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Abstract

Sustainable intensification of agriculture requires understanding of the effect of soil charac-

teristics and nutrient supply on crop growth. As farms are increasing in size by acquiring

small fields from various farmers, the soil characteristics and nutrient supply might be very

different from field to field, while at the same time specific soil properties might limit the nutri-

ent uptake. As a result, there might be a large number of heterogeneous reasons why crop

growth varies significantly. New data analysis techniques can help to explain variability in

crop growth among fields. This paper introduces Exceptional Growth Mining (EGM) as a

first contribution. EGM instantiates the data mining framework Exceptional Model Mining

(EMM) such that subgroups of fields can be found that grow exceptionally in terms of three

growth parameters (high/low maximum growth, steep/flat linear growth and early/late mid-

point of maximum growth). As second contribution, we apply EGM to a case study by ana-

lyzing the dataset of a potato farm in the south of the Netherlands. EGM consists of (i)

estimating growth curves by applying nonlinear mixed models, (ii) investigating the correla-

tion between the estimated growth parameters, and (iii) applying EMM on these growth

curve parameters using a growth curve-specific quality measure. By applying EGM on the

data of the potato farm, we obtain the following results: 1) the estimated growth curves rep-

resent the variability in potato tuber growth very well (R2 of 0.92), 2) the steepness of the

growth curve has a strong correlation with the maximum growth and the midpoint of maxi-

mum growth, and the correlation between the midpoint of maximum growth and maximum

growth is weak, 3) the subgroup analyses indicate that: high values of K correspond to high

maxima; low values of K correspond to low maxima, steep growth curves’, and a late mid-

point of halfway growth; Mg influences the midpoint of the growth curve; values of B are

higher on dry soils with high tuber growth, while low values of B are found on wet soils with

high tuber growth; high values of Zn, Mn, and Fe are found in subgroups with low tuber

weight, probably related to the soil’s low pH. In summary, this paper introduces EGM to

obtain understanding in crop response to soil properties and nutrient supply. In addition,
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EGM provides a way to analyze only small parts of a large dataset, such that the impact of

soil factors on growth can be analyzed on a more detailed level than existing methods.

Introduction

Sustainable intensification of agriculture aims to increase crop yield and its economic returns

per unit of time and land, without putting a strain on soil and water resources or the integrity

of associated non-agricultural ecosystems [1, 2]. In practice, this calls for farm management

that is adjusted in such a way that the soil’s capacity to provide water and nutrients for crop

growth is maintained or enhanced, such that sustainability is ensured in terms of soil quality.

To realize this, responsible nutrient supply is required: the crop demand must be met without

any excess or deficiency throughout the season. In order to be able to respond to the crop’s

exact needs, it is necessary to understand how the soil nutrient content affects crop growth.

Although much research has been done on this topic over the years, estimating crop response

to soil and fertilizer nutrient supply and applying subsequent management requirements

remains a challenge [3, 4].

Within a farm, crop growth and yield highly varies. Understanding how soil nutrient con-

tent influences these differences in growth is crucial, especially because farms in the Nether-

lands and similar countries are increasing in size [5] due to the rental of a large number of

small fields that were all managed by different farmers and thus all have a different past. As a

result, the soil nutrient supply, and hence the crop’s fertilizer nutrient demand, might be very

different from field to field, also given the observation that nutrient uptake might be limited

due to specific soil properties. As an increasing number of farmers collect data, opportunities

arise: new agronomic research methods can contribute to understanding the crop’s response

to soil and fertilizer nutrient supply for the purpose of sustainable intensification [2, 6].

In response to this opportunity, data-driven methodologies are developed to analyze crop

growth and yield. Some methods aim to divide fields into management zones that can be used

for variable fertilizer application or yield predictions [7–9]. Other methods aim to explain and

predict crop growth and/or yield variability and use only one model that is applied across all

fields [10–12]. Since crop behavior will likely vary across the heterogeneous conditions

between (sub-)fields within a farm, it is likely that such one-size-fits-all modeling will deliver

suboptimal results. These between-field variations in soil conditions make modeling crop

growth and yield a complicated task, as the reasons why crop growth is optimal or reduced

might be different across fields. Therefore, it would be more appropriate to analyze available

data with methods that explicitly cater for multiple kinds of crop growth behavior. Crucially,

multiple kinds of behavior can result from multiple overlapping causes. It would therefore be

beneficial for a method to automatically detect deviating growth, and cater for multiple over-

lapping phenomena occurring simultaneously.

In this paper, we introduce Exceptional Growth Mining (EGM) as a new method to analyze

on-farm collected data. It employs mixed models [13] to accurately model the growth curves

for all fields. These growth curves are then embedded in the search strategy of Exceptional

Model Mining [14, 15], a local pattern mining technique striving to find coherent subgroups

of the dataset that display exceptional behavior. The result of EGM will be a list of subgroups

of fields: each subgroup is defined by soil properties (such as the conditions given in Fig 1),

and displays growth curves that deviate from the general behavior in a specific way (such as

the highlighted curves in Fig 1). EGM can find subgroups where growth leads to an exception-

ally high/low maximum growth, subgroups where the growth curve is exceptionally steep/flat,
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and subgroups where the midpoint of maximum growth is reached exceptionally early/late

after planting. The resulting subgroups provide new understandings of growth and yield vari-

ability: it generates new hypotheses on how soil factors impact growth on a more detailed level

than existing methods can, and hence ought to stimulate further agronomic research.

We apply EGM on a dataset of a potato (Solanum tuberosum L.) farm in the south of the

Netherlands [12]. Starting from 2015, the farmer has analyzed the soil to obtain the extractable

levels of mineral nutrients for the potato plants for approximately 100 fields per year. Through-

out the growing season, the farmer has sampled potato plants on each field to monitor the

growth. The potato growth varies highly between fields; on some fields, more than 80 ton ha−1

yield was obtained, while other fields obtained no more than 40 ton ha−1 yield, making it an

appropriate case study to analyze with EGM.

Main contributions

The main contributions of this work are:

• introduction of EGM: a new data analysis technique to discover various reasons for reduced

or optimal plant growth by applying Exceptional Model Mining on growth curve parame-

ters, resulting in a set of subgroups;

• analysis of the growth parameters: how are the maximum, steepness, and midway point of

growth related;

• result list of subgroups defined (mostly) in terms of soil nutrients, displaying exceptional

potato growth applied on the dataset of the mentioned farm.

Fig 1. Example of a subgroup with exceptional growth. On average, the fields in the subgroup have a higher maximum

tuber weight.

https://doi.org/10.1371/journal.pone.0296684.g001
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Materials and methods

The goal of Exceptional Growth Mining (EGM) is to find subgroups of fields that grow excep-

tionally, such as the one in Fig 1. EGM can be applied if longitudinal growth data are collected,

as well as some variables that could possibly influence growth. Growth curve analysis provides

insights in the growth dynamics during the growing season, allowing us to understand how

soil nutrients influence specific properties of growth (e.g., early/late midpoint, high/low maxi-

mum yield, and steep/flat curve), and how these properties interact. This is useful for farm

management: for example, a field which has a very steep growth will be fully grown relatively

soon, and thus could be planted later. Roughly, EGM consists of (i) estimating growth curves,

(ii) investigating the correlation between the estimated growth parameters, and (iii) applying

Exceptional Model Mining [14, 15] on these growth curves. In EGM, we develop a quality

measure for exceptional model mining, which is specifically designed for the field-specific

growth curves. As applying EGM can result in an overwhelmingly long list of subgroups, we in

addition show how to automatically select the most relevant ones. An overview of the three

steps of EGM can be found in Fig 2.

In order to apply EGM, it is necessary to have access to a detailed dataset of longitudinal

growth data of one ore more plant characteristic. In addition, of each sampling location, details

of soil and/or management variables should be available in order to discover heterogeneous

reasons for variability in growth.

In the upcoming sections, we start with providing an overview of the data of the case study.

Secondly, we explain how to estimate field-specific growth curves. Thirdly, we discuss Excep-

tional Model Mining, followed by how to turn EMM into EGM, where we explain how to turn

the growth curves into targets and explain the growth-specific quality measure. Finally, we

explain how to select the most interesting subgroups found by EGM.

Fig 2. Overview of the three steps of EGM.

https://doi.org/10.1371/journal.pone.0296684.g002
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Data

The data of the case study were collected on potato farm Van den Borne Aardappelen in the

south of the Netherlands. The owner of this farm, Jacob van den Borne, has given us permis-

sion to use these data. No permits were required to access the fields, as the data were collected

by himself, his employees and/or students who did an internship at the farm. The data from

2015 to 2018 were used. Each year, potato plants were sampled five to seven times per growing

season by the farmer on approximately 100 fields. The main goal was to monitor potato growth

throughout the season. Each sample round, the farmer picked three potato plants and weighed

the tubers. The total tuber weight of these three plants were used to calculate the tuber weight

in grams per squared meter:

yðgr m� 2Þ ¼
~yðgr=3 plantsÞ ∗ 1:333

planting distance ðcmÞ ∗ 3=100

The potatoes were sampled at the median of the electrical conductivity of the field. The elec-

trical conductivity of a field was measured using a DUALEM-21s: it measures conductivity

based on soil properties such as the amount of salt, water, and soil compaction. Three plants

were taken per sampling moment; prior work showed that relatively small number suffices

since the tuber growth of these three plants has a strong representative relation to yield at field

level [12].

At the first sampling round, soil samples were taken and analyzed by Eurofins [16], result-

ing in the extractable levels of mineral nutrients. These soil sample analyses included the levels

of the main soil nutrients N (Nitrogen), P (Phosphor) and K (Potassium) and many more

macro and micro nutrients, but unfortunately these analyses did not include any information

of the soil’s pH and Soil Organic Matter (SOM). There is however a relation between pH and

SOM and analyzed micro nutrients Mn, Fe and Zn [17], which allows us to implicitly analyze

the effect of pH and SOM on crop growth. Based on the potato’s needs, Eurofins provided a

range for each nutrient in which the nutrient amount should lie. In addition, a category

depending of the level of dryness (dry, average, and wet) and nutrient richness (rich, average,

and poor) was assigned to each field based on the expert knowledge of the farmer’s father. It

was also known which crop was cultivated before the potatoes and whether the field was

infected with nematodes. For a complete overview of the data used in this analysis, see S1 Fig

and S1 Table.

The farmer mainly cultivates Fontane potatoes for the French Fries industry. The area in

which the farmer operates consists mainly of sandy soils. The climate is a moderate maritime

climate (Köppen classification Cfb). About 22 km away from the farm, a meteorological station

captured weather data. Based on the weather data between 2008 and 2018, the solar radiation

is about 3.1 MJ m−2 and the average temperature 6.6˚C during winter (December, January,

and February), slowly increasing to 17.8 MJ m−2 and 23.5˚C in the summer (June, July, and

August). Yearly precipitation is about 742.3 mm on average.

Four years of data were used (2015–2018). In particular, 2016 and 2018 experienced

extreme weather. 2016 was a very wet year, where in June about 200 mm of rain fell, resulting

in fields with rotten potatoes due to water excess. On the other hand, 2018 was extremely dry.

Almost no rain fell in June and July, resulting in a long period of drought with high tempera-

tures. The years 2015 and 2017 had preferable weather conditions: there was no excess or lack

of water, and temperatures were close to the average, resulting in high yields. We report this

weather data here pure to provide context to the reader: no meteorological parameters were

available to the curve estimation model that represents the potato growth, and to the search

algorithm that creates candidate subgroups.
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Estimating growth curves

We started by modeling growth curves for all fields. The field-specific growth curves were esti-

mated using mixed models [13]. Mixed models have mixed effects consisting of two compo-

nents: fixed effects that represent the yearly average growth curve, and random effects that

represent the field-specific deviation from this yearly average growth curve exploiting the vari-

ance-covariance structure of the repeated data. Mixed models are able to model observations

taken on non-equidistant time intervals: this holds for measurements taken on the same sub-

ject, but it also allows different subjects to be measured at different moments in time. In addi-

tion, mixed models can handle missing data well when the missingness mechanism is not

“missing not at random” and longitudinal profiles can be estimated even if a subject has only a

few observations by employing the variance-covariance structure of the entire dataset. As a

result, mixed models use data efficiently, as almost all data can be used to estimate longitudinal

growth profiles. The growth curve was modeled based on the shape of growth over time and

the quality of its fit was evaluated with R2 (linear regression on observed and non-linear mixed

model predicted observations). It was important that the R2 was high, as the growth curves

were the basis of the further analysis and the validity of the results relied on the quality of fit.

For the case study of the potato farm, we described the tuber weight as a function of days

after planting. The tuber weight is described with an s-curve, as tuber growth is s-shaped [18],

for which we use the logistic growth curve [19]. The missingness mechanism can reasonably

be assumed to be a combination of Missing Completely At Random (MCAR) and Missing At

Random (MAR). Some data is missing due to simple recording mistakes, which is MCAR.

Some of the missingness resulted from the yield on a particular field being completely

destroyed due to extreme weather. In those cases, the tuber weight was registered as zero, after

which the farmer stopped visiting that field. Here, the missingness depends on meteorological

variables that are not present in the dataset, but the missingness probability depends on values

for those variables. This is MAR missingness, although the column on whose values the miss-

ingness probabilities depend are not part of the dataset itself. We chose a multiplicative error

term, which occurs when growth is active [20], such that

yTWijk ¼
expðaikÞ

1þ expf� bik � ðtijk � cikÞg
expðeijkÞ ð1Þ

with yTWijk the tuber weight on field i at standardized growth day j measured from the day of

planting in year k (divided by its standard deviation for numerical purposes), where time is

reset to zero each year, eijk the residual i.i.d. N ð0; s2Þ, and:

aik ¼ a0k þ saai

bik ¼ expfb0k þ sbbig

cik ¼ g0k þ expfsggci

ð2Þ

Here, α0k, β0k, and γ0k are year-specific mean parameters, σα, σβ, and σγ are standard devia-

tions, where we assume that the variance between years is constant. Exponentiation ensures

that σγ > 0 and bik> 0, which makes bik essentially lognormally distributed. ai, bi and ci are the

random effects, which correspond to an interpretable transformation (see Fig 3):

ai is the field-specific deviation from the yearly average maximum tuber growth;

bi corresponds to the field-specific deviation in steepness of the linear growth;

ci refers to the moment in time when half the maximum tuber growth has been produced.
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The random effects ai, bi, and ci are multivariate normally distributed:
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@
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C
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A

ð3Þ

The covariance matrix of the random effects contains the correlations between the random

effects, with ρ12 the correlation between a and b, ρ13 the correlation between a and c, and ρ23

the correlation between b and c. We estimated the log likelihood function of this model with

adaptive Gaussian Quadrature using the NLMIXED procedure of SAS [21]. For the used SAS

code, see S1 Appendix.

Exceptional model mining

Exceptional Model Mining (EMM) [14, 15] is a local pattern mining framework, designed to

find interesting subgroups in datasets. Subgroups are deemed interesting, if they possess two

characteristics:

1. they must be interpretable. This is typically covered by allowing subgroups to only be those

subsets of the datasets at hand, often defined by a conjunction of relevant attributes of the

dataset;

2. they must be exceptional. This is typically gauged in terms of unusual parameter values in

some kind of model fitted over the variables of the dataset in which we are interested, the so

called targets.

Let O denote our dataset encompassing N records of the form r = (d1, . . ., dk, t1, . . ., tm).

Whenever we want to refer to a specific record of the dataset (or element thereof), we do so by

superscript index l: the lth observation is rl ¼ ðdl
1
; . . . ; dl

k; t
l
1
; . . . ; tlkÞ ¼ ðd

l; tlÞ. The attributes

d1, . . ., dk are the descriptors of the dataset. Each descriptor di takes values from a domain Di,

and hence 8Nl¼1
dl
i 2 Di. This domain can be any kind of set: numeric, binary, or nominal, for

Fig 3. Transformations on the growth curve. Positive values of a result in a higher maximum and negative values of a
result in a lower maximum. Positive values of b refer to a steeper curve, while negative values of b make the growth

curve flatter. Positive values of c delay the moment of halfway maximum growth, and negative values advance the

moment when halfway maximum growth is reached.

https://doi.org/10.1371/journal.pone.0296684.g003
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example. In our case study, we have descriptor d1 being the K soil content, where 8Nl¼1
dl

1
2 D1,

with D1 � Rþ; and descriptor d2 being the dryness of the field, where 8Nl¼1
dl

2
2 D2, with

D2 ¼ fDry;Average;Wetg. The attributes t1, . . ., tm are the m targets of the dataset; they are

used to evaluate subgroups and, hence, govern exceptionality. In our case, all targets are

numeric, and thus 8Nl¼1
tli 2 R with i = 1, . . ., m. The targets are related to the tuber weight

throughout the season, which we will replace by the growth parameters/random effects a, b,

and c as estimated in Eq (2), which will be further discussed in the next section.

We then use D1 � . . .� Dk to define our description language D, which is a subset of PðDÞ,
being the powerset of D, i.e., collection of all subsets of D.

Definition 1 (Description language) D � PðDÞ
Each �D 2 D is called a description. According to the formal definition, �D can be any subset

of PðDÞ. In practice, we want to relate the description to the interpretation of individual

descriptors. Hence, we let D search through the space of conjunctions of conditions on d1, . . .,

dk. For instance, if d1 is the K soil content and d2 the dryness of the field, then �D can be the

subset frl 2 O j dl
1
> 200 kg ha� 1

^ dl
2
¼ fAveragegg of PðDÞ.

We define the subgroup that follows from description �D as G�D:

Definition 2 G�D ¼ frl ¼ ðdl; tlÞ 2 Ojdl 2 �Dg
From now on, if we refer to a subgroup, we omit �D if no confusion can arise, and simply

call it G.

A quality measure is a function that quantifies for each description �D in the description lan-

guage D how exceptional the corresponding subgroup G�D ofO is. In our case, the quality mea-

sure uses the targets of the subgroup to calculate the quality of the subgroup (see the next

section for more details, specifically Eqs (6) and (7)) and is used to measure its interestingness.

Definition 3 (Quality measure) A quality measure is a function � : D! R that assigns a

numeric value to a subgroup G�D of O induced by �D.

From this formal definition, a quality measure can represent basically anything about the

subgroup. However, philosophically, in EMM, the quality measure should be designed to cap-

ture the level of exceptionality in a specific kind of interaction between the targets, as dictated

by the chosen model class. In Exceptional Growth Mining, this type of interaction is gauged by

unusual parameters of the growth curves.

Beam search is a heuristic algorithm, delivering a top-q of the most exceptional subgroups

it found during its search process [15]. Beam search holds the middle ground between a

purely greedy approach and an exhaustive algorithm (which is computationally unafford-

able). It builds up subgroups level-wise, considering all conditions on a single attribute on

the first level of the search. For numeric variables, thresholds are created automatically, and

all categories of categorical variables are considered. How these thresholds are estimated, can

be altered and optimized as well [22], but in our case, we stick to the traditional approach of

the beam search algorithm, as we discuss in the upcoming paragraph. The top-w (for beam
width) most exceptional subgroups are stored as the beam for the next level. On every subse-

quent level, those subgroups that ended up in the beam are retrieved, and refined (by con-

joining all possible new conditions on single attributes to the existing description) into new

candidate subgroups for the next level; the w best of those are stored as the new beam for the

next level. The search terminates after a fixed number d (for search depth) of levels. Here, we

chose the largest d in such a way that most subgroups have more than 15 members. This

choice is rather arbitrary; there is no consensus in literature on how to properly set the

parameter. Result variation through varying this parameter strongly depends on the dataset

at hand, and its underlying structure. The choice of d is a trade-off between model stability

and subgroup specificity: the lower we set d, the more specific are the subgroups that we will
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find, but also the fewer fields are used to estimate its model (thus increasing uncertainty). If a

user would prefer to find more stable models or more specific subgroups, this parameter can

be varied at will.

Exhaustive algorithms for Exceptional Model Mining also exist. We argue that deploying

them here would do more harm than good. As one can see from S1 Table, our dataset encom-

passes several continuous variables. The continuous variables have a high-cardinality; repeated

measurements are scarce. As a consequence, if the subgroup ‘K_soil�105’ were to be deemed

exceptional by EGM, then subgroups ‘K_soil�104’, ‘K_soil�102’ and ‘K_soil�100’ will also

be deemed exceptional by EGM. Thus, exhaustive algorithms will pollute the result set of an

EGM run with many reinventions of very few wheels. One could consider empirically evaluat-

ing the extent to which this is a problem in real-life, if it were not for the fact that S1 Table also

displays that the continuous variables are mostly weakly correlated. Thus, exhaustive search

through the space of subgroups defined as conjunctions of even a limited number of condi-

tions on these attributes, likely gives the algorithm access to a substantial subset of all possible
subsets of fields in our dataset. Hence, the severity of this problem cannot be computed in a rea-

sonable amount of time.

The beam search algorithm pseudocode can be found in [15]. Our implementation is based

on an existing EMM implementation [23]; our source code can be found (along with data

from this paper) at dx.doi.org/10.6084/m9.figshare.24592506.

Quality measures

Each field has multiple observations or records throughout the growing season, resulting in

dependence between the records. Therefore, after applying Eq (2), we replace the tuber weight

measurements by the estimated random effects a, b, and c, reducing our target space to a mul-

tivariate normal distribution, in which all records are independent. As a result, each field i is

now a record l in the dataset. We search for subgroups in each of the random effects separately.

From here on, u refers to any of the random effects a, b, or c as estimated by Eq (2). For each

of the random effects a, b, and c, we have

u � N ð0; suÞ ð4Þ

Any subgroup G under consideration is a subsample from that distribution. Hence, whether

we look at the entire dataset or a specific subgroup, we retrieve a sample G of a finite size n
from the distribution in Eq (4). From this sample, we derive an estimate of the two main

parameters m̂u
G being the mean of u and ŝu

G being the standard deviation of u. Depending on

the random effect, these parameters indicate how the subgroup deviates from the average

growth curve.

A subgroup is considered exceptional when the found subgroup (with a clear description)

does not have zero mean anymore. This type of exceptionality is captured by the t-test statis-

tic, which can then be used to derive our quality measure. We can independently put our

parameter estimates to a standard t-test statistic for each subgroup G, computing the test sta-

tistics:

tuG ¼
m̂u

G

ffiffiffi
n
p

ŝu
G

ð5Þ

Hence, positive values of tuG indicate a positive mean, and negative values of tuG indicate a neg-

ative mean. Next, we define the following two quality measures to use for the growth curves

(GC) for EMM, where Eq (6) searches for subgroups with positive values of u, and Eq (7)
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searches for subjects with negative values of u.

φu
GCh
ðGÞ ¼ tuG ð6Þ

φu
GCl
ðGÞ ¼ � tuG ð7Þ

These quality measures correspond to the demands of Exceptional Model Mining: the

higher their output values, the more exceptional the behavior on target space in the desired

direction.

For each subgroup, we calculate its average potato yield, in order to relate this yield to the

growth parameters and subgroups. In addition, we check for each subgroup how many of the

fields were irrigated and when the fields were planted. Because the farmer cultivates many

small parcels, it takes over a month to plant all fields. As the planting period progresses, the

temperature rises, which results in potato plants that grow faster, influencing the shape of the

growth curve (as we expect a high b) and therefore possibly influencing the found subgroups.

Therefore, for each year, the planting period is split into three sets: fields that are planted early,

averagely, or late. For each subgroup, we check to which extent these management factors

could overrule the found soil conditions.

Taking u as the target implies that we searched for shifts away from the yearly average

growth curve, i.e., we aim to find subgroups that explained the within-year variability over all

years, excluding year-specific effects and therefore excluding weather-specific effects. We veri-

fied this by checking in which years the fields of the found subgroups were cultivated.

Filtering out Pareto-suboptimal subgroups

EGM could result in an overwhelmingly long list of exceptional subgroups. Inspired by the

work on Skypatterns [24], we reduce the list through the following observations. The quality

measures in Eqs (6) and (7) could be seen as a trade-off between the mean, standard deviation,

and number of subjects within a group. For example, subgroups with a high mean could be

interesting, because they yield so well on average. On the other hand, if such groups have a

high standard deviation, they are not necessarily very reliable. In that sense, groups with a

slightly lower mean but also a small standard deviation could be interesting also. This is influ-

enced by the number of subjects within the subgroup as well: it is likely that a larger subgroup

has a slightly larger standard deviation than a small group, but as the description holds for

more subjects, this information is also useful. Therefore, we implement a Pareto front, captur-

ing the trade-off between the mean, the standard deviation, and the number of subjects within

the group. Following the work on Skypatterns [24], we report only those subgroups that lie on

this Pareto front; i.e. in a postprocessing step of the beam search procedure, we keep only

those subgroups that are not dominated by another subgroup in the space spanned by these

three factors.

To this last idea, a similar approach was also explored in [25]. There, the authors map the

observations from a dataset (what they call objects, and what in this paper would be the indi-

vidual fields) into a (generic) Pareto space. Subsequently, the exceptionality of a subgroup is

evaluated by the degree to which removal of its observations would affect the Pareto front.

This enables statements on the “true” Pareto front: what would the Pareto front be when all

observations are mapped into the Pareto space? Here, conversely, we map subgroups of our

dataset into a (specific) Pareto space. Subsequently, statements on the “true” Pareto front can-

not be made: this would require to map all possible subgroups into the Pareto space, and there

are exponentially many more of those than there are observations in the dataset. Losing the

capability to make such optimality statements is a sacrifice we must make w.r.t. the method of
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[25], because our agronomic setting gives a natural rise to a Pareto space composed of metrics

that evaluate entire subgroups, which renders optimality in this space computationally

intractable.

It is worth noting that the Pareto filtering we employ is asymmetric. On the one hand, the

filtering discards subgroups that we know to deem Pareto-suboptimal, because they are domi-

nated by other subgroups that we have found with our EGM search algorithm. On the other

hand, the filtering makes no statement on the optimality of the retained subgroups: it is possi-

ble that these subgroups themselves are also dominated by other subgroups that the EGM algo-

rithm has not found. Hence, the Pareto front can be used to filter out suboptimal subgroups,

but optimality of the remaining subgroups cannot be certified. The careful user of this filtering

should refrain from overclaiming.

Results

In the previous section, we introduced EGM. In the upcoming section, we present the results

after applying EGM on the case study of the potato farm. Data underlying these results, as well

as source code employed to obtain the results, can be found at dx.doi.org/10.6084/m9.figshare.

24592506.

Growth curves

The basis of our analysis is formed by the field-specific growth curves. The R2 of the growth

curves is 0.92: the fit of the mixed models is thus very high (cf. Fig 4). This implies that the esti-

mated growth curves represent the data very well and we can draw conclusions using the

growth curves.

Random effects a and c have relatively weak positive correlation (cf. Table 1). This implies

that maximum tuber weight does not strongly relate to the moment in time when tuber

weight is half of its maximum weight. Random effect b on the other hand has a strong nega-

tive correlation with a and c: a steeper growth curve implies that the maximum tuber weight

is likely lower and half of the maximum growth is reached sooner. Based on these correla-

tions, we expect that the descriptions of the subgroups found for exceptional a and c are dif-

ferent, while the descriptions for exceptional b are a combination of descriptions found for a
and c.

Fig 4. Example of three field-specific growth curves.

https://doi.org/10.1371/journal.pone.0296684.g004
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Subgroups with exceptional growth

There are large differences in yearly average yield (Table 2) and it is therefore important to

evaluate the distribution of years within the subgroup.

When calculating the Pareto front for each combination of quality measure and random

effect, the list of most exceptional subgroups is still quite long (see Table 3 for metadata, and

S2–S7 Tables for the full lists of subgroups on the Pareto front). Therefore, we present a subset

of all found subgroups by reporting the top-5 subgroups for both the high and low values of all

random effects (30 subgroups in total). These top-fives can be found in Table 4 for high and

low values of a, in Table 5 for high and low values of b, and in Table 6 for high and low values

of c. These subgroups have the highest �
u
GC while satisfying n> 15. In some cases, two sub-

groups lie on the Pareto front of which one is the subset of the other (for example, when the

first subgroup contains fields with K_soil <100 kg ha−1 and the second subgroup consists of

fields with K_soil <200 kg ha−1). If these are part of the top-5, we present only the subgroup

with the most fields. In addition, we perform a post-processing step: if within one description,

one descriptor is redundant, we remove that descriptor (e.g., K_soil <200 kg ha−1 ^ K_soil

<100 kg ha−1 becomes K_soil <100 kg ha−1). For a complete list of all subgroups that lie on

the Pareto front, see S2–S7 Tables.

Table 1. Estimated correlations following from the covariance matrix of the random effects.

b c
a -0.65*** -0.49***
b -0.73***

Significance is indicated with *** for p-value<0.0001.

https://doi.org/10.1371/journal.pone.0296684.t001

Table 2. Yields from fields.

Year # fields μ yield σ yield

2015 71 63.5 12.5

2016 98 40.1 18.1

2017 83 54.0 11.1

2018 112 38.0 11.6

All 364 47.3 17.0

Columns indicate the year, the number of fields included in the dataset for that year, and the mean and standard

deviation of the yield in ton ha-1.

https://doi.org/10.1371/journal.pone.0296684.t002

Table 3. Number of fields on the Pareto front for each quality and random effect combination.

Target Number of subgroups on Pareto front

High a 46

Low a 67

High b 65

Low b 29

High c 38

Low c 53

https://doi.org/10.1371/journal.pone.0296684.t003
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Table 4. Top-5 Pareto-optimal subgroups when searching for exceptional values of a. See S2 and S3 Tables for a full listing of all Pareto-optimal subgroups.

Target Description �
u
GCh

^mu
GC ŝG Number of fields Yield

Total 2015 2016 2017 2018

High a B_soil >1113.6 ^ K_soil >165.5 4.53 0.42 0.45 24 5 3 11 5 58.5

Ca_soil >196.8 ^ Zn_soil�2055.6 4.25 0.5 0.52 19 0 7 4 8 45.1

K_soil >308.1 ^ Zn_soil�2082.0 3.83 0.39 0.51 25 3 6 5 11 49.9

Fe_soil >324.0 ^ Fe_soil�444.0 3.66 0.3 0.56 47 10 12 12 13 49.9

B_soil�366.0 ^ Dryness = wet 3.54 0.34 0.48 26 7 1 6 12 50.2

Low a Dryness = average ^ Zn_soil >6868.8 ^ Zn_soil�11569.2 4.83 -0.79 0.64 15 1 8 3 3 39.5

S_soil�22.8 ^ Dryness 6¼ wet ^ Fe_soil >446.4 4.66 -0.52 0.58 27 10 10 4 3 46.9

K_soil�308.1 ^ Dryness 6¼ wet ^ Nutrient_content = poor 4.62 -0.6 0.65 25 5 5 8 7 46.7

N_soil�138.2 ^ Dryness 6¼ wet ^ Nutrient_content = poor 4.58 -0.66 0.66 21 4 5 5 7 44.1

Mn_soil>9234.0 ^ K_soil�375.3 4.48 -0.48 0.67 38 8 10 8 12 45.6

Yield is reported in ton ha-1, N, P, K, Ca and Mg are reported in kg ha-1 and B, Fe, Mn and Zn are reported g ha-1.

https://doi.org/10.1371/journal.pone.0296684.t004

Table 5. Top-5 Pareto-optimal subgroups when searching for exceptional values of b. See S4 and S5 Tables for a full listing of all Pareto-optimal subgroups.

Target Description �
u
GCh

^mu
GC

ŝG Number of fields Yield

Total 2015 2016 2017 2018

High b B_soil >564.0 ^ N_soil >174.2 ^ K_soil�183.1 5.18 0.66 0.55 19 5 5 7 2 47.4

S_soil >11.4 ^ Dryness = average ^ K_soil�166.2 5.15 0.53 0.63 37 8 12 9 8 45.2

Dryness = average ^ S_soil >10.0 ^ K_soil�166.7 4.84 0.51 0.64 38 9 12 9 8 45.4

K_soil�146.1 ^ Dryness = average ^ N_soil >101.6 4.62 0.5 0.51 22 8 4 6 4 50.1

Dryness = average ^ K_soil�274.7 ^ B_soil >453.6 4.58 0.51 0.69 39 11 14 11 3 47.9

Low b B_soil�564.0 ^ Dryness = wet 3.43 -0.34 0.66 43 8 8 8 19 44.4

Dryness = wet ^ N_soil�89.8 3.00 -0.3 0.59 35 5 10 13 7 45.4

Dryness = wet ^ B_soil�750.0 2.99 -0.27 0.65 52 9 9 10 24 43.2

Ca_soil >196.8 ^ Zn_soil�2055.6 2.81 -0.35 0.55 19 0 7 4 8 45.1

Dryness = wet ^ Zn_soil�1290.0 2.79 -0.45 0.68 18 2 5 5 6 46.6

Yield is reported in ton ha-1, N, P, K, Ca and Mg are reported in kg ha-1 and B, Fe, Mn and Zn are reported g ha-1.

https://doi.org/10.1371/journal.pone.0296684.t005

Table 6. Top-5 Pareto-optimal subgroups when searching for exceptional values of c. See S6 and S7 Tables for a full listing of all Pareto-optimal subgroups.

Target Description �
u
GCh

^mu
GC

ŝG Number of fields Yield

Total 2015 2016 2017 2018

High c Fe_soil >324.0 ^ P_soil >6.0 3.43 0.32 0.44 22 10 6 3 3 55.9

Zn_soil >7294.8 ^ B_soil�592.8 3.33 0.26 0.47 36 7 11 6 12 46.7

K_soil�146.1 ^ Ca_soil >14.7 3.01 0.37 0.53 18 0 10 1 7 41.1

Mn_soil >1454.4 ^Mg_soil�141.5 2.93 0.28 0.58 36 7 11 6 12 44.7

Zn_soil >3906.0 ^Mg_soil�133.2 2.77 0.27 0.47 24 4 8 3 9 41.5

Low c N_soil >40.2 ^ K_soil�234.0 3.81 -0.21 0.67 146 45 25 42 34 49.2

N_soil >40.2 ^Mg_soil >202.2 3.71 -0.21 0.68 141 37 17 42 45 50.2

Zn_soil�3906.0 ^Mg_soil >228.0 3.56 -0.24 0.68 104 27 21 24 32 49.8

Fe_soil�324.0 ^ K_soil�216.3 3.54 -0.24 0.70 109 20 30 31 28 48.9

K_soil�146.1 ^ B_soil >1405.2 3.38 -0.62 0.90 24 4 7 13 0 46.4

Yield is reported in ton ha-1, N, P, K, Ca and Mg are reported in kg ha-1 and B, Fe, Mn and Zn are reported g ha-1.

https://doi.org/10.1371/journal.pone.0296684.t006
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Only for low values of a and high values of b the search depth has been set to d = 3, while in

all other cases d = 2. As a result, for most subgroups we have 15< n< 60, with the exception

of four out of five subgroups with low values of c: these subgroups consist over 100 fields and

thus span a large part of the entire dataset. When increasing d such that d = 3, the resulting set

of subgroups contains only very small subgroups (for most GD, n< 10).

Subgroup growth. We used a, b, and c as targets for our EGM framework in order to cap-

ture subgroups based on the within-year variability and thus excluding the year-specific aver-

age. Most subgroups contain fields of all four years. This indicates that the relations found

between the growth parameters and soil circumstances are mostly independent of variability

between years.

Fig 5 shows the average growth curve per subgroup compared to the average growth curve

of all four years. High and low values of a clearly deviate from this average growth curve with

about 1000 gr m−2 (corresponding to about 10 ton ha−1). Subgroups with high and low values

of b and c behave differently as well, although it is not as obvious as with high values of a and

b. As the estimated values of α0k are much higher than the estimated values of β0k and γ0k and

the exponent of aik is taken, a small value for ai results in a overall larger deviation away from

a0k than a small value for bi results in a deviation away from b0k. This explains why higher val-

ues of b and smaller values of c are less clearly visible in Fig 5, as the average mean values of

these subgroups are still fairly close to the average growth curve.

Relation to yield. As expected, the subgroups with a high a have all relatively high yields,

while the subgroups with a low a have a low yield (cf. Table 4 and its extended versions in S2

and S3 Tables). The only exception seems to be the second subgroup, where the average yield

is slightly lower than the overall average. However, if we take a closer look to the fields con-

tained in this subgroup, we observe that many fields of this group were cultivated in 2016 and

2018: these two years have a lower average yield. In comparison to the average yields of these

years, the subgroup’s average yield is not so low at all. This confirms that maximum tuber

growth based on three plants is indeed a good predictor for yield at field level, even though the

sample size is small.

In addition, again after considering all subgroups on the Pareto front, we observe that most

subgroups with a low b often have low yields (cf. lower half of Table 5 and its extended version

in S5 Table). High values of b, on the other hand, do not necessarily relate to fields with high

yields (with an exception of some very small subgroups) (cf. upper half of Table 5 and its

extended version in S4 Table): on most fields where tuber growth is steeper than normal, the

final yield is close to the average (note that we checked explicitly for yield, not if the estimated

growth curve had a high maximum). No clear relation between yield and high/low values of c
is found as well, implying that it does not matter for the final yield if halfway maximum growth

is reached sooner or later (cf. Table 6 and its extended versions in S6 and S7 Tables).

Relation to irrigation and planting date. The subgroups did not have a clear relation

between exceptional growth and irrigation (Table 7). With an exception of the first subgroup

of low a (seven without irrigation and eight with irrigation) and the first subgroup of high a
(ten without irrigation, fourteen with irrigation), all subgroups contain more fields without

irrigation (ranging between 52% and 79%). This is similar to the ratio of fields with and with-

out irrigation of the entire dataset (60% cannot be irrigated, the others can).

In addition, we checked if the planting date influenced the results (Table 7). Subgroups

with high values of b tend to slightly favour fields that were planted relatively late within the

planting period. This is not surprising, as potatoes grow faster under warmer circumstances.

We see a slight preference for late planting in subgroups with exceptionally low values of c.
Given the strong correlation between b and c, this is also not surprising. Interestingly enough,

we observe that fields with exceptional low values of b also contain slightly more fields that
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Fig 5. The average growth curve per subgroup for high and low values of a, b, and c. Subgroups correspond to and are enumerated in the same order

as those listed in Tables 4 (for Figs 5A and 5B), 5 (for Figs 5C and 5D), and 6 (for Figs 5E and 5F). A: High a. B: Low a. C: High b. D: Low b. E: High c. F:

Low c.

https://doi.org/10.1371/journal.pone.0296684.g005
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were planted later during the growing season. This suggests that the shape of the growth curve

cannot only be defined by management and soil circumstances play an important role as well.

Descriptions of the subgroups. While the fourth subgroup with low a suggests that hav-

ing too little nitrogen (N) relates to a low maximum tuber growth, none of the subgroups

found with high values of a have N in their description (Table 4). Therefore, there seems to be

only little influence of N soil content on the maximum tuber growth. N does seem to influence

the steepness of the growth curve (b), where high values of N increase the steepness of the

growth curve and small values of N flatten the growth curve (Table 5). In addition, we observe

that fields need to have a minimum of N in the soil in order to advance the moment in time

when halfway of the maximum growth is reached (c) (Table 6).

The soil K content seems to strongly influence growth: high values of potassium (K) are

found in the subgroups with high values of a, while at the same time, low values of K are found

in subgroups with low values of a (for an overview of the distribution of the variables, see S1

Table 7. Top-5 subgroups of high and low values of a, b and c and the frequency of irrigation and the moment when the fields were planted in the planting period.

The planting period was divided into three, resulting in fields that were planted early, in the middle of the planting period, and late.

Random effect Subgroup Irrigation Planting moment

No Yes Early Middle Late

High a B_soil >1113.6 ^ K_soil >165.5 10 14 13 3 8

Ca_soil >196.8 ^ Zn_soil�2055.6 12 7 6 3 10

K_soil >308.1 ^ Zn_soil�2082.0 15 10 11 4 10

Fe_soil >324.0 ^ Fe_soil�444.0 29 18 13 10 24

B_soil�366.0 ^ Dryness 6¼ wet 18 8 5 7 14

Low a Dryness 6¼ average ^ Zn_soil >6868.8 ^ Zn_soil�11569.2 7 8 6 4 5

S_soil�22.8 ^ Dryness = wet ^ Fe_soil>446.4 20 7 12 6 9

K_soil�308.1 ^ Dryness = wet ^ Nutrient_content 6¼ poor 18 7 9 6 10

N_soil�138.2 ^ Dryness = wet ^ Nutrient_content 6¼ poor 15 6 9 5 7

Mn_soil >7648.8 ^Mn_soil>9234.0 ^ K_soil�375.3 24 14 12 7 19

High b B_soil >564.0 ^ N_soil >174.2 ^ K_soil�183.1 15 4 4 3 12

S_soil >11.4 ^ Dryness 6¼ average ^ K_soil�166.2 24 13 11 9 17

Dryness 6¼ average ^ S_soil >10.0 ^ K_soil�166.7 25 13 11 9 18

K_soil�146.1 ^ Dryness 6¼ average ^ N_soil >101.6 15 7 5 7 10

Dryness 6¼ average ^ K_soil�274.7 ^ B_soil >453.6 22 17 14 11 14

Low b B_soil�564.0 ^ Dryness 6¼ wet 32 11 5 10 28

Dryness 6¼ wet ^ N_soil�89.8 27 8 4 11 20

Dryness 6¼ wet ^ B_soil�750.0 39 13 5 15 32

Ca_soil >196.8 ^ Zn_soil�2055.6 12 7 6 3 10

Dryness 6¼ wet ^ Zn_soil�1290.0 10 8 1 4 13

High c Fe_soil >324.0 ^ P_soil >6.0 14 8 12 5 5

Zn_soil >7294.8 ^ B_soil�592.8 19 17 13 9 14

K_soil�146.1 ^ Ca_soil >14.7 12 6 11 4 3

Mn_soil >1454.4 ^Mg_soil�141.5 26 10 10 11 15

Zn_soil >3906.0 ^Mg_soil�133.2 18 6 7 7 10

Low c N_soil >40.2 ^ K_soil�234.0 93 53 41 34 71

N_soil >40.2 ^Mg_soil >202.2 78 63 46 36 59

Zn_soil�3906.0 ^Mg_soil >228.0 60 44 31 29 44

Fe_soil�324.0 ^ K_soil�216.3 59 50 34 29 46

K_soil�146.1 ^ B_soil >1405.2 20 4 6 3 15

https://doi.org/10.1371/journal.pone.0296684.t007
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Fig). These low values of K influence other aspects of growth as well: if the steepness of the

growth curve increases, the amount of K in the soil decreases. As a and b are negatively corre-

lated, this is not surprising. At the same time, smaller values of K are also found in subgroups

with lower values of c. Given the fact that b and c are also negatively correlated, this is not

completely unexpected. However, we do observe that the average yield in these subgroups is

still quite high, which indicates the relation between yield and K is non-linear and is dependent

on other factors as well.

We observe that high values of calcium (Ca) combined with low values of zinc (Zn) relate

to high values of a. Exactly the same subgroup can be found when searching for low values of

b; as there is a strong negative correlation between a and b, it was expected that at least some

subgroups would be exactly the same.

In addition, the magnesium (Mg) soil content is present in the definitions of many sub-

groups influencing c, indicating that Mg influences the moment in time when the midpoint of

the maximum growth is reached: higher values of Mg are found in subgroups with lower val-

ues of c, while lower values of Mg are found in subgroups with higher values of c.
The third subgroup with high values of a indicates that iron (Fe) soil amount should lie

within a certain range in order to facilitate a high tuber weight. This is confirmed by the sec-

ond subgroup of low a, where low values of a are found when Fe soil content is too high. Fe

soil content pops up as a descriptor of low values of c as well: as with the soil K content, low

values of Fe are preferred (that lie outside of the range) in order to bring the halfway point for-

ward in the growing season.

The Zn soil content influences growth as well. First, we observe that lower values of Zn are

found in subgroups with high values of a, and high values of Zn are found in subgroups with a

low maximum tuber weight. In addition, as expected given the correlation between a and b,

low values of Zn are found in the subgroups with low values of b. Zn soil content is selected as

a descriptor for high and low values of c as well: high values of Zn are found in high subgroups

searching for high values of c, while low values of Zn relate to low values of c.
We find two subgroups with very high values of manganese (Mn): one has low values of a,

the other has high values of c. For both subgroups, yields are low.

Boron (B) soil content is not completely consistent throughout the descriptions of the sub-

groups. Extremely high values of B correspond to high tuber growth, and low values of B as

well. For the two other random effects, we do observe some consistency in the appearance of

B: high values of B are found in subgroups with high values of b and with low values of c. The

opposite effect is seen as well: low values of B are found in subgroups with respectively low and

high values of b and c.
The farmer’s father has categorized all fields in poor, average, or rich fields based on his

experience. Given the descriptions of subgroups that have a low a, a poor field seems to be a

good indicator of fields where low maxima of tuber growth are reached; the data confirms the

farmer’s father’s expertise.

Finally, we observe that the dryness of the field influences growth. Low values of a are

found on fields that are not wet (three out of five subgroups suggest this), while low values of b
are found on subgroups that are wet (four out of five). Given the strong correlation between a
and b, it is not surprising that there is no overlap in fields between these subgroups.

Discussion

Implications for the farm

We applied the EGM framework on the dataset of the Dutch potato farm. For the remainder

of this section, we shortly outline the findings of the growth curves, and how these growth
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curves can help to optimize farm management, and then continue with interpreting the

descriptions of the found subgroups.

We started by estimating field-specific tuber growth curves and these curves describe the

between-field variability in tuber growth very well (R2 of 0.92). The maximum (a) and the

steepness of the growth curve (b) have a strong negative correlation. This means that in order

to obtain a high maximal tuber weight, it is expected that the linear growth of that curve has to

be relatively flat. A strong negative correlation was found between b and the moment when

half of the maximum growth was produced (random effect c). Random effects a and c have a

lower correlation. High yields were found on subgroups with high values of a and low values

of c. Low yields were found in subgroups with low values of a and b.

The farm of the case study consists of many small fields, many of which are rented from

other farmers for only one year: the farmer does not control what happens to the soil, and the

fields are spread out over a large area. As a consequence, it takes about 45 days to plant all

fields, influencing the growing period. The subgroups can be used to strategically manage the

planting period to optimize overall yield: they provide guidance on farm management. The

soil nutrients clearly influence the shape of the growth: subgroups with high maxima relate to

subgroups with a flat linear growth period, and as a result, it takes a long time before the maxi-

mum growth is reached. In order to fully exploit the potential of these fields, these fields should

be planted early. After that, the fields should be planted which have soil nutrients that lead us

to expect that the midway point of growth is reached relatively late (high values of c). Given

the correlation between b and c, these curves are often also quite flat, stretching the period of

growth; as there is only a small correlation between a and c, the maximal tuber weight is not

necessary as high, and therefore these fields stop growing slightly sooner. Fields that should be

planted last are the fields on which a low maximum tuber weight is expected. These growth

curves often have a steep linear growth, implying that maximum is reached relatively fast,

while the maximum is low. This could mean that these fields can still reach their full potential

even when the growing season is short.

The insights obtained with EGM can also be used for management purposes throughout

the growing season. For example, water deficiency at tuber initiation can reduce the number

of tubers, and during the tuber-bulking period water deficiency at mid-bulking is more harm-

ful than deficiency during the early- and late-bulking [26]. Because EGM can help explain

when these critical periods occur based on the field properties, these insights could help to

improve irrigation management by ensuring that a field is irrigated based the development

stage of the potato plants. In a similar fashion, fertilization management can be adjusted as

well, such as applying Phosphorus (P) fertilization during tuber initiation [27].

N soil content seems to influence the steepness of the growth curve, where higher values of

N are found on fields where the potatoes grow faster and do not reach a high maximum of

tuber weight. The likely explanation is because of the high N soil content, leaf growth and con-

sequently tuber growth is fast in the beginning of the season, but plants invest relatively less in

the tuber growth compared to leaf growth [18]. Three additional reasons why the N soil con-

tent does not necessarily relate to high tuber growth are provided in [28]. First, the plants

grown on fields with a high N content have a high N plant as well, and thus attract more insects

and herbivores. Second, a high N content can alter the leaf color and third, soils with a high N

stimulate weed growth as well.

In many descriptions, K is used as a descriptor influencing tuber growth. In general, higher

values of K positively influence tuber growth: a large amount of K soil content relates to a

higher tuber weight, whereas low values of K relate to steep growth curves that end up with a

low tuber weight. This is not surprising: K is one of the main nutrients required for plant

growth [29]. We do, however, find that low values of K are found on fields that have a low
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value of c, but still perform well in terms of yield (first and fourth subgroup with low c). This

might be because plants have developed specific K-transport systems to ensure sufficient K

uptake when the K soil content is low [30]. At the farm, the farmer bases the amount of K

application on the soil samples, the nutrient content as estimated by the farmer’s team, the

manure type that has been applied to the field on the beginning of the season, and the variety

(although about 90% of all fields is cultivated with Fontane). This should result that every field

has exactly the right amount of K available to meet the plant’s K demand, indicating that K

availability is limited by other soil properties, possibly due to the pH-value of the soil.

In contrast to K, Mg does not have a specific transport system to ensure sufficient Mg

uptake [31]. It is, however, crucial for chlorophyll synthesis and in the case of potatoes, it is a

key element of potato quality [32]. The results indicate that subgroups containing a high Mg

soil content reach the halfway mark of maximum growth sooner, while low Mg soil content

values delay grow. This could indicate that Mg enhances growth by speeding up the growth

process.

The third subgroup of high values of a implies a range in which the soil Fe content should

lie. Fe is an important micronutrient for numerous cellular functions, but at the same time, it

can cause severe problems for plants due to its insolubility and its toxicity [33]. Further, Fe is

positively correlated with soil organic matter [17], which is an important measure of soil qual-

ity. In addition, Fe is negatively correlated with the soil’s pH [17]. If the pH of the soil is too

low, it prevents plants from taking up nutrients, which results in reduced growth [34], but,

unfortunately, there are no data of the soil’s pH available in the analyzed dataset. The range of

Fe could be related to these issues: some Fe is necessary, but too much could limit potato plant

growth.

The results indicate that the effect of B on growth is not always consistent, where both high

and low values can result in high values of a. A possible explanation could be that the amount

of available water influences the effect of B on potato growth: large amounts of B in soil water

can reduce yield [35]. A hypothesis based on these results is that soil B content influences

growth differently under dry and wet soil circumstances: it could be that dry soils require

more B to enhance potato growth, while wet soils require a lower B soil content. If we take a

closer look into the first subgroup, we indeed observe that the first subgroup almost only con-

tains average and dry soils, which supports this possible explanation.

We find that many descriptions suggest that Zn and Mn in the soil should not be too high.

As with Fe, high amounts of Zn and Mn are negatively correlated with the pH in the soil [17].

As mentioned, there are no data of the soil pH, but as this is such an important factor, it is

likely that extreme values of soil nutrients are related to the soil pH. After 2018, the farmer has

started collecting data of the soil’s pH, and the farmer mentioned that the pH of the soil at

some fields is a problem at his farm. It is thus likely that these subgroups indicate that on these

specific fields where Zn and Mn content is not too high, there are no problems with the pH,

allowing the plants to properly take up nutrients on these fields.

If we compare the descriptions with the ranges provided by Eurofins [16] (see S1 Fig for

more details), we observe that the cut-offs of N, K, and Mg soil content provided by EGM are

often similar to the ranges provided by Eurofins. Interestingly, the EGM-suggested range in

which values of Fe should lie is narrower than the range suggested by Eurofins. This could

implicate that values of Fe that are too high or too low have a relatively large negative impact

on growth, resulting in a stricter range. The cut-offs of Mn, Zn, and B soil content are consid-

erably higher than the maximum range, which could be related to the pH of the soil.

Based on all these results, the soils of the subgroups with suboptimal growth likely have a

low pH-value, resulting in problems with K and Mg plant availability and having concentra-

tions of Mn that are toxic and therefore reducing plant growth [36]. Practical advice that
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follows from these results is to apply chalk in order to improve soil’s pH [37]. Currently, the

farmer himself considers the pH as a problem on his fields and has started applying chalk

(without any Mn) to the problematic fields to increase the soil’s pH.

Using EGM in other cases

In cases where longitudinal growth data have been collected combined with some possible

descriptors of the growth, EGM can be applied. On the farm of the case study, many small

fields are cultivated, observing mainly variability between these fields. In other cases, variability

between different zones could be monitored, or maybe even between different plants. When

applying EGM, it is necessary to determine the scale of variability and the unit on which

growth is monitored. In addition, it is important that these fields are randomly sampled, such

that the total area under consideration is represented and that good, mediocre, and bad fields

are all represented.

For our case study, we use an s-shaped curve to describe tuber growth. In other cases, dif-

ferent shapes might be more appropriate. For example, haulm weight first steeply increases

and after the maximum has been reached, starts decreasing due to leaf senescence [38], mak-

ing it more appropriate to use a quadratic curve without intercept [12]. The sample size

required such that EGM can be applied is a trade-off between the shape of the growth curve,

the number of considered fields (or zones), and the number of repeated measurements. In

cases where the parameters of the growth curve are linear in its parameters, the absolute min-

imum is three [39]. In cases where the growth curve is non-linear in its parameters, the mini-

mum is higher [40].

Methodological considerations

EGM is able to find many relationships between exceptional growth and soil parameters.

While these relationships are interesting and can result in new hypotheses, EGM is not a causal

framework and is sensitive to confounding [41]. Within the case study, we evaluated whether

irrigation, planting date and the year in which a field was cultivated could possibly influence

the results, because we hypothesized that these factors were the most important ones that

could possibly influence growth as well. As manure was applied before the soil samples were

taken (and should therefore be visible in the soil analysis), and fertilizer is supplied based on

the soil sample results, the impact on growth is assumed to be relatively small. None of the sub-

groups showed clear evidence that solely these potential confounders influenced exceptionality

in growth. This indicates that the EGM-discovered relationships contribute to exceptional

growth and can be useful to estimate crop response to soil nutrient supply.

The descriptions of the subgroups can be influenced by collinearity. It is unknown to what

extent collinearity influences exceptional model mining. but in case of least square regression,

variables are assumed to be highly collinear if |r|>0.7 [42]. For the case study, only Ca en K are

highly collinear and we thus expect that the overall influence of collinearity on the results is

minimal, with an exception of the second and third subgroup of high values of a (Ca_soil

>196.8 kg ha−1 ^ Zn_soil�2055.6 gr ha−1 and K_soil >308.1 kg ha−1 ^ Zn_soil�2082.0 gr

ha−1): 14 out of 19 fields of the subgroup using Ca in its description are also present in the sub-

group using K in its description. As K is present in so many of the descriptions of all random

effects, we expect that K is more important than the effect of Ca. More research needs to be

performed in order to investigate the impact of collinearity on the results.

In addition, the descriptions are influenced by the depth d of the beam search algorithm.

The larger d is, the more descriptors are added to the description. This often leads to some

kind of redundancy in the result set, where the first part of the description stays the same, and
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the final descriptor changes, ultimately referring to the same subgroup. On the other hand, if

we set d too small, the subgroups are not exceptional enough, resulting in subgroups with a

mean close to zero and a large standard deviation. By ensuring that we take d in such a way

that most subgroups contain more than 20 fields, we observe that the descriptions are still dif-

ferent from each other, and that the found behavior is still exceptional.

In the case study, at each sampling round, only three plants were pulled out of the soil.

While this seems little to properly represent the entire field’s tuber growth, we do observe that

subgroups found with high and low tuber growth maxima have the expected relationship with

yield. As already mentioned in [12], a possible explanation is that a total area of about 5 m−2 is

sampled, because at each field about 5 to 7 sampling rounds are performed. Similar results

were found in [43], but nonetheless, more research should be performed in order to investigate

how many plants need to be sampled to correctly represent the field’s relation to yield.

EGM can be applied to investigate how various growth parameters interact, and how these

growth parameters are affected by external factors. Here, we investigated the effect of soil

parameters on these growth parameters at one farm, but EGM can also be applied when the

interest lies in analyzing growth of multiple farms and/or analyzing all kinds of other factors

that could influence growth. Because of the use of mixed models, our methodology is robust

against missing data and able to handle non-equidistant spacing [39].

In order to better understand the performance of EGM, it would be recommended to apply

EGM on more datasets. Unfortunately, to our knowledge, such datasets within the agronomic

field are not publicly available; through a relatively lightweight process, every farmer can col-

lect such data on their own farm, but no farmer benefits from releasing this data to the public

(and such a release risks leaking information that gives the farmer a competitive advantage).

Conclusions

The first objective of this paper was to introduce Exceptional Growth Mining, a new local pat-

tern mining method to identify various reasons for unusual plant growth, which we applied on

a case study as the second objective. EGM consists of estimating growth curves, after which we

investigate the correlation between the estimated growth parameters and finally, we apply

Exceptional Model Mining (EMM) on these growth curves using a growth curve-specific qual-

ity measure. Subgroups are interesting only if they satisfy two properties. On the one hand,

they must be interpretable: we must be able to define them in terms of a few constraints on

selected variables (cf. the soil conditions defining a subgroup in Fig 1). On the other hand,

they must display exceptional growth behavior: the growth curves belonging to the subgroup

must deviate from growth curves observed across all fields (cf. the highlighted growth curves

in Fig 1). In this paper, we explored three distinct kinds of exceptional growth in s-shaped

curves: exceptionally high/low final yield, exceptionally high/low steepness of the linear part of

the curve, and reaching the midpoint of growth exceptionally early/late. Exploring this variety

in forms of growth behavior exceptionality, and capturing these behaviors in subgroups whose

soil content definitions we can inspect, provides an analysis of the on-farm collected growth

data in a manner that does justice to its inherent heterogeneity.

Applying EGM on the data of the case study led to the following results. The maximum and

steepness of the field-specific tuber growth curves have a high negative correlation, just as the

steepness and the moment when the halfway point of maximum growth was reached. The rela-

tion is less pronounced between the maximum and the moment when halfway maximum

growth was reached. The found exceptional growth subgroups suggest that high yields corre-

spond to high maxima and reaching halfway maximum growth relatively soon, while low

yields were found in subgroups with low maximum growth and steep linear growth.
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We found that the amount of K influences growth, where high values of K are seen in sub-

groups where high maxima were reached, while low values of K correspond to low maxima

and steep growth curves. Low values of K are also seen when halfway of maximum growth is

reached early in the season. In addition, we found that Mg relates to the timing of the halfway

point of maximum growth: high values of Mg expedite this moment, while low Mg values delay

this moment. This could indicate that Mg speeds up the growing process for potato tubers.

Furthermore, high values of Zn, Mn, and Fe were found in descriptions of subgroups with

low tuber weight. As high values of these nutrients relate to low pH values, such a high values

could suggest that nutrient uptake is limited on these fields due to the pH value of the soil.

Both extremely high and low values of B were found on fields with high tuber weight,

which could be due to its interaction with water. High values of B were beneficial to tuber

growth on dry soils, while low values are preferred on wet soils.

This work focused on identifying soil characteristics that influence growth, independently

of weather circumstances. Future work should focus on how management could increase or

decrease the effect of soil circumstances on growth, reaching beyond the advice already pro-

vided throughout the discussion. In addition, different soil conditions might be beneficial

under different weather circumstances. The interaction between (extreme) weather circum-

stances and specific soil properties should be researched further.

Supporting information

S1 Fig. Histograms of the distributions of all descriptors in the dataset. On each field, soil

samples were taken. These soil samples are evaluated using the Eurofins protocol, and provide

us the amount of the following macro- and micronutrients: N, P, K, Ca, Mg, S, Si, Fe, Zn, Mn,

and B. In these histograms, two lines are present as well. The left line represents the lower limit

of the advise of Eurofins, and the right line represents the maximum of the range. In addition,

some categorical variables are provided. The nutrient content of the field is determined by the

farmer’s team, who classifies fields as poor, average or rich. In addition, the field is classified as

dry, average or wet by the farmer himself. Potato is a rotation crop; only once per four years,

potatoes can be grown on the same field. The crop cultivated before potatoes were grown on

the field is the previously cultivated crop. In the “others” category all kinds of crops are cap-

tured. Usually, only one or two times, a field is cultivated with that crop. Crops in this category

are for example conifers, salsify, or peas. Finally, some fields suffer from nematodes, which can

have a negative effect on potato yield. A: N in soil. B: P in soil. C: K in soil. D: Ca in soil. E: Mg

in soil. F: Si in soil. G: S in soil. H: Fe in soil. I: Zn in soil. J: Mn in soil. K: B in soil. L: Tuber

weight. M: Nutrient content. N: Contains nematodes? O: Year. P: Dryness. Q: Previously culti-

vated crop.

(ZIP)

S1 Appendix. SAS code employed to estimate the growth curves.

(PDF)

S1 Table. Spearman’s rank correlation within the dataset between all pairs of continuous

descriptors.

(PDF)

S2 Table. Extension of the upper half of Table 4 by listing all subgroups found on the

Pareto front when running Exceptional Growth Mining to search for high values of a, with

quality measure �
u
GCh

.

(PDF)
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Pareto front when running Exceptional Growth Mining to search for low tuber growth,

with quality measure �
u
GCl

.
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S4 Table. Extension of the upper half of Table 5 by listing all subgroups found on the

Pareto front when running Exceptional Growth Mining to search for low tuber growth,

with quality measure �
u
GCh

.

(PDF)

S5 Table. Extension of the lower half of Table 5 by listing all subgroups found on the

Pareto front when running Exceptional Growth Mining to search for low tuber growth,

with quality measure �
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GCl

.

(PDF)

S6 Table. Extension of the upper half of Table 6 by listing all subgroups found on the

Pareto front when running Exceptional Growth Mining to search for low tuber growth,

with quality measure �
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.

(PDF)
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