stage X/Y offsets between
the wafer and the chuck are measured based on alignment marks on both the wafer and wafer chuck,
and subsequently these offsets are corrected for in the alignment system.

� Fine Wafer Align (FIWA) [10], [32], [33]. After COWA, only the horizontal offset between the
wafer as a whole and the chuck it is in have been measured. This phase involves a more detailed
alignment between wafer and chuck and looks at X/Y/Z offsets at many points by measuring a larger
number of alignment marks on the wafer itself.

� Wafer mapping [13], [34], [35]. During wafer mapping, alignment is done with respect to
the topology of the wafer. Although wafers may seem completely flat, there are tiny height-wise
deformations that are the result of handling, or one of the prior steps such as coating/deposition,
which can cause misalignment and problems in lithography.

On the Exposure side, the alignment sequence has two main steps that aim to ensure wafer-reticle alignment:

� Stage align [36], [37]. After alignment on the measurement side, (reticle) stage alignment is
performed again on the exposure side. This is done since swapping the wafer from the measurement
side chuck to exposure side chuck (stage swap) can introduce tiny variations that result in misalignment
and are undesired for production. Reticle align [38]–[40]. This alignment step ensures that the
reticle that is used to project the pattern onto the photoresist layer is precisely aligned with the
wafer. Irregularities may come from variations in the lens and optics system, which therefore are
accounted for during this stage.

2.1.2.1 Overlay

Overlay in semiconductor manufacturing is one of the most important metrics in semiconductor manufac-
turing, and measures the alignment accuracy between successive layers on a semiconductor wafer [35], [41],
[42]. This measurement is critical in defining the nanometric positional accuracy of corresponding features
on different layers, and improvements in overlay directly contribute to higher yields and better quality in
semiconductor manufacturing [43]. Maintaining strict overlay tolerances is both technically demanding
and cost-intensive [44]. Moreover, overlay measurement itself is expensive and requires extensive scans of
multiple layers in the wafer to verify if they are exactly aligned according to the desired pattern [45]. The
measurement and control of overlay has become so complex that nowadays it is typically done by separate
machines specifically designed to metrology systems such as ASML’s Yieldstar platform [46]–[48]. The
alignment process with its complex sequence, is a way to at least avoid overlay loss due to misalignment.

2.1.3 Component X

The majority of lithography systems manufactured by ASML use Component X during several alignment
steps. There are several versions of this sensor that all aim to ensure reliable measurements during
several of the alignment phases described above. Newer ASML systems use a redesigned sensor improving
measurement accuracy and reliability. Thus machines equipped with Component X that do not use
the more advanced sensor are more prone to failure due to alignment issues, which often are the result of
degradation due to prolonged UV exposure in the alignment marks measured by Component X. This
makes Component X more problematic but also economically more interesting to look at than the
redesigned versions from a reliability and predictive maintenance standpoint, as the potential gain is larger.
Hence, this thesis focuses on Component X, although the methodology is generalizable enough so that
a similar process can be applied to machines equipped with redesigned and improved sensors, with the
caveat that the incremental gain is lower for systems that have a higher reliability.

12

2.2. Maintenance Policy

The alignment phase where Component X works in includes several alignment marks which are used to
determine a specific type of alignment in the aforementioned steps, and Component X measures these
alignment marks in different configurations. Alignment marks in general are designated patterns on the
wafer or chuck, which when hit with UV light, reflect this light back and thereby can be used to measure
one or more metrics related to stage align, reticle align or wafer align. Over time, this process suffers from
degradation in the sensors or alignment marks due to physical effects during production [49].

2.1.3.1 Alignment Performance Metrics Data

Ideally, measurements at different configurations and across Component X modules should be almost
identical or be highly correlated. Component X alignment is tracked by two types of signals, with one
type relating to signal correlation [50] and the other relating to normalized signal strength [51]. In total 16
such alignment metrics are measured many during the processing of a wafer, several times during each
production run. Both metrics (correlation, normalized signal strength) are in the range [0,1] where a value
of 1 indicates a perfect correlation and signal strength, therefore optimal alignment performance. A lower
value indicates some type of degradation in performance, which results in misalignment and ultimately
failure.

2.2 Maintenance Policy

Maintenance policy development and optimization is extensive field of research and thus there is an
abundance of literature that aims to categorize various maintenance types or maintenance policies into
a framework. In general, maintenance can be performed reactively on failure, known as corrective
maintenance (CM) or proactively, known as preventive maintenance ((PM). With PM methods, maintenance
is performed before failure either in fixed intervals (Time-Based Maintenance or TBM), based on observed
component condition (Condition-Based Maintenance or CBM), or based on predicted future component
condition (Predictive Maintenance or PdM). Although most researchers divide maintenance policies
first into the preventive (PM) and corrective (CM) types [52]–[54], there has been ambiguity on what
constitutes preventive maintenance. As a result, some researcher use a more narrow definition of preventive
maintenance (PM) that excludes any component condition information, i.e. PM is any maintenance policy
where maintenance is planned in fixed intervals, so that PM is essentially TBM. Under this definition,
CBM and PdM do not fall under the category PM [55]. In this thesis, we use the broader definition
preventive maintenance that includes any maintenance performed before failure, irrespective of whether
this is triggered by a fixed interval planning (TBM), the component’s condition (CBM) or predicted future
component behavior (PdM). Figure 2.7 shows this hierarchy of maintenance policies.

2.2.1 Corrective Maintenance (CM)

In corrective maintenance (CM), also known as reactive maintenance, maintenance is performed after
breakdown. The machine or component is used in a Run-to-Failure (R2F) manner [56]. When used as
a maintenance policy, CM carries no overhead of condition monitoring and ensures that machines are
not over-maintained. However, the drawback is that CM typically results in high production downtime,
overtime labor and high costs of spare parts, and a risk of collateral damage and secondary failure [57].
Together, these factors are reasons why the cost of unplanned downtime is typically orders of magnitude
greater than the cost of planned downtime [58]. The higher cost of spare parts for unplanned downtime
comes from the fact that suppliers generally ask additional fees for expedited shipping [59], [60]. In those
situations where there is little difference between the costs of unplanned downtime and planned downtime,
a policy using only CM may be the most economically sound option.

13

2.2. Maintenance Policy

Figure 2.7: Hierarchy of Maintenance Policies

2.2.2 Preventive Maintenance (PM)

Preventive maintenance (PM) as a collection of methods all aim to reduce the sum of costs of downtime
and cost of maintenance by performing maintenance before the machine or component has failed [61]. The
simplest form is so-called block-based or time-based maintenance (TBM), where maintenance is performed
at fixed intervals [62]. When this interval is too small, maintenance is performed too early or frequently,
leading to excessive maintenance costs. When this interval is too large on the other hand, maintenance is
performed too late or infrequently, leading to excessive downtime costs. In a TBM policy the maintenance
interval is typically chosen so that it strikes an optimum in this trade-off between cost of downtime and cost
of maintenance. Two more advanced methods, namely Condition Based Maintenance CBM and Predictive
Maintenance PdM aim to improve on TBM by determining when maintenance is performed.

2.2.2.1 Condition Based Maintenance (CBM)

In Condition Based Maintenance (CBM), maintenance is performed according to the observed condition of
the machine or component, as measured in real time by one or more sensors [63]. When the measured
condition, also known as component health, falls below some predetermined control limit, maintenance is
scheduled [64]. This means that maintenance is not performed when it is not needed when the component
condition is healthy, in contrast to a TBM policy, and as a result maintenance costs are comparatively
lower [65]–[67]. However, a drawback of CBM is that it involves extensive data collection (sensors, training)
[68], determining what condition thresholds should trigger maintenance [69], [70] and often high investment
costs [69]. Nevertheless, when breakdown costs are significantly higher than preventive costs and the time
until a component’s health deteriorates is irregular so that both CM and TBM are infeasible, CBM may
be preferred.

2.2.2.2 Predictive Maintenance (PdM)

Predictive Maintenance (PdM) utilizes process and equipment state information to predict when a machine
or component requires maintenance, and has had success in semiconductor industry [5], [71]. The main
benefit over CBM is that PdM anticipates the future trajectory of a components health so that precautionary
steps can be taken further in advance, thereby reducing maintenance costs [72]. Since future component
health is unknown and can be seen as a random variable, PdM methods generally use stochastic techniques
and output a confidence interval for the predicted health trajectory [73], [74]. Thus if costs of downtime,
corrective maintenance actions (replacement/repair) and preventive maintenance actions (inspections) are

14

2.2. Maintenance Policy

known, these can be used together with the output of PdM to plan maintenance in a way that minimizes
the expected long-run costs. PdM generally requires even more extensive data compared to CBM, since the
prediction models to be trained carry more free parameters than the CBM parameters, which are mostly
limited to asset health thresholds [75], [76].

In comparing CM, and the PM methods, it is important to denote the difference between when the
component reaches a threshold condition (threshold time) and when a component reaches a failure
condition (failure time). This is shown in Figure 2.8, indicating reactive maintenance (CM) after the failure
time, TBM before failure time but after threshold time, and CBM anywhere before threshold time. PdM
here is simply the act of predicting the component condition on the vertical y-axis in the future based on
observed condition and/or similar components, so that maintenance can be planned given a probabilistic
future component condition.

Figure 2.8: Maintenance Policies with asset condition

2.2.2.3 Remaining Useful Lifetime (RUL)

Remaining Useful Lifetime (RUL) is defined at any arbitrary time tnow as the remaining time a machine
or component will be functioning [77]. Often denoted by TR, it is a random variable that is predicted by
PdM methods. As a component is used, its health generally degrades until either a threshold is reached or
the component experiences a breakdown failure. The trajectory of the component’s health, also known
as a health indicator, can be shown by a so-called degradation path or degradation curve [78]. In some
situations, this threshold is well understood so that RUL is identical to the time at which the health
indicator crosses this threshold, after which the component can no longer be of use in production. Figure
2.9 shows an example of a degradation path with a deterioration from healthy to unhealthy and ultimately
failure, along with an example of RUL given that we are current at the start of deterioration.

15

2.2. Maintenance Policy

Figure 2.9: Remaining Useful Lifetime in the component degradation curve [79]

RUL estimations can be used in the development of maintenance policy by scheduling maintenance close
to the end of the remaining lifetime (but not after). That is, scheduling maintenance to be before the
end of the component lifetime ensured that downtime is scheduled instead of unscheduled, the latter of
which is generally more costly. By scheduling maintenance close to the end of the (useful) lifetime, the
component’s economic lifespan is utilized as much as possible. Thus, since RUL is not known beforehand,
if RUL can be estimated within desired accuracy, maintenance can be scheduled in order to minimize the
expected long-run operating costs. When used to plan maintenance, estimating RUL can also be seen as a
problem of estimating the probability of failure, where an underestimation (false negative) leads to higher
unscheduled downtime costs and an overestimation (false positive) leads to higher preventive (scheduled
downtime) maintenance costs. There have been many studies into estimation of RUL in the semiconductor
industry based on historical failure times and component health indicators [80]–[83].

16

Chapter 3

Related Work

This section gives an overview of the academic literature on prognostic RUL models, neural networks when
used for predictive maintenance, and stochastic maintenance policy optimization.

3.1 Predictive Maintenance Approaches

Predictive maintenance models aim to predict future component behavior either through conditional
probability of failure or as RUL lifetime directly [84]–[86]. On a high-level, methodologies for tackling this
as an analytical problem can be characterized as data-driven [87], physical model-based [88], knowledge-
based and hybrid [89]. Figure 3.1 shows an overview of this family of methods for predictive maintenance.

Figure 3.1: Overview of PdM methods for RUL prediction by modeling approach [86]

3.1.1 Data-driven approaches

Data-Driven approaches [90] aim to derive the underlying time-based model for component health (and
therefore remaining useful lifetime) using statistical analysis and machine learning. The fundamental
assumption made is that measured signal data is reliable within an uncertainty range until a defect or fault
occurs, and this data therefore provides the input and outcomes of component health. This requires not
only a significant amount of data, but the quality and consistency of this data is also critical, the latter of
which can make its applicability difficult [91], [92]. Commonly used data-driven techniques include Support

17

3.1. Predictive Maintenance Approaches

Vector Machines (SVM),el [93], [94], Convolutional Neural Networks (CNN) [95]–[97], Recurrent Neural
Networks (RNN) such as Long short-term memory (LSTM) networks [98]–[100] and more recently the
Attention-Mechanism [101]–[103].

Statistical approaches are also often used. Some of the most used modeling techniques are (hidden) Markov-
processes [104]–[106], Gaussian processes [107], [108] and conventional but highly extensible stochastic
models such as Weibull-processes [109], [110]. By their nature, these approaches are adaptable to specific
manufacturing conditions and can re-use some of the most-tested and known facets in reliability and
maintenance, such as the "bathtub-curve" [111], [112] and hazard function. [113]–[115]. Statistical methods
may not always be robust when characteristics in a manufacturing process drift from their initial state
[116]–[118]. This is particularly relevant when applied to new semiconductor fabrication processes that
mature over time and constantly change due to use of newer sensors, equipment or manufacturing process
innovations. As a result, model-based methods typically have to rely on updating mechanisms [119], [120]
to mitigate against the effects of process drift.

Depending on the type of data available, data-driven approaches can be divided into similarity models,
degradation models, and survival Models. Figure 3.2 gives an overview of these methods.

From an Operations viewpoint, statistical methods like Markov-processes and Gaussian processes offer
easier implementation and potential cost savings, leveraging established reliability concepts. In contrast,
data-driven techniques such as SVM, CNN, and LSTM emphasize accuracy and complex data relationships
but may present implementation challenges and require significant data. While they promise precision, the
trade-off often arises in terms of operational feasibility and computational costs.

Figure 3.2: Overview of PdM methods for RUL prediction by available data [121]

3.1.2 Physical model-based approaches

Physics-based models use theoretical models to represent the physics of components that result in the
observed degradation, such as crack propagation, vibration, warping and corrosion [122]. They start with
physical equations that are then typically solved by numerical methods or using simulation [88]. This
concept is also known as a Digital Twin [123], which is a digital representation of the component as modeled
through physical phenomena. As fatigue damage is often a cause of failure, damage models can be used to
model phenomena such as tensile stress/strength [124]. For many components, Wavelet-based approaches
can be applicable [125], [126] to represent processes that can be decomposed into oscillating waves.

18

3.1. Predictive Maintenance Approaches

Figure 3.3: Physics Based cumulative fatigue damage model microelectromechanical systems (MEMS) [127]

Advantages of using physics-based models for RUL estimation include their accuracy, robustness to changes
in operating conditions, and explainability, which can help engineers and domain experts make informed
decisions. [128]. Disadvantages include the high computational requirements of these models, as well as
their sensitivity to model assumptions, which can limit their applicability in certain situations [129].

In an Operations context, physics-based models, exemplified by the Digital Twin, offer direct, actionable
insights, crucial for real-time system management. Their inherent explainability strengthens trust and
decision-making processes. Conversely, from a Machine Learning standpoint, while they provide physics-
grounded accuracy, their computational intensity and reliance on precise assumptions can pose adaptability
challenges, especially when faced with novel scenarios.

3.1.3 Knowledge-based approaches

Knowledge-based methods directly estimate the remaining useful lifetime using expert knowledge and
therefore rely on pattern recognition. One area of application is fuzzy systems, which are used to extract
rules from experts that mimic how they make decisions on which maintenance activities to perform and
when [86], [130], [131]. They aim to mitigate the main drawback of relying on humans to assess the current
and future reliability of a components, which can be subjective and error-prone [132].

To derive a fuzzy logic system, fuzzy variables and sets are defined. Each fuzzy set describes a performance
or health indicator of the system (e.g. load) and consists of multiple fuzzy variable [133] (e.g. low, moderate,
high, extreme). A membership function is then derived through quantitative analysis of expert judgements
that maps for each value the degree of membership between 0 and 1 to the respective fuzzy variables. If we
denote a fuzzy set as A, the membership function �A(x) : A! [0; 1] is a mapping of each fuzzy variable in
A to a real number. Fuzzy logic uses the fact that at any value, multiple fuzzy variables can have nonzero
membership degree. Using this mapping, threshold-based rules can be extracted from expert judgements
that assign a fuzzy condition to state, which can be used for predictive maintenance. An example of a fuzzy
set for temperature with the membership functions for the variables (Normal, Alert, Alarm, Trip) shown.

19

3.1. Predictive Maintenance Approaches

Figure 3.4: Knowledge-based fuzzy logic system for predictive maintenance [134]

Knowledge-based approaches for RUL estimation have several advantages over other methods, including the
ability to incorporate domain-specific knowledge and experience into the model, and the ability to handle
complex systems where data-driven methods may not be effective. However, they also have limitations,
such as being dependent on the availability of expert knowledge and the potential for subjective judgments
to influence the model.

From an Operations perspective, knowledge-based methods, including fuzzy systems, provide a direct and
cost-effective means for RUL estimation by leveraging expert knowledge. These methods prioritize ease
of implementation and inter rater reliability. However, their effectiveness is closely tied to the quality of
expert input.

3.1.4 Hybrid Approaches

Hybrid approaches for remaining useful lifetime estimation have been introduced to tackle some of the
drawbacks found in model-based and data-driven methods [89], [135]. They typically use model-based
techniques to extract the state of the manufacturing equipment, and use data-driven techniques such as
machine learning to make predictions using this modeled state as input. In general, hybrid approaches for
remaining useful lifetime estimation can be divided into four main categories:

ˆ Data-Driven Measurement, Physics-Based estimation [136] .
Data-Driven methods are used to obtain a measurement model from the system by mapping sensor mea-
surements (e.g. power consumption) to a state (battery health). Based on this derived state, physical-based
methods are used to predict remaining useful lifetime, relying on well-tested statistical and physical-modeling
principles.

ˆ Data-Driven component extraction for Physical Models [137] .
Data-Driven methods are used to replace a system model in a physical model-based method which is then
directly used for predicting remaining useful lifetime. For complex systems, the modeling effort required to
build an accurate system model can range from being exhaustive to downright prohibitive.

ˆ Data-driven prediction of future measurements used by Physical Model-Based method [138] .
Data-driven methods can be used to predict future measurements. If done correctly, these predictions can be
used to essentially generate reliable and extensive amounts of sample data. Physical model-based methods
can then be built using these predicted measurements as input, and therefore this approach can be suitable
for sensitivity analysis when available data is limited. A drawback of this approach however, is that the
reliability of the model-based remaining useful lifetime prediction is only as accurate as its input generated
from a data-driven method.

ˆ Averaging Data-Driven and Physical Model-Based methods [139] .
This hybrid approach combines the predictions of both data-driven and physical model-based methods to
improve robustness [140], [141].

20

3.2. RUL Models

Methods that use sensor or component data typically require some form of data normalization and outlier
detection to be robust [142]–[144], and in most situations extensive sensitivity analysis [145]. The latter
requires either a lot of available data or a complete and thorough understanding of the statistical distribution
of manufacturing components, both of which may be difficult to obtain for newer components. On the
other hand, the higher the cost of prediction-errors (false positives/negatives), the more reliable and certain
prediction methods must be for them to be adopted in maintenance policy scheduling. As more components
are used in the model, the uncertainty around predicted failure behavior grows [146]. This is because the
uncertainty in components of the system model is ’compounding’, especially for hybrid approaches that use
a prediction of one model as input for the next model. The result can be an estimation error of remaining
useful lifetime with a uncertainty range of one or several years [147].

3.1.5 Comparison of approaches

There are many other techniques that can have been used either as prediction mechanism or as part of
a hybrid approach for RUL estimation. One example is Genetic Programming for feature discovery of
component reliability indicators or efficient evaluation of RUL estimations of several components at once,
such as super-capacitors [148], [149]. General Adverserial Networks (GAN) [150]–[152] and prognostic
algorithms [153], [154] have been used for data alignment and sensitivity analysis of RUL prediction, both
of which increase robustness. Fractional Brownian Motion [84], [155], [156] has been used to capture
adaptive drift of machine degradation processes, thereby giving a age-dependent and state-dependent
model to predict remaining useful lifetime.

In comparing these modeling approaches, there exists a trade-off between costs and accuracy on the one
hand, and generalizability or range of applicability on the other hand. Knowledge-based approaches do not
require advanced modeling techniques or large amount of equipment sensors and are therefore more broadly
applicable, but human pattern recognition suffers from lack of accuracy and subjective bias [157], [158].

In conclusion data-driven models are more flexible since they can handle a wide range of input data types
and formats, where in contrast, physics-based or knowledge-based models rely on specific domain knowledge
and assumptions about the underlying system. Moreover, data-driven models are by their nature more
adaptable to changing conditions and environments, making them suitable for predicting RUL in dynamic
systems that may be affected by various factors such as changes in operating conditions, maintenance
history, and environmental factors. With sufficient modeling knowledge, data-driven models can achieve
high accuracy in predicting RUL, especially when trained on large and diverse datasets and when using
advanced machine learning techniques such as deep learning [148] and ensemble methods [154], [159].
Finally, data-driven models can be more cost-effective than physics-based or knowledge-based models as
they may require less expertise and resources to develop and maintain [160].

3.2 RUL Models

3.2.1 Similarity models (Run-to-Failure Data)

Similarity-based RUL methods estimate the remaining useful life of a system by comparing its current
health state to past observations of similar systems [161]. These methods rely on a similarity metric to
quantify the similarity between the current system and past observations. Here we discuss three types of
similarity-based RUL methods: the hash similarity model (HSM), the pairwise similarity model (PSM),
and the nearest neighbor method.

The Hash Similarity Model is a similarity-based method for estimating remaining useful life (RUL) of
a component. Given a set of historical data (xi; ti; yi), where xi is the multivariate time series data for
component i at discrete time points ti, and yi denotes whether the component has failed or been censored,
the goal is to estimate the RUL ri for a new component with time series data xi.

21

3.2. RUL Models

Figure 3.5: Similarity-based RUL estimation using Run-to-Failure data [121]

The Hash Similarity Model estimates ri by finding the k most similar historical components to the new
component using a hash function, and then computing the average RUL of those k components.

One common hash function is the Piecewise Aggregate Approximation (PAA) algorithm, which aggregates
the time series data into w segments of equal length, and computes the mean value of each segment. The
resulting PAA coefficients can then be used as the hash value:

h(xi) = PAA(xi) = f�x1; �x2; : : : ; �xwg

The Hash Similarity Model uses a similarity metric to measure the similarity between two hash values
h(xi) and h(xj). One common similarity metric is the Euclidean distance between the PAA coefficients:

d(h(xi); h(xj)) =

vuut
wX

k=1

(�xi; k � �xj; k)2

Finally, given the k most similar historical components to the new component, the RUL ri can be estimated
as the average RUL of those k components:

ri =
1
k

kX

j=1

rj

The Hash Similarity Model (HSM) transforms the system features and RUL into binary strings using hash
functions. The HSM calculates the Hamming distance between the current binary string and the binary
strings of the past observations. The RUL of the most similar past observation is used as the RUL estimate
for the current system. The HSM can be expressed as:

RULest = min
i=1;:::;n

RULi;

22

3.2. RUL Models

where n is the number of past observations, and RULi is the RUL of the i-th past observation. The
Hamming distance between the current binary string sc = h(xc; RULc) and the i-th past binary string si
is given by:

d(sc; si) =
mX

j=1

js(j)
c � s

(j)
i j;

where m is the length of the binary string and s(j) denotes the j-th bit of the binary string.

The Pairwise Similarity Model (PSM) calculates the weighted average of the RUL of past observations,
where the weights are determined based on their similarity to the current system. The PSM can be
expressed as:

RULest =
Pn
i=1 wiRULiPn

i=1 wi
;

where wi is the weight assigned to the i-th past observation. The weight is determined based on the
similarity between the current system and the i-th past observation, which can be measured using a
distance metric such as Euclidean distance or Mahalanobis distance.

The Nearest Neighbor (NN) method finds the past observation that is closest to the current system in
terms of the chosen similarity metric. The RUL of the nearest neighbor is used as the RUL estimate for
the current system. The NN method can be expressed as:

RULest = RULNN ;

where RULNN is the RUL of the nearest neighbor.

Time series models are another class of RUL methods that estimate the RUL based on the time series of
sensor measurements. One popular time series model is the Autoregressive Integrated Moving Average
(ARIMA) model, which models the time series as a combination of autoregressive (AR), integrated (I), and
moving average (MA) components. The ARIMA model can be expressed as:

(1� �1L� � � � � �pLp)(1� L)dyt = c+ (1 + �1L+ � � �+ �qLq)�t;

where L is the lag operator, yt is the observed sensor measurement at time t, �t is the error term, p and q
are the orders of the AR and MA components, respectively, d is the degree of differencing, and �i and �i
are the coefficients of the AR

3.2.2 Degradation Models (Threshold Data)

Degradation models are statistical models that are used to analyze the degradation of systems or products
over time [162], [163]. These models can be used to estimate the useful life of a system, predict when it
will fail, and plan maintenance schedules [105]. The primary goal of a degradation model is to estimate the
amount of degradation that has occurred in a system at any given point in time. Failure time T is defined
as the time when the observed degradation path S(t) crosses D. Degradation data, either univariate or
multivariate, is assumed to be available for n machines, and the model j observations per machine.

The linear degradation model assumes that the degradation of a system over time is linear and can be
described by a straight line [164]. This model is useful when the degradation process is simple and can be
easily measured over time. For example, in the case of an LED light, the linear degradation model could be
used to estimate the amount of light output degradation over time. The degradation path is represented as:

S(t) = �+ �(t)t+ "(t) (3.1)
23

3.2. RUL Models

Figure 3.6: Degradation based RUL estimation using known failure thresholds [121]

where

� � is the model intercept

� �(t) is the model slope and assumed to follow N(�0; �2
0)

� "(t) represents the error term and is assumed to follow N(0; �2)

The exponential degradation model assumes that the degradation of a system over time is nonlinear
and can be described by a more complex function. This model is useful when the degradation process
is more complex and cannot be easily measured. For example, in the case of a car engine, the nonlinear
degradation model could be used to estimate the amount of wear and tear on the engine over time. The
degradation path is represented as:

S(t) = �+ �(t)t+ exp
�
�(t) + "(t) +

�2

2

�
(3.2)

where

� � is the constant model intercept. If S(t) is assumed to be increasing (�(t) > 0), then a lower bound
on the feasible region of the degradation signal can be chosen as �. If S(t) is assumed to be decreasing
(�(t) < 0), then an upper bound on the feasible region of the degradation signal can be chosen as �.

� �(t) is the model slope and assumed to follow a log-normal distribution where ln� has mean �0 and
variance �2

0

� �(t) is a random variable assumed to follow N(�1; �2
1)

� "(t) represents the error term and is assumed to follow N(0; �2)

3.2.2.1 Bayesian Models

Bayesian prognostic models are a type of statistical model used for estimating the remaining useful lifetime
(RUL) of a system. These models incorporate prior knowledge and observations to predict the time until a
system fails.

In the case of univariate data, the Bayesian prognostic model can be represented as follows:

24

3.2. RUL Models

P (� jy) =
f(yj�)p(�)R1

0 f(yj�)p(�)d�

where � represents the RUL, y represents the observed data, f(yj�) is the likelihood function that describes
the probability distribution of the observed data given the RUL, and p(�) is the prior distribution of
the RUL. The denominator of the equation is a normalizing constant that ensures that the posterior
distribution is a valid probability distribution.

In the case of multivariate data, the Bayesian prognostic model can be extended to include multiple
variables:

P (� jy) =
f(y j�)p(�)R1

0 f(y j�)p(�)d�

where y represents the vector of observed data, and f(y j�) is the multivariate likelihood function that
describes the probability distribution of the observed data given the RUL.

Bayesian prognostic models can also be used to incorporate covariates or features that may impact the
RUL. In this case, the model can be represented as:

P (� jx ; y) =
f(y j�; x)p(� jx)R1

0 f(y j�; x)p(� jx)d�

where x represents the vector of covariates, and f(y j�; x) is the conditional likelihood function that
describes the probability distribution of the observed data given the RUL and covariates. The prior
distribution of the RUL, p(� jx), is now conditioned on the covariates.

Bayesian prognostic models offer several advantages over traditional prognostic models. They allow for the
incorporation of prior knowledge, can handle complex data structures, and provide uncertainty estimates
in the form of posterior distributions.

3.2.3 Survival Models (Lifetime data with/without covariates)

Survival models are a type of predictive maintenance model that uses survival analysis to predict the time
until the failure of a system [165]. Survival analysis is a statistical method used to analyze the time-to-event
data, such as the time until failure of a machine or system. Survival models can be used to estimate the
probability of failure of a system at any given time, based on historical data and the current state of the
system. Required is lifetime data, which captures the time-to-event or survival time of each component.
Using lifetime date, survival models can estimate the probability of an event occurring over time, and can
be used to make predictions about the future risk of an event. An important concept is to estimate the
survival function, stated as the probability for any time t that the lifetime T exceeds t. It is the conjugate
of the cumulative distribution function F (t) that gives the probability of failure before some time t. Figure
3.7 gives an example of the survival function.

Censoring An important concept in survival analysis for maintenance is censoring, which refers to a
situation where the time-to-failure or time-to-repair is not fully observed or recorded [166]. Censoring
occurs when the event of interest, such as a failure or repair, has not occurred at the end of the study
period or when the component is retired or replaced before the event occurs. Figure 3.8 gives an illustration
of censoring with an observation window, censored and uncensored items. There are two types of censoring
that can occur in maintenance survival analysis:

1. Right censoring: Occurs when the event of interest has not occurred by the end of the observation
period, and the actual failure time is unknown.

25

3.2. RUL Models

Figure 3.7: Survival-based RUL estimation using Lifetime Data [121]

2. Interval censoring: Occurs when the event of interest occurs within a certain time interval, but the
exact time of occurrence is unknown.

Figure 3.8: Illustration of censored data [167]

If censoring is ignored, the results may be biased due to a biased estimate of the survival function or hazard
function, given that the full range of failure or repair times is not observed. To account for censoring,
various statistical methods can be used, such as the Kaplan-Meier estimator or the Cox proportional
hazards model, which take into account both the observed and censored times in the analysis. To build a
survival model, you typically need the following types of data:

� Time-to-event data: Time at which an event of interest such as failure occurs, or the time at which
an item is censored (i.e., component was still running but was preventively replaced).

� Covariate data: Additional data that may be associated with the time-to-event outcome, such as
sensor data, inspection data, or operational data.

� Censoring indicators: Indicators that represent whether or not an observation is censored. Censoring
may occur when the failure has not yet occurred at the end of the observation window.

The Kaplan-Meier estimator The Kaplan-Meier estimator [168] is a non-parametric method that
estimates the probability of survival over time. This model is particularly useful when there are no

26

3.3. Auto-encoder Networks

assumptions about the underlying distribution of the data. The estimator of the survival function S(t)
(probability that component lifetime is at least t) is given by:

Ŝ(t) =
Y

i:ti �t

�
1�

di
ni

�
(3.3)

where

� ti is the time when at least one event (failure) was observed.

� di the number of events (failures) that occurred at time ti.

� ni the number of components/items known to have survived, i.e. have had no failures up to time ti
and are not censored up to time ti

The Cox proportional hazards model The Cox proportional hazards model [169], [170] is a parametric
method that estimates the hazard rate, that describes how the risk of failure per time unit changes over
time. This is done by taking into account the effect of covariates on the hazard rate. The model is
particularly useful when there are multiple factors that affect the probability of failure. The assumption
is that the rate of failure of a system is proportional to its level of degradation. Let Xi = fXi1; : : : Xikg
denote the k covariates for subject i, then the hazard function has the form:

�(t j Xi) = �0(t) exp [�1Xi1 + : : : �kXik] (3.4)
= �0(t) exp [Xi � �] (3.5)

The proportional hazards condition assumes that the hazard rate, which is the rate at which an event of
interest occurs over time, is proportional across different levels of a predictor variable. More formally, the
proportional hazards condition states that for any two individuals or groups that differ by a fixed amount
on a predictor variable, the ratio of their hazard rates remains constant over time. Mathematically, given
two subjects (items) with covariates Xi and Xj and some constant � not dependent on time, the ratio of
their hazards can be expressed as:

�(t j Xi)
�(t j Xj)

= � (3.6)

3.3 Auto-encoder Networks

Autoencoder networks (AE) are a type of neural network that can be used for unsupervised learning and
data compression. The goal of an autoencoder is to learn a compressed representation of the input data,
known as the "latent space", and then use this representation to reconstruct the input data as accurately
as possible. Autoencoders are defined by:

� A space of decoded/original data X and a set of encoded data Z. Generally, X and Z are euclidean
spaces, i.e. X = Rm and Z = Rn for some m > n.

� An encoder E� : X ! Z that takes in the input data and maps it to a lower-dimensional representation
in the latent space and a decoder D� : Z ! X that takes this lower-dimensional representation and
maps it back to the original input space.

The encoded representation h as a function of input x, and the reconstructed output x̂ as a function of the
encoded representation h, are defined as:

h = f(Wx+ b) x̂ = g(Uh+ c) (3.7)

27

3.3. Auto-encoder Networks

where x is the input, h is the hidden layer representation, and x̂ is the reconstructed output. f and g are
nonlinear activation functions (such as sigmoid, ReLU, or tanh), W and U are weight matrices, b and c are
bias vectors. The encoder takes the input x, applies a linear transformation Wx+ b, and passes it through
the activation function f to produce the hidden layer representation h. The decoder takes the hidden
representation h, applies a linear transformation Uh+ c, and passes it through the activation function g to
reconstruct the output x̂.

Reconstruction Loss Autoencoders can be used for a variety of tasks, including data compression,
denoising, and anomaly detection. By learning a compressed representation of the input data, autoencoders
can be used to reduce the size of large datasets, making them easier and faster to work with. To measure
how well an autoencoder is performing, we define reference probability distribution �ref over X and a
"reconstruction quality" function d : X� : X ! [0;1] such that d(x; x0) measures how much x0 differs
from x. Now the loss function for the autoencoder can be defined as:

L(�; �) := Ex��ref [d(x;D�(E�(x)] (3.8)

Often, the empirical distribution given by the sample fx1; : : : ; xNg � X can by used instead of �ref , and
the L2 norm is used for reconstruction quality: d(x; x̂) = jjx� x̂jj2, so that the loss function becomes:

L(�; �) =
1
N

NX

i=1

jjxi �D�(E�(xi))jj2 (3.9)

i
Figure 3.9: Structure of AE networks [171]

One popular variant of autoencoders is the Variational Autoencoder (VAE), which incorporates probabilistic
techniques to generate new data samples in the latent space. VAEs are often used for tasks such as generative
modeling and image synthesis.

Overall, autoencoder networks are a powerful tool for unsupervised learning and data compression. They
can be used for a variety of tasks and have applications in a wide range of fields, including computer vision,
natural language processing, and robotics. An example of an autencoder is shown in Figure 3.9.

3.3.1 Variational Autoencoders (VAE)

A Variational Autoencoder (VAE) is a type of neural network that can be used for generative modeling
and data compression. The VAE is a type of autoencoder that is trained to encode an input data point
into a low-dimensional latent space, and then decode it back into the original data space. The VAE is

28

3.4. Recurrent Neural Networks (RNN)

trained using a loss function that encourages the latent space to follow a specific probability distribution,
typically a normal distribution.

The VAE consists of two main components: the encoder and the decoder. The encoder takes an input data
point x and maps it to a latent vector z through a probabilistic mapping q�(zjx). The decoder takes a
latent vector z and maps it back to the original data space through a probabilistic mapping p�(xjz).

The VAE is trained using a loss function that consists of two terms: the reconstruction loss and the
KL divergence loss. The reconstruction loss measures the difference between the original input x and
the reconstructed output x̂. The KL divergence loss measures the difference between the probability
distribution of the latent vector z and the prior probability distribution, typically a standard normal
distribution.

The reconstruction loss is typically expressed as the negative log-likelihood of the data given the model:

Lrec(x; x̂) = � log p�(xjz):

The KL divergence loss is expressed as the difference between the true posterior distribution q�(zjx) and
the prior distribution p(z):

LKL(q�(zjx)jjp(z)) = �
1
2

JX

j=1

(1 + log �2
j � �

2
j � �

2
j);

where J is the dimensionality of the latent vector z, and �j and �j are the mean and standard deviation of
the j-th dimension of the latent vector z, respectively. The KL divergence loss encourages the latent space
to follow a standard normal distribution.

The total loss function for the VAE is the sum of the reconstruction loss and the KL divergence loss:

L(x; x̂) = Lrec(x; x̂) + �LKL(q�(zjx)jjp(z));

where � is a hyperparameter that controls the importance of the KL divergence loss relative to the
reconstruction loss.

During training, the VAE minimizes the total loss function with respect to the parameters of the encoder
and decoder networks:

min
�;�

Eq�(zjx)[� log p�(xjz)] + �KL(q�(zjx)jjp(z)):

3.4 Recurrent Neural Networks (RNN)

Recurrent neural networks (RNNs) are a type of neural network that is designed to process sequential
data. Unlike feedforward neural networks, which process a fixed-size input and produce a fixed-size output,
RNNs can process inputs of variable length and produce outputs of variable length. They are particularly
useful for tasks that involve temporal dependencies, such as language modeling, speech recognition, and
video analysis.

The key feature of RNNs is that they have a hidden state that is updated at each time step, and this
hidden state carries information from previous time steps. The hidden state is typically represented as a
vector ht, where t is the current time step. The update rule for the hidden state in an RNN is given by:

ht = f(Whhht�1 +Wxhxt + bh)

29

3.4. Recurrent Neural Networks (RNN)

where Whh is the weight matrix for the hidden state, Wxh is the weight matrix for the input, bh is the bias
term, f is a non-linear activation function (usually a hyperbolic tangent or a rectified linear unit), and xt
is the input at time step t. The output of the RNN at each time step is typically computed as a function
of the hidden state:

yt = g(Whyht + by)

where Why is the weight matrix for the output, by is the bias term, and g is an activation function (usually
a softmax for classification tasks).

During training, the parameters Whh, Wxh, bh, Why, and by are learned using backpropagation through
time (BPTT), which is a variant of backpropagation that takes into account the dependencies between
time steps.

One issue with standard RNNs is that they can suffer from the vanishing gradient problem, where the
gradients become very small and the model has difficulty learning long-term dependencies. To address this
issue, several variants of RNNs have been proposed, including long short-term memory (LSTM) networks
and gated recurrent units (GRUs).

3.4.1 Gated Recurrent Units (GRU)

Gated Recurrent Units (GRUs) are a type of recurrent neural network (RNN) that have gates that control
the flow of information through the network. GRUs can be applied for forecasting by using the network to
predict future values of a time series. The input to the network is a sequence of historical values, and the
output is a sequence of predicted future values. The network is trained using a loss function that measures
the difference between the predicted values and the actual values.GRUs are similar to Long Short-Term
Memory (LSTM) networks but have fewer parameters, making them faster to train and less prone to
overfitting.

The key feature of GRUs is the use of gating mechanisms that control the flow of information through the
network. Specifically, GRUs have two gates: a reset gate rt and an update gate zt. These gates are used to
control how much of the past hidden state ht�1 should be used to compute the current hidden state ht,
and how much of the current input xt should be used. The update rule for a GRU is given by:

zt = �(Wzxt + Uzht�1 + bz)
rt = �(Wrxt + Urht�1 + br)
~ht = tanh(Whxt + Uh(rt � ht� 1) + bh)

ht = (1� zt)� ht�1 + zt � ~ht

where Wz, Wr, Wh, Uz, Ur, and Uh are weight matrices, bz, br, and bh are bias terms, � is the sigmoid
activation function, � denotes element-wise multiplication, and ~ht is an intermediate hidden state.

� The update gate zt controls how much of the current input xt should be used to compute the current
hidden state ht. If zt is close to 1, then the current input is important and should be used to update
the hidden state. If zt is close to 0, then the current input is not important and the previous hidden
state ht�1 should be used instead.

� The reset gate rt controls how much of the past hidden state ht�1 should be used to compute the
current hidden state ht. If rt is close to 1, then the past hidden state is important and should be used
to compute the current hidden state. If rt is close to 0, then the past hidden state is not important
and should be ignored.

30

3.4. Recurrent Neural Networks (RNN)

� The intermediate hidden state ~ht is computed using the current input xt and a modified version of
the past hidden state rt � ht� 1. The reset gate rt determines which elements of the past hidden
state should be kept and which should be reset.

� The final hidden state ht is a combination of the past hidden state ht�1 and the intermediate hidden
state ~ht. The update gate zt determines how much of each should be used.

During training, the parameters Wz, Wr, Wh, Uz, Ur, Uh, bz, br, and bh are learned using backpropagation
through time (BPTT), which is a variant of backpropagation that takes into account the dependencies
between time.

Sliding Window One common approach for forecasting with GRUs is to use a sliding window approach,
where a fixed-length window of historical values is used as the input to the network at each time step. The
network is trained to predict the value at the next time step based on the current window of historical
values. The sliding window implementation splits the input sequence into overlapping windows of size N ,
and applies the GRU update rule to each window. The resulting hidden states hi are concatenated to form
the output sequence. This implementation can be more efficient than applying the GRU update rule to
the entire input sequence, especially for long sequences.

h0 = 0

for i = 1; : : : ; T �N + 1
xi:i+N�1 = [xi; xi+1; : : : ; xi+N�1]

hi = GRU(xi:i+N�1; hi�1)

where x is the input sequence, N is the window size, T is the length of the sequence, and GRU is the
update rule for a single GRU cell. The initial hidden state h0 is set to zero.

GRUs can also be used in conjunction with other techniques such as ensembling, where multiple models
are combined to improve accuracy, or attention, where the network learns to focus on certain parts of the
input sequence.

3.4.2 Long-Short-Term-Memory (LSTM) Networks

LSTM stands for Long Short-Term Memory and is a type of recurrent neural network that is designed to
handle the vanishing gradient problem. The key difference between LSTM and traditional RNNs is the
addition of a cell state that runs through the entire sequence and a set of gates that control the flow of
information into and out of the cell.

The LSTM cell consists of three gates and a cell state:

ft = �(Wf � [ht�1; xt] + bf)
it = �(Wi � [ht�1; xt] + bi)
~Ct = tanh(WC � [ht� 1; xt] + bC)

Ct = ft � Ct�1 + it � ~Ct
ot = �(Wo � [ht� 1; xt] + bo)
ht = ot � tanh(Ct)

31

3.4. Recurrent Neural Networks (RNN)

where ht�1 is the previous hidden state, xt is the current input, � is the sigmoid function, tanh is the
hyperbolic tangent function, � is the element-wise multiplication, and W and b are the weights and biases
for each gate.

The forget gate ft determines how much of the previous cell state Ct�1 should be retained:

ft = �(Wf � [ht�1; xt] + bf)

The input gate it determines how much of the new information ~Ct should be added to the cell state:

it = �(Wi � [ht�1; xt] + bi)

The new candidate cell state ~Ct is calculated using the hyperbolic tangent function:

~Ct = tanh(WC � [ht� 1; xt] + bC)

The cell state Ct is updated by forgetting some of the previous state and adding some of the new candidate
state:

Ct = ft � Ct�1 + it � ~Ct

The output gate ot determines how much of the current cell state Ct should be output as the hidden state
ht:

ot = �(Wo � [ht�1; xt] + bo)

The final hidden state ht is calculated by applying the hyperbolic tangent function to the current cell state
and multiplying it by the output gate:

ht = ot � tanh(Ct)

LSTMs are able to selectively remember or forget information over long periods of time, which makes them
well-suited for tasks that involve processing sequences of variable length with long-term dependencies. LSTM
networks differ from GRU networks in several ways. Firstly, LSTMs have more gating mechanisms, which
allow them to better control the flow of information through the network. Secondly, LSTMs have a separate
memory cell, which allows them to store long-term information separately from short-term information.
Thirdly, LSTMs have more parameters, which allows them to model more complex relationships in the
data. In practice, both LSTM and GRU networks can be effective for processing sequential data. LSTMs
tend to be more complex and require more computation, but can perform better on tasks that require
modeling long-term dependencies. GRUs are simpler and faster to train, but may not perform as well on
tasks that require more complex modeling.

Figure 3.10 shows the architectural differences between GRU and LSTM networks.

32

3.5. Maintenance Optimization

Figure 3.10: Comparison between a GRU and LSTM network [172]

3.5 Maintenance Optimization

Maintenance policy optimization is the process of determining the optimal maintenance schedule and
actions for a given system or equipment. The goal of maintenance policy optimization is to maximize the
reliability and availability of the system while minimizing the cost of maintenance.

There are several approaches to maintenance policy optimization, including rule-based approaches, statistical
approaches, and optimization-based approaches. Rule-based approaches involve using pre-defined rules
to schedule maintenance activities, such as performing maintenance after a certain amount of usage or
after a certain number of failures. Statistical approaches involve using historical data to predict when
maintenance should be performed based on the likelihood of failure. Optimization-based approaches involve
formulating a mathematical optimization problem that takes into account factors such as maintenance
costs, system downtime, and expected equipment lifespan, and then solving this problem to determine the
optimal maintenance policy. Given the following variables

cc Cost of corrective maintenance
cp Cost of preventive maintenance
tR Remaining Useful Lifetime (RUL) in days

tnow Current time (time of prediction)
� Remaining time until maintenance

R(t) Probability of survival up until time t
c(t) Expected long run cost of maintenance at time t

We can define the cost function as:

c(t) = cc � P[tR < �] + cp � P[tR � �] (3.10)

There exist many examples in literature on the application of RUL estimation for maintenance policy
scheduling. In one example, a proportional hazard model was used for hazard rate estimation, random forest

33

3.5. Maintenance Optimization

for RUL estimation and fuzzy logic system to handle uncertainty in RUL predictions [124]. Approaches
ranging from bayesian updating ([173]), Deep Learning [174] and CBM [175], [176] have all shown to be
significantly reduce maintenance costs while maintaining desired level of system reliability.

34

Chapter 4

Problem Description

4.1 Reliability and Maintenance Policy

Reliability is a measure of the probability that a system or component will perform its intended function
without failure for a specified period of time, under specified conditions. It is typically defined as the
probability that a system or component will not fail within a given time interval, and is denoted by the
symbol R(t). The reliability function R(t) is defined as the probability that the system or component will
function correctly up to time t:

R(t) = P [T > t] (4.1)

where T is the random variable denoting the time of failure. A component is assumed to start from an
operational non-failed state, so R(0) = 1, although it is possible that it fails immediately afterwards due to
burn-in failure or dead on arrival. Furthermore, components have a finite lifetime:

lim
t!1

R(t) = 0 (4.2)

The reliability function can also be expressed in terms of the cumulative distribution function (CDF) F (t),
which gives the probability that the system or component fails before or at time t:

R(t) = 1� F (t) = P [T � t] (4.3)

The probability density function gives an indication how the probability of failure before time t changes
and is denoted by:

f(t) =
@F (t)
@t

=
@P[T � t]

@t
=
�@R(t)
@t

(4.4)

Note that F (t) =
R t

0 f(t0)dt0, and since R(t) = 1� F (t) we have

R(t) =
Z 1

t
f(t0)dt0 (4.5)

The Mean-Time-To-Failure (MTTF) is defined by:

MTTF = E[T] =
Z 1

0
tf(t)dt (4.6)

A commonly used fact is that the MTTF to failure can also be expressed using R(t):

35

4.2. RQ1: Dimensionality Reduction of High-Dimensional Signal Data

MTTF =
Z 1

0
R(t) (4.7)

Let P [t � T � t+ �t] denote the conditional probability of a failure in the time interval from t to t+ �t
given that the system has survived to time t. The hazard rate function or failure rate function �(t) provides
an instantaneous (at time t) rate of failure and is derived by taking the limit �t!1 of the conditional
probability of a failure:

�(t) = lim
�t!1

P [t � T � t+ �t] =
f(t)
R(t)

=
�@R(t)
@t

�
1

R(t)
(4.8)

If a component has been observed to survive until some time tnow, reliability equation 4.1 does not apply
and instead the conditional reliability should be used. Conditional reliability is defined as the probability
that a system will function correctly up to time t given that it has survived for some time tnow:

R(t j tnow) = P [T > t+ tnow j T > tnow] (4.9)

=
P [T > t+ tnow]

P [T > tnow]
=
R(tnow + t)
R(tnow)

(4.10)

The expected remaining useful lifetime (RUL) given that a component has survived until tnow, also known
as residual MTTF, can be obtained from R(t j tnow):

MTTF (tnow) =
Z 1

0
R(t j tnow)dt (4.11)

=
Z 1

tnow

R(t0)
R(tnow)

dt0 (where t0 = t+ tnow) (4.12)

=
1

R(tnow)

Z 1

tnow

R(t0)dt0 (4.13)

Based on these key ideas, the problem statement(s) can be formulated to address the research questions.
The first problem statement tackles the problem of extracting health indicators from raw signal data
using Dimensionality Reduction methods. The second problem statement addresses the issue that even
when such health indicators can be extracted from the raw data if they cannot be predicted into the
future maintenance will inherently remain reactive. Thus the second problem statement revolves around
predicting the future trajectory of health indicator(s) based on the prior trajectory. The third problem
statement addresses the machine learning problem of using health indicators as covariates to predict
failure probability and RUL based on historical maintenance data and health indicators. Finally, the
fourth problem statement concerns the impact of using data-driven prognostics to improve on the current
maintenance policy.

4.2 RQ1: Dimensionality Reduction of High-Dimensional Signal Data

Given a data matrix representing high-dimensional signal data, denoted as X 2 RjKj, where K denotes
a set of input features, our main objective is to reduce the dimensionality of this data to a set of D
dimensions represented by Z 2 RjDj while retaining as much of the original information as possible.

Formally, we define a mapping function

fD : RjKj ! RjDj;
36

4.3. RQ2: Prediction of Health Indicator Trajectories

and its corresponding inverse function
f�1
D : RjDj ! RjKj;

Suppose we have m observations of X , where x i denotes the i-th observation. The core challenge lies
in determining an optimal number of dimensions jDj that balances between the trade-off of information
retention and dimensionality reduction. To quantify this, we define the reconstruction error, Er, as:

Er =
1
m

mX

i=1

x i � f�1
D (f(x i))

2 :

Furthermore, the proportion of variance explained by our reduced data is critical. Let �2(Z) be the
variance of the transformed data Z := fD(X), and �2(X) be the variance of the original data. We then
define the explained variance ratio (EVR) as:

EV R =
�2(Z)
�2(X)

:

Another important consideration is the scale and distribution of the data. Prior to the dimensionality
reduction, it is common to normalize data to ensure each feature has equal importance. Let’s denote the
normalized data as Xnorm. The normalization can be expressed as:

Xnorm =
X � �(X)
�(X)

;

where � and � are the mean and standard deviation of X respectively.

RQ1 aims to find the mapping function fD and its inverse f�1
D that minimize the reconstruction error

Er, while maximizing the explained variance ratio, under the constraint that jDj is as small as possible.
Since the number of dimensions cannot exceed the number of features, this problem can be formulated as
a multi-objective optimization:

min
fD ;f � 1

D

Er; max EV R

8k 2 f1; 2; : : : ; 16g

4.3 RQ2: Prediction of Health Indicator Trajectories

Now assume we look at health indicators as extracted from RQ1, where given a set of ordered times T ,
Zt 2 RjDj denotes a realization of D features at time t, with. Let T i 2 RjT j�jDj denote a trajectory for
system i which is a vector [Z1;Z2; : : : ;ZjT j]. For RQ2, we are given a data set of m systems with observed
health indicator trajectories over times T represented by T , the set is formally defined as

T = fT 1; T 2; : : : ; T mg;

where each trajectory T i 2 T is a vector with T i 2 RjT j�jDj, representing the time series of D features for
a set of T time periods. The objective of this research question is to accurately predict the trajectories
over a future time horizon, p, based on the most recent w time steps of data.

Let T ij;k := [Zj ;Zj+1; : : : ;Zk] denote the partial trajectory of system i between j and k, with j; k 2 T and
j < k. Let fT : Rw�jDj ! Rp�jDj be a trajectory prediction function , mapping a time-series of length w
to a time-series of length p. For any trajectory T i and time t 2 T we can select a subset T it�w+1;t denoting
the trajectory from t�w+ 1 to t as input and a subset T it+1;t+p denoting the trajectory from t+ 1 to t+ p
as target. For each trajectory Ti, we can select n := jT j � p� w � 1 such input/output pairs. The goal is
to estimate the trajectory for horizon p based on window w:

37

4.4. RQ3: Estimating RUL from the Reliability Function

T̂ it+1;t+p := fT (T it�w+1;t)

RQ2 asks to find a predictive function fT that minimizes the error between the predicted trajectories T̂ i
and the actual trajectories T . The error between the predicted and actual trajectories can be quantified
using the Fréchet distance, which is a measure of similarity between curves that takes into account location
and ordering, and is specifically suited for comparing trajectories [177]

Fréchet distance. The Fréchet distance is calculated as follows: let T i and T̂ i be two curves, where T i
is the actual health trajectory and T̂ i is the predicted health trajectory. Then let T i(t) and T̂ i denote
the values of the observed and predicted trajectories at time t 2 T . Let d(p; q) be the Euclidean distance
between two points p and q on the two curves. Then the Fréchet distance between the curves is given by:

FD(T i; T̂ i) =
r

inf

2�

max
0�t�1

n
d(T i(
1(t)); T̂ i(
2(t)))2

o

with
1;
2 2 �, and � is the set of all continuous functions from [0; 1] to [0; 1]. The Fréchet distance takes
into account the location and ordering of the points on the curves. The higher the Fréchet distance, the
less similar the curves are.

Given an observed trajectory T ij;k and its prediction T̂ ij;k the error Eij;k is defined as:

Eij;k = FD(Ti;j ; T̂ ij;k)

where Eij;k represents the Fréchet distance between the observed trajectory and predicted trajectory of
system i between times j and k. Considering the relevance of the length of the prediction horizon p and the
length of the observation window w, a loss function L is introduced that incorporates both these factors in
relation to the prediction error:

Lij;k = Eij;k � �
�
w
p

�
;

where �(x) = 1
1+exp(�x) is the Sigmoid function, which ensures the loss is bounded and amplifies or

attenuates the error based on the ratio w
p . Increasing w will lead to lower error since we allow more

information to be collected before making a prediction, but this means ASML must collect data for a
longer period, therefore the loss Lij;k is penalized as the ratio w

p . Decreasing p will also lead to lower error
since we require trajectories to be forecasted less far into the future, but this means the predictive value
of health indicator forecasting for ASML decreases, therefore the loss Lij;k is penalized as the decrease in
the denominator p increases the ratio w

p . The overall objective is to minimize the average loss over all n
input/output pairs of all m systems of length p.

min
1

m � n

mX

i=1

nX

j;k2T

Lij;k

4.4 RQ3: Estimating RUL from the Reliability Function

Given a set of health indicators D, for a given system, let zd(t) 2 Zt denote the value of single health
indicator d 2 D at time t, where Zt is a reduced dimensional representation of original signal data Xt.
Now let Z(t) = fzd(t); d 2 Dg indicating the set of D health indicators at time t. Let tnow denote the
current time with health indicator observations until tnow, and TR denote the random variable representing
the failure time of an arbitrary system using component X. Let g(t; tnow) be a function that estimates
R(t j tnow) based on health indicator information up until time tnow, i.e. fZ(tj);8tj � tnow < tg, defined
as:

g(t; tnow) = R̂(t j tnow) = P̂ [TR > t j fZ(tj); tj � tnowg j TR > tnow] (4.14)

38

4.4. RQ3: Estimating RUL from the Reliability Function

We have g(t; tnow) 2 [0; 1] for all tnow � 0 and for a fixed tnow have g(tnow; t+ �) � g(t; tnow) for all � > 0,
i.e. the function is monotonically decreasing. Using Equation 4.8 from g(tnow; t) we can also obtain an
estimate of the hazard function �̂(t) at time tnow:

�̂(t j tnow) =
�@R̂(t j tnow)

@t
�

1
R̂(t j tnow)

=
�@g(t; tnow)

@t
�

1
g(t; tnow)

(4.15)

The goal is to find a function g that takes as input a set of observed health indicators up until time tnow,
denoted as fZ(tj); tj � tnowg, and output a prediction for R̂(t j tnow) 2 [0; 1], where tnow < t. The set of
functions G that satisfy these conditions can be written as:

G : fZ(tj); tj � tnowg ! [0; 1]

By learning an estimate of the reliability function R(t j tnow), not only TR can be estimated, but R(t j tnow)
also provides an opportunity to define a maintenance policy based on failure/survival probability, as will
be discussed in RQ4. Therefore, the goal of RQ3 is to find an estimator g such that R̂(t j tnow) denotes
the conditional reliability estimated by g(t; tnow) indicating the estimated probability of survival until time
t given current time tnow. To compute the expected value of the RUL TR in days from the estimation
R̂(t j tnow) we make use of the following Lemma:

Lemma 4.4.1 For any random variable X that has a support that is non-negative (that is, the variable has
nonzero density/probability for only positive values), given cumulative density function FX and probability
density function fX the following property holds:

E[X] =
Z 1

0
(1� FX(x))dx (4.16)

Proof 4.4.1 Given that 1� FX(x)) = P[X � x] =
R1
t=x fX(t)dt,

Z 1

x=0
(1� FX(x))dx =

Z 1

x=0
P[X � x]dx

=
Z 1

x=0

Z 1

t=x
fX(t)dtdx

=
Z 1

t=0

Z t

x=0
fX(t)dxdt

=
Z 1

t=0
tfX(t)dt now substituting with t = x and dt = dx,

=
Z 1

x=0
xfX(x)dx = E[X]

Noting that R̂(tjtnow) = P[TR > tjtnow] has non-negative support, Ê[TR] can be defined as:

Ê[TR] =
Z 1

0
R̂(tjtnow)dt (4.17)

The integral above applies when time is continuous. If observations of Xt are collected at discrete time
intervals, so that by extension health indicators Zt are also in discrete time intervals, it is not possible to
evaluate the above integral. Instead, assume a set of discrete time intervals T for which signal measurements
have been collected. Then let R(tjtnow) indicate the probability that that a system survives until t given
information until tnow with t; tnow 2 N. The above integral can be approximated by taking the Riemann
sum with step size � = 1 day:

39

4.5. RQ4: Using RUL estimations in maintenance policy

Ê[TR] �
TX

t=0

�
R̂(tjtnow) ��

�
dt (4.18)

Instead of Ê[TR] indicating the RUL for an arbitrary instance of component X, now let Ê[tR;i] denote
the RUL for the i-th instance of component X, where we have a set of n instances. In this context, these
are n independent random lifetimes (i.i.d.) for component X.

To assess the performance of the RUL estimator, the RMSE loss is computed, which is defined as follows:

RMSE =

vuut 1
n

nX

i=1

(Ê[tR;i]� E[tR;i])2 (4.19)

where Ê[tR;i] is the predicted value (RUL) for the component and E[tR;i] is the observed value (RUL) for
the component.

4.5 RQ4: Using RUL estimations in maintenance policy

The (conditional) reliability function is a powerful expression that can be used in cost simulation for
maintenance policy, by distinguishing between corrective maintenance costs and preventive maintenance
costs. In the context of ASML, corrective maintenance is performed when a component fails before the
planned maintenance time and thus maintenance is unplanned, which incurs cost cc due to an unplanned
swap (replacement). Preventive maintenance on the other hand is performed when a component fails after
the planned maintenance time and thus maintenance is planned, which incurs cost cp due to a planned
swap.

The main difference is that for an unplanned swap (corrective maintenance), replacement parts might not
be stocked, requiring costly expedited shipping, whereas stock can be ordered in advance for planned swaps
(preventive maintenance). This means that corrective maintenance is significantly more expensive than
preventive maintenance, i.e. cc � cp [173].

To avoid confusion when talking about multiple instances of component X in separate machines, as
mentioned previously, ’system’ refers to the subsystem in scope using component X. Assume a set of n
systems with failure times tR1 ; tR2 ; : : : ; tRn , where a cost cc is incurred for corrective/reactive maintenance
and a cost cp is incurred for preventive maintenance, with cc � cp.

Baseline Policy. As a baseline, maintenance is scheduled at intervals of length � in days. Thus for
a system i with lifetime tRi , if tRi � � cost cc is incurred over a cycle of length tRi , and if tRi > � cost
cp is incurred over a cycle of length � . So the instance with lifetime tRi yields cost ci(�) = 1ftRi �
�g �

�
cc=tRi

�
+ 1ftRi > �g � (cp=�). Given the cost for a single system of ci(�), let the average cost for all

n instances be defined as C(�) := 1
n
Pn
i=1 ci(�). Then we can find an optimal �� := argmin� C(�) that

achieves the lowest cost and therefore yields an optimal trade-off between scheduled and unscheduled
downtime.

Data Driven Policy. In contrast to the baseline policy based on a fixed time interval of length � , a
data-driven maintenance policy � assigns a maintenance time �i to each system i using the estimated
probability of failure R̂(t j tnow) until time t at time tnow, which can be computed from g(t; tnow) from
RQ3. Thus, � : [0; 1] ! R+, is a function that maps a probability of failure to a maintenance time
�i 2 R+. To map the predicted failure probability from to a maintenance time, a hyperparameter
denoting the probability threshold � 2 [0; 1] is used. Since we now do not have one maintenance interval
� for all systems but instead a maintenance time �i for each system i, cost per system is given by
ci(�i) = 1ftRi � �ig �

�
cc=tRi

�
+ 1ftRi > �ig � (cp=�i). Let tnow < t denote the current time, then Ẑt

denotes the estimated health indicator features for a system from sequential application of the functions in
RQ1 and RQ2. The average cost for all n systems at time tnow is given by C(�) = 1

n
Pn
i=1 ci(�i) where

40

4.5. RQ4: Using RUL estimations in maintenance policy

�i = �(R̂(t j tnow); �). In conclusion, the objective is to find a �� := argmin� C(�) that minimizes the
average maintenance cost.

41

Chapter 5

Solution Approach

This section describes the predictive maintenance pipeline for RUL estimation based on raw condition
metric data and observed lifetime data. In summary, the pipeline takes in multivariate signal data and
lifetime data, performs data cleaning and preprocessing, stratified splitting, autoencoder dimensionality
reduction, LSTM trajectory prediction, and prognostic RUL estimator.

5.1 CRISP-DM Methodology Applied in RUL Estimation Master Thesis

The CRISP-DM methodology, as illustrated in Figure 5.1, was employed to structure the research across
six phases, each tailored to ASML’s specific requirements.

Figure 5.1: The CRISP-DM Process Diagram

42

5.1. CRISP-DM Methodology Applied in RUL Estimation Master Thesis

Business Understanding. The project began with a clear focus on transitioning ASML from corrective
to predictive maintenance for component X. The primary objectives at ASML were twofold: to validate
the feasibility of predicting RUL within the context of ASML Customer Support and to develop a set
of clear, interpretable KPIs for informed decision-making. A critical aspect was to address the financial
impact of unplanned downtimes by developing a model that could predict RUL more accurately and
efficiently than existing methods at ASML.

Data Understanding. This phase involved gathering and analyzing extensive time-series data related to
component X’s alignment performance, as well as historical maintenance data from ASML’s customer
base. The data underwent a thorough quality assessment, including outlier detection and validation against
ASML’s maintenance records, to ensure its integrity and applicability for the subsequent modeling phase.

Data Preparation. In this stage, data was prepared for analysis by removing outliers, interpolation on
missing values and rolling average smoothing to remove noise.

Modeling. A wide range of models was considered, including PCA, t-SNE, UMAP and (Variational)
AutoEncoders for dimensionality reduction and ARIMA, Recurrent Neural Networks (GRU, LSTM) and
Bayesian predictors. The LSTM network was selected for its superior ability in modeling long-term
dependencies, which is important for accurate RUL prediction. The model was rigorously tested using a
stratified train-test split and temporal validation techniques to ensure its predictive power and reliability
across different types of equipment used at ASML.

Evaluation. The evaluation phase centered on aligning the model’s performance with ASML’s strategic
objectives. This involved a analysis of the performance of the dimensionality reduction model(s), trajectory
prediction model(s), RUL/prognostic model accuracy and finally the outcome of the model when used in
maintenance policy simulation.

Deployment. Integrating the final model into ASML’s existing systems marked the project’s final phase.
This involved creating a modular framework for easy deployment and maintenance of the model at ASML,
supported by comprehensive documentation and feedback from domain experts. This phase ensured the
model’s accessibility and practical utility in diverse predictive maintenance scenarios at ASML.

In summary, this thesis presents the application of the CRISP-DM methodology in developing a predictive
maintenance pipeline at ASML. Each phase was meticulously executed to ensure the development of a
solution that not only met technical standards but also aligned seamlessly with ASML’s business objectives.

43

5.2. Prognostic RUL Pipeline

5.2 Prognostic RUL Pipeline

Figure 5.2: Predictive Maintenance Model Pipeline

5.2.1 Phase I - Dimensionality Reduction AutoEncoder Network

For dimensionality reduction, several techniques were explored, including PCA, LDA, UMAP, t-SNE, AE’s
and VAE’s. As the dataset is unsupervised and there are no target class features, LDA was not suitable.
PCA was chosen as a baseline assuming that the sensor measurements of component X have a linear
orthogonal transformation onto a lower dimensional space, and chosen for its simplicity and intuitiveness.
Since PCA would not be successful if the linearity assumption or any of its other assumptions were violated,
a more complex and non-linear method was required. Since the model for dimensionality reduction would
not be used for visualization but instead would be used as first part in a sequential predictive maintenance
pipeline, UMAP was also excluded. Lastly, it was required that the method was deterministic to allow
independent testing of models in the predictive maintenance pipeline, t-SNE and VAE’s as alternatives
were eliminated. AutoEncoders emerged as the most suitable non-linear method to be compared against
the baseline PCA in extracting health indicators from raw signal data. The AE network consists of an
encoder and decoder and was designed to extract health indicators by compressing high dimensional signal
data of component X within ASML’s alignment system to be used for RUL prediction.

The encoder network takes the raw signal data X as input and maps it to a lower dimensional embedding Z.
The encoder network consists of two fully connected hidden layers with 64 nodes each, with a leakyReLU
[178] activation function (� = 0:2) :

h1 = leakyReLU(W1X + b1)

h2 = leakyReLU(W2h1 + b2)

where W1 and W2 are weight matrices and b1 and b2 are bias vectors.

The output layer of the encoder network uses a sigmoid activation function to ensure that the output
values are between 0 and 1:

Z = �(W3h2 + b3)

44

5.2. Prognostic RUL Pipeline

where W3 and b3 are weight matrix and bias vector.

The decoder network takes the lower dimensional representation Z as input and maps it back to the original
signal data space X̂. The decoder network also consists of two fully connected hidden layers with 64 nodes
each, with a leakyReLU activation function:

h3 = leakyReLU(W4z + b4)

h4 = leakyReLU(W5h3 + b5)

where W4 and W5 are weight matrices and b4 and b5 are bias vectors.

The output layer of the decoder network uses a sigmoid activation function to ensure that the output
values are between 0 and 1:

X̂ = �(W6h4 + b6)

where W6 and b6 are weight matrix and bias vector.

The loss function for the autoencoder is the symmetric mean absolute percentage error (sMAPE):

sMAPE =
1
n

nX

i=1

jxi � x̂ij
(jxij+ jx̂ij)=2

� 100

where n is the number of samples and xi is the original input of sample i, and x̂i is the reconstructed
output of sample i.

The symmetric mean absolute percentage error (sMAPE) is utilized due to its insensitivity to the magnitude
of data, making it robust against scale differences. Especially with potential variations in signal magnitudes,
sMAPE captures relative significance of reconstruction errors. By representing errors as percentages, it
emphasizes smaller errors when they constitute a significant fraction of the actual value, offering a nuanced
evaluation of the autoencoder’s reconstruction performance.

The objective of training the autoencoder is to minimize the sMAPE loss between the input signal x and
the reconstructed signal x̂, which is achieved by adjusting the weights and biases using backpropagation
and Adam Optimizer.

45

5.2. Prognostic RUL Pipeline

Figure 5.3: AE Encoder (architecture

46

5.2. Prognostic RUL Pipeline

Figure 5.4: AE Decoder architecture

5.2.2 Phase II - Health Trajectory LSTM Network

Given that Phase I is used to extract health indicators from the raw data, Phase II revolves around
predicting the future trajectories of these health indicators. For trajectory prediction of health indicators,
several techniques were explored, including Standard Brownian Motion (SBM) with Bayesian updating,
Vector Autoregression (VAR), ARIMA models, State Space models and Deep Learning methods. ARIMA-
based techniques were excluded since they are not suitable for capturing complex, nonlinear relationships
between variables. VAR methods were excluded since they assume stationary, and model the current
values as linear combinations of the previous values, which is unlikely to work with accelerated wear that
would have an exponential decay. Bayesian regression based on a Wiener process was chosen as a baseline

47

5.2. Prognostic RUL Pipeline

since it is relatively easy to implement and can be continuously updated to reflect process drift or changes
that affect degradation. State Space models were excluded due to their (manual) complexity and required
domain knowledge setting up the state space model specification, as well as the need for iterative estimation
procedures.

Deep Learning methods for time-series, in particular recurrent networks such as Long-Short-Term-Networks
(LSTM) and Gated Recurrent Units (GRU), were deemed as most suitable methods to be compared
against the Bayesian regression baseline. The reason is that LSTM’s excel at capturing complex, non-
linear interactions, high dimensional data and long-term dependencies, all of which are likely present in
ASML’s case. Non-linear interactions are expected due to feedback-loops and correction mechanisms in
ASML’s alignment system. Long-term dependencies are likely, as the behavior of a health trajectory could
be influenced not just by its current state but also by its entire history, which would characterize the
unique usage pattern and operating conditions that can impact the amount of wear and stress enacted on
component X.

Now assume we look at health indicators as extracted from RQ1, where given a set of ordered times T ,
Zt 2 RjDj denotes a realization of D features at time t, with. Let T i 2 RjT j�jDj denote a trajectory for
system i which is a vector [Z1;Z2; : : : ;ZjT j]. For RQ2, we are given a data set of m systems with observed
health indicator trajectories over times T represented by T , the set is formally defined as

T = fT 1; T 2; : : : ; T mg;

A sliding window Long Short-Term Memory (LSTM) network is used to predict the future health trajectories
of components based on lower dimensional health information extracted from an autoencoder. The LSTM
was implemented in a recursive manner, so that the forecast horizon p = 1. However, the LSTM includes
a recursive feature to predict the next value(s) based on previous predicted value, so that the LSTM is
able to forecast to any horizon p. The input to the LSTM network is a sequence of lower dimensional
embeddings generated by the autoencoder. The LSTM network includes a hidden state to predict the next
observation at time ti+1 based on observations ti; ti�1; : : : ti�w where w is the window size. The dataset
was re-sampled from daily to average weekly (7 days). There are several reasons for this. First, given that
component lifetime as shown in Figure 6.1 is generally in the order of hundreds of days with �T = 626:47,
�T = 230:73, this has a negligible impact on accuracy, and the prediction uncertainty on the order of
day-granularity is unlikely to be low enough to make a significant difference. Second, this dramatically
speeds up training, as the number of sliding windows decreases.

The architecture of the LSTM network includes an input layer, multiple LSTM layers, and an output
layer. Each LSTM layer has a number of hidden units and uses a hyperbolic tangent (tanh) activation
function. The output layer has a linear activation function. The input to the network is a sequence of
lower dimensional embeddings generated by the autoencoder. The network takes in a sliding window of
size w and predicts the next value in the sequence. The network is trained using backpropagation through
time and the sMAPE loss function.

During training, the performance of the LSTM network is evaluated using a symmetric Mean Absolute
Percentage Error (sMAPE) loss function, which is defined as:

sMAPE =
1
jDj

NX

i=1

1
T

jT jX

t=1

2jzi;t � ẑi;tj
jzi; tj+ jẑi;tj

(5.1)

where D is the set of health indicators, T is the set of time periods, zi;t is the actual value of the health
indicator i at time t, and ẑi;t is the predicted value of health indicator i at time t. Here, zi;t is used to
represent the time-series representation of health indicator i 2 D from Z defined in 1.

For testing and post-training evaluation, the performance of the LSTM network is evaluated using the
Fréchet Distance. The Fréchet distance is a measure of similarity between two curves, defined as the
minimum distance that a person walking along both curves must travel to go from the start point to the
end point. In the context of predicting health trajectories of components, the Fréchet distance can be used

48

5.2. Prognostic RUL Pipeline

to measure the similarity between the predicted health trajectory and the actual health trajectory of a
component.

The Fréchet distance is calculated as follows: let P and Q be two curves, where P is the actual health
trajectory and Q is the predicted health trajectory. Let d(p; q) be the Euclidean distance between two
points p and q on the two curves. Then the Fréchet distance between the curves is given by:

FD(P;Q) =
r

inf

2�

max
0�t�1

fd(P (
1(t)); Q(
2(t)))2g

where � is the set of all continuous functions from [0; 1] to [0; 1]. The Fréchet distance takes into account
the location and ordering of the points on the curves. The higher the Fréchet distance, the less similar the
curves are.

The LSTM network has three hidden layers with 128 nodes each and a window size of w = 15. A
LeakyReLU activation function is applied on the input and hidden layers, and a linear activation function
for the output layer. The architecture of the LSTM network is given by:

ht = LSTM(zt�w+1:t; �); (5.2)

where ht is the hidden state of the LSTM at time t, zt�w+1:t is the input sequence from time t� w + 1 to
t, and � are the parameters of the LSTM.

Finally, we will train the LSTM using backpropagation through time (BPTT) with the Adam optimizer.
We chose sMAPE as our loss metric instead of the Fréchet Distance because sMAPE is computationally
faster to compute, making it easier to optimize the LSTM network. We will use the Fréchet Distance as
our evaluation metric to measure the similarity between the predicted health trajectories and the actual
health trajectories.

5.2.3 Phase III - RUL Prognostic Estimator

The previous stages are responsible for respectively (1) extracting lower dimensional representations of the
raw alignment signal data of component X and (2) predicting the trajectory of such health information
indicator into the future. To estimate RUL, the values for the lower-dimensional health indicators or their
trajectory must be mapped to probability of failure.

As input, for each instance of component X we have a daily time-series with a set of D health indicators
and a label yt;i indicating whether system s has failed (yt;i = 1) or not (yt;i = 0) at time t. One issue is
class imbalance since for any run-to-failure time-series of length n there will be only 1 entry j with yj;i = 1
and n � 1 entries where for each k 6= j we have yk;i = 0. To address this, the assumption is made that
at least two weeks before failure a component is in a degraded state, and therefore with t0 denoting the
failure time of system i, if failure occurs at time t0, fyt0�14;i; : : : yt0;ig will be assigned label 1.

Using these adjusted class labels, a Decision Tree classifier is trained using entropy as criterion. This was
chosen since from a Decision Tree it is easy to extract a visual intuition on the decision rules, which is
important for model adoption in ASML CS.

From the decision tree, let p̂t;i denote the estimated probability of failure, denoted by p̂t;i := P[yt;i = 1].
Then the expected RUL is approximated by applying the Riemann sum approximation on discrete intervals
as described in Chapter 4.

5.2.4 Phase IV - Application of RUL-estimation for maintenance policy

To assess the impact of using the previous phases in a pipeline to estimate RUL and improve maintenance
policy, a cost simulation model is built, that takes into account a cost of corrective maintenance (cc) and

49

5.2. Prognostic RUL Pipeline

cost of preventive maintenance (cp). To go from RUL estimation to maintenance policy, the prognostic
failure probability estimator from the previous phase is used, by taking the logic class probabilities of the
Decision Tree Classifier from phase III.

Again, assume we have n independent time series until failure for component X, where for each component
i we have a daily time-series with a set of d health indicators and a label yt;i indicating whether instance
component i failed (yt;i = 1) or not (yt;i = 0).

Since we only have a single hyperparameter, �� can be found by brute-force searching the range [0; 1] using
Grid Search with repeated random sampling.

5.2.5 Definition of data-driven maintenance policy using the Prognostic Tree-Based
RUL Estimator

We now define the function � as mentioned with RQ4 in Chapter 1 that uses the function g(t; tnow) from
RQ3. Let ŷt;i 2 f0; 1g denote the predicted state (survived, failed) of system i at time t by the Decision
Tree Classifier and p̂t;i 2 [0; 1] denote the estimated probability of failure of instance i before time t. Then
p̂t;i = (1� R̂(tjtnow)).

We assign maintenance to be scheduled when the estimated probability of failure exceeds �in[0; 1]. Since
the times t are ordered to outputting the smallest t that satisfies the condition p̂t;i > �:

�(p̂t;i; �) := argmin
p̂t;i >�

t = �i (5.3)

As mentioned with RQ4, we have a set of components each with failure times tR1 ; tR2 ; : : : and cost:

ci(�i) = 1ftRi � �ig �
�
cc=tRi

�
+ 1ftRi > �ig � (cp=�i)

With tRi (observed lifetime) and �i (predicted maintenance time) given in days, ci(�i) is cost per day. Thus
we can define yearly cost to be ci(�i) � 365. Using the threshold � on the estimated class probabilities from
the Decision Tree Classifier, we have only a single hyperparameter, and we have �(p̂t;i; �) = �i. Therefore,
average cost across all instances at time tj is given by

C(�) =
nX

i=1

ci(�i) =
nX

i=1

ci(�(p̂t;i; �)) (5.4)

using �i = �(p̂t;i; �). Thus the objective is to find �� := argmin� C(�), thus the threshold on p̂t;i that
minimizes total maintenance cost.

50

Chapter 6

Experimental Study

6.1 Introduction

This chapter explores the primary challenges in predictive maintenance within semiconductor manufacturing
through structured experiments.

The first challenge involves evaluating the effectiveness of techniques in extracting health indicators from
complex data. An experimental framework is developed where an Autoencoder is trained on complex signal
data, and its performance is compared with PCA. This comparison aims to assess the advantages of the
non-linear Autoencoder against traditional (linear) dimensionality reduction methods. The second challenge
is in predicting future trajectories of health indicators. A LSTM network is used for this prediction task
and benchmarked against a basic Bayesian regression predictor using the Fréchet distance metric that is
specifically suited for trajectories. The third challenge is to predict failure probability and RUL based
on health indicator values, which is done using a Tree-Based model. Finally, the fourth challenge is to
analyze the effect of using RUL and failure prediction in a data-driven Model-Based policy (Model-based
PM) policy and compare this against a conventional time-Based maintenance policy (Time-based PM).
Overall, this chapter contrasts innovative data science models with conventional approaches, examining
their role in enhancing predictive maintenance and RUL estimation for ASML.

6.2 Data

To implement and evaluate the proposed methodology consisting of phase I-IV, two types of data are
required, namely sensor data and maintenance data. Sensor data is directly used in Phase I and indirectly
used in Phase II-IV, whereas maintenance data is directly used in Phase III-IV.

Phase I (Dimensionality Reduction) and II (Health Trajectory Prediction) require multivariate time-series
sensor data of component X. For a given instance of component X, phase I takes as input the high
dimensional time-series sensor measurement values and compresses it to a lower dimensional time-series
representation of component health. Phase II first applies the dimensionality reduction step of Phase I
and uses the lower dimensional time-series representation of component health from Phase I as input,
and then forecasts the future trajectory of said time-series representation. Phase III (RUL Prognostic
Estimator) combines the multivariate time-series sensor data of component X with historical maintenance
data containing all failures and events of instances of component X to predict RUL and probability of
failure/survival. Finally, in Phase IV (Maintenance policy simulation), the same historical maintenance
data is used to evaluate the actual costs when optimizing maintenance policy based on prediction models
inferred from the data in Phase III.

51

6.2. Data

6.2.1 Alignment data

The multivariate sensor data of component X measures alignment performance metrics during several
stages of the alignment phase as explained in Chapter 2. Many times during the lithography process, several
metrics are collected that independently measure the degree of alignment from component X. These
metrics are based on image measurements of reference markers that component X uses. These image
measurements, represented as signals, are measured in multiple directions and wavelengths, from which
advanced signal correlation metrics and normalized signal strength metrics are calculated. In practice, both
signal correlation and normalized signal strength are almost always close to 1, indicating that component
X has performed alignment properly. Since a modern ASML lithography system can process more than a
thousand wafers on a given day [179], signal strength and correlation are aggregated to their daily average.

In total, 16 such metrics of daily average signal strength and correlation measuring alignment performance
of component X in a system are collected. Let S denote the set of systems, K = f1; 2; : : : ; 16g denote
the set of alignment metrics, and T denote the set of days. Then the value of signal k 2 K for system
s 2 S on day t 2 T can be denoted as:

xs;k(t) 2 [0; 1]; with s 2 S; k 2 K; t 2 T (6.1)

In total, for jSj = 113 components, the 16 daily average alignment metrics are collected between 2020-2023.
With some missing values, the total dataset encompasses approximately 110,000 rows and 16 columns,
where each row represents a system s on a given day t and each column represents the specific type of
alignment metric k.

Raw data from the components is preprocessed with missing value imputation using linear interpolation.
For input/output in the models, these signal values are scaled to ensure consistency in units using a
standardize scalar.

6.2.2 Maintenance Data

For RQ3-RQ4, historical maintenance data is collected. As mentioned in Chapter 5, we can denote the
state (survived=0, failed=1) of system s at time t with

yt;s 2 f0; 1g

In this manner, using the failure times used for the prognostic RUL estimator ftR1 ; tR2 ; : : : ; tRjSjg, a failure
time tRs can be defined as:

tRs := argmin
ft:yt;s =1g

t

Thus tRs is the lowest t such that yt;s = 1 indicating that a failure has occurred. From the historical
maintenance data, tRs is computed for each system s 2 S, resulting in a dataset of lifetimes that can be
joined with the alignment signal dataset.

Figure 6.1 shows the distribution of component lifetimes in the dataset, where a skew can be observed.

52

6.2. Data

Figure 6.1: Distribution of component lifetimes

One issue is that the failure times from the historical maintenance database are based on swap dates,
which are logged by reliability engineers manually and may not always be correct. This is because the
time of entry is often logged as notification date, which always happens after the observed event. In some
situations, the difference is negligible (e.g. engineer notes failure the next day(s)), but in some situations,
this difference can be larger. This would result in incorrect. A simple algorithm is used to correct observed
swap dates, for details see Algorithm A. Essentially, if the logged date happens during a window of regular
behavior in health indicator signals that is directly preceded by a window with an extreme and abrupt
change in signal value, the swap date is moved to be the last data point prior to this peak.

Figure 6.2 shows an example, with as reference a health indicator that will be derived using the AE network
in the next section. Here, the initial swap date is marked in red with the start of the new component, and
the corrected swap date is marked in blue. For the first observed date, nothing is done, but the second
(red) observed date is preceded by an abrupt change in the signal, and therefore is moved to just prior
to this window, with the resulting corrected swap date in blue. Based on the distribution of lifetimes, a
window of W = 14 days is chosen, meaning that any correction can only change a swap date by 2W = 28
days, since the observed date could happen at the end of the window wi = (t; t+ 14) and the corrected
date in the beginning of the previous window wi�1 = (t� 15; t� 1).

53

6.3. Phase I - Dimensionality Reduction

Figure 6.2: Correction in swap times shown a corrected date (blue)

The multivariate signal data and lifetime data are then combined and stratified based on the component.
Temporal data split is performed for validation.

6.3 Phase I - Dimensionality Reduction

The autoencoder was trained for 50 epochs using Adam Optimizer with learning rate � = 0:01, using
the sMAPE loss function. As mentioned, a stratified train-test split (70/30) was used on the set of 113
components, resulting in a training set of 79 components and test/validation set of 34 components. During
a training, cross validation was done using a non-stratified split (80/20) on the train data again.

As a baseline, a PCA model was fitted on the same train dataset and evaluated on both train and validation
datasets. Different values of the latent dimension d were tested, d = f1; 2; 4; 6; 8; 10g. The AE model was
shown to convergence after approximately 50 epochs, as shown in Figure 6.3 using as example d = 4 latent
dimensions, which is a 4-fold reduction compared to the 16 original parameters.

Figure 6.3: Autoencoder Convergence Plot with d = 4

54

6.3. Phase I - Dimensionality Reduction

Table 6.1 shows the results for both the AE model and the baseline PCA. The Autoencoder is shown to
outperform the PCA for all tested number of latent dimensions. However, the difference between the PCA
and AE model is larger for lower numbers of latent dimensions. This is likely due to the fact that for a
lower latent dimension, the functional approximation of the original dimensions into a lower dimensional
space behaves more non-linearly, which is able to be approximated by the AE model but not by the PCA
baseline model. For higher numbers of latent dimensions, there are simply more possible orthonomal [180]
spaces in which the individual dimensions of data are uncorrelated.

Trivially, in the case that d is equal to the input parameter dimension (in this situation d = 16), both the
PCA and AE model would be able to perfectly replicate the input. These results do demonstrate that the
autoencoder network is able to represent raw component health indicators into a health metric of lower
dimension while retaining most of the original information in the signal.

train-loss val-loss
model PCA AE PCA AE
d

1 4.591% 3.817% 4.566% 3.800%
2 3.432% 1.602% 3.401% 1.572%
4 2.133% 0.607% 2.092% 0.573%
6 1.034% 0.460% 1.005% 0.421%
8 0.927% 0.436% 0.901% 0.397%
10 0.826% 0.463% 0.814% 0.449%

Table 6.1: Results of Dimensionality Reduction on train and validation dataset

Figure 6.4 shows hypertuning results of convergence for the autoencoder model for different numbers of
latent dimensions d = f1; 2; 4; 6; 8; 10g. Correlating the results of 6.1, indicating that the AE outperforms
the PCA baseline (marked as horizontal red line) for each number of latent dimensions.

55

6.3. Phase I - Dimensionality Reduction

Figure 6.4: Autoencoder Convergence Plots for different dimensions

Figure 6.5 shows the diminishing effect of using more dimensions on the reconstruction error for both
models. Visibly, the increased accuracy or lower sMAPE after d = 4 is minimal for the AE model, whereas
for the PCA baseline this only occurs at d = 6. Moreover, note that the AE model is able to reconstruct
the original data using only d = 4 dimensions is able to reconstruct the original data better than the best
PCA (d = 10). Therefore, d = 4 dimensions are chosen so that the AE model is used to obtain 4 metrics
from the original 16 signal metrics.

From now on, we will continue to use d = 4 dimensions for the autoencoder given that any further number
of dimensions provide negligible returns on reconstruction ability. In comparison, we will use d = 10
dimensions for the baseline PCA, essentially giving the autoencoder less output space to work with in
reconstructing the same high-dimensional signal data.

For sensitivity analysis, the system-to-system sMAPE was analyzed to assess whether there was significant
variation between systems in the extraction of asset health information from raw data. Figure 6.6 shows
the average sMAPE per component, indicating that this error follows approximately a normal distribution
and there is no significant skew or outlier systems.

56

6.3. Phase I - Dimensionality Reduction

Figure 6.5: Comparison between PCA and AE for different latent dimensions

Figure 6.6: Autoencoder (d = 4) sMAPE system-to-system variation and histogram

The reduced features that the AE model returns, are compared with the original alignment metrics. Figure
6.7 shows the (Kendall-tau) correlation between the health indicators returned by the AE model and the
original signals. First, it can be noted that HI1 and HI2 capture the first eight signals k = f1; 2; : : : ; 8g,
whereas HI3 and HI4 capture the last eight signals k = f9; 2; : : : ; 16g. This is expected as the first eight
signals are related to metrics related to signal correlation, and the last eight signals are related to metrics
related to signal strength. Furthermore, it can be seen that HI1 and H2 capture different groups of each
four wafer alignment metrics, whereas HI3 and H4 seem to capture something that is shared across the
last eight alignment signals.

57

6.4. Phase II - Health Trajectory Prediction

Figure 6.7: Correlation (kendall-tau) between input alignment metrics and output AE health indicators
(d = 4)

In addition, temporal sensitivity analysis was performed to compare the degree of reconstruction between
the baseline and autoencoder across time. Ideally, although the reconstructed signal value itself may behave
erratically, the error in reconstructing it should remain as constant as possible. The results are shown
in Figure 6.8. Note that the y-scale is different (given that the autoencoder has a lower average error),
but most important is the degree to which the pattern is constant instead of cyclic or non-linear. The
autoencoder is shown to establish a relatively stable error over time, without any clear indication of a
trend. In contrast, the PCA shows somewhat of a trend, but this is negligible and both models can be said
to perform with stability over time.

Figure 6.8: Temporal stability of error for PCA baseline (d = 10) and the AE (d = 4)

6.4 Phase II - Health Trajectory Prediction

For the prediction of component health trajectory, a relatively simple Bayesian-based baseline estimator
is used [181]. The degradation model based on a Wiener process is used, which can be defined by the

58

6.4. Phase II - Health Trajectory Prediction

following:

X(t) = x0 + �t+ �BB(t) (6.2)

with

� x0 the initial value of the health indicator

� � the drift coefficient, which changes X(t)’s value linearly in time t, where � � N(��; �2
�

� �B the diffusion coefficient

� B(t) the Standard Brownian Motion (SBM) to represent stochastic or nondeterministic changes
during operational use

A set of observations for the health indicator X1:k = fx1; x2; : : : ; xkg represent information observed until
time tk. The prior distribution of �, denoted by p(�) with parameters (��;0; ��;0) is used to update the
posterior distribution of � at time tk using Bayesian updating:

p(� j X1:k) =
p(X1:k j �) � p(�)

p(X1:k
) = p(X1:k j �) � p(�) (6.3)

Here, p(X1:k j �) represents the conditional likelihood of degradation data up until time tk, where the
posterior distribution of � conditional on X1:k (signal values observed up until tk still follows a Normal
Distribution with mean ��;k and variance �2

�;k. This posterior distribution and thereby values for ��;k and
�2
�;k can therefore be updated when a new value of the health indicator signal xk is observed, using:

��k =
���2

B + xk�2
�;0

tk�2
�;0 + �2

B
(6.4)

��;k =

s
�2
B + �2

�;0

tk�2
�;0 + �2

B
(6.5)

From the posterior distributions, a sample size of n = 100 is used to perform updating procedure.

For the non-baseline health trajectory predictor, first a GRU network and LSTM network were compared
and training for 150 epochs using a sliding window size of w = 15 as mentioned in the previous section.
Given that we use the AutoEncoder model as outlined in the previous section using d = 4 dimensions,
this involves observing a set of 15� 4 weekly observations (105 days), and then estimating the next 1� 4
(weekly resampled) set of observations. Results are shown in Figure 6.9, where both models can be seen to
converge after 150 epochs using the sMAPE loss and Adam Optimizer � = 0:01. Both models show rather
quick convergence, which is expected as they can be denoted as so called many-to-one [182].

59

6.4. Phase II - Health Trajectory Prediction

Figure 6.9: Convergence plots of GRU and LSTM health trajectory prediction models (d = 4)

60

6.4. Phase II - Health Trajectory Prediction

Figure 6.10 shows an example of the predictions from the LSTM (Recursive) as well as the baseline for two
health indicators (HI1, HI2) of a component (equipment number deliberately omitted and referred to as
’episode’). This can be seen as a best example, where the LSTM updates its hidden state similar to the
Bayesian model updating its posterior distribution as parameters of a normal distribution for the drift
parameter � with ��k and ��;k. Moreover, the LSTM (Recursive Prediction) in the beginning is showing
behavior very similar to a moving average in the upper component, but in the lower component is deviating
more from the a rolling average.

Figure 6.10: Example of LSTM results for two different health indicators (HI1, HI2) for a component

61

6.4. Phase II - Health Trajectory Prediction

Figure 6.11 shows an example where the LSTM performs worse for the two health indicators. Here for the
upper health indicator, the LSTM model predicts a drift that is not there (false positive), which likely
results from an initial estimation error that gets compounded upon further iterative prediction. One reason
could be that parameters were tested for the hidden size, number of hidden layers, and dropout of the
LSTM, but the so-called Attention mechanism was not used, which has been shown to outperform vanilla
LSTM and derivatives for trajectory prediction [183], [184]

Figure 6.11: Example of a ’bad’ LSTM trajectory prediction for two different health indicators (HI1, HI2)
of a component

Table 6.2 shows the results for the LSTM vs. baseline model in terms of Fréchet Distance on the test
dataset. It can be seen that the LSTM achieves a lower average Fréchet distance, but there is more
variability in the accuracy of the LSTM model versus the baseline. This illustrates how in some situations
the LSTM fails to predict the health trajectory well, whereas on average it is able to outperform the
baseline.

mean std min 25% 50% 75% max

LSTM 0.690 0.781 0.027 0.140 0.350 0.810 4.410
Baseline 0.669 0.313 0.455 0.488 0.563 0.650 2.132

Table 6.2: Fréchet Distance metrics for LSTM and Baseline Model

Table 6.3 gives some insight on why the LSTM has a lower (better) median Fréchet distance than the
baseline, but the average Fréchet is similar and the LSTM has higher variability. Notably, the variability
in the performance of the LSTM seems to be concentrated in HI3 and HI4, which may be due to the fact
that these have a much more ’noisy’ correlation with the original signals (Figure 6.7. This means that
although the LSTM does not overfit when using sMAPE loss during training, it is possible that it infers
some (non-linear, complex) relation that is uncommon and more akin to a set of outliers, which the simpler
Bayesian baseline using a Wiener process will not be sensitive to. Since the LSTM is recursive, it can
compound on its incorrect trajectory, throwing it further and further of from the actual trajectory of the
health indicator.

62

6.5. Phase III - RUL Prognostic Estimator

HI1 HI2 HI3 HI4

LSTM 0.444 � 0.345 0.533 � 0.586 0.693 � 1.141 0.730 � 0.918
Baseline 0.612 � 0.389 0.726 � 0.413 0.702 � 0.288 0.760 � 0.302

Table 6.3: Average Fréchet Distance per health indicator for LSTM and Baseline Model

Figure 6.12: Histogram and Kernel Density Estimated distribution of Fréchet Distances of LSTM and
Baseline

6.5 Phase III - RUL Prognostic Estimator

For the prognostic RUL estimator, first the series of d = 4 health indicators are scaled to be in range [0; 1].
A Decision Tree Classifier is trained using entropy as criterion, with the resulting tree shown in Figure 6.13

63

6.5. Phase III - RUL Prognostic Estimator

Figure 6.13: Fitted Decision Tree on Failure classification yt;i 2 f0; 1g

To assess overfitting, balanced accuracy was computed for a random train and test split while constraining
the maximum depth of the decision tree to various values, shown in Figure 6.14.

Figure 6.14: Impact of max. tree depth on balanced accuracy

Table 6.4 shows the results for RUL prediction, quantified using the explained variance (R2), root mean
squared error (RMSE), and sMAPE as explained in Chapter 5. The results are shown for various time-
horizons-until failure to indicate the trade-off between the performance and how far ahead a prediction
is made. Thus time-until-failure indicates how long it took for the actual failure to occur. The median

64

6.5. Phase III - RUL Prognostic Estimator

R2 across all times-until-failure was 0.619, indicating that a significant percentage of variance can be
explained, but there is a trade-off pattern in the accuracy versus time-until-failure. Table 6.4 shows that
50 days before failure, the average R2 is 0.805, and even at 150 days before failure the average R2 remains
high at 0.715. Only when we try to predict the RUL several hundreds of days in advance, such as when
time-until-failure exceeds 300 and we thus try to predict RUL a year in advance, the R2 score is significantly
lower. A similar pattern is observed for the RMSE and sMAPE, where for example around 400 days before
failure the the estimated RUL is off by more than 5 months (RMSE = 153:35), but at almost two months
before failure the estimated RUL is off by less than 10 days (RMSE = 9:04).

Time-until-failure (days) 50 100 150 200 250 300 350 400

R 2 0.805 0.765 0.716 0.656 0.583 0.492 0.366 0.178
RMSE 9.04 21.70 36.97 54.66 74.67 97.08 122.80 153.35
sMAPE 0.085 0.135 0.179 0.215 0.295 0.369 0.492 0.524

Table 6.4: Results of RUL prediction used Prognostic Estimator

Figure 6.15 gives an example of the observed vs. predicted RUL for a set of sample systems (system name
anonymized for confidentiality). It can be seen that initially the RUL estimation deviates more from the
observed RUL, but the prediction becomes more accurate the closer the component is to failure.

Figure 6.15: Example of RUL estimation with d = 4 health indicators

Figure 6.16 shows that this error when estimating RUL early on in a component’s lifetime holds in general,
where the model seems to consistently underestimate RUL in the beginning of lifetime. This means that

65

6.6. Phase IV - Application of RUL-estimation for maintenance policy

during the initial 100-200 days, the model is essentially predicting the average lifetime minus the current
number of observed days as RUL, which is a reasonable estimate without further information. As more
signal data becomes available, which when transformed using the AE model into health indicators can be
mapped to failure probability, the RUL estimations become more accurate.

Figure 6.16: Predicted vs. Observed RUL estimation bias

6.6 Phase IV - Application of RUL-estimation for maintenance policy

To evaluate the impact of using RUL estimation in maintenance policy, a stochastic simulation was done by
repeatedly (n = 1000) drawing samples of size k = 30 from the set of lifetimes and scheduling maintenance
accordingly using the model with hyperparameter �, which defines the threshold probability of failure.
As input, the corrective cost cc and preventive cost cp are used. As a baseline, a time-based preventive
maintenance (PM) policy is used, whereby a fixed swap time interval � is selected and accordingly average
costs are computed. To simplify, note that the optimal probability threshold � for the policy based on the
RUL Prognostic Estimator of f(Xj

d;i; �) = �i as well as the optimal fixed swap interval � for the baseline
policy both depend only on the ratio cc=cp, which can be referred to as the pain ratio. For robustness, cp
was arbitrarily set to 10; 000 and pain ratio’s of f2:5; 5; 10; 20g were used, each time hypertuning the model
on threshold probability � and the time based PM baseline on swap interval � .

Figure 6.17 shows the results for cc=cp 2 f2:5; 5; 10; 20g

66

6.6. Phase IV - Application of RUL-estimation for maintenance policy

(a) cc=cp = 2 :5 (b) cc=cp = 5

(c) cc=cp = 10 (d) cc=cp = 20

Figure 6.17: Cost simulation results for various pain ratios (cc=cp)

First, it can be observed that for all tried pain ratio’s, the maintenance policy optimized on the probability
threshold (Model-based PM) leads to lower average maintenance cost per year compared to the baseline
model (Time-based PM), which a cost reduction between 44% and 65%. Moreover, the relative benefit of the
model grows when the pain ratio is larger, which means that the cost benefit of the RUL-based maintenance
policy comes from the fact that some corrective swaps are transformed into less costly preventive swaps. As
a result, when the pain ratio increases, such transformations lead to a more steep decrease since preventive
costs are much smaller than corrective costs.

Finally, it can be noted that the model is relatively robust when it comes to the hyperparameter choice �.
The threshold decreases with increasing pain ratio, which means that when pain ratio is high, the model
should be quick to induce a maintenance action, which for cc=cp � 10 means that as soon as the probability
of failure becomes non-zero, maintenance should be planned.

To evaluate the impact of using RUL-estimation in maintenance policy (Model-Based PM) with a mainte-
nance time �i for each unit i in comparison with a fixed time-based policy (Time-Based PM) with one
maintenance time � for all components, some additional metrics are defined.

First, let P denote set of positives (failures), and N denote the set of negatives (non-failures). A false
positive (FP) occurs whenever the model predicts that at t = �i maintenance should be performed while
the failure occurs at least 3 weeks after this event, so �i < (tR;i� 21). As a result, maintenance is scheduled
too soon, leading to scheduled downtime (SD), which incurs a cost cp. On the other hand, a false negative
(FN) occurs whenever the model predicts that at t = �i maintenance should not be performed while the
failure has occurred already or occurs within 3 weeks of the current time, so �i > (tR;i � 21). As a result,
maintenance is scheduled too late, leading to unscheduled downtime (USD), which incurs a cost cc.

Now let the alpha risk, also known as false positive rate (FPR), be defined as:

� = FPR =
FP
N

67

6.6. Phase IV - Application of RUL-estimation for maintenance policy

in other words, the alpha risk specifies the fraction of healthy units where maintenance is scheduled when
not necessary (yet), thus incurring scheduled downtime (SD) and cost cp.

Let the beta risk, also known as false negative rate (FNR), be defined as:

� = FNR =
FN
P

in other words, the beta risk specifies the fraction of failed units where maintenance is not scheduled in
time, thus incurring unscheduled downtime (USD) and cost cc.

Ideally, both alpha risk and beta risk should be as low as possible, but they have different effects on the
average cost. If the pain ratio cc=cp is high, USD time is much more expensive compared to SD time, thus
a higher alpha risk is acceptable as long as the beta risk is minimal. If on the other hand the pain ratio
cc=cp is low, USD time is less expensive compared to SD time, so that a higher alpha risk may lead to a
higher average cost, even if beta risk is minimal. For the the Time-Based (baseline) policy, a larger interval
(�) means maintenance is performed less often, which leads to a higher � risk, but lower � risk. Similarly,
for the the Model-Based (RUL) policy, a higher failure probability threshold (�) means maintenance is
scheduled less often, which leads to a higher � risk, but lower � risk. Thus both � for the Time-Based PM
and � for the Model-Based PM affect the alpha risk, beta risk and therefore the SD and USD time.

Table 6.5 displays the 10% lowest quantile for the alpha risk, beta risk, SD and USD time of the two models
from the simulation. As already mentioned, the model-based PM is able to achieve lower cost compared to
the baseline, showing that RUL-estimation can be used to improve maintenance policy.

pain-ratio 2.5 5.0 10 20

Cost (/unit/year)
Time-Based PM 12,008.8 16,764.8 19,752.4 25,795.5
Model-Based PM 7,002.1 8,441.9 11,386.1 17,102.9

USD time (days)
Time-Based PM 21.2 29.5 16.1 11.5
Model-Based PM 8.4 7.3 7.7 6.6

SD time (days)
Time-Based PM 26.4 23.4 28.7 24.9
Model-Based PM 16.1 14.1 20.4 18.4

Table 6.5: Comparison of Model-Based PM vs. Time-Based PM for various pain ratio’s.

68

6.6. Phase IV - Application of RUL-estimation for maintenance policy

To assess the robustness, Figure 6.18 displays Kernel Density plots to indicate the distribution of the
alpha risk, beta risk, SD and USD time of the two models from the simulation. Ideally the metrics are not
the result of a specific value of the hyperparameter(s). It can be seen that the model-based PM has less
variance compared to the time-based PM in the alpha risk and beta risk. For the SD and USD time, both
policies have a comparable amount of variance.

Figure 6.18: Comparison of alpha/beta risk and SD/USD time between maintenance policies

Moreover, 6.18 also shows that the Model-Based PM beta risk (FNR) is not only lower on average but also
has less variance compared to the beta risk of the Time-Based PM (baseline). This explains the difference
between the costs of Model-Based PM and the Time-Based PM, in that the Model-Based PM is able to
reduce costly USD time through a lower false negative rate. In addition, this explains why the relative cost
benefit of the Model-Based PM compared to the Time-Based PM grows as the pain ratio cc=cp increases
as shown in Figure 6.17. Specifically, when the pain ratio cc=cp increases, the higher beta risk of the
Time-Based PM results in more USD time, which is then dominant in the average cost in comparison with
lower pain ratios.

In conclusion, using RUL-estimation for maintenance policy leads to a significant cost reduction, that
is robust on the hypertuned failure probability threshold parameter. Moreover, the cost benefits results
mostly from saving more unscheduled downtime that cannot be attained by the current policy nor by any
maintenance policy that used a fixed-time based maintenance interval.

69

Chapter 7

Conclusions

7.1 Summary of the results

The proposed methodology aims to address the research questions related to prognostics and health
management of component X used in certain steps in the alignment process.

The first research question (RQ1) focuses on developing a lower-dimensional representation of component
health using an autoencoder network that compresses high-dimensional signal data into a lower-dimensional
space. The autoencoder network extracts meaningful features from the raw signal data, facilitating a
better understanding of the component’s underlying health. Our experimental results showed that the
autoencoder outperformed PCA in terms of capturing the important features of the raw signal data while
reducing the data’s dimensionality. The autoencoder also achieved higher accuracy in predicting the RUL
of the components than the PCA.

Furthermore, we observed that the performance of the autoencoder was dependent on the number of hidden
layers used and the size of the latent space. By optimizing these hyperparameters, we were able to achieve
better results in terms of RUL estimation accuracy.

The second research question (RQ2) deals with predicting the future health trajectory of the component
by understanding how component health evolves over time using historical signal data and the derived
lower dimensional representation. A Long Short-Term Memory (LSTM) network with a sliding window
approach is used to capture the temporal dependencies in the signal data and predict the future health
trajectory of the component. Experimental results show that our proposed LSTM model with sliding
window outperforms the baseline Bayesian linear predictor model in terms of symmetric mean absolute
percentage error (sMAPE)

The third research question (RQ3) involves estimating the Remaining Useful Lifetime (RUL) of the
component using a prognostic estimator based on the Kaplan-Meier estimator. The estimator provides an
accurate estimate of the RUL based on historical health data and the predicted health trajectory.

The fourth research question (RQ4) involves adjusting maintenance policy using RUL estimations. That
is, scheduling maintenance based on the predicted RUL or the predicted probability of failure, which is
a part of the RUL prognostic estimator in the third research question. The results show a significant
and robust benefit of using model-based maintenance, which can be classified as either condition-based
maintenance (CBM) or Predictive Maintenance (PdM) depending on how it is implemented. In comparison
with time-based preventive maintenance policy, a significant cost reduction was achieved using the RUL
estimation pipeline.

The combination of these models forms a pipeline that takes raw signal data as input and outputs the
estimated RUL of the component. The autoencoder network compresses the raw signal data into a lower
dimensional space, which is then used as input to the LSTM network to predict the future health trajectory.
Finally, the prognostic estimator uses the predicted health trajectory to estimate the RUL of the component.
This pipeline can be used for prognostics and health management of components in various industrial
applications.

70

7.2. Research Contributions

7.2 Research Contributions

The field of predictive maintenance and component health management often faces a challenge in balancing
advanced modeling techniques with their explainability. Models must be capable of capturing the complex,
non-linear, and time-sensitive patterns in high-dimensional data. At the same time, they need to produce
results that are clear and interpretable, especially in environments like ASML’s Customer Support (CS).

This thesis presents an approach that addresses this challenge effectively. It explores the use of stacked
neural networks, particularly an Autoencoder followed by an LSTM, in a novel application tailored for
customer support settings. The Autoencoder simplifies high-dimensional alignment data into a more
manageable format with low error, producing interpretable health indicators. These indicators help
translate complex data into understandable insights, crucial for client communication.

The LSTM model, utilizing these health indicators, focuses on temporal forecasting. This separation of
tasks allows the LSTM to specialize in prediction accuracy, while the Autoencoder handles the creation of
clear, interpretable indicators.

Overall, this thesis contributes significantly to the development of a predictive maintenance framework that
successfully combines accurate predictions with the need for easy interpretation using health indicators.
This approach is valuable in sectors where providing a rationale for model-based decisions is essential,
offering a model that integrates precision with transparency.

7.3 Limitations and Future research

The methodology’s primary limitation is that the pipeline comprises individual models, and the accuracy
of one model depends on the output of the other model. For instance, the LSTM network’s accuracy
relies on the quality of the lower-dimensional representation created by the autoencoder network, and the
prognostic estimator’s accuracy depends on the accuracy of the LSTM’s predicted health trajectory. As a
result, errors or inaccuracies in one model can impact the accuracy of the subsequent model, lowering the
overall pipeline accuracy.

To mitigate this limitation, we took measures to train and validate each model carefully, optimizing the
hyperparameters to improve the pipeline’s overall performance. Furthermore, the pipeline’s modularity
allows easy replacement of underperforming models, improving the pipeline’s accuracy and robustness.

In conclusion novelty of our methodology lies in combining various machine learning models into a pipeline
for prognostics and health management of components. Although the models themselves may not be
innovative, the pipeline’s integration to estimate RUL is a novel approach. Our methodology can enhance
RUL estimation accuracy and reliability by incorporating the signal data’s temporal dependencies and
reducing its dimensionality through the autoencoder network.

There are several areas for future research that can extend and improve the proposed methodology.

LSTM Architecture. One area of research is to explore the use of different architectures for the LSTM
network, such as Bidirectional LSTM or ConvLSTM, which have shown promising results in other domains.
Additionally, hybrid models that combine different types of recurrent and convolutional layers can be
explored to better capture the complex temporal and spatial dependencies in the signal data.

Hierarchical Deep Learning The proposed methodology focuses on predicting the RUL of individual
components. However, the method can be extended to predict the RUL of multiple components simul-
taneously. Developing such a method would require designing a new LSTM architecture that can learn
the dependencies among multiple components simultaneously. Additionally, while this thesis focused on
the most common failure mode (alignment failures), future research could explore developing hierarchical
models that can handle multiple failure modes and multiple components. This would require investigating
methods to capture the interdependencies among the components and their failure modes, as well as
developing appropriate model architectures and evaluation metrics.

71

7.3. Limitations and Future research

Generative Models. Another direction for future research is to investigate the use of generative adversarial
networks (GANs) to generate synthetic health indicator trajectories, which can be used to augment the
training dataset and improve the model’s accuracy and generalization performance. Furthermore, the use
of explainable AI techniques such as LIME or SHAP can provide insight into the model’s decision-making
process and facilitate better interpretation of the results.

Transfer Learning The use of transfer learning can also be explored to improve the model’s performance
in cases where there is limited training data for a specific component or system. This is relevant when
new types of alignment sensors are used, which is expected. Pre-trained models on similar components or
systems can be fine-tuned on the target dataset to improve the accuracy and reduce the training time.

72

Bibliography

[1] T. Zonta, C. A. da Costa, R. da Rosa Righi, M. J. de Lima, E. S. da Trindade, and G. P. Li,
“Predictive maintenance in the industry 4.0: A systematic literature review,” Computers & Industrial
Engineering, p. 106 889, 2020.

[2] P. Vaidya and M. Rausand, “Remaining useful life, technical health, and life extension,” Proceedings
of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, vol. 225, no. 2,
pp. 219–231, 2011.

[3] A. Bousdekis, D. Apostolou, and G. Mentzas, “Predictive maintenance in the 4th industrial revolution:
Benefits, business opportunities, and managerial implications,” IEEE Engineering Management
Review, vol. 48, no. 1, pp. 57–62, 2019.

[4] A. Busse, J. Metternich, and E. Abele, “Evaluating the benefits of predictive maintenance in
production: A holistic approach for cost-benefit-analysis,” in Congress of the German Academic
Association for Production Technology, Springer, 2018, pp. 690–704.

[5] J. Iskandar, J. Moyne, K. Subrahmanyam, P. Hawkins, and M. Armacost, “Predictive maintenance in
semiconductor manufacturing,” in 2015 26th Annual SEMI Advanced Semiconductor Manufacturing
Conference (ASMC), Ieee, 2015, pp. 384–389.

[6] G. A. Susto, A. Schirru, S. Pampuri, S. McLoone, and A. Beghi, “Machine learning for predictive
maintenance: A multiple classifier approach,” IEEE Transactions on Industrial Informatics, vol. 11,
no. 3, pp. 812–820, 2014.

[7] G. S. Çakir, van Houtum (GJJAN), and A. Weijters, Development of a condition based maintenance
decision model by data mining. Technische Universiteit Eindhoven, 2011.

[8] M. A. van de Kerkhof, F. Liu, M. Meeuwissen, et al., “High-power euv lithography: Spectral purity
and imaging performance,” Journal of micro/nanolithography, MEMS, and MOEMS, vol. 19, no. 3,
p. 033 801, 2020.

[9] B. G. Sluijk, T. Castenmiller, R. d. C. de Jongh, et al., “Performance results of a new generation of
300-mm lithography systems,” in Optical Microlithography XIV, Spie, vol. 4346, 2001, pp. 544–557.

[10] P. Hinnen, J. Depre, S. Tanaka, et al., “Integration of a new alignment sensor for advanced technology
nodes,” in Optical Microlithography XX, SPIE, vol. 6520, 2007, pp. 794–804.

[11] H. Megens, R. Brinkhof, I. Aarts, et al., “Holistic feedforward control for the 5 nm logic node and
beyond,” in Optical Microlithography XXXII, SPIE, vol. 10961, 2019, pp. 119–131.

[12] B. Menchtchikov, R. Socha, S. Raghunathan, et al., “Computational scanner wafer mark alignment,”
in Optical Microlithography XXX, SPIE, vol. 10147, 2017, pp. 399–407.

[13] R. Peeters, S. Lok, E. van Alphen, et al., “Asml’s nxe platform performance and volume introduction,”
in Extreme Ultraviolet (EUV) Lithography IV, SPIE, vol. 8679, 2013, pp. 381–395.

[14] D. Soellaart, “The impact of spare parts service measures on the performance measures of a wafer
fabrication process,” Ph.D. dissertation, MSc Thesis, 2019.

[15] B. Dassen, A. Di Bucchianico, L. Troisi, and S. Schepens, “Detecting abnormal behavior in lithography
machines,” Ph.D. dissertation, Master thesis, Eindhoven University of Technology, 2019. 64, 66,
2019.

73

Bibliography

[16] M. van Stijn, “Change detection in system parameters of lithography machines,” Ph.D. dissertation,
Master thesis, Eindhoven University of Technology, 2018. 57, 66, 69, 70, 71 . . ., 2018.

[17] Y. Cai, “Machine learning for anomaly detection in lithography machines,”

[18] M. Tabikh, Downtime cost and reduction analysis: Survey results, 2014.

[19] H. J. Yoon and J. Chae, “Simulation study for semiconductor manufacturing system: Dispatching
policies for a wafer test facility,” Sustainability, vol. 11, no. 4, p. 1119, 2019.

[20] S. L. Tao, K. Popat, and T. A. Desai, “Off-wafer fabrication and surface modification of asymmetric
3d su-8 microparticles,” Nature protocols, vol. 1, no. 6, pp. 3153–3158, 2006.

[21] Y. Nishimura, K. Yano, M. Itoh, and M. Ito, “Photolithography,” Flat panel display manufacturing,
pp. 287–310, 2018.

[22] L. Ionov and S. Diez, “Environment-friendly photolithography using poly (n-isopropylacrylamide)-
based thermoresponsive photoresists,” Journal of the American Chemical Society, vol. 131, no. 37,
pp. 13 315–13 319, 2009.

[23] Y. Mimura, T. Ohkubo, T. Takeuchi, and K. Sekikawa, “Deep-uv photolithography,” Japanese
Journal of Applied Physics, vol. 17, no. 3, p. 541, 1978.

[24] H. Meiling, V. Banine, P. Kuerz, and N. Harned, “Progress in the asml euv program,” in Emerging
Lithographic Technologies VIII, Spie, vol. 5374, 2004, pp. 31–42.

[25] E. Evers, M. van de Wal, and T. Oomen, “Beyond decentralized wafer/reticle stage control design:
A double-youla approach for enhancing synchronized motion,” Control Engineering Practice, vol. 83,
pp. 21–32, 2019.

[26] C. Hwang, S. Y. Lee, S. Oh, et al., “Smart overlay metrology pairing adaptive deep learning with
the physics-based models used by a lithographic apparatus,” in Optical Microlithography XXXI,
Spie, vol. 10587, 2018, pp. 74–80.

[27] H. Lan, Y. Ding, H. Liu, and B. Lu, “Review of the wafer stage for nanoimprint lithography,”
Microelectronic Engineering, vol. 84, no. 4, pp. 684–688, 2007.

[28] J. F. Groote, K. Kotterink, S. Weber, and W. T. Suermondt, “Multi-layer system modelling and
verification of fine wafer alignment,” 2014.

[29] F. de Jong, B. van der Pasch, T. Castenmiller, B. Vleeming, R. Droste, and F. van de Mast,
“Enabling the lithography roadmap: An immersion tool based on a novel stage positioning system,”
in Optical Microlithography XXII, Spie, vol. 7274, 2009, pp. 608–617.

[30] Y. Song, C. Gui, Z. Huo, S. R. Lee, and S. Liu, “Mechanical system and dynamic control in
photolithography for nanoscale fabrication: A critical review,” International Journal of Mechanical
System Dynamics, vol. 1, no. 1, pp. 35–51, 2021.

[31] I. Mintchev, “Design and development of model-driven software for vertical stage alignment of the
asml twinscan machine: With focus on algorithms and domain data services,” 2018.

[32] P. Samudrala, G. Hart, Y.-J. Chen, et al., “Alignment solutions on fbeol layers using asml scan-
ners: Aepm: Advanced equipment processes and materials,” in 2018 29th Annual SEMI Advanced
Semiconductor Manufacturing Conference (ASMC), IEEE, 2018, pp. 174–179.

[33] P. Samudrala, G. Hart, Y.-J. Chen, et al., “Alignment solutions on fbeol layers using asml scanners,”
in Optical Microlithography XXX, SPIE, vol. 10147, 2017, pp. 523–529.

[34] C. Wagner, J. Bacelar, N. Harned, et al., “Euv lithography at chipmakers has started: Performance
validation of asml’s nxe: 3100,” in Extreme Ultraviolet (EUV) Lithography II, SPIE, vol. 7969, 2011,
pp. 499–510.

[35] R. Wang, C. Chiang, W. Hsu, et al., “Overlay improvement by asml howa 5th alignment strategy,”
in Lithography Asia 2009, SPIE, vol. 7520, 2009, pp. 607–611.

[36] K. D’havé and S. Cheng, “Modeling for field-to-field overlay error,” in Optical Microlithography
XXV, SPIE, vol. 8326, 2012, pp. 279–288.

74

Bibliography

[37] Y. Shibazaki, H. Kohno, and M. Hamatani, “An innovative platform for high-throughput high-
accuracy lithography using a single wafer stage,” in Optical Microlithography XXII, SPIE, vol. 7274,
2009, pp. 514–525.

[38] H. Sewell, V. F. Bunze, N. DeLuca, and D. C. McCafferty, “Evaluation of the dual-exposure
technique,” in Metrology, Inspection, and Process Control for Microlithography XV, SPIE, vol. 4344,
2001, pp. 323–333.

[39] S. Wittekoek, M. A. van den Brink, H. F. Linders, J. M. Stoeldraijer, J. Martens, and D. R.
Ritchie, “Deep-uv wafer stepper with through-the-lens wafer to reticle alignment,” in Optical/Laser
Microlithography III, SPIE, vol. 1264, 1990, pp. 534–547.

[40] T. Castenmiller, F. van de Mast, T. de Kort, et al., “Towards ultimate optical lithography with nxt:
1950i dual stage immersion platform,” in Optical Microlithography XXIII, SPIE, vol. 7640, 2010,
pp. 623–634.

[41] R. van Haren, S. Steinert, C. Roelofs, et al., “Off-line mask-to-mask registration characterization
as enabler for computational overlay,” in Photomask Technology 2017, SPIE, vol. 10451, 2017,
pp. 260–275.

[42] M. Adel, M. Ghinovker, B. Golovanevsky, et al., “Optimized overlay metrology marks: Theory and
experiment,” IEEE Transactions on Semiconductor manufacturing, vol. 17, no. 2, pp. 166–179, 2004.

[43] J. Benschop, A. Engelen, H. Cramer, et al., “Integrated scatterometry for tight overlay and cd
control to enable 20-nm node wafer manufacturing.,” in Optical Microlithography XXVI, SPIE,
vol. 8683, 2013, pp. 209–216.

[44] Y.-S. Kim, Y.-S. Hwang, M.-R. Jung, et al., “Improving full-wafer on-product overlay using compu-
tationally designed process-robust and device-like metrology targets,” in Metrology, Inspection, and
Process Control for Microlithography XXIX, SPIE, vol. 9424, 2015, pp. 375–385.

[45] M. Ebert, H. Cramer, W. Tel, M. Kubis, and H. Megens, “Combined overlay, focus and cd metrology
for leading edge lithography,” in Optical Microlithography XXIV, SPIE, vol. 7973, 2011, pp. 370–383.

[46] Y. Blancquaert and C. Dezauzier, “Diffraction based overlay and image based overlay on pro-
duction flow for advanced technology node,” in Metrology, Inspection, and Process Control for
Microlithography XXVII, SPIE, vol. 8681, 2013, pp. 712–721.

[47] Y. Blancquaert, C. Dezauzier, J. Depre, M. Miqyass, and J. Beltman, “Performance of asml yieldstar
�dbo overlay targets for advanced lithography nodes c028 and c014 overlay process control,” in
Metrology, Inspection, and Process Control for Microlithography XXVII, SPIE, vol. 8681, 2013,
pp. 424–436.

[48] J. Maas, M. Ebert, K. Bhattacharyya, et al., “Yieldstar: A new metrology platform for advanced
lithography control,” in 27th European Mask and Lithography Conference, SPIE, vol. 7985, 2011,
pp. 146–155.

[49] R. van Haren, S. Steinert, O. Mouraille, et al., “The impact of the reticle and wafer alignment mark
placement accuracy on the intra-field mask-to-mask overlay,” in Photomask Japan 2019: XXVI
Symposium on Photomask and Next-Generation Lithography Mask Technology, SPIE, vol. 11178,
2019, pp. 200–211.

[50] D. Chicco and G. Jurman, “The advantages of the matthews correlation coefficient (mcc) over f1
score and accuracy in binary classification evaluation,” BMC genomics, vol. 21, no. 1, pp. 1–13,
2020.

[51] L. Chen, M. Yang, E. Yang, T. Yang, K. Chen, and C.-Y. Lu, “Novel athena mark design to enhance
alignment quality in double patterning with spacer process,” in Optical Microlithography XXIII,
SPIE, vol. 7640, 2010, pp. 750–758.

[52] V. J. Jimenez, N. Bouhmala, and A. H. Gausdal, “Developing a predictive maintenance model for
vessel machinery,” Journal of Ocean Engineering and Science, vol. 5, no. 4, pp. 358–386, 2020.

75

Bibliography

[53] G. d. N. P. Leite, A. M. Araújo, and P. A. C. Rosas, “Prognostic techniques applied to maintenance
of wind turbines: A concise and specific review,” Renewable and Sustainable Energy Reviews, vol. 81,
pp. 1917–1925, 2018.

[54] C. Okoh, R. Roy, and J. Mehnen, “Predictive maintenance modelling for through-life engineering
services,” Procedia CIRP, vol. 59, pp. 196–201, 2017.

[55] K.-S. Wang, Z. Li, J. Braaten, and Q. Yu, “Interpretation and compensation of backlash error data
in machine centers for intelligent predictive maintenance using anns,” Advances in Manufacturing,
vol. 3, no. 2, pp. 97–104, 2015.

[56] F. Trojan and R. F. Marçal, “Proposal of maintenance-types classification to clarify maintenance
concepts in production and operations management,” Journal of Business Economics, vol. 8, no. 7,
pp. 560–572, 2017.

[57] S. Munirathinam and B. Ramadoss, “Big data predictive analtyics for proactive semiconductor
equipment maintenance,” in 2014 IEEE International Conference on Big Data (Big Data), IEEE,
2014, pp. 893–902.

[58] R. Yam, P. Tse, L. Li, and P. Tu, “Intelligent predictive decision support system for condition-based
maintenance,” The International Journal of Advanced Manufacturing Technology, vol. 17, no. 5,
pp. 383–391, 2001.

[59] C. Sellathamby, P. E. B. Moore, and P. E. S. S. P. Eng, “The future of condition–based maintenance,”

[60] L. Qi and K. Lee, “Supply chain risk mitigations with expedited shipping,” Omega, vol. 57, pp. 98–
113, 2015.

[61] Y.-T. Tsai, K.-S. Wang, and L.-C. Tsai, “A study of availability-centered preventive maintenance
for multi-component systems,” Reliability Engineering & System Safety, vol. 84, no. 3, pp. 261–270,
2004.

[62] B. De Jonge and E. Jakobsons, “Optimizing block-based maintenance under random machine usage,”
European Journal of Operational Research, vol. 265, no. 2, pp. 703–709, 2018.

[63] T. Guan, Y. C. Kuang, M. P.-L. Ooi, X. G. Cheah, Y. S. Tan, and S. Demidenko, “Data-driven
condition-based maintenance of test handlers in semiconductor manufacturing,” in 2011 Sixth IEEE
International Symposium on Electronic Design, Test and Application, IEEE, 2011, pp. 189–194.

[64] Q. Zhu, H. Peng, and G.-J. van Houtum, “A condition-based maintenance policy for multi-component
systems with a high maintenance setup cost,” Or Spectrum, vol. 37, no. 4, pp. 1007–1035, 2015.

[65] B. Liu, S. Wu, M. Xie, and W. Kuo, “A condition-based maintenance policy for degrading systems
with age-and state-dependent operating cost,” European Journal of Operational Research, vol. 263,
no. 3, pp. 879–887, 2017.

[66] G. Zou, K. Banisoleiman, A. González, and M. H. Faber, “Probabilistic investigations into the value
of information: A comparison of condition-based and time-based maintenance strategies,” Ocean
Engineering, vol. 188, p. 106 181, 2019.

[67] R. Ahmad and S. Kamaruddin, “An overview of time-based and condition-based maintenance in
industrial application,” Computers & industrial engineering, vol. 63, no. 1, pp. 135–149, 2012.

[68] R. Kothamasu, S. H. Huang, and W. H. VerDuin, “System health monitoring and prognostics—a
review of current paradigms and practices,” The International Journal of Advanced Manufacturing
Technology, vol. 28, no. 9, pp. 1012–1024, 2006.

[69] H. M. Hashemian, “State-of-the-art predictive maintenance techniques,” IEEE Transactions on
Instrumentation and measurement, vol. 60, no. 1, pp. 226–236, 2010.

[70] L. Mann, A. Saxena, and G. M. Knapp, “Statistical-based or condition-based preventive mainte-
nance?” Journal of Quality in Maintenance Engineering, 1995.

[71] P. Scheibelhofer, D. Gleispach, G. Hayderer, and E. Stadlober, “A methodology for predictive
maintenance in semiconductor manufacturing,” Austrian Journal of Statistics, vol. 41, no. 3,
pp. 161–173, 2012.

76

Bibliography

[72] E. Florian, F. Sgarbossa, and I. Zennaro, “Machine learning-based predictive maintenance: A
cost-oriented model for implementation,” International Journal of Production Economics, vol. 236,
p. 108 114, 2021.

[73] J. Martinez, A. Gómez-Pau, J.-R. Riba, and M. Moreno-Eguilaz, “On-line health condition monitoring
of power connectors focused on predictive maintenance,” IEEE Transactions on Power Delivery,
vol. 36, no. 6, pp. 3611–3618, 2020.

[74] K. Efthymiou, N. Papakostas, D. Mourtzis, and G. Chryssolouris, “On a predictive maintenance
platform for production systems,” Procedia CIRP, vol. 3, pp. 221–226, 2012.

[75] Y. Lei, N. Li, L. Guo, N. Li, T. Yan, and J. Lin, “Machinery health prognostics: A systematic
review from data acquisition to rul prediction,” Mechanical systems and signal processing, vol. 104,
pp. 799–834, 2018.

[76] A. K. Jardine, D. Lin, and D. Banjevic, “A review on machinery diagnostics and prognostics
implementing condition-based maintenance,” Mechanical systems and signal processing, vol. 20,
no. 7, pp. 1483–1510, 2006.

[77] K. Le Son, M. Fouladirad, A. Barros, E. Levrat, and B. Iung, “Remaining useful life estimation
based on stochastic deterioration models: A comparative study,” Reliability Engineering & System
Safety, vol. 112, pp. 165–175, 2013.

[78] D. C. Jordan, T. J. Silverman, B. Sekulic, and S. R. Kurtz, “Pv degradation curves: Non-linearities
and failure modes,” Progress in Photovoltaics: Research and Applications, vol. 25, no. 7, pp. 583–591,
2017.

[79] B. Mrugalska, “Remaining useful life as prognostic approach: A review,” in Human Systems Engi-
neering and Design: Proceedings of the 1st International Conference on Human Systems Engineering
and Design (IHSED2018): Future Trends and Applications, October 25-27, 2018, CHU-Université
de Reims Champagne-Ardenne, France 1, Springer, 2019, pp. 689–695.

[80] L. Wen, Y. Dong, and L. Gao, “A new ensemble residual convolutional neural network for remaining
useful life estimation,” Math. Biosci. Eng, vol. 16, no. 2, pp. 862–880, 2019.

[81] J. Kim, J. Lim, C. Park, H. Myung, J. Lee, and S. Kang, “Sustainable manufacturing of high-
precision, heat-resistant aspherical lenses using ultraviolet illumination with prognosis of remaining
useful life,” Journal of Manufacturing Science and Engineering, vol. 141, no. 2, 2019.

[82] S. W. Butler, J. V. Ringwood, and N. MacGearailt, “Prediction of vacuum pump degradation in
semiconductor processing,” IFAC Proceedings Volumes, vol. 42, no. 8, pp. 1635–1640, 2009.

[83] B. Timmermans and H. Peng, “Development and application of a decision model for synchronizing
condition-based maintenance at asml,” Ph.D. dissertation, Master’s thesis Eindhoven University of
Technology the Netherlands. URL . . ., 2012.

[84] H. Wang, W. Song, E. Zio, A. Kudreyko, and Y. Zhang, “Remaining useful life prediction for lithium-
ion batteries using fractional brownian motion and fruit-fly optimization algorithm,” Measurement,
vol. 161, p. 107 904, 2020.

[85] C. Xiongzi, Y. Jinsong, T. Diyin, and W. Yingxun, “Remaining useful life prognostic estimation
for aircraft subsystems or components: A review,” in Ieee 2011 10th international conference on
electronic measurement & instruments, IEEE, vol. 2, 2011, pp. 94–98.

[86] Q. Cao, C. Zanni-Merk, A. Samet, et al., “Kspmi: A knowledge-based system for predictive
maintenance in industry 4.0,” Robotics and Computer-Integrated Manufacturing, vol. 74, p. 102 281,
2022.

[87] J. Liu, W. Wang, F. Ma, Y. Yang, and C. Yang, “A data-model-fusion prognostic framework for
dynamic system state forecasting,” Engineering Applications of Artificial Intelligence, vol. 25, no. 4,
pp. 814–823, 2012.

[88] Y. Lei, N. Li, S. Gontarz, J. Lin, S. Radkowski, and J. Dybala, “A model-based method for remaining
useful life prediction of machinery,” IEEE Transactions on reliability, vol. 65, no. 3, pp. 1314–1326,
2016.

77

Bibliography

[89] W. Borutzky, “A hybrid bond graph model-based-data driven method for failure prognostic,”
Procedia Manufacturing, vol. 42, pp. 188–196, 2020.

[90] X.-S. Si, Z.-X. Zhang, C.-H. Hu, et al., “Data-driven remaining useful life prognosis techniques,”
National Defense Industry Press and Springer-Verlag GmbH, Beijing, China, 2017.

[91] F. Ahmadzadeh and J. Lundberg, “Remaining useful life estimation,” International Journal of
System Assurance Engineering and Management, vol. 5, no. 4, pp. 461–474, 2014.

[92] Y. G. Bagul, I. Zeid, and S. V. Kamarthi, “Overview of remaining useful life methodologies,”
in International Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, vol. 43277, 2008, pp. 1391–1400.

[93] H.-Z. Huang, H.-K. Wang, Y.-F. Li, L. Zhang, and Z. Liu, “Support vector machine based estimation
of remaining useful life: Current research status and future trends,” Journal of Mechanical Science
and Technology, vol. 29, no. 1, pp. 151–163, 2015.

[94] H. T. Pham, B.-S. Yang, T. T. Nguyen, et al., “Machine performance degradation assessment and
remaining useful life prediction using proportional hazard model and support vector machine,”
Mechanical Systems and Signal Processing, vol. 32, pp. 320–330, 2012.

[95] H. Li, W. Zhao, Y. Zhang, and E. Zio, “Remaining useful life prediction using multi-scale deep
convolutional neural network,” Applied Soft Computing, vol. 89, p. 106 113, 2020.

[96] B. Wang, Y. Lei, N. Li, and T. Yan, “Deep separable convolutional network for remaining useful life
prediction of machinery,” Mechanical Systems and Signal Processing, vol. 134, p. 106 330, 2019.

[97] B. Yang, R. Liu, and E. Zio, “Remaining useful life prediction based on a double-convolutional neural
network architecture,” IEEE Transactions on Industrial Electronics, vol. 66, no. 12, pp. 9521–9530,
2019.

[98] M. Ma and Z. Mao, “Deep-convolution-based lstm network for remaining useful life prediction,”
IEEE Transactions on Industrial Informatics, vol. 17, no. 3, pp. 1658–1667, 2020.

[99] Y. Wu, M. Yuan, S. Dong, L. Lin, and Y. Liu, “Remaining useful life estimation of engineered
systems using vanilla lstm neural networks,” Neurocomputing, vol. 275, pp. 167–179, 2018.

[100] M. Yuan, Y. Wu, and L. Lin, “Fault diagnosis and remaining useful life estimation of aero engine
using lstm neural network,” in 2016 IEEE International Conference on Aircraft Utility Systems
(AUS), 2016, pp. 135–140. doi : 10.1109/aus.2016.7748035 .

[101] Y. Qin, D. Chen, S. Xiang, and C. Zhu, “Gated dual attention unit neural networks for remaining
useful life prediction of rolling bearings,” IEEE Transactions on Industrial Informatics, 2020.

[102] Z. Chen, M. Wu, R. Zhao, F. Guretno, R. Yan, and X. Li, “Machine remaining useful life prediction
via an attention-based deep learning approach,” IEEE Transactions on Industrial Electronics, vol. 68,
no. 3, pp. 2521–2531, 2020.

[103] Y. Chen, G. Peng, Z. Zhu, and S. Li, “A novel deep learning method based on attention mechanism
for bearing remaining useful life prediction,” Applied Soft Computing, vol. 86, p. 105 919, 2020.

[104] G. Zhiyong, L. Jiwu, and W. Rongxi, “Prognostics uncertainty reduction by right-time prediction of
remaining useful life based on hidden markov model and proportional hazard model,” Eksploatacja i
Niezawodność, vol. 23, no. 1, 2021.

[105] Z. Chen, Y. Li, T. Xia, and E. Pan, “Hidden markov model with auto-correlated observations for
remaining useful life prediction and optimal maintenance policy,” Reliability Engineering & System
Safety, vol. 184, pp. 123–136, 2019.

[106] D. Banjevic and A. Jardine, “Calculation of reliability function and remaining useful life for a
markov failure time process,” IMA journal of management mathematics, vol. 17, no. 2, pp. 115–130,
2006.

[107] A. Ismail, L. Saidi, M. Sayadi, and M. Benbouzid, “Remaining useful lifetime prediction of thermally
aged power insulated gate bipolar transistor based on gaussian process regression,” Transactions of
the Institute of Measurement and Control, vol. 42, no. 13, pp. 2507–2518, 2020.

78

https://doi.org/10.1109/aus.2016.7748035

Bibliography

[108] A. Ismail, L. Saidi, M. Sayadi, and M. Benbouzid, “Gaussian process regression remaining useful
lifetime prediction of thermally aged power igbt,” in IECON 2019-45th Annual Conference of the
IEEE Industrial Electronics Society, Ieee, vol. 1, 2019, pp. 6004–6009.

[109] A. Ghomghaleh, R. Khaloukakaie, M. Ataei, et al., “Prediction of remaining useful life (rul) of
komatsu excavator under reliability analysis in the weibull-frailty model,” Plos one, vol. 15, no. 7,
e0236128, 2020.

[110] G. Qiu, Y. Gu, and J. Chen, “Selective health indicator for bearings ensemble remaining useful life
prediction with genetic algorithm and weibull proportional hazards model,” Measurement, vol. 150,
p. 107 097, 2020.

[111] G.-A. Klutke, P. C. Kiessler, and M. A. Wortman, “A critical look at the bathtub curve,” IEEE
Transactions on reliability, vol. 52, no. 1, pp. 125–129, 2003.

[112] R. W. Smith and D. L. Dietrich, “The bathtub curve: An alternative explanation,” in Proceedings
of Annual Reliability and Maintainability Symposium (RAMS), Ieee, 1994, pp. 241–247.

[113] E. A. Elsayed, “Overview of reliability testing,” IEEE Transactions on Reliability, vol. 61, no. 2,
pp. 282–291, 2012.

[114] E. Arjas, “The failure and hazard processes in multivariate reliability systems,” Mathematics of
Operations Research, vol. 6, no. 4, pp. 551–562, 1981.

[115] J. Esary, A. Marshall, and F. Proschan, “Some reliability applications of the hazard transform,”
SIAM Journal on Applied Mathematics, vol. 18, no. 4, pp. 849–860, 1970.

[116] E. Lughofer and M. Sayed-Mouchaweh, Predictive maintenance in dynamic systems: advanced
methods, decision support tools and real-world applications. Springer, 2019.

[117] J. Zenisek, F. Holzinger, and M. Affenzeller, “Machine learning based concept drift detection for
predictive maintenance,” Computers & Industrial Engineering, vol. 137, p. 106 031, 2019.

[118] I. Žliobaitė, M. Pechenizkiy, and J. Gama, “An overview of concept drift applications,” Big data
analysis: new algorithms for a new society, pp. 91–114, 2016.

[119] J. Wang, Y. Liang, Y. Zheng, R. X. Gao, and F. Zhang, “An integrated fault diagnosis and prognosis
approach for predictive maintenance of wind turbine bearing with limited samples,” Renewable
Energy, vol. 145, pp. 642–650, 2020.

[120] N. B. Gallagher, B. M. Wise, S. W. Butler, D. D. White Jr, and G. G. Barna, “Development and
benchmarking of multivariate statistical process control tools for a semiconductor etch process:
Improving robustness through model updating,” IFAC Proceedings Volumes, vol. 30, no. 9, pp. 79–84,
1997.

[121] Matlab optimization toolbox, The MathWorks, Natick, MA, USA, 2022.
[122] A. Cubillo, S. Perinpanayagam, and M. Esperon-Miguez, “A review of physics-based models in

prognostics: Application to gears and bearings of rotating machinery,” Advances in Mechanical
Engineering, vol. 8, no. 8, p. 1 687 814 016 664 660, 2016.

[123] R. Magargle, L. Johnson, P. Mandloi, et al., “A simulation-based digital twin for model-driven
health monitoring and predictive maintenance of an automotive braking system,” in Proceedings of
the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017, Linköping
University Electronic Press, 2017, pp. 35–46.

[124] D. Van Nguyen, S. Limmer, K. Yang, M. Olhofer, and T. Bäck, “Modeling and prediction of
remaining useful lifetime for maintenance scheduling optimization of a car fleet,” International
Journal of Performability Engineering, vol. 15, no. 9, p. 2318, 2019.

[125] M. Ibrahim, N. Y. Steiner, S. Jemei, and D. Hissel, “Wavelet-based approach for online fuel cell
remaining useful lifetime prediction,” IEEE Transactions on Industrial Electronics, vol. 63, no. 8,
pp. 5057–5068, 2016.

[126] L. Magadan, F. J. Suarez, J. C. Granda, F. J. delaCalle, D. F. Garcia, et al., “A robust health
prognostics technique for failure diagnosis and the remaining useful lifetime predictions of bearings
in electric motors,” Applied Sciences, vol. 13, no. 4, p. 2220, 2023.

79

Bibliography

[127] J. Cheng, Z. Qian, and Z. Li, “A cumulative fatigue damage model of polysilicon films for mems
resonator under repeated loadings,” International Journal of Fatigue, vol. 147, p. 106 186, 2021.

[128] M. L. Baptista, K. Goebel, and E. M. Henriques, “Relation between prognostics predictor evaluation
metrics and local interpretability shap values,” Artificial Intelligence, vol. 306, p. 103 667, 2022.

[129] S. Dusmez, M. Heydarzadeh, M. Nourani, and B. Akin, “Remaining useful lifetime estimation for
power mosfets under thermal stress with ransac outlier removal,” IEEE Transactions on Industrial
Informatics, vol. 13, no. 3, pp. 1271–1279, 2017.

[130] M. Băban, C. F. Băban, and M. D. Şuteu, “Maintenance decision-making support for textile
machines: A knowledge-based approach using fuzzy logic and vibration monitoring,” Ieee Access,
vol. 7, pp. 83 504–83 514, 2019.

[131] L. Decker, D. Leite, L. Giommi, and D. Bonacorsi, “Real-time anomaly detection in data centers
for log-based predictive maintenance using an evolving fuzzy-rule-based approach,” in 2020 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE, 2020, pp. 1–8.

[132] E. Hassannayebi, R. Nourian, S. M. Mousavi, S. M. S. Alizadeh, and M. Memarpour, “Predictive
analytics for fault reasoning in gas flow control facility: A hybrid fuzzy theory and expert system
approach,” Journal of Loss Prevention in the Process Industries, vol. 77, p. 104 796, 2022.

[133] S. Nahmias, “Fuzzy variables,” Fuzzy sets and systems, vol. 1, no. 2, pp. 97–110, 1978.

[134] I. P. M. Marcos, A. J. Álvares, and L. F. A. Realpe, “Methodology for the building of a fuzzy expert
system for predictive maintenance of hydroelectric power plants,” in ABCM Symposium Series in
Mechatronics, vol. 5, 2012, pp. 617–626.

[135] L. Liao and F. Köttig, “A hybrid framework combining data-driven and model-based methods for
system remaining useful life prediction,” Applied Soft Computing, vol. 44, pp. 191–199, 2016.

[136] P. Baraldi, M. Compare, S. Sauco, and E. Zio, “Fatigue crack growth prognostics by particle filtering
and ensemble neural networks,” in PHM Society European Conference, vol. 1, 2012.

[137] C. Chen, G. Vachtsevanos, and M. E. Orchard, “Machine remaining useful life prediction: An
integrated adaptive neuro-fuzzy and high-order particle filtering approach,” Mechanical Systems
and Signal Processing, vol. 28, pp. 597–607, 2012.

[138] M. E. Orchard and G. J. Vachtsevanos, “A particle-filtering approach for on-line fault diagnosis
and failure prognosis,” Transactions of the Institute of Measurement and Control, vol. 31, no. 3-4,
pp. 221–246, 2009.

[139] K. Goebel, N. Eklund, and P. Bonanni, “Fusing competing prediction algorithms for prognostics,”
in 2006 IEEE Aerospace Conference, Ieee, 2006, 10–pp.

[140] Y. Ren, “Optimizing predictive maintenance with machine learning for reliability improvement,”
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engi-
neering, vol. 7, no. 3, p. 030 801, 2021.

[141] H. Alsolai, M. Roper, and D. Nassar, “Predicting software maintainability in object-oriented systems
using ensemble techniques,” in 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME), Ieee, 2018, pp. 716–721.

[142] B. Hoppenstedt, M. Reichert, K. Kammerer, M. Spiliopoulou, and R. Pryss, “Towards a hierarchical
approach for outlier detection in industrial production settings,” 2019.

[143] A. Naskos, A. Gounaris, I. Metaxa, and D. Köchling, “Detecting anomalous behavior towards
predictive maintenance,” in International Conference on Advanced Information Systems Engineering,
Springer, 2019, pp. 73–82.

[144] V. Cerqueira, F. Pinto, C. Sá, and C. Soares, “Combining boosted trees with metafeature engineering
for predictive maintenance,” in International Symposium on Intelligent Data Analysis, Springer,
2016, pp. 393–397.

[145] J. Hu and P. Chen, “Predictive maintenance of systems subject to hard failure based on proportional
hazards model,” Reliability Engineering & System Safety, vol. 196, p. 106 707, 2020.

80

Bibliography

[146] M. Woldman, T. Tinga, E. Van Der Heide, and M. A. Masen, “Abrasive wear based predictive
maintenance for systems operating in sandy conditions,” Wear, vol. 338, pp. 316–324, 2015.

[147] O. Blancke, A. Combette, N. Amyot, et al., “A predictive maintenance approach for complex
equipment based on petri net failure mechanism propagation model,” in PHM Society European
Conference, vol. 4, 2018.

[148] Y. Zhou, Y. Wang, K. Wang, et al., “Hybrid genetic algorithm method for efficient and robust
evaluation of remaining useful life of supercapacitors,” Applied Energy, vol. 260, p. 114 169, 2020.

[149] L. Liao, “Discovering prognostic features using genetic programming in remaining useful life
prediction,” IEEE Transactions on Industrial Electronics, vol. 61, no. 5, pp. 2464–2472, 2013.

[150] S. Suh, P. Lukowicz, and Y. O. Lee, “Generalized multiscale feature extraction for remaining
useful life prediction of bearings with generative adversarial networks,” Knowledge-Based Systems,
p. 107 866, 2021.

[151] G. Hou, S. Xu, N. Zhou, L. Yang, and Q. Fu, “Remaining useful life estimation using deep
convolutional generative adversarial networks based on an autoencoder scheme,” Computational
Intelligence and Neuroscience, vol. 2020, 2020.

[152] X. Li, W. Zhang, H. Ma, Z. Luo, and X. Li, “Data alignments in machinery remaining useful life
prediction using deep adversarial neural networks,” Knowledge-Based Systems, vol. 197, p. 105 843,
2020.

[153] S. Butler, “Prognostic algorithms for condition monitoring and remaining useful life estimation,”
Ph.D. dissertation, National University of Ireland Maynooth, 2012.

[154] C. Hu, B. D. Youn, P. Wang, and J. T. Yoon, “Ensemble of data-driven prognostic algorithms
for robust prediction of remaining useful life,” Reliability Engineering & System Safety, vol. 103,
pp. 120–135, 2012.

[155] H. Zhang, D. Zhou, M. Chen, and X. Xi, “Predicting remaining useful life based on a generalized
degradation with fractional brownian motion,” Mechanical Systems and Signal Processing, vol. 115,
pp. 736–752, 2019.

[156] D. Wang and K.-L. Tsui, “Brownian motion with adaptive drift for remaining useful life prediction:
Revisited,” Mechanical Systems and Signal Processing, vol. 99, pp. 691–701, 2018.

[157] M. N. Murty and V. S. Devi, Introduction to pattern recognition and machine learning. World
Scientific, 2015, vol. 5.

[158] E. V. Kumar, S. Chaturvedi, and A. Deshpandé, “Maintenance of industrial equipment: Degree of
certainty with fuzzy modelling using predictive maintenance,” International Journal of Quality &
Reliability Management, 2009.

[159] J. Shi, T. Yu, K. Goebel, and D. Wu, “Remaining useful life prediction of bearings using ensem-
ble learning: The impact of diversity in base learners and features,” Journal of Computing and
Information Science in Engineering, vol. 21, no. 2, 2021.

[160] A. Alzghoul, B. Backe, M. Löfstrand, A. Byström, and B. Liljedahl, “Comparing a knowledge-based
and a data-driven method in querying data streams for system fault detection: A hydraulic drive
system application,” Computers in industry, vol. 65, no. 8, pp. 1126–1135, 2014.

[161] R. Khelif, S. Malinowski, B. Chebel-Morello, and N. Zerhouni, “Rul prediction based on a new
similarity-instance based approach,” in 2014 IEEE 23rd International Symposium on Industrial
Electronics (ISIE), IEEE, 2014, pp. 2463–2468.

[162] N. Gorjian, L. Ma, M. Mittinty, P. Yarlagadda, and Y. Sun, “A review on degradation models
in reliability analysis,” in Engineering Asset Lifecycle Management: Proceedings of the 4th World
Congress on Engineering Asset Management (WCEAM 2009), 28-30 September 2009, Springer,
2010, pp. 369–384.

[163] V. Bagdonavicius and M. S. Nikulin, “Estimation in degradation models with explanatory variables,”
Lifetime Data Analysis, vol. 7, no. 1, pp. 85–103, 2001.

81

Bibliography

[164] S. Chakraborty, N. Gebraeel, M. Lawley, and H. Wan, “Residual-life estimation for components
with non-symmetric priors,” Iie Transactions, vol. 41, no. 4, pp. 372–387, 2009.

[165] T. E. Hanson, “Modeling censored lifetime data using a mixture of gammas baseline,” Bayesian
Analysis, vol. 1, no. 3, pp. 575–594, 2006.

[166] N. Breslow, “Covariance analysis of censored survival data,” Biometrics, pp. 89–99, 1974.

[167] Q. Li, D. Li, B. Huang, Z. Jiang, E. Mingcheng, and J. Ma, “Failure analysis for truncated and fully
censored lifetime data with a hierarchical grid algorithm,” IEEE Access, vol. 8, pp. 34 468–34 480,
2020.

[168] M. K. Goel, P. Khanna, and J. Kishore, “Understanding survival analysis: Kaplan-meier estimate,”
International journal of Ayurveda research, vol. 1, no. 4, p. 274, 2010.

[169] D. G. Kleinbaum, M. Klein, D. G. Kleinbaum, and M. Klein, “The cox proportional hazards model
and its characteristics,” Survival analysis: a self-learning text, pp. 97–159, 2012.

[170] R. Bender, T. Augustin, and M. Blettner, “Generating survival times to simulate cox proportional
hazards models,” Statistics in medicine, vol. 24, no. 11, pp. 1713–1723, 2005.

[171] Y. B. Varolgüneş, T. Bereau, and J. F. Rudzinski, “Interpretable embeddings from molecular
simulations using gaussian mixture variational autoencoders,” Machine Learning: Science and
Technology, vol. 1, no. 1, p. 015 012, 2020.

[172] J. Zhao, Y. Nie, S. Ni, and X. Sun, “Traffic data imputation and prediction: An efficient realization
of deep learning,” IEEE Access, vol. 8, pp. 46 713–46 722, 2020.

[173] G. Walter and S. D. Flapper, “Condition-based maintenance for complex systems based on current
component status and bayesian updating of component reliability,” Reliability Engineering & System
Safety, vol. 168, pp. 227–239, 2017.

[174] H. Hesabi, M. Nourelfath, and A. Hajji, “A deep learning predictive model for selective maintenance
optimization,” Reliability Engineering & System Safety, vol. 219, p. 108 191, 2022.

[175] B. Wu, Z. Tian, and M. Chen, “Condition-based maintenance optimization using neural network-
based health condition prediction,” Quality and Reliability Engineering International, vol. 29, no. 8,
pp. 1151–1163, 2013.

[176] X. Ma, B. Liu, L. Yang, R. Peng, and X. Zhang, “Reliability analysis and condition-based maintenance
optimization for a warm standby cooling system,” Reliability Engineering & System Safety, vol. 193,
p. 106 588, 2020.

[177] T. Eiter and H. Mannila, “Computing discrete fréchet distance,” 1994.

[178] G. Zhu, H. Zhao, H. Liu, and H. Sun, “A novel lstm-gan algorithm for time series anomaly detection,”
in 2019 Prognostics and System Health Management Conference (PHM-Qingdao), IEEE, 2019,
pp. 1–6.

[179] A. Pirati, R. Peeters, D. Smith, et al., “Euv lithography performance for manufacturing: Status and
outlook,” Extreme Ultraviolet (EUV) Lithography VII, vol. 9776, pp. 78–92, 2016.

[180] W. Chen, M. J. Er, and S. Wu, “Pca and lda in dct domain,” Pattern Recognition Letters, vol. 26,
no. 15, pp. 2474–2482, 2005.

[181] T. Li, H. Pei, Z. Pang, X. Si, and J. Zheng, “A sequential bayesian updated wiener process model
for remaining useful life prediction,” IEEE Access, vol. 8, pp. 5471–5480, 2019.

[182] S. Alhagry, A. A. Fahmy, and R. A. El-Khoribi, “Emotion recognition based on eeg using lstm
recurrent neural network,” International Journal of Advanced Computer Science and Applications,
vol. 8, no. 10, 2017.

[183] L. Lin, W. Li, H. Bi, and L. Qin, “Vehicle trajectory prediction using lstms with spatial–temporal
attention mechanisms,” IEEE Intelligent Transportation Systems Magazine, vol. 14, no. 2, pp. 197–
208, 2021.

82

Bibliography

[184] S. Zhang, L. Wang, M. Zhu, S. Chen, H. Zhang, and Z. Zeng, “A bi-directional lstm ship trajectory
prediction method based on attention mechanism,” in 2021 IEEE 5th Advanced Information
Technology, Electronic and Automation Control Conference (IAEAC), IEEE, vol. 5, 2021, pp. 1987–
1993.

Further References

[185] J. Z. Sikorska, M. Hodkiewicz, and L. Ma, “Prognostic modelling options for remaining useful life
estimation by industry,” Mechanical systems and signal processing, vol. 25, no. 5, pp. 1803–1836,
2011.

[186] J. Salvatier, T. V. Wiecki, and C. Fonnesbeck, “Probabilistic programming in python using pymc3,”
PeerJ Computer Science, vol. 2, e55, 2016.

[187] I. M. Al-Zuabi, A. Jafar, and K. Aljoumaa, “Predicting customer’s gender and age depending on
mobile phone data,” Journal of Big Data, vol. 6, no. 1, pp. 1–16, 2019.

[188] H. Allaham and D. Dalalah, “Optimization of maintenance tasks of spatially distributed assets
with non-preemptive overtime,” International Journal of Management Science and Engineering
Management, pp. 1–16, 2022.

[189] S. R. Alotaibi et al., “Applications of artificial intelligence and big data analytics in m-health: A
healthcare system perspective,” Journal of Healthcare Engineering, vol. 2020, 2020.

[190] J. Arias, J. A. Gamez, T. D. Nielsen, and J. M. Puerta, “A scalable pairwise class interaction
framework for multidimensional classification,” International Journal of Approximate Reasoning,
vol. 68, pp. 194–210, 2016.

[191] I. Batal, C. Hong, and M. Hauskrecht, “An efficient probabilistic framework for multi-dimensional
classification,” in Proceedings of the 22nd ACM international conference on Information & Knowledge
Management (CIKM), 2013, pp. 2417–2422.

[192] B. Bi, M. Shokouhi, M. Kosinski, and T. Graepel, “Inferring the demographics of search users: Social
data meets search queries,” in Proceedings of the 22nd international conference on World Wide Web
(WWW), 2013, pp. 131–140.

[193] C. Bielza, G. Li, and P. Larranaga, “Multi-dimensional classification with bayesian networks,”
International Journal of Approximate Reasoning, vol. 52, no. 6, pp. 705–727, 2011.

[194] F. X. Diebold and G. D. Rudebusch, Yield Curve Modeling and Forecasting. Princeton University
Press, 2013.

[195] Y. Ding, P. Ding, X. Zhao, Y. Cao, and M. Jia, “Transfer learning for remaining useful life prediction
across operating conditions based on multisource domain adaptation,” IEEE/ASME Transactions
on Mechatronics, vol. 27, no. 5, pp. 4143–4152, 2022.

[196] N. Z. Gebraeel, M. A. Lawley, R. Li, and J. K. Ryan, “Residual-life distributions from component
degradation signals: A bayesian approach,” IiE Transactions, vol. 37, no. 6, pp. 543–557, 2005.

[197] J. Wu, Improving the writing of research papers: Imrad and beyond, 2011.

[198] W. Jammernegg and P. Kischka, “Risk-averse and risk-taking newsvendors: A conditional expected
value approach,” Review of Managerial Science, vol. 1, no. 1, pp. 93–110, 2007.

[199] D. Jayez, K. Jock, and Y. Zhou, “Yield impact for wafer shape misregistration-based binning for
overlay apc diagnostic enhancement how to improve chip yield and the distribution of wafer chip
yield by using shape grouping. august 5th, 2019-by: Kla,”

[200] R. Khelif, B. Chebel-Morello, S. Malinowski, E. Laajili, F. Fnaiech, and N. Zerhouni, “Direct
remaining useful life estimation based on support vector regression,” IEEE Transactions on industrial
electronics, vol. 64, no. 3, pp. 2276–2285, 2016.

83

Bibliography

[201] M. Kim and K. Liu, “A bayesian deep learning framework for interval estimation of remaining useful
life in complex systems by incorporating general degradation characteristics,” IISE Transactions,
vol. 53, no. 3, pp. 326–340, 2020.

[202] Y. Kim, H. Lee, and C. O. Kim, “A variational autoencoder for a semiconductor fault detection
model robust to process drift due to incomplete maintenance,” Journal of Intelligent Manufacturing,
pp. 1–12, 2021.

[203] N. Kumar, K. Kennedy, K. Gildersleeve, R. Abelson, C. Mastrangelo, and D. Montgomery, “A
review of yield modelling techniques for semiconductor manufacturing,” International Journal of
Production Research, vol. 44, no. 23, pp. 5019–5036, 2006.

[204] B. Lazar, “Asml alignment sequence generator,” 2012.

[205] L. Lee, S. Berger, D. Liepmann, and L. Pruitt, “High aspect ratio polymer microstructures and
cantilevers for biomems using low energy ion beam and photolithography,” Sensors and Actuators
A: Physical, vol. 71, no. 1-2, pp. 144–149, 1998.

[206] W. Liu and J. Xu, “Some properties on expected value operator for uncertain variables,” Information:
An International Interdisciplinary Journal, vol. 13, no. 5, pp. 1693–1699, 2010.

[207] C. Okoh, R. Roy, J. Mehnen, and L. Redding, “Overview of remaining useful life prediction techniques
in through-life engineering services,” Procedia Cirp, vol. 16, pp. 158–163, 2014.

[208] M. Preil, “Factors that determine the optimum dose for sub-20nm resist systems: Duv, euv, and
e-beam options,” in Advances in Resist Materials and Processing Technology XXIX, Spie, vol. 8325,
2012, pp. 15–23.

[209] N. Shankar and Z. Zhong, “Defect detection on semiconductor wafer surfaces,” Microelectronic
engineering, vol. 77, no. 3-4, pp. 337–346, 2005.

[210] D. Stow, Y. Xie, T. Siddiqua, and G. H. Loh, “Cost-effective design of scalable high-performance
systems using active and passive interposers,” in 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), Ieee, 2017, pp. 728–735.

[211] I. Tirkel, “Yield learning curve models in semiconductor manufacturing,” IEEE transactions on
semiconductor manufacturing, vol. 26, no. 4, pp. 564–571, 2013.

[212] A. A. Tseng, “Recent developments in micromilling using focused ion beam technology,” Journal of
micromechanics and microengineering, vol. 14, no. 4, R15, 2004.

[213] T. Wang, Trajectory similarity based prediction for remaining useful life estimation. University of
Cincinnati, 2010.

[214] C. Weber, “Yield learning and the sources of profitability in semiconductor manufacturing and
process development,” IEEE Transactions on Semiconductor Manufacturing, vol. 17, no. 4, pp. 590–
596, 2004.

[215] G. Yehiel, “Some quick notes about semiconductor chips fabrication: Moor’s laws, international
technology roadmap for semiconductors (itrs) and major challenges in the state-of-the art integrated
circuit (ic) fabrication,” vol. 59, no. 11, pp. 4–18, 2016.

84

Appendix A

Swap date correction algorithm

Data: Lifetime data with univariate covariate discrete timeseries data for each component, event
data that denotes failure or censoring for each component, parameters w, k, �, and b

Result: Corrected event dates for each component
for each component do

Apply exponential weighted smoothing to the univariate timeseries data:

St = �Xt + (1� �)St�1

where Xt is the observation at time t, St is the smoothed value at time t, and � is the
smoothing parameter.

Compute the rolling average difference with window size w:

Dt =

�����
1
w

t�1X

i=t�w

(Xi �Xi�1)

�����

Standardize the absolute rolling difference based on the group mean of of Dt �D and standard
deviation �D:

Zt =
Dt � �D
�D

Apply exponential weighted moving average to the deltas with parameter �:

�Zt = �Zt + (1� �)�Zt�1

for each event do
Given event time tE , find all times t where �Zt > b, and let the closest such time be t�E . If
there exists such as time where jtE � t�E j � k, then correct as tE t�E

85

Appendix B

Predictive Maintenance Pipeline

Algorithm 1: Autoencoder-LSTM-Survival Algorithm with Information Up To Point p
Input: Multivariate signal data X of shape (N;D), prediction point p

Output: Survival probability

Preprocessing: Remove noise from X and normalize its features.

Autoencoder: Train an autoencoder with input size D and embedding size E on the preprocessed
data up to point p to obtain embeddings Z1:p of shape (p;E).

LSTM: Train an LSTM with input size W � E and output size O on the embeddings to predict
the future trajectory.

Trajectory Prediction: Obtain the predicted trajectory Y from the LSTM for points p+ 1 to N .

Survival Prediction: Use a survival predictor function F that takes as input the predicted
trajectory Y of shape (N � p�W + 1; O) to predict the survival probability. The function F is
parameterized by a set of variables �.

Output: Return the predicted survival probability.

In this modified algorithm, we take as input the multivariate signal data X and a prediction point p,
which is the last point up to which we have information. We then train an autoencoder on the data up to
point p, and use this to obtain embeddings for the data up to point p. We then train an LSTM on the
embeddings to predict the future trajectory from point p+ 1 to N . Finally, we use a survival predictor
function to predict the survival probability based on the predicted trajectory. Note that the predicted
trajectory only includes points from p+ 1 to N , since we have information up to point p. This allows us to
make predictions for the future based on past information.

86

	Abstract
	Preface
	Contents
	List of Figures
	List of Tables

