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Chapter 1
Introduction

The field of machine learning is currently undergoing rapid development, with applications in various areas,
including image processing. In particular, Convolutional Neural Networks (CNNs) are widely used for image
processing, demonstrating state-of-the-art performance in various tasks, such as segmentation. CNNs differ
from traditional fully connected neural networks, as they utilize convolutions with kernels, which provide
shift-invariance. This shift-invariance, indicating that the output remains unaffected by translating the image,
embodies translational symmetry, which effectively conserves network capacity. The ability to recognize patterns
regardless of their position in the input is one of the key factors contributing to the success and widespread use
of CNNs as this feature of CNNs more closely mimics the way humans recognise patterns [XV21].

As a result, there has been great attention on generalising this concept and designing neural networks that
are equivariant (meaning that the output of the transformed image is the same as the transformed version of the
output) with respect to a group operation that represents geometric transformations which are not restricted to
translations. This type of neural network is called a group equivariant convolutional neural network (G-CNN)
[CW16] and CNNs are a particular kind of G-CNN where the group operation is a translation on R2.

However, despite their effectiveness, these network structures lack mathematical interpretability as their
network weights and kernels have limited geometric meaning, making them challenging to comprehend. Ad-
ditionally, CNNs and G-CNNs require a significant amount of training data to train due to the large amount
of trainable parameters. This is due to the fact that the kernels that are used are unrestricted and hence for
each kernel, there are as many parameters as the size of the kernel. One approach to resolving this issue is
restricting the space of allowed kernels by a priori designating what sort of shape the kernels can take. This way
the parameters that control the shape of the kernels now become the new network parameters and these can be
much smaller in quantity.

This idea along with the other shortcomings of CNN was one of the reasons that led to the development of
PDE-G-CNNs [Sme+22] in which PDEs are used to guide the convolutional operations, allowing the network
to learn and extract features from the input data in a more efficient and structured way. It essentially places
geometric meaning on the kernels used in layers by stipulating that they obey evolution PDEs. These PDEs
are not arbitrary and have been investigated in the context of geometric image analysis. These equations
produce theoretically meaningful solutions as the training is done on sparse sets of association fields derived
from neurogeometry.

In the PDE-G-CNN framework, the usual non-linear operations such as ReLU activation functions or min-max
pooling present in CNNs are replaced by solvers for the evolution PDEs that establish specific image operations
in each layer. In Figure 1.1 a traditional CNN and G-CNN layer is compared with a PDE-G-CNN layer. The
PDEs that govern the evolution are defined on the underlying space that data lives in. Therefore, it is not
restricted to R2 and in fact, they can be defined on so-called homogeneous spaces where symmetries that are not
restricted to rotation or translation can arise (where the symmetries act on the homogeneous space as group
action). As a generalisation of G-CNNs, PDE-G-CNNs too are equivariant with respect to group operations that
represent geometric transformations on the underlying homogeneous space.

The homogeneous space that is of main interest in this project is the space of positions and orientations.
Namely, an image is lifted to the space in which the newly lifted image contains not only information about
the position of points belonging to the image but also how much the image is locally aligned with a specific
orientation at each point. Topologically, this space is given by the product R2 × S1 where the R2 part represents
the positional component and S1 the directional. This lifting of an image to incorporate information about the
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Figure 1.1: A schematic for a CNN, G-CNN and the PDE-G-CNN Layer in a deep neural network. CNNs are
typically processed with R2 convolutions, whereas G-CNNs work with linear G-convolutions in the Lie group
G = SE(2). Elements in SE(2) are denoted by g = (x, y, θ). In PDE-G-CNNs only the convection vector c and
the metric parameters G+,G− are learned and they lead to kernels that are used for non-linear morphological
convolutions that solve the respective Erosion and Dilation PDEs in the Lie group G ≡ SE(2).

Lifting Layer PDE Layers Projection Layer

Image

ℝ2

Orientation Scores Processed OSs Processed Image

ℝ2SE(2) SE(2)

x

y
θ

x

y

θ

Figure 1.2: An overview of a PDE-G-CNN performing line completion on the Lines dataset [Bel+23]. First, the
image is lifted to an orientation score on G = SE(2), then multiple PDE-G-CNN layers are applied (Fig. 1.1),
after which the result is projected down to R2.

directional features of images is called orientation score of the image. See Figure 1.3 for a visualization of a
lifted image. It has been shown for example by [XV21] that performing image processing on lifted images via
the orientation score improves performance.

PDE-based Convolutional Neural Networks (PDE-CNNs) are a particular case of PDE-G-CNNs where we
take the underlying group G to be Rn.In other words, in PDE-CNN, the image processing is only performed on
the unlifted original image on R2. PDE-based Convolutional Neural Networks use only the PDE-based structure
for each layer, resulting in a model that can be geometrically interpreted based on these PDEs.

The four primary types of PDEs utilized in a PDE-G-CNN are diffusion, convection, dilation, and erosion.
In general, these PDEs correspond to mathematical image processing operations called scale space operations.
Namely, these PDEs are associated with the scale-space operations of smoothing(regularization), shifting, max
pooling, and min pooling respectively and there are many families of evolution PDEs to choose from, for each of
the types.

In order to systematically narrow down the scale space operations of interest, an axiomatic approach for R2

case has been made by Duits [Dui+04] by establishing scale space axioms which are architectural properties
considered desirable in geometric image analysis, that the scale space operations need to satisfy. It also was
shown by Pauwels [Pau+95] that for the smoothing operation (or more precisely, scale space operation that is
given by an integral operator with a kernel), a number of basic assumptions like semi-group property, isotropy
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Figure 1.3: An instance of an image paired with its orientation score reveals a transformation from a 2D image
to a 3D object, known as the orientation score. The core focus of PDE-G-CNNs involves processing these
orientation scores. It’s worth noting that the intersecting lines visible in the original image become untangled
within the orientation score representation.

and scale-equivariance significantly narrow down the kernel used for the scale space operation to a single family
which essentially only depends on one parameter. In Chapter 2 we explain this in more detail.

According to [Pai+23], the PDE-G-CNNs have greatly reduced network complexity, which results in reduced
training data requirements. Even with the reduced network complexity, it was shown that PDE-G-CNNs can
compete or even outperform both G-CNNs and CNNs. While PDE-CNNs do not utilize the lifted space of
scales and orientations like their parent PDE-G-CNNs, it was shown by Castella [Cas21] that this technique also
significantly reduces the number of trainable parameters required compared to conventional CNNs. Therefore,
it seems that in terms of the reduction in network complexity, the "PDE" benefit seems larger than the
"group-equivariant" benefit while the latter also contributes.
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1.1 Research Objectives

Despite the key role PDEs play in the success of PDE-G-CNNs and PDE-CNNs, there has not been a systematic
approach to pin down the relevant PDEs in a manner done for the scale space axioms. We, therefore, have the
following research goal:

1. We want to underpin the PDEs used in PDE-G-CNNs[Cas21]. We want to derive them from geometrically
motivated geometric learning axioms that we will set up in a similar way as scale space theory followed
from their axioms [Dui+04].

2. In order to investigate the importance of the ‘PDE’ aspect of PDE-G-CNN, experiment if the PDE-CNNs
have similar benefits as PDE-G-CNNs when it comes to training data reduction. It was already reported
by [Cas21] that PDE-CNNs yield a reduction in network complexity compared to CNNs with similar
performance.

For our research goal, we will establish this through a general framework. In the previous theoretical framework,
although some theoretical work to relate diffusion, and dilation/erosion was established by means of the Cramer
transform by Schmidt and Weickert [SW16], they were considered to arise from entirely different operations
(namely, linear convolution, morphological convolution and convection). We will show in Chapter 3 upon the
introduction of the notion of semiring that these different operations can be put under the same framework at
least for the case G = R2 by stipulating that they all arise from the general notion of semiring integral operator
and that different operations correspond to different underlying semirings. The semirings that we will work with
are the linear semiring RL which is R with ordinary addition and multiplication operations and the tropical
semirings T− and T+. For these semirings, the addition operation is replaced with min/max operations and the
multiplication operation with the usual addition respectively. We will give a formal treatment in Chapter 3.

1.2 Research Contributions

Our contribution can be divided into two parts, theoretical achievements, and experimental findings. Namely,
we have

1. Fully axiomatic derivation of PDE-G-CNN for Lie group G and semiring R for the cases:

(a) G = R2, R = RL.
Section 4.3, Theorem 4.2

(b) G = R2, R = T−, R = T+.
Section 4.3, Theorem 4.2

(c) G = SE(2), R = RL.
5.2, Theorem 5.3

2. Experiment showing the data efficiency of PDE-CNNs and PDE-G-CNNs. Namely, the reduced network
complexity and training data.

Chapter 6, Table 6.4 and Table 6.1.
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Chapter 2
Preliminary Theory

While the theory of PDE-CNNs requires relatively simple mathematical technology, the case G = SE(2) relies
heavily on the theory of Lie groups and Riemannian geometry. We assume that the reader is familiar with basic
concepts from these subjects and we therefore omit a thorough treatment and only state definitions and results
that are central to this thesis. In this section, we start by briefly introducing homogeneous spaces and how they
can arise from Lie groups. We then introduce the notion of group equivariance and then we will define the main
Lie group of interest SE(2). We will then introduce the notion of operator-valued Fourier transform which will
be needed for defining the Fourier transform on SE(2). We will conclude this section by having a close look at
the theory of scale-spaces which will be central to this thesis and our theory will be built upon this axiomatically.

2.1 Homogeneous Spaces

The notion of "symmetries" in a space can be captured by the notion of homogeneous space and a group G

which can be thought of as consisting of spacial transformations on the space acting on it. This is a general
notion which is not restricted to the smooth setting. In this thesis, we will only concern ourselves with R2 and
R2 × S1, however, we would still like to make the distinction of space in which symmetries act on with the group
of symmetries. For the case of SE(2), topologically, the space in which images are defined is identical to the
space of transformations on the underlying space. We however make a distinction as in general, the roles that
they play are very different. We therefore introduce the more general notion of homogeneous spaces and groups
acting on it.

We say that a group action on a set is transitive if each orbit equals the entire set.

Definition 2.1. Let G be a group acting on a topological space M . Then if G acts transitively on M , then
we call M a homogeneous G space.

In this thesis, we always assume every space involved is smooth and thus the group G is assumed to be a Lie
group.

Lemma 2.1. If a Lie group G acts transitively on a smooth manifold M , then M is diffeomorphic to the
quotient of G by the isotropy group (i.e. the stabilizer subgroup) Gx.

Note that we can speak of "the" isotropy group as transitive group action implies that isotropy groups are
conjugates and thus Gx ∼= Gy for all x, y ∈ M . We, therefore, get that

M ∼= G/Gx

where x is any element of M . Intuitively speaking, we may consider the group G to be consisting of transformations
on a space M and homogeneity imposes that for any two elements x and y of M , there is a transformation that
maps one to the other or vice versa.

A notable example of a homogeneous G space that we are concerned with in this thesis is G itself: As the
isotropy groups only consist of the identity element, we get that G ∼= G/{e}.
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2.2 Group Equivariance

A central notion that our theory will rely heavily on is that of group equivariance.

Definition 2.2. Let group G act on a set M and N . If a map f : M → N satisfies f(x · g) = g · f(x) for
all g ∈ G and x ∈ M , then we say that f is an G-equivariant map.

In this thesis, we discuss the concept of group equivariance in image processing operations. These image
processing operations can be seen as an operator between the space of images which are realised as functions
on a homogeneous space. We must therefore first make sense of what group equivariance means for operators
between function spaces.

Given a space M , consider a set of real(or complex)-valued functions on M denoted by F (M). Then a G
action on M canonically induces a (right) G action on F (M) via φ · g = (x 7→ φ(g−1x)). We call this left-regular
representation of G on F (M). Now the notion of group equivariance also becomes natural in this setting:

Definition 2.3. Let group G act on spaces M and N and let F (M) and F (N) be sets containing functions
acting on X and Y respectively. Let Φ : F (M) → F (N) be a map. Then we say that Φ is equivariant if
Φ(φ · g) = Φ(φ) · g for all g ∈ G.

2.3 Left Invariant Frames and Left Invariant Metric

For each g ∈ G, the G action on M defines a smooth map Lg : M → M, x → x · g and we call Lg left translation
by g. In this section, we always assume that M is a homogeneous G space. Let M be a smooth manifold and by
Γ(M,E), we denote the set of smooth section on a vector bundle E → M .

Definition 2.4. Let T ∈ Γ(M,E) a smooth section of the vector bundle E → X where the fibre Ex =
(T ∗
xM)⊗n. In other words, T is a tensor field of type (n, 0). Then we say that T is G-invariant if

T (X1, . . . , Xn)(x) = T ((Lg)∗X1, . . . , (Lg)∗Xn)(x · g)

for all Xi ∈ TxM for i = 1, . . . n.

A G left-invariant tensor field we are particularly interested in are left-invariant tensor fields that define
Riemannian metric i.e g ∈ Γ(M,TM∗ ⊗ TM∗) so that gx(X1, X2) = ghx((Lh)∗X1, (Lh)∗X2) for all h ∈ G and
Xi ∈ TxM .

The standard result that Lg is an isometry yields the following that will be used frequently and tacitly.

Lemma 2.2. For a G-invariant metric tensor field G defined on G, we have for any g, h ∈ G,

d(g, h) = d(h−1g, e) = d(e, g−1h),

where the induced Riemannian distance is given by d(g, h) = dG(g, h) given by

dG(g, h) = inf
γ(0) = g, γ(1) = h,

γ ∈ PC([0, 1], G)

LengthG(γ), (2.1)
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where LengthG(γ) :=
1∫
0

√
Gγ(t)(γ̇(t), γ̇(t)) dt, and where the set of curves PC([0, 1], G) over which is

optimised is the set consisting of piecewise continuously differentiable curves γ : [0, 1] → G.

2.4 The Lie Group SE(2)
As we have noted earlier, the main homogeneous space of our interest in this thesis apart from the standard R2

case is the space of positions and orientations given topologically by the product R2 × S1. We realise it as a
homogeneous space in the following way. We first endow this space R2 × S1 with a Lie group structure: We first
identify S1 ∼= SO(2), the special orthogonal group and for (x1, R2), (x2, R2) ∈ R2 × SO(2), we defined

(x1, R1)(x2, R2) = (x1 +R1x2, R1R2)

where the identity element is given by e = (0, I) where I is the identity in SO(2). It follows that for (x,R), the
inverse is given by

(x,R)−1 = (−R−1x,R−1).

We call this Lie group SE(2). From this, it is evident that R2 × S1 can be realised as a homogeneous space
where the Lie group SE(2) acts canonically.

As S1 ∼= R/2πZ we have a chart on SE(2) with image R2 × (0, 2π) and {∂x, ∂y, ∂θ} is a frame on this chart
domain. We can naturally ask what the left-invariant vector fields are under this chart. They are given by

A1 = cos θ ∂x+sin θ ∂y, A2 = − sin θ ∂x+cos θ ∂y, A3 = ∂θ, (2.2)

with the corresponding dual frame,

ω1 = cos θ dx+sin θdy, ω2 = − sin θ dx+cos θ dy, ω3 = dθ (2.3)

that is defined by ⟨ωi,Aj⟩ = δij .

2.5 Operator-Valued Fourier Transform

In order to formally introduce the Fourier transform on SE(2) as a special case of Fourier transforms on locally
compact unimodular Lie groups in their full generality, one needs to be equipped with a solid background in
representation theory and abstract harmonic analysis. In this section, we only present relevant definitions and
lemmas leading up to the definition of the operator-valued Fourier transform and the Plancherel theorem which
essentially states that under appropriate conditions, the operator-valued transform is a unitary map. This section
follows [FF05, Chapter 3] and [Fol95, Chapter 7] closely.

The first ingredient we need is the notion of direct integrals. The direct integral of family Hilbert spaces
essentially generalises the notion of direct sums.

Definition 2.5 (Measurable field of Hilbert spaces). Let X be a Borel measurable set and let (Hx)x∈X be a
family of separable Hilbert spaces then we call a section η : X →

⋃
x∈X Hx a vector field on (Hx)x∈X . We

write (ηx)x∈X for vector field η.
Now a measurable structure on (Hx)x∈X is a N-indexed family of vector fields (in other words ((enx)x∈X)n∈N

on (Hx)x∈X such that enx ∈ Hx for all x ∈ X and n ∈ N) that satisfy

• For all m,n ∈ N, x 7→ ⟨emx , enx⟩ is Borel measurable.

9



• For each x ∈ X, the span of (enx)n∈N is dense in Hx.

When a measurable structure exists, we say that (Hx)x∈X is Borel measurable. Now given (Hx)x∈X that
is measurable, a vector field (ηx)x∈X is measurable if x 7→ ⟨ηx, enx⟩ is a measurable for all x ∈ X and n ∈ N.

Now given a measurable structure on (Hx)x∈X , it is natural to speak of "measurable structure" on (L2(Hx))x∈X

where L2(Hx) denotes the space of Hilbert-Schmidt operators on Hx. Namely, we have the following lemma:

Lemma 2.3. A measurable structure on (Hx)x∈X induces a system of vector fields ((enx ⊗ emx )x∈X)m,n∈N

on (L2(Hx))x∈X which is total in L2(Hx) for each x ∈ X.

Proof. To see that (enx ⊗ emx )n,m∈N is total in L2(Hx) for each x ∈ X, we note that L2(Hx) ⊂ K(Hx), where
K(Hx) is the space of compact operators. Now we have that K(Hx) is the norm closure of finite rank operators
on Hx and the result immediately follows.

Now given a measure ν on X, we immediately see a canonical way to define what it means for (Hx)x∈X to
be ν-measurable. Namely we say that (Hx)x∈X is a ν-measurable field of Hilbert spaces whenever (Hx)x∈X is
measurable on some conull subset of X.

Now we fix a Borel measure ν and a ν-measurable field of Hilbert spaces (Hx)x∈X . We define the direct
integral space H of (Hx)x∈X to be the set of all measurable vector fields (ηx)x∈X on (Hx)x∈X satisfying∫

X

||ηx||2 dν(x) < ∞

where ν almost everywhere agreeing vector fields are identified in the usual manner and we denote

H =
∫ ⊕

X

Hx dν(x).

Now we immediately see that H inherits a vector space structure from Hx’s. Now, it can be shown that by
defining

⟨η, φ⟩ =
∫
X

⟨ηx, φx⟩ dν(x),

H becomes a Hilbert space. When X = N with the discrete topology and with counting measure the direct
integral becomes ∫ ⊕

N
Hk dν(k) ∼=

⊕
k∈N

Hk.

If Hx = C for all x ∈ X, then, we have ∫ ⊕

X

Hx dν(x) ∼= L2(X, ν;C).

Definition 2.6. Given (Hx)x∈X that is measurable and a family of bounded operators (Tx)x∈X where
Tx : Hx → Hx, we say that (Tx)x∈X is a measurable operator field if for any measurable vector field η and
φ on (Hx)x∈X , the map x 7→ ⟨ηx, Txφx⟩ is Borel measurable.

When the operator norms of Tx’s are essentially bounded, we can define the direct integral of measurable
operator fields (Tx)x∈X via (∫ ⊕

X

Tx dν(x)
)

(η) = (Txηx)x∈X

10



which is a bounded operator on H =
∫ ⊕
X

Hx dν(x).
Now we can extend this analogously to fields of measurable representations of a group G. Namely we call the

family (σx)x∈X as= measurable field of representations if (σx(g))x∈X is a measurable field of operators for each
g ∈ G. Now the direct integral of (σx)x∈X is defined by(∫ ⊕

X

σx dν(x)
)

(g) =
∫ ⊕

X

σx(g) dν(x)

which is a well-defined unitary representation of G, and unique up to unitary equivalence.
In order to integrate fields of representations indexed by the dual group Ĝ, we of course need to deal with

measure theory on Ĝ. We let for each positive integer n Hn to be a Hilbert space of dimension n, and H∞

to be an infinite dimensional separable Hilbert space. For each n = 1, 2, . . .∞ let Irrn(G) denote the set of
irreducible representation of G on Hn and let Irr(G) :=

⋃
n Irrn(G). For each n, we define Σn to be the a

σ-algebra generated by the family of functions (Irrn(G) → C, π 7→ ⟨π(g)u, v⟩)g∈G,u,v∈Hn
. Now, we define the

σ-alegbra Σ on Irr(G) to be the σ-algebra generated by all the inclusions Irrn(G) ↪−→ Irr(G). Now the canonical
projection Irr(G) → Ĝ, π 7→ [π], is a surjection, and hence we can define a quotient σ-algebra structure on Ĝ

induced by Σ. We call the resulting σ-algebra the Mackey Borel structure on Ĝ.
For unitary representation π and by Hom(π, π) we denote the set of all intertwining operators for π. If the

centre of Hom(π, π) is C · Id, then we say that π is primary. The group G is said to be type I if every primary
representation of G is a direct sum of copies of some irreducible representation.

Definition 2.7. Let G be a second countable locally compact type I Lie group. Let λG denote the left regular
representation. A measure νG on Ĝ is called Plancherel measure if there the decomposition

λG ≃
∫ ⊕

Ĝ

m(σ) · σ dνG(σ)

exists for some m : Ĝ → N0 ∪ {∞}.

Note that this direct integral is the direct integral of the field of representations (m(σ) · σ)
σ∈Ĝ over the dual

group Ĝ.

Theorem 2.1. For a type I Lie group and a representation π on G, there exists dual measure νG on Ĝ and
a map mπ : Ĝ → N0 ∪ {∞} such that we have a decomposition

π ≃
∫ ⊕

Ĝ

mπ(σ) · σ dνG(σ).

For the detail confer [FF05, Theorem 3.24.]. From this, we immediately see that for type I Lie groups, a
Plancherel measure always exists.

The Operator-valued Fourier Transform:
The operator valued Fourier transform of an element f ∈ L1(G) is the family (f̂(σ))σ∈Ĝ where each σ(f) is

given by
f̂(σ) =

∫
G

f(g) σg−1 dg

defined point-wise by
f̂(σ)(η) =

∫
G

f(g) σg−1(η) dg.
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for η ∈ Hσ. Here the integral of f(g)σg(ϕ) is defined to be the unique element such that

⟨f̂(σ)(η), φ⟩ =
∫
G

f(g) ⟨σ−1
g (η), φ⟩ dg.

where φ ∈ Hσ. We are now ready to introduce the main result known as the Plancherel theorem [FF05, Theorem
3.31.] for locally compact unimodular groups of type I.

Theorem 2.2. Let G be a second countable unimodular, type I Lie group. Then f̂(σ) ∈ L2(Hσ) and there
is a Plancherel measure νG on Ĝ such that the following holds:

1. The Fourier transform maps L1(G) ∩ L2(G) into the direct integral space
∫ ⊕
Ĝ
L2(Hσ) dνG(σ) and

extends to a map

F : L2(G) → L2(Ĝ) :=
∫ ⊕

Ĝ

L2(Hσ) dνG(σ)

which is unitary.

2. The inverse of F is given by the inversion formula

f(x) =
∫
Ĝ

trace(f̂(σ)σ(x)∗) dνG(σ)

for all f ∈ span{g ∗ h : g, h ∈ L1(G) ∩ L2(G)}.

2.6 Scale Space Theory

In mathematical image analysis, a (grey-scale) image is a bounded function f : R2 → R. In our case, since we
perform image analysis on lifted images, we generalise this by setting f : G → R where G is the homogeneous
space the images are lifted to. In addition, we assume that G is equipped with a left-invariant Haar measure in
order to make sense of integration on the space. In this context, we may view the processing of an image at
some scale t ≥ 0 as something that inputs the original image f and outputs a new image say ft. To be more
mathematically precise, A scale-space representation of an image f is a map

Φf : G× [0,∞) → G s.t Φ0f := Φf |G×{0} = f

where the scale parameter t ∈ [0,∞) in the second argument determines the amount of smoothing or image
simplification. Note that the condition Φf |G×{0} = f says that initially (at t = 0), Φf is the original image f .
In this framework, we can think of a certain image processing as an indexed family of maps Φt from the space of
images to itself. In general, the space of all possible scale-spaces is far too large and therefore, one of the main
goals of mathematical image analysis is to find conditions that impose reasonable restrictions on the allowable
set of scale-spaces. While these conditions vary depending on the purpose and the application, a consensus has
been established on certain properties that most interesting examples of scale-space should have. One of the
main properties is the ‘evolution’ aspect of scale space. Namely, as the time scale t increases, the image also gets
increasingly processed and the processing is the same at every time. This is commonly formulated in terms of
the semi-group property of scale space

Φt ◦ Φs = Φt+s

for all t, s ≥ 0. While this condition greatly reduces the set of allowable scale-spaces, it is still not entirely
clear what sort of operation is performed on an image. One of the main applications of mathematical image
analysis lies in convolutional neural networks. A convolutional neural network uses three basic image processing
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operations and they are regularization and min/max pooling. We can model these operations with their smooth
analogues which are the image-processing operations of diffusion and dilation/erosion respectively. Now, these
four operations are of main interest in the field of mathematical image analysis for neural networks. Diffusion
constitutes so-called linear scale space. Linear scale spaces are a class of scale spaces in which the image
processing operation is given by an integral operator with a given kernel. More precisely, we have that Φtf is
given by

(Φt(f))(x) =
∫
G

kt(x, y)f(y) dy

for some kernel kt for each t ≥ 0. Note that this implies that Φt is fully determined by the choice of kernel
kt. Now there are a number of desired additional architectural properties of linear scale-spaces that further
narrow the set of allowed kernels that make up the scale space. We take a look at the case for G = R2 which
is well-studied. For example, it can easily be verified that shift invariance forces the integral operator to be
a convolution. Pauwels [Pau+95] showed that for linear, isotropic, shift-invariant convolutional scale-spaces,
then two conditions namely scale equivariance and semi-group property forces a one-parameter family of kernels
which are determined fully by the parameter only. These scale-spaces are called α scale-spaces. The well-known
Gaussian kernel is precisely one of the kernels that belong in this family where the parameter α = 1. Now,
α = 1/2, corresponds to the so-called Poisson scale space and it was shown by Duits [Dui+04] that the scale-space
defined by this kernel is associated with a first-order pseudo partial differential equation equivalent to the Laplace
equation on the upper half-plane. Namely, Φtf solves the PDE∂tu = −

√
−∆u

u(·, 0) = f.

It is also well-known that the Gaussian scale space also solves an evolution PDE, namely the heat equation.
Inspired by these examples, we can stipulate scale-spaces to be governed by PDEs. For differential operator

P (∇) =
∑

|α|≤k

cα∇α,

where α ∈ Nn0 multi-index, we call the class of shift-invariant scale-spaces that obey the evolution equation∂tu = P (∇)u

u(·, 0) = f
(2.4)

linear shift-invariant scale-spaces(LSI scale-spaces). Erosion and dilation constitute so-called morphological scale-
spaces. Similar to linear scale-spaces, there are a number of desirable architectural properties that morphological
scale-spaces of our interest ought to satisfy and many of them are identical to those that we also wish to impose
on linear scale-spaces. The main difference is that for morphological scale-spaces, the image processing is given
by morphological convolution instead of linear integral convolution. The morphological convolution is divided
into two and they are dilation operation and erosion operation. Dilation and erosion are defined by

(f ⊖ g)(x) = inf
y∈R2

{f(y) − g(x− y)},

and
(f ⊕ g)(x) = sup

y∈R2
{f(y) − g(x− y)}

for all x ∈ R2 respectively and the morphological analogue of the kernel is called the structuring function. Now
as presented in [SW16], some morphological scale-spaces also have associated evolution equations. Namely, we
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consider Hamilton-Jacobi equations of the type∂tv = −H(dv)
v(·, 0) = f.

Then under certain assumptions (H is convex and coercive function and that f is bounded and lower semi-
continuous), this PDE has a unique viscosity solution which defines a scale-space. Under these assumptions, the
solution is given by the Lax-Oleinik formula

v(x, t) = (f □ st)(x), x ∈ Rd, t ≥ 0,

where the structuring function st is given by

st(x) = −f(tH)(x).

where f denotes the Frenchel transform and □ the morphological convolution. For more, see [Eva98] In the
paper by a connection between LSI scale-spaces and morphological scale-spaces. The paper introduces a new
transformation called Cramer-Fourier transform

Cf := f ◦ (− log) ◦ Ff

and shows that each LSI scale space corresponding to a PDE given by (2.4) with kernel kt defines its morphological
counterpart with the structuring function

st = Ckt.

The striking result in the paper is that the morphological scale-space defined by the structuring function st,
under the assumption of P being proper, lower semi-continuous, and convex, is the unique viscosity solution of
the PDE ∂tv = −P (∇v)

v(·, 0) = f.
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Chapter 3
Semiring Structures and Corresponding Scale Space
Theory

In conventional mathematical image analysis, an image is a function with R as the codomain. Now the choice
of R is due to the ordered-ness of R and the intuition on how "bright" a point on an image (represented by
an element of R) is unaffected by the underlying ring structure of R. Taking this into account, we extend the
codomain of our functions, by endowing R with a semiring structure where R = (R, 0, 1,⊗,⊕) where ⊗ is a
commutative binary multiplication operator and ⊕ is a commutative additional operator, such that

• a⊗ (b⊕ c) = a⊗ b⊕ a⊗ b for all a, b, c ∈ R

• a⊗ b = b⊗ a and a⊕ b = b⊕ a for all a, b ∈ R,

• a⊗ 1 = a for all a ∈ R and some 1 ∈ R,

• a⊕ 0 = a for all a ∈ R and some 0 ∈ R,

• a⊗ a ≥ 0,

Furthermore, we request a partial ordering ≤ on R that complies with the semiring structure such that

a ≤ c and b ≤ d ⇒ a⊕ b ≤ c⊕ d for all a, b, c, d ∈ R.

Definition 3.1. The main semiring examples of interest are:

1. the linear semiring RL = R with

a⊕ b = a+ b, a⊗ b = a b, 1 = 1, 0 = 0,

2. the min-tropical semiring T− = R ∪ {∞} with

a⊕ b = min{a, b}, a⊗ b = a+ b, 1 = 0, 0 = ∞,

3. the max-tropical semiring T+ ∪ {−∞} with

a⊕ b = max{a, b}, a⊗ b = a+ b, 1 = 0, 0 = −∞,

In the theory of equivariant PDE-G-CNNs [Sme+20] they play an important role for respectively:

1. linear convection (for transport) and fractional diffusion modules (for regularisation) in PDE-G-CNNs.

∂tW = −c · ∇W − (−∆)2αW

W (·, 0) = W0
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which are solved with linear convolution ∗ on G over the linear semiring with fractional heat-kernel Kα
t

W (g, t) =
∫

h∈G
Kα
t (h−1g)W0(h) dh

=: (Kα
t ∗W0)(g).

(3.1)

2. erosion modules (for sharpening, min-pooling over balls, and inhibition) in PDE-G-CNNs, steered by PDE:

∂tW = −H(dW ) = − 1
2α∥∇W∥2α

W (·, 0) = W0

which are solved with morphological convolution □ on G over the linear semiring with positive fractional
heat-kernel kαt

W (g, t) = inf
h∈G

kαt (h−1g) +W0(h)

=: (kαt □W0)(g).
(3.2)

Let ρ be a metric on the semiring R (in the do-domain of our data functions). In Appendix A.1 we set up
some left-invariant measure theory (simple functions, measurability) to define and justify

IRG(ψ) :=
⊕
x∈G

ψ(x)

For details see Appendix A.1.
Special cases:

• R = RL then
IRL

G (ψ) =
∫
G

ψ(g) dµG(g)

for Lebesque measurable functions ψ : G → R, where we use the usual left-invariant Haar measure µG on
G (that is uniquely determined up to a constant).

• R = T− then
I
T−
G (ψ) = inf

g∈G
ψ(g)

for ψ measurable, which in the tropical semiring T− amounts to lower-semi continuous (l.s.c.), see Ap-
pendix A.1.

• R = T+ then
I
Rmax

T

G (ψ) = sup
g∈G

ψ(g)

for ψ measurable, which in the tropical semiring T− amounts to upper-semi continuous (u.s.c.), see
Appendix A.1.

Remark 3.1. Here we adhere to terminilogy in previous works [Pai+23] and [KM97] and talk about
‘semirings’, where the wording ‘semifield’ is actually more appropriate as it involves a multiplication operator
that is distributive of the addition operator, (and the addition need not admit an inverse, like in the tropical
settings T+ and T− above).
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3.1 The function space HG
R associated to Lie group G and semiring R

Let ρ be a distance on the semiring R (in the do-domain of our data functions). After the introduction of the
integral and the distance ρ in the semiring R, we define a (pseudo)metric δR on R-valued functions on G using
this metric the function space (a semi-module):

Hρ = {f : G → R | f ∈ SR and δR(f, 0) < ∞} (3.3)

where SR is the set of sum approachable functions from G to R (relative to the semiring R). These sum
approachable functions are special cases of measurable functions, see Definition A.3 in Appendix A.2. In
the linear semiring case, sum-approachable is the same as measurable. In the tropical semiring case T+

sum-approachable functions are lower-semicontinuous, see Lemma A.3 and Lemma A.5.
We define the partition HG

R = Hρ/∼ in Hρ with the equivalence relation

f ∼ g ⇔ δR(f, g) = 0 (3.4)

Then denote HG
R as the closure/completion H

G

R of the space HG
R with respect to δR.

Definition 3.2 (Semimodule). With semi-module V over a semiring R we mean a ‘R-linear vector space’.
I.e. V is a semi-module over semiring R if α⊗ f ⊕ β ⊗ g ∈ V. for all α, β ∈ R and f, g ∈ V .

Special cases:

1. On the linear semiring R = RL we set ρ(a, b) = |a− b|2 by default and we get the square integrability
constraint

δL(f, 0) :=
∫

x∈G

|f(x)|2dx ≤ ∞ (3.5)

w.r.t. left-invariant Haar measure in (3.3) and equivalence relation (3.4) becomes the usual equivalence
relation underlying the function classes in L2-spaces and we obtain

HG
L = L2(G),

2. On the max-tropical semiring R+ we have 0 = −∞ and set ρ(a, b) = |ea − eb| from which we get the
bounded from above constraint

δR+(f,−∞) = sup
x∈G

ef(x) ≤ ∞. (3.6)

In the tropical setting R+ the equivalence relation (3.4) becomes trivial: two functions are equivalent if
they take the same values on G. Thereby we obtain

HG
R+

={f : G →R |f is bounded above & l.s.c.}. (3.7)

By Lemma A.5 in Appendix A.1: R+-integrable functions are upper semicontinuous.

3. On the min-tropical semiring R−, we have 0 = ∞ and set ρ(a, b) = |e−a − e−b| from which we get the
bounded from below constraint:

δR−(f,∞) = − inf
x∈G

−e−f(x) = sup
x∈G

e−f(x) ≤ ∞ (3.8)
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In the tropical setting R− the equivalence relation (3.4) becomes trivial: two functions are equivalent if
they take the same values on G. Thereby we obtain:

HG
R−

={f :G →R| f is bounded below & u.s.c.}. (3.9)

Lemma 3.1 gives L∞(G) ∩ C(G) = HG
R+

∩ HG
R−

. Regarding the distance δR on the semi-modules (not linear
vector spaces in the tropical setting!) one has

0 ≤ ψ ∈ C(G) ⇒ δR+(ψ, 0) = e2∥ψ∥L∞(G) ,

0 ≥ ψ ∈ C(G) ⇒ δR−(ψ, 0) = e2∥ψ∥L∞(G) ,
(3.10)

Lemma 3.1. The following spaces are equal

L∞(G) ∩ C(G) = HG
R+

∩ HG
R−

= HG
R+

∩ (−HG
R+

).

Proof. A function f : G → R is continuous if and only if it is both l.s.c. and u.s.c. and for f ∈ C(G) the essential
supremum equals the normal supremum. Furthermore, we have

f is bounded from below & u.s.c.
⇔

−f is bounded from above & l.s.c.

from which the result follows.

3.2 Convolutions and Fourier transforms associated with Lie group
G and semiring R

From now on we assume G ∈ {R2, SE(2)} and R ∈ {RL, T−, T+}.

Definition 3.3 (General Quasi-Linear Group). We define GQL(V ) as the group of invertible R-linear
maps on a (possibly infinite dimensional) R-semimodule V .

In the same spirit, we generalise the notion of representation.

Definition 3.4 (Semiring Representation). A semiring R representation σ : G → GQL(V ) of a group
G is a group homomorphism from G to the group GQL(V ), where V is a (possibly infinite dimensional)
R-semimodule, and is endowed with a metric.

Furthermore we require them to be irreducible, meaning that there exist no invariant closed sub-semi-modules
in the space HG

R.

Definition 3.5 ((Ir)reducible Representation).
A representation σ : G → GQL(V ) is called reducible if there exists a non-trivial sub-semimodule {0} ̸=
W ⊊ V of V that is closed under σ:

σ(g)W ⊆ W, for all g ∈ G (3.11)
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If such a closed non-trivial sub-semimodule does not exist the representation is called irreducible.

In our generalisation, one issue arises: the notion of unitarity needs to be relaxed. In the linear semiring
setting we have HG

L = L2(G). In the tropical semiring setting, however, we have a relation to L∞(G) via (3.10),
and we are not at all in a Hilbert space setting, so we cannot speak of adjoint or unitary operators, and just
restrict to quasi-isometry (i.e. isometry on HR). Inspired by the book of Kolokoltsov & Maslov [KM97] we
define the Semiring R group G Fourier transform FG

R as follows.

Definition 3.6 (Dual Group). The dual group Ĝ is the group of all quasi-linear, quasi-isometric, irreducible
group representations σĝR : G → GQL(V ) indexed by ĝ.

Definition 3.7 (Semiring Fourier Transform).

(FG
R f)(ĝ) =

⊕
g∈G

f(g) ⊗ (σĝR)g−1 (3.12)

where ĝ ∈ Ĝ an element of the dual group.

We also introduce semiring convolutions.

Definition 3.8 (Semiring Group Convolution).

(K ⊛ f)(g) =
⊕
h∈G

K(h−1g) ⊗ f(h) . (3.13)

where we assume K, f ∈ HG
R are chosen such that K ⊛ f ∈ HG

R. The latter is for example the case if
IR(K) < ∞.

In the special case L such a convolution is an ordinary convolution ∗ as seen in (3.1). In the special
case R− is an infimal convolution □ as seen in (3.2).

Lemma 3.2 (Integral Preservation). Note that if a kernel K is normalized w.r.t the semiring integration
IR:

IR(K) = 1 (3.14)

Then the semiring convolution is integral preserving in the sense that:

IR(f) = IR(K ⊛ f). (3.15)

In the linear case Rl this corresponds to mass preservation of convolution with normalized kernels. In the
tropical cases this corresponds to infimum and supremum preservation of infimal/supremal convolution using
normalized kernels.

semiring Fourier transforms relate to semiring convolutions, the way one expects:

Lemma 3.3 (Convolution Theorem). For all K, f ∈ HG
R such that K ⊛ f ∈ HG

R we have

FR(K ⊛ f)(p) = FR(K)(p) ◦ FR(f)(p) (3.16)
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Proof. By direct computation we have (using definition of convolution, associativity, representation property,
switching integration order, integral invariance after substitution)

FR(h1 ∗GRh2)(p)=
⊕
g∈G

σpR(g−1) ⊗ (h1 ∗R h2)(g)

=
⊕
g∈G

σpR(g−1)⊗
⊕
h∈G

h1(h−1g) ⊗ h2(h)

=
⊕
g∈G

⊕
h∈G

σpR(g−1)⊗h1(h−1g) ⊗ h2(h)

=
⊕
g∈G

⊕
h∈G

σpR((h−1g)−1) ◦ σpR(h−1) ⊗ h1(h−1g) ⊗ h2(h)

=
⊕
h∈G

(⊕
v∈G

h1(v) ⊗ σpR(v−1)
)

◦ h2(h) ⊗ σpR(h−1)

=
(⊕
v∈G

h1(v) ⊗ σpR(v−1)
)

◦

(⊕
h∈G

h1(h) ⊗ σpR(h−1)
)

= FRh1(p) ◦ FRh2(p) ,

where we set h1 = K and h2 = f .

In the linear semiring setting (i.e. R = RL) as we have seen in Section 2.5, the Fourier transform FR
G is invertible

for type-1 Lie groups such as G = Rd ⋊ SO(J) including our primary case of interest G = SE(2) = R2 ⋊ SO(2).
The inversion formula is given by (5.21) and it comes from a Hilbert space structure and Schur’s lemma where
F∗
RL

FRL
commutes with every UIR being a multiple of the identity and indeed

∥f∥2
L2(G) =∥f̂∥2

L2(Ĝ) =
∫
Ĝ

trace{f̂(p)∗f̂(p)}dνG(p).

where f̂ = FRL
f and νG is such that F∗

RL
FRL

f = f .
In the tropical semiring setting (i.e. R = RL) such inversions have to be adopted. Even in the case G = R2

the tropical semiring Fourier transform is minus the Fenchel transform, and for invertibility (where the Fenchel
transform its own inverse) one must constrain the Fourier transform in HR to the semi-module of lower-semi
continuous and convex functions, as we will see in Section 4.2.

In the general semiring setting it is not easy to analyze to what semi-module in HG
R one must constrain

to ensure invertibility. Now in our generalisation to other semirings R (like the tropical semirings) we need
quasi-linear group representations.
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Chapter 4
Axiomatic PDE-CNN on R2

4.1 Axioms for Geometric Deep Learning PDEs on R2

The evolution that determines one connection between two nodes in a PDE-G-CNN network on G = R2 consists
of modules each acting over a different semiring structure R imposed on the set R. In this section we constrain
ourselves to R2 as the generalisation to Rd, d ≥ 2 is straightforward. We will impose a list of ‘axioms’ for the
evolutions: {

Φt : HG
R → HG

R.

Φ0 = idHG
R
,

where t ≥ 0.

Before, we continue to list the axioms, let us mention that our evolutions will be assumed to be parameterised
by one equivariant metric tensor field G on R2 or a transport vector c. By equivariance such metric tensor
field is parameterised by a constant 2 × 2 matrix [gij ] and constant vector (c1, c2) relative to the left-invariant
vector fields and co-vector fields which in case of Lie group (R2,+) are just given by {∂x, ∂y} and {dx, dy}. The
parameters [gij ] and (c1, c2) are the trainable parameters in a PDE-G-CNN on R2. For vessel classification
experiments with such PDE-G-CNNs see [Cas21].

In the axioms we will use on (right-)shift translation operators given by

Rcf(x) := f(x + c), f ∈ HG
R, c,x ∈ R2,

for localisation in scale equivariance and rotation equivariance.
We impose the following requirements for our PDE-G-CNNs on G = R2:

1. Semigroup property:
For all s, t ≥ 0 we require

Φt ◦ Φs = Φt+s.

2. Quasilinearity and Kernel operator:
For all t ≥ 0 we must have for all α1, α2 ∈ R constant and all f1, f2 ∈ HG

R that quasi-linearity holds

Φt(α1 ⊗ f1 ⊕ α2 ⊗ f2) = α1 ⊗ Φt(f1) ⊕ α2 ⊗ Φt(f2).

More specifically, we will assume that the evolution operator Φt can for each t > 0 be written as

Φtf(x) =
⊕

y∈R2

kt(x,y) ⊗ f(y)

for every x ∈ R2 for some kernel kt : R2 × R2 → R such that kt(·,y) ∈ HG
R for every y ∈ R2.

3. Equivariance:
For all x ∈ R2 and all t ≥ 0 we require

Φt ◦ Lx = Lx ◦ Φt,
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with shift-operator given by (left)-action (Lxf)(y) = f(−x + y), for all x,y ∈ R2 and all f ∈ HG
R.

4. Localised Time-scale equivariance:
For all t > 0 there exists a ψ(t) and c(t) such that

Sψ(t) ◦ Φ1 ◦ Rc(1) ◦ S−1
ψ(t) = Φt ◦ Rc(t) (4.1)

in such a way t 7→ c(t) is continuous and such that Ψ is continuously differentiable and monotonic, where
S : HG

R → HG
R is the (total integral IR preserving) scaling operator given by

(Saf)(x) = Ca,R f(x

a
). (4.2)

for all a > 0. If R = RL then Ca,R = 1
a2 . If R = T− then Ca,R = 1.

5. Localised Isotropy w.r.t. trained (left)-invariant metric tensor field G:
For all t ≥ 0 there exists a c(t) ∈ R2 s.t. and for all Q ∈ SO[G]:

(Φt ◦ Rc(t)) ◦ UQ = UQ ◦ (Φt ◦ Rc(t))

with Rcf(x) = f(x + c), and with ‘G-rotations’ given by UQf(x) := f(Q−1x), for all x ∈ R2 where

SO[G] := {Q ∈ R2×2 | det(Q) = 1, QT [G]Q = [G]}

and where we assume t 7→ c(t) is continuous.

6. Optional Axiom: Isometry Constraint:

∀f∈HR
G
,f≥0∀t≥0 : δR(ϵRf, 0) = δR(ϵRΦt(f), 0),

with ϵR = sign(χ′
R) ∈ {−1, 1}.

7. Optional Axiom: Positivity:
We require the kernel kt, see Axiom 2, to be positive.

Now let us return to our first case of interest, namely G = R2, write p = ω ∈ R̂2 ≡ R2 and study our
semirings of primary interest RL, R− and R+.

Lemma 4.1 (Irreducible Semiring Representations). Linear irreducible unitary representations of R2

are defined on 1D vector spaces over C. Likewise, quasi-linear irreducible representations of R2, with an
eigenvaluea, are defined on 1D semi-modules.

aThis assumption simplifies the proof but we would conjecture it is like the RL-case also redundant for tropical semiring
cases.

Proof. G = R2 is commutative, we can apply the standard Schur’s lemma (over the algebraically complete field
C) and standard reasoning such as in Folland’s book [Fol73, cor.3.6] in the linear semiring setting.
Now let us consider the tropical case, where we apply an extra assumption of having an eigenvalue. Let
R : G 7→ C(X ) be a quasi-linear group representation on a semi-module X that is irreducible (there no closed
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semi-modules other than the full space and the origin ≡ 0). Then Rxf = λ(x) ⊗ f for some specific f ̸= 0. Then
for all y ∈ R2 operator Ry maps the (closed and non-trivial) eigenspace Eλ(Rx) onto itself as

Rx ◦ Ryf = Ry ◦ Rxf = λ(x) ⊗ Ryf.

By the irreducibility assumption of R this eigenspace is the full space from which we deduce that Rx =
λ(x) ⊗ idX .

Corollary 4.1. When identifying the quasi-linear operators (ωR)ωx acting on 1D semi-modules with their
semiring-multipliers in the semiring Fourier transform FR

G=R2 given by (5.20) one can write for the
commutative group G = R2:

FR(h1 ⊛ h2)(p) = FR(h1)(p) ⊗ FR(h2)(p) (4.3)

Remark 4.1. In case the Lie group G is not commutative one must work with (3.16) rather than (4.3).

Lemma 4.2 (Cauchy’s Additive Functional Equation). Let l : R → Rn be continuous with l(x) + l(y) =
l(x+ y) for all x, y ∈ R then l(x) = c · x for some c ∈ Rn.

Proof. This is a standard result in real analysis. We include the proof for completeness. We show that
additivity implies linearity. We have that for an arbitrary x ∈ R, we can approximate by a sequence of rational
numbers pn/qn → x. Then we have by the additivity that for every n ∈ N, l(pn/qn) = pn · l(1/qn). Now
qn · l(1/qn) = l(qn/qn) = l(1), so we get l(1/qn) = l(1)/qn. From this, we have l(pn/qn) = pn/qn · l(1). Now
continuity of l implies that l(x) = limn→∞ pn/qn · l(1) = x · l(1).

Corollary 4.2 (Cauchy’s Multiplicative Functional Equation). Let g : R+ → R+ be continuous with 
g(s)g(ρ) = T g(ρ · s) for all ρ, s > 0 then g(ρ) = T ρα for some α > 0

Proof. We first take T = 1. By taking logarithms we have

log g(elog(ρ·s)) = log g(elog(ρ)+log(s))
= log(g(elog(ρ))) + log(g(elog s)) 

so set x = log ρ and y = log s and apply the previous lemma with l(·) = log g(e·). Then log g(ρ) = log g(ex) = 
αx ⇒ g(ρ) = ρα > 0 with α > 0. The general case follows from ρ 7→ T ρ.

Definition 4.1. Let us write ∗ = ∗RL for linear convolution and □ = ∗T− for morphological convolution.

• For R = RL the 1D unitary irreducible representations of R2, indexed by ω, are given by

σωRL
: R2 → C,

(
σωRL

)
x

= eiω·x. (4.4)

Thereby the semiring Fourier transform is the ordinary unitary Fourier transform F : L2(R2,C) → L2(R2,C)
and we have

F(f1 ∗ f2) = Ff1 · Ff2
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• For R = Rmin
T the semiring Fourier transform is minus the Fenchel transform.

f(f1□f2) = f(f1) + f(f2)

as the quasilinear, irreducible, quasi-isometric representations are given by (Recall Lemma 4.1)(
σωRmin

T

)
x

= (ω · x) (4.5)

and thereby
FRmin

T
f(ω) = inf

x∈R2
{f(x) − ω · x} = −ff(ω)

Remark 4.2. Note that the fenchel transform of a function is always a l.s.c. function. A function f is
lower semicontinuous if and only if −f is upper semicontinuous. Thereby the output of FRmin

T
is always

u.s.c..

Remark 4.3. The standard form (4.5) for quasilinear representations is a consequence of Lemma 4.1:
σωR is a quasilinear representation of R2, with an eigenvalue, defined on a 1D semi-module R = RminT

(recall Lemma 4.1). Then σωR(xa) ◦ σωR(ya) = σωR(xa) ⊗Rmin
T

σωR(ya) = σωR((x + y)a) for all a ∈ S1 and
x, y ∈ R. By Lemma 4.2 σωR(x) = α[ω] · x for some α[ω] ∈ R2. Now the dual group R̂2 of R2 equals R2 and
σω1
R ◦ σω2

R = σω1
R ⊗ σω2

R = σω1+ω2
R . Thereby σωR(x) ∈ R is linear in x and ω and α[ω] = ω and σωR(x) = x ·ω.

Remark 4.4. The stand form (4.4) for UIR of R2 is well-known. Note σωRL
is a linear representation of

R2 defined on a 1D semi-module ≡ RL + iRL. Then with similar arguments (again using Lemma 4.1 and
Lemma 4.2) as in the above remark but now with σωRL

◦σωRL
= σωRL

⊗RL
σωRL

and one has σωRL
(x) = 1 ·eiλω·x,

for some λ ∈ R.

Note that in the above cases we see that the Fourier transform FR commutes with rotations and intertwines
integral preserving scaling.

Lemma 4.3. Let R ∈ {RL, RminT , RmaxT }. Let FR be the Fourier transform on commutative group R2 given
by (5.20). Then we have

FR ◦ RQ = RQ ◦ FR for all Q ∈ SO(2)
(FR ◦ Saf)(ω) = (FRf)(aω) for all a > 0,

where RQf(x) = f(Q−1x) and where the integral preserving scaling Sa is defined by (4.2).

Proof. In both semiring cases we have σωR(x) = σQωR (Qx) for all Q ∈ SO(2). As a result by (5.20) with p = ω

we have

RQFRf(ω) = FR(Q−1ω) =
⊕

x∈R2

f(x) ⊗ σQ
−1ω

−x =
⊕

x∈R2

f(x) ⊗ σω−Qx =
⊕

x∈R2

f(Q−1x) ⊗ σωx = FRRQf(ω)

for all f ∈ HR and all σω ∈ R̂2 and all Q ∈ SO(2).
Regarding the integral preserving scaling we have

FRf(aω) =
⊕

x∈R2

f(x) ⊗ σa
−1ω

−x =
⊕

x∈R2

f(x) ⊗ σω−ax = Ca,R
⊕

x∈R2

f(a−1x) ⊗ σωx = FRSaf(ω).
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Note that FRf(0) = IR(f) = IR(Saf), and the result follows.

Lemma 4.4. Let G be a unimodular Lie group. In particular for G = Rd ⋊ SO(J), and right action
Rg : HR

G → HR
G. We have for Rqf(g) := f(gq) for all q, g ∈ G

FR(Rqf)(ω) = (σR)ωq ◦ FRf(ω)

and in the case that G is commutative, we get that

FR(Rqf)(ω) = (σR)ωq ⊗ FRf(ω)

Proof. We directly compute: We get

FR(Rqf)(ω) =
⊕
g∈G

Rqf(g) ⊗ (σR)ωg−1 =
⊕
h∈G

f(h) ⊗ (σR)ωqh−1 =
⊕
h∈G

f(h) ⊗ (σR)ωq ◦ (σR)ωh−1 = (σR)ωq ◦ FRf(ω),

where the last equality holds because of quasilinearity of σR. In the 2nd equality we apply h = gq and in
the linear semiring setting the Fourier transform uses a left-invariant measure for which we now applied a
right-shift invariance, and in the unimodular Lie groups G = Rd ⋊ SO(J) where indeed elements q = (x, A)
satisfy det(A) = +1 = det(q) we indeed have dµG(g) = dµG(hq) = dµG(h) = 1 · dxdA.. Now in the case that G
is commutative, the result readily follows from Lemma 4.1.

4.2 The Axiomatic Solutions to linear and morphological scale spaces
in R2

Invertible semiring Fourier transform on R2

The linear semiring Fourier transform is invertible, in fact there one has a unitary operator F−1 = F = FRL

from L2(R2) → L2(R2). In the tropical semiring one has that

(f ◦ f)f = f

iff f is lower-semi continuous and convex by Fenchel-Moreau’s theorem. One may force injectivity on equivalence
classes of the semi-module HR by identifying u.s.c. functions:

f1 ∼R f2 ⇔ FRf1 = FRf2.

For R = RL we have f1 ∼RL
f2 ⇔ f1 = f2 ∈ L2(R2), but now let us see what happens in the tropical case.

The tropical case The Fenchel transform f = −FT− is its own inverse on the semi-module:

V := {f ∈ HR2

RTmin
| f is convex}. (4.6)

Regarding injectivity in the tropical sense we note

FT−f1 = FT−f2 ⇔ ff1 = ff2 = ff1□ f(f2 − f1)

using f(a+ b) = fa□ fb which is special case of Lemma 3.3.
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The assumption of convexity in (4.6) is a restriction that can be dropped as we explain next. For a con-
venient construction of the Fenchel transform to a larger space we assume f to be absolute continuous rather
than just lower-semicontinuous. I.e. we consider

Ṽ := {f ∈ HR2

RTmin
| f is absolutely continuous}. (4.7)

Now every function f ∈ C2(R2, R) is a difference f = fA − fB of two C2 convex functions fA and fB. If we
assume fA has the property that fA(0) = 0 and (generalised) derivative DfA(0) = 0 then the decomposition is
unique.

This assumption avoids us to transfer linear terms (generalised eigenfunctions of f) from fB to fA and
fA to fB. Splitting the positive eigenvalues of the Hessian Hf from the negative ones, provides the Hessians
Hf = HfA −HfB .
In fact fA and fB can be explicitly obtained like this. Simply by integrating the positive (respectively negative)
part of the Hessian and then do one more integration.

This explains why in Ṽ we assume absolute continuity (rather than just lower-semicontinuity) since we need
generalised derivatives in the explicit construction of fA and fB while imposing vanishing generalised derivative
DfA(0) = 0 and vanishing function value fA(0) = 0. One may think of fA as the ‘convex part’ of f and −fB

as the ‘concave part’ of f , and we have

f1 ∼T− f2 ⇔ ff1 = ff2 ⇔ f2fA1 = f2fA2 ⇔ fA1 = fA2

Remark 4.5. (illustration 1D case)
For absolutely continuous functions f : R → R we have

f(x) = fA(x)−fB(x) =
x∫
0

(
t∫

0
(f ′′(q))+dq

)
dt

−
(

−f(0) − xf ′(0) −
x∫
0

(
t∫

0
(f ′′(q))−dq

)
dt
)

with b+ = max{b, 0} and b− = min{b, 0}.

On the relatively large space Ṽ we can define the Fourier transform as follows

FT−(f) = FT−(fA − fB) = FT−(fA) − FT−(fB).

Time-Scale Equivariance on R2

We have formulate the time-scale equivariance, Axiom 4, for the case G = R2. We did this to be consistent
with the axioms of scale space theory [Pau+95][Dui+04].

An equivalent coordinate formulation, as we will prove in Corollary 4.3, that better generalizes to other Lie
groups is to index the scale space evolution ΦG

t with a left-invariant (LI) metric tensor field G and convection
vector c (for centering) and to require

∃ψ∈C1(R+),ψ′>0∀G,c LI ∀t≥0 : ΦG,c
t = Φ|ψ(t)|−2G,tc

1 (4.8)

This replaces the scaling on the group R2 in (4.1) to a scaling of the left/shift invariant metric tensor field G in
(4.8).
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Remark 4.6. For general Lie groups we will rather use the coordinate free symmetry (4.8) than (the
possibly only locally defined) scaling in Riemannian normalised coordinates (4.1) as they break-down at the
(left-invariant) cut-locus.

Lemma 4.5. Fix the semiring R ∈ {RL, RminT , T+}. In the setting G = R2, Axioms 1,2,3 together with the
localised isotropy, Axiom 5, implies that the kernel k̂t := FR

Gkt in the (semiring) Fourier domain is of the
forma

k̂t(ω) = (σR)ω−tc ⊗ gRt (||ω||[G]−T ) (4.9)

for every t ≥ 0 for some c ∈ R2.
aHere ≡ represents equality of functions up to constant that depends on the choice of semiring R and det(Q) , likewise (4.2). 

See also first paragraph of page 32 where we recognize that due to shift equivariance the kernel actually depends on 1 variable instead of 2. 

Proof. We have that for all t ≥ 0 there exists a c(t) ∈ R2 s.t. for all Q ∈ SOG :

(Φt ◦ Rc(t)) ◦ UQ = UQ ◦ (Φt ◦ Rc(t))

with Rcf(x) = f(x + c), and with G-rotations given by UQf(x) := f(Q−1x). Now, we have for any f ∈ HG
R,

we have from Lemma 3.3, Lemma 4.3, Lemma 4.4 and Lemma 4.1:

FR(ΦtRc(t)UQf) = FR
(
kt ∗RG Rc(t)UQf

)
= k̂t ⊗ FR

(
Rc(t)UQf

)
= k̂t ⊗ (σR)c(t) ⊗ FR (UQf)

= k̂t ⊗ (σR)c(t) ⊗ UQ−T FR (f) (4.10)

as we have that Q ∈ SO([G]) implies det(Q) = 1. On the other hand, we have from respectively, Lemma 4.3,
Corollary4.1 and Lemma 4.4 that

FR(UQΦtRc(t)f) = UQ−T FR(kt ∗RG Rc(t)f)

= UQ−T (k̂t ⊗ FR(Rc(t)f))

= UQ−T (k̂t ⊗ (σR)c(t) ⊗ FR(f)) (4.11)

As a result from Axiom 5 which tells us to equate (4.10) and (4.11) yielding:

k̂t(ω) ⊗ (σR)ωc(t) ⊗ f̂(QTω) = k̂t(QTω) ⊗ (σR)Q
Tω

c(t) ⊗ f̂(QTω).

So we get that
k̂t(ω) ⊗ (σR)ωc(t) = k̂t(QTω) ⊗ (σR)Q

Tω
c(t)

But then we get that k̂t ⊗ (σR)c(t) only depends on the radial component ||ω||[G]−T =
√
ω · [G]−Tω as

QT [G]Q = [G] ⇔ Q−1[G]−TQ−T = [G]−T ,

i.e.
Q ∈ SO[G] ⇔ Q−T ∈ SO[G]−T ⇔ QT ∈ SO[G]−T
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So if we write k̂t(ω) ⊗ (σR)ωc(t) ≡ gRt (||ω||[G]−T ), then we get that

k̂t(ω) = gRt (||ω||[G]−T ) ⊗ (σR)ω−c(t).

Finally, we conclude from the semigroup property, Axiom 1, and the group representation property of (σR)ω

that c(t+ s) = c(t) + c(s), and then Lemma 4.2 and we see that c(t) = tc = tc(1), which proves the result.

In addition to the above, the time scale equivariance axiom implies the following:

Lemma 4.6. For semiring R ∈ {RL, RminT , T+}, in the setting G = R2, the localised time-scale equivariance,
Axiom 4, along with Axioms 1,2,3,5 implies that the radial component of the kernel in the Fourier domain
satisfies

gRt (||ω||[G]−T ) = gR1 (ψ(t)||ω||[G]−T ), for all ω ∈ R2, t ≥ 0.

and it holds that ψ(1) = 1

Proof. By Axiom 4, have that for all t > 0, ψ(t) > 0 satisfies

Sψ(t) ◦ Φ1 ◦ Rc(1) ◦ S−1
ψ(t) = Φt ◦ Rtc(1).

Now for any f ∈ HG
R, we have from Lemma 4.3 that

FR(Sψ(t)Φ1Rc(1)S−1
ψ(t)f)(ω)

= FR(Φ1Rc(1)S−1
ψ(t)f)(ψ(t)ω)

= FR(k1 ∗RG Rc(1)S−1
ψ(t)f)(ψ(t)ω)

= k̂1(ψ(t)ω) ⊗ (σR)ψ(t)ω
c(1) ⊗ FR(Sψ(t)−1f)(ψ(t)ω)

= gR1 (ψ(t)||ω||[G]−T ) ⊗ FR(f)(ω)

since we have that k̂t(ω) = gRt (||ω||[G]−T ) ⊗ (σR)ω−tc(1). On the other hand, we have that

FR(ΦtRc(t)f)(ω) = gRt (||ω||[G]−T ) ⊗ FR(f)(ω)

and since f was arbitrary, we get that

gRt (||ω||[G]−T ) = gR1 (ψ(t)||ω||[G]−T ),

and the result follows. Now taking t = 1, it immediately follows that ψ(1) = 1.

Corollary 4.3. Fix the semiring R ∈ {RL, RminT , T+} and the Lie group G = R2. Then the two formulations
(4.8) and (4.1) of the time-scale equivariance axiom are equivalent if combined with Axiom 1,2,3,5.

Proof. From Axiom 1,2,3,5 and Lemma 4.5 it follows that

Φt(f) = kt ∗RG f with kt+s = kt ∗RG ks
k̂t ⊗ k̂s = k̂t+s for all t, s ≥ 0,

k̂G,c
t (ω) = (σR)ωtc ⊗ gt(∥ω∥[G]−T ).
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for some function gRt : R → R. Now by Lemma 4.6 one has

ΦG,c
t = Φ|ψ(t)|−2G,tc

1 ⇔
ΦG,c
t ◦ Rtc = Φ|ψ(t)|−2G,tc

1 ◦ Rc ⇔
ΦG,0
t = Φ|ψ(t)|−2G,0

1 ⇔
∀ω∈R2 : gt(∥ω∥[G]−T ) lemma 4.6= g1(ψ(t)∥ω∥[G]−T )

(4.8)= g1(∥ω∥[|ψ(t)|−2G]−T )

so that the result follows.

The precise formula for gRt = gRt depending on R and ψ(t) is not relevant for the proof above but from Lemma 4.2
and the technique by Pauwels [Pau+95] it follows that:

Lemma 4.7. Assume Axioms 1,2,3,4,5 hold. Then the scale-rescaling function Ψ in Axiom 4 is independent
on the choice of semiring R ∈ {RL, T−, T+} and the radial (or isotropic) part gRt (4.9) of the semiring
Fourier transformed kernel is given by

ψ(t) = t
1
α for some α > 0,

and gRL
1 (ρ) = e−Tρα and (σRL)ωc = eiω·c

and gT−
1 (ρ) = T

αρ
α and (σT−)ωc = ω · c.

for some rescaling constant T > 0.

Before we begin with the proof we first briefly introduce the notion of semiring power operation. If t is an
integer(or even a fraction), the expression a⊗t makes immediate sense as a repeated t fold semiring multiplication.
For the general case t > 0 it is less obvious. We have the following: f(t) = a⊗t is the unique (see Remark 4.7
below) continuous solution of 

f(t) ⊗ f(s) = f(t+ s) for all t, s > 0
f(0) = 1,

f(1) = a,

f(t) ̸= a for t < 1.

(4.12)

As the underlying semiring is assumed to be RL or R± and commutative, we get that there is always a
multiplicative inverse and hence the first equality implies the second.

To show that this indeed yields a unique solution, note that f1(0) = f2(0) and f1(1) = f2(1) but this implies
that by the first equality that f1(q) = f2(q) for all q ∈ Q+ but by using the density of Q in R and the continuity
of f we get a uniqueness of f . Here we recall that the ring is embedded in R or R ∪ {±∞} and not per se part
of C as complex square roots are not single-valued (and require branch-cuts for the logarithm to make them
single-valued in view of the Residue theorem).

Remark 4.7. The uniqueness of f is not immediately clear in the general setting where we have a semiring
R that is not necessarily embedded in R. However, we can still point towards a specific f as we explain
next. The subgroup Imf ⊆ (R,⊗) must be commutative as t+ s = s+ t, so this is a commutative Lie group
which is always isomorphic to direct products of R and tori T = {z ∈ C | |z| = 1} [Ban10]. By choosing
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appropriate branch-cuts we can define a single valued (Lie group) logarithm and define f(t) = exp(t log z)
for all t > 0, where exp is the Lie group exponential.

Proof.
First of all set ρ :=

√
ωT [G]−Tω.

Map Ψ is invertible, as Ψ′ > 0, and we may write s = ψ(t) and t = ψ−1(s). Enforcing the time-scale equivariance,
Axiom 4, onto the form (4.9) that was obtained in Lemma 4.5, one finds:

gR1 (sρ) = gRt (ρ) (4.13)

and the semigroup property, Axiom 1, tells us that:

gRt (ρ) = gR1 (ρ)⊗t (4.14)

and thus
gR1 (ρs) = gRt (ρ) = gR1 (ρ)⊗ψ−1(s) (4.15)

for all ρ, s > 0.

• In the morphological semiring setting (R = T− where ⊗ = +) (4.15) gives:

g
Rmin

T
1 (ρs) = ψ−1(s) · gR

min
T

1 (ρ)

= g
Rmin

T
1 (s)

g
Rmin

T
1 (1)

g
Rmin

T
1 (ρ),

(4.16)

where the final equality follows by the first equality by setting ρ = 1. Because we do not care about the
constant of rescaling, letting T

α = g
T−
1 (1) we find by (4.16) and Corollary 4.2 that gR

min
T

1 (ρ) = T
αρ

α and

t = ψ−1(s) = sα ⇔ s = ψ(t) = t
1
α .

• In the linear semiring setting (R = RL where ⊗ = ·) the kernels kt are in L1 so their Fourier transforms
k̂t := FRL

G kt are continuous and in L∞ [Rud87] and we follow Pauwels [Pau+95] and write gRL
1 (ρ) =

eA(ρ) > 0. Now (4.15) again gives:
A(ρs) = ψ−1(s) ·A(ρ)

= A(s)
A(1)A(ρ),

(4.17)

where again the final equality follows by the first equality by setting ρ = 1. We find by (4.17) and
Corollary 4.2 and A(1) = T that gRL

(ρ) = e−Tρα and again

t = ψ−1(s) = sα ⇔ s = ψ(t) = t
1
α .

There is a fundamental relation between linear and morphological convolution units in PDE-CNNs:

Lemma 4.8. [SW16] The Cramer transform applied to functions fk ∈ L2(R2) ∩ L1(R2), k = 1, 2 whose
Fourier transform Ffk is positive in such a way that − log Ffk is convex, has the isomorphic property:

C(f1 ∗ f2) = C(f1)□ C(f2)
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Proof. Then:
C(f ∗ g) = f ◦ − log ◦F(f ∗ g) = f ◦ − log Ff · Fg

= f ◦ (− log Ff + − log Fg) = Cf □ Cg.

where in the final equality we used the standard identity f(a+ b) = fa□ fb which completes the proof.

Now let us derive our PDEs in PDE-G-CNNs from the axioms in the isotropic setting with positive kernels.

Theorem 4.1. Let R ∈ {RL, T−, T+}. Consider the isotropic case with [G] = I.
Then the PDE-CNN Axioms (1,2,3,4,5,7) force solutions

Φtf = kR,αt ∗RR2 f

where the kernels satisfy
kR,αt ∗RR2 kR,αs = kR,αs+t ≥ 0

and where their Fourier transforms k̂R,αt must satisfy

k̂R,αt ⊗ k̂R,αs = k̂R,αt+s , with
k̂R,αt (ω) = (σR)ωct ⊗ gR,α(ψ(t)∥ω∥) ≥ 0

for all s, t ≥ 0 and all ω ∈ R2, and where ψ(t) = t
1
α with 0 < α ≤ 2.

• For the linear semiring R = RL we have gRL,α(ρ) = e−ρα we get 0 < α ≤ 2 and kernels

k̂RL,α
t (ω) = FkRL,α

t (ω) = e−t∥ω∥α

e−iω·ct (4.18)

that connect the well-known Cauchy kernel α = 1 to the Gaussian kernel α = 2 and then Φt solves the
PDE system {

∂tW = −|∆|α/2W − c · ∇W
W (·, 0) = f

(4.19)

all up to a linear constant rescaling of time t 7→ T (t) = Tt for some constant T > 0.

• For the semiring R = T− one has gT−,α(ρ) = 1
αρ

α and for α ≥ 1 the we have

k̂
T−,α
t (ω) = f(kT−

t )(ω) = t
α∥ω∥α − tc · ω

⇔ (kT−
t )(x) = t

β

∥∥x
t − c

∥∥β (4.20)

with 1
β + 1

α = 1 and β ≥ 2, and Φt solves the (viscosity solution of the) PDE system

{
∂tW = − 1

α∥∇W∥α − c · ∇W
W (·, 0) = f

(4.21)

Also up to a linear constant rescaling of time t 7→ T (t) = Tt for some constant T > 0. For c = 0 the
erosion kernels are convex and positive and relate to the α-stable linear kernels via the Cramer-Fourier
transform:

− log FkRL,α
t = fk

T−,α
t ⇔ CkRL,α

t = k
Rmin

M ,α
t (4.22)

where C = f ◦ (− log) ◦ F .

Proof. Fix the semiring R ∈ {RL, T−, T+}.
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By Axiom 2, we have that
Φtf(x) =

⊕
y∈R2

kt(x,y) ⊗ f(y)

and by Axiom 3 one has Φt ◦ Lx = Lx ◦ Φt, we get

Φt(Lxf)(x) =
⊕

y∈R2

kt(x,y) ⊗ f(−x + y)

=
⊕

u∈R2

kt(0,u) ⊗ f(u)

= Lx(Φtf)(x)

Now, writing u = −x + y gives⊕
y∈R2

kt(x,y) ⊗ f(−x + y) =
⊕

y∈R2

kt(0,−x + y) ⊗ f(−x + y)

The above equality implies that kt(x,y) = kt(0,−x + y) =: kRt (x − y). Thereby Φt is given by the semiring
convolution

Φtf(x) =
⊕

y∈R2

kRt (x − y) ⊗ f(y) = (kRt ∗R f)(x).

using short-hand notation ∗R = ∗RR2 for convolutions. Now, by Lemma 3.3 and taking the semiring Fourier
transform FR yields

FR(kRt ∗ f)(ω) = FR(kRt )(ω) ⊗ FR(f)(ω).

Now, the Axiom 1 Φt ◦ Φs = Φt+s implies that

Φt ◦ Φsf = kt ∗R (kRs ∗R f) = (kRt ∗R kRs ) ∗R f = Φt+sf

so if Φ is a linear or morphological scale space, then we have

kRt ∗R kRs = kRt+s and k̂Rt+s = k̂Rt ⊗ k̂Rs .

Now transferring the isotropy, Axiom 5, together with Lemma 4.5 noting G = I implies that

k̂Rt (ω) = (σR)ωtc ⊗ gRt (∥ω∥).

Now by the time-scaling equivariance, Axiom 4, we have from Lemma 4.6 that

gRt (||ω||) = gR(ψ(t)||ω||)

with gR = gRt=1.
Now apply Lemma 4.7 and we deduce (4.18) and the first part of (4.20). The second part of (4.20) follows

by the first and the first part of Lemma 4.3. This sets the convolutions with the prescribed kernels.
Finally, we investigate constraints on the α parameter and build upon standard theory that tells us that the

convolution with these kernels indeed solve the mentioned PDEs in the appropriate manner. We do that final
part separately for R = RL and R = T−.

In the linear semiring setting R = RL it is well-known (see e.g. [Dui+04]) that the convolutions solve α-Stable
Levy process PDEs (4.19). Here we stress that (apart from excluding α = 0 in view of Axiom 2) we must exclude
that cases α > 2. To this end we note that for α > 2 the kernel in the Fourier domain is twice differentiable in
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the Fourier domain with 0 second order derivative which would entail a vanishing second order moment which
cannot happen for a positive kernel (Axiom 7):

α > 2 ⇒ ∆ωk̂
RL
t (0) = 0 ⇒

∫
R2

∥x∥2kt(x)dx = 0.

In the morphological setting we observe that the spatial kernels in (4.20) are indeed positive and convex for
α > 1 and we can apply Lemma 4.8 and the the results by Schmidt-Weickert [SW16] to obtain (4.22). It also
justifies the morphological PDE system (4.22), where we recall from the book of Evans [Eva98, ch:3.4.2, Thm.1
& 2, ch:10.3.4] Lax-Oleinik solutions are indeed the unique viscosity solutions of (4.22).

Remark 4.8. The fact that Lax-Oleinik solutions are viscosity solutions for time dependent HJB-PDEs (or
‘morphological scale space PDEs’) can be generalized to Riemannian manifolds on Lie groups like (R2,G) in
general [Bel+23, Prop.1] and this is already needed for the upcoming Theorem 4.2.

4.3 The Axiomatic Solutions for Geometric Learning on R2: PDE-
CNNs on R2

Now let us derive the PDEs used in PDE-G-CNNs on G = R2, for the general case where [G]T = [G] > 0
and where we drop the positivity constraint (i.e. optional Axiom 7) and replace it by the isometry constraint
(optional Axiom 6).

Theorem 4.2. Let R ∈ {RL, T−, T+}, and consider the general case where [G] is Symmetric and positive
definite. The PDE-CNN Axioms (1,2,3,4,5,6) force solutions

Φtf = kR,αt ∗RR2 f

where the possibly complex-valued kernels satisfy

kR,αt ∗RR2 kR,αs = kR,αs+t

and where their Fourier transforms k̂R,αt must satisfy

k̂R,αt ⊗ k̂R,αs = k̂R,αt+s , with
k̂R,αt (ω) ≡ (σR)ωct ⊗ gR,α(ψ(t)∥ω∥[G]−T ),

for all s, t ≥ 0 and all ω ∈ R2, and with ψ(t) = t
1
α , α > 0.

• For the linear semiring R = RL we have gRL,α(ρ) = e−iρα and kernels

k̂RL,α
t (ω) = FkRL,α

t (ω) ≡ e−itc·ωe−it|ω·[G]−Tω|
α
2 (4.23)

that boil down to convection and quantum mechanical wave propagation:{
∂tW = −c · ∇W − i|∆G |αW,

W (·, 0) = f

with W (·, t) = Φt(f) up to a linear constant rescaling of time t 7→ T (t) = Tt for some constant T > 0.
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• For the semiring R = T− one has gT−,α(ρ) = 1
αρ

α and for α > 1 one has kernels:

f(kT−,α
t )(ω) = t

α

∣∣∣√ω · [G]−Tω
∣∣∣α − tc · ω

⇔ (kT−
t )(x) = t

β

∣∣∣∣√(x−tc)·[G](x−tc)
t

∣∣∣∣β (4.24)

with 1
β + 1

α = 1 and β > 1, and Φt solves the (viscosity solution of the) time dependent HJB-PDE
system {

∂tW = − 1
α∥∇GW∥α − c · ∇W

W (·, 0) = f
(4.25)

where W (·, t) = Φt(f) all up to a linear constant rescaling of time t 7→ T (t) = Tt for some constant
T > 0.

Proof. The proof of Theorem 4.2 is to a very large part analogous to the proof of Theorem 4.1, where we
subsequently i) combine Axiom 2 and Axiom 3 to arrive at convolution kernel operators, ii) Lemma 3.3, iii)
Lemma 4.5, iv) Lemma 4.6, v) Lemma 4.7, vi) standard results on linear and morphological PDEs [Eva98; SW16;
BPD23; AQV94].

Therefore let us concentrate on the three main things that become different and address the adaptation
of the proof:

1.) we no longer impose the positivity, Axiom 7 at imposed 0 ≤ α ≤ 2 in the linear semiring case, and
as kernels can now be complex-valued the Schrödinger equation comes allowed as follows. We follows the
procedure for Theorem up to Lemma 4.7. Now since gRt now becomes complex-valued, (4.17) implies that we
have |A(ρ)|C = ρ2α. This implies that A(ρ) = ρ2αeiβ(ρ). But then again by (4.17), we have that

eiβ(ρs) = 1
eiβ(1) e

iβ(ρ)eiβ(s) ⇔ β(ρs) = β(s) + β(ρ) − β(1)

which implies that β(ρ) = β for some cosntant β. So we have A(ρ) = ρ2αeiβ and hence gRL
1 (ρ) = eρ

2αeiβ .

2.) the newly imposed isometry, Axiom 6, excludes the fractional diffusions in the linear semiring setting,
as we will see next. From item 1, above we have

∥kt ∗RL f∥2
L2(R2) =

∫
R2

∣∣∣e−t∥ω∥2α

[G]−T e
iβ
∣∣∣ |f̂(ω)|2dω

=
∫
R2

|f̂(ω)|2 dω = ∥f∥2
L2(R2) ⇔ eiβ = ±i

for 0 ̸= f ∈ L2(R2), t > 0. When extending to complex numbers one has that the only surviving linear PDE is
the Schrödinger PDE where the skew-adjoint generator provides a unitary solution operator:

∀t≥0 : ∥Φt(f)∥2
L2(R2) = ∥kit ∗RL f∥2

L2(R2) = ∥f∥2
L2(R2).

In the tropical semiring setting the isometry property does not exclude the morphological kernel solutions,
neither for R = R− where we solve a erosion PDE by infimal convolution, and neither for R = R+ where we
solve a dilation PDE for supremal convolution. This follows directly from Lemma 3.2 together with (3.6) and
(3.8), for example in the R = R+ case we have:

δR+(f, 0) = eIR+ (f) and IR+(kt ⊛ f) = IR+(f) (4.26)
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because indeed IR+(kt) = 0.
Conclusion: the isometric property (6) only puts constraints in the linear semiring setting, where it forces

Schrödinger PDEs.

3.) the shift-invariant metric tensor field is no longer the identity and Axiom 6 forces us to include anisotropy
via [G]. Corollary 4.3 and Lemma 4.7 now yield (4.23) and (4.24) by direct computation. Finally, in the tropical
semiring, the solution operator still provides the Lax-Oleinik viscosity of (4.25) on the general Riemannian
setting (R2,G) by Remark 4.8
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Chapter 5
Axiomatic PDE-G-CNN on SE(2)

In this section we constrain ourselves to the case G = SE(2) = R2 ⋊ SO(2). We do this to keep the formulas
concise. Already the case SE(3) where linear Fourier transform can be used to find exact solutions to (fractional)
heat processes on SE(3) [DBM19, Thm.1] [PD17] involves a lot of technical indexing that only clutters the
algebraic structure. In principle, it can be expected that many results can be transferred to the general case of
G = Rd ⋊ SO(J).

5.1 Formulation of the Axioms

We index our equivariant operator Φt = Φ[G],c
t in the network by 1) a left-invariant metric tensor field G and a

left-invariant vector field c. By left-invariance, they are uniquely determined by

c =
3∑
i=1

ciAi

with c = (c1, c2, c3) ∈ R3, and with

G =
dim(G)=3∑
i,j=1

gij ω
i ⊗ ωj

and 0 < [G] = [gij ] = [gji] ∈ R3×3 the constant matrix coefficients relative to the left-invariant dual frame. Let
dG denote the corresponding Riemannian distance and cute(G) the cut-locus relative to unity element e ∈ G.

Definition 5.1. (local radial isometries)
We call φ : Ω → R a local radial isometry (w.r.t. the unity element e) if

dG(φ(x), φ(e)) = dG(x, e), and φ(e) = e, (5.1)

for all x in an open set Ω around e outside the cutlocus.

Definition 5.2. (special local radial isometries)
Within the set of local radial isometries we consider the special local radial isometries given by

φQ(g) = expG ◦Q ◦ logG(g), φQ : Ω → Ω (5.2)

indexed by orthogonal linear maps Q : Te(G) → Te(G), where expG : Te(G) → G and logG : G → Te(G).

We impose the following requirements for our PDE-G-CNNs on G:

1. Semigroup property: For all s, t ≥ 0 we require

Φt ◦ Φs = Φt+s,

and we require strong continuity: for all f ∈ HG
R we have that limt↓0 Φtf = f .
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2. Quasilinearity and Kernel operator: For all t ≥ 0 we must have for all α1, α2 ∈ R constant and all
f1, f2 ∈ HG

R that quasi-linearity holds

Φt(α1 ⊗ f1 ⊕ α2 ⊗ f2) = α1 ⊗ Φt(f1) ⊕ α2 ⊗ Φt(f2).

More specifically, we will assume that the evolution operator Φt can for each t > 0 be written as

Φtf(g) =
⊕

h∈SE(2)

κt(g, h) ⊗ f(h) ,

for every h ∈ SE(2) for some kernel κt : SE(2) × SE(2) → R s.t. kt(·, h) ∈ HG
R for every h ∈ SE(2).

3. Equivariance: For all (g, t) ∈ SE(2) × R+ we require

Φt ◦ Lg = Lg ◦ Φt, (5.3)

with the shift-operator given by left-action (Lgf)(h) = f(g−1h), for all g, h ∈ G = SE(2) and all f ∈ HG
R.

4. Time-scale equivariance: Scaling equivariance w.r.t. Riemannian metric G and convection
vector c

∃ψ∈C1(R+),ψ′>0∀G,c LI ∀t≥0 : ΦG,c
t = Φ|ψ(t)|−2G,tc

1 (5.4)

5. Localised Isotropy w.r.t. the Riemannian metric: We require that there exists a c ∈ TeG such
that the generator

Ψ := d

dt

∣∣∣∣
t=0

(Φt ◦ Rexp tc) (5.5)

commutes at unity element e with all special local radial isometries φ = φQ : Ω → Ω:

((Ψ ◦ φ∗)f)(e) = ((φ∗ ◦ Ψ)f)(e), ⇐⇒
Ψ(f ◦ φ)(e) = (Ψf)(e)

(5.6)

where φ∗ : HR(Ω) → HR(Ω) is the push-forward of functions associated with φ, i.e. φ∗f := f ◦ φ−1.

6. Optional Axiom; Isometry Constraint:

∀f∈HR,t≥0 : δR(f, 0) = δR(Φtf, 0)

7. Optional Axiom; Positivity:
We require the kernel κt at Axiom 2 to be positive.

Remark 5.1. (Explanation on the generator and its domain) The strong continuity with semi-group
property provide strong continuity for all t > 0 and the generator

Ψ := d

dt
Φt
∣∣∣∣
t=0

= lim
t↓0

t−1(Φt − I) (5.7)
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is a closed operator that is well-defined on a dense subset DL(Ψ) of HG
R, cf. [Yos68], in the linear semiring

setting. In the tropical setting the dense domain DL(Ψ) consists of all elements in HG
T±

that are absolutely
continuous. Such elements have generalized derivatives and are differentiable almost everywhere. Recall that
the constraint to absolutely continuous functions is also important in view of the Fenchel transform (i.e. the
semiring Fourier transform for R = T−), cf. (4.7).

Remark 5.2. (Explanation on Local Isotropy Axiom)
Recall that in the Lie group case Rd there was no difference between global and local isometries, but in
G = SE(2) there is a substantial difference. We choose the for the evolution operators more restrictive local
isotropy. Local isotropy in combination with equivariance yields global isotropy. In Axiom 5 we constrain
ourselves to local radial isometries. Inversion g 7→ g−1 is an example of a local radial isometry that is not a
local isometry. Indeed dG(g, e) = dG(e, g−1) = dG(g−1, e) works for the unity element e but there exist many
g1, g2 locally around e such that dG(g1, g2) ̸= dG(g−1

1 , g−1
2 ).

Remark 5.3. Explicit reformulation of Axiom 5
We restrict ourselves in (5.6) to specific local radial isometries that map the unity element e to itself. Namely
to the ones given by (5.2) indexed by isometric linear maps Q : Te(G) → Te(G), The next lemma’s explain
the restriction and consequences.

Lemma 5.1. For all g ∈ G the map Lg : G → G given by Lg(q) = gq is an element in the group of
global/local isometries of dG with inverse (Lg)−1 = Lg−1 .

Proof. The metric tensor field G was assumed to be left-invariant, thereby dG is left-invariant. Concatenating
global isometries gives again a global isometry.

Lemma 5.2. Any isometry φ : Ω → Ω with φ(h) = h may be restricted to a small enough open ball Bh
around h such that φ|Bh

= Lh ◦ φQ ◦ L−1
h

∣∣
Bh

, where Q = (L−1
h )∗ ◦ φ∗(h) ◦ (Lh)∗ is an isometry on Te(G).

Proof. For any isometry f : G → G, the naturality of the Riemannian exponential and logarithm make the
diagrams

ThG Tf(h)G Ω ⊂ G Ω ⊂ G

G G ThG Tf(h)G

expG

f∗

expG logG

f

logG

f f∗

commute where we choose the radius of Bh ⊂ Ω small enough to stay away from the cut locus of h, and by
left-invariance Lh−1(Ω) = h−1Ω is then disjoint from the cut locus of e, as left translations are isometries by the
previous lemma. Now both f and f∗ are isometries.

First, we consider the case φ(e) = e. When g is away from the cut-locus cut(e) a geodesic γ connecting
γ(0) = e and γ(1) = g is uniquely determined by γ′(0) = v = logG(g) and we write γ(t) = expG(tv), t ∈ [0, 1].

Now consider γ̃ = φ◦γ then since φ is an isometry and γ is a minimizing geodesic also γ̃ is a minimizing geodesic
passing through e and γ̃(1) = φ(g). Now, observe that we have γ̃′(0) = φ∗(γ′(0)) = φ∗(logG(g)) = logG(φ(g))
where φ∗ is taken at e and the last equality follows from the naturality of logG . Therefore, we evidently get that
expG(γ̃′(0)) = φ(g). Then by the uniqueness of minimising geodesic, we get that

γ̃(t) = expG(tγ̃′(0)) = expG(t(φ)∗(logG(g))), t ∈ [0, 1]
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Now, setting t = 1 yields
φ(g) = expG ◦φ∗ ◦ logG(g).

Now for arbitrary φ(h) = h, conjugating by Lh:

φ̃ = L−1
h ◦ φ ◦ Lh

yields a local isometry with φ̃(e) = e. But then we get

φ̃ = expG ◦φ̃∗ ◦ logG = expG ◦Q ◦ logG = φ̃Q

where φ̃∗ = (L−1
h )∗ ◦ φ∗(h) ◦ (Lh)∗ = Q. But then we get locally, φ = Lh ◦ φ̃Q ◦ L−1

h which was to be shown

Definition 5.3 (Laplacian). The Laplacian ∆G = div ◦ grad at a point g can be written by introducing
Riemannian normal coordinates yi w.r.t G at g:

(∆Gf)(g) :=
3∑
i=1

∂yi

∣∣
g

(∂yif). (5.8)

As G is unimodular one can also express the Laplacian in the left-invariant frame of vector fieldsa:

∆Gf = div ◦ gradf = div ◦ G−1df =
3∑

i,j=1
gijAiAjf. (5.9)

where [gij ] is the inverse matrix of the matrix [gij ] with gij = G(Ai,Aj).
aThe left-invariant frame is not induced by a local coordinate frame.

Lemma 5.3. The local maps φQ : Ω → Ω given by (5.2) are indeed smooth local radial isometries (satisfying
(5.1)), and they satisfy the following properties:

(φQ)∗|e = Q,

(∆G ◦ (φQ)∗)|e = (φQ)∗ ◦ ∆G |e ,
∥∇G((φQ)∗f)(e)∥ = ∥∇Gf(e)∥,

(5.10)

for all smooth f : Ω → Ω.

Proof. Let γ : [0, 1] → G be the geodesic starting from γ(0) = e and ending at γ(1) = g ∈ Ωg then

logG g = γ′(0) and expG γ
′(0) = g and ∥γ′(0)∥ = dG(g, e).

As a result, since φQ(e) = e, the isometry of Q carries over to the isometry of φQ as we have

∀g∈ΩQ
: dG(φQ(g), φQ(e)) = ∥Qγ′(0)∥ = ∥γ′(0)∥

= dG(g, e)

from which the first statement follows.
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Now the remaining identities (5.10) follow by introduction of normal coordinates around g = e which gives

yj(φQ(g)) =
3∑
i=1

Qjiy
i(g),

dG(e, g) = ∥y(g)∥,

∆Gf(e) =
3∑
i=1

∂2
yif(e)

Now, we compute the LHS: for f ∈ C∞(Ω) we have

(∆G ◦ (φQ)∗)e(f) = ∆G(f ◦ φQ)

=
3∑
i=1

∂2
yi(f ◦ φQ)(e)

=
3∑
i=1

∂yi |e∂yi(f ◦ φQ)

=
3∑
i=1

∂yi |e
(
(φQ)∗(∂yi)f

)
Now, evidently, under the normal coordinate chart, (φQ)∗ is linear by construction, we, therefore, have that
(φQ)∗ = Q w.r.t the frame induced by the normal coordinate not only at e but also in the neighbourhood of e.
We thus get

3∑
i=1

∂yi |e
(
(φQ)∗(∂yi)f

)
=

3∑
i=1

∂yi |e

 3∑
j

Qji (∂yjf) ◦ φQ


=

3∑
i=1

3∑
j=1

Qji (φQ)∗(∂yi |e)(∂yjf)

=
3∑
i=1

3∑
j=1

3∑
k=1

QjiQ
k
i ∂yk |e(∂yjf)

where in the last equality, we used that φQ(e) = e. Now observe that we have
∑3
i=1 Q

j
iQ

k
i =

∑3
i=1(QT )ijQki = δkj

as under the normal coordinate, the matrix representation of G equals the identity. We therefore get

(∆G ◦ (φQ)∗)e(f) =
3∑
i=1

∂yi |e(∂yif) = (φQ)∗ ◦ ∆G |e (f)

Now for the last property, we have

||∇G((φQ)∗f)(e)||2 =
n∑
i=1

|
n∑
j=1

(Qji∂yjf(e)|2
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But since Q ∈ SO(n), we have

n∑
i=1

|
n∑
j=1

(Qji∂yjf(e)|2 =
n∑
i=1

|(∂yif)(e)|2

= ||∇Gf(e)||2

Remark 5.4. (Axioms 1–5 restrict the generator)
Axiom 1, 3 and 5 provide that

Ψ ◦ φ∗|e = φ∗ ◦ Ψ|e ,
Ψ ◦ (Lg)∗ = (Lg)∗ ◦ Ψ

(5.11)

for all φ = φQ with Q ∈ SO[G](G), for all g ∈ G. This puts a major restrictions in constructing the
quasi-linear (Axiom 2) strongly continuous semigroups (Axiom 1) Φt!

Definition 5.4. Denote the set of all smooth and compactly supported elements in HR
G by D(G).

Operator Ψ : HR
G → HR

G is a local differential operator if ψ maps D(G) into itself and if moreover

supp(Ψf) ⊂ supp(f)

for all f ∈ D(G) ⊂ HR
G. If moreover Ψ is linear then by the Peetre theorem Ψ is a differential operator of some

order n ≥ 0 and we may write
Ψf =

∑
|α|≤n

αi(·)∂xif

for some smooth coefficient functions αi : G → R and all f ∈ D(G).

If operator Ψ is the generator (5.7) of a tropical semigroup (quasi-linear w.r.t. semiring T±) that satis-
fies the isotropy axiom then by quasilinearity of the equivariant evolution Φt we have that Ψ(f + C) = Ψ(f)
only holds for locally constant C ∈ HR

G, and by isotropy we have

Ψf = F1(∇Gf) = F2(∥∇Gf∥) for all f ∈ D(G)

where F1 is a smooth mapping of the space of vector fields on G towards D(G) and where F2 : R+ → R+ is
smooth.

5.2 Axiomatic Solutions: PDE-G-CNNs on SE(2) & RL

Now we constrain ourselves to the Lie group G = SE(2) and the linear semi-ring setting.
For multi-index α ∈ Nn denote Dα = ∂α1

1 . . . ∂αn
n .

Lemma 5.4. For each point g ∈ G, in the normal corrdinate centered at g, if for Ψn :=
∑

|α|=n cαD
α such

that (Ψn ◦ (φQ)∗)f(g) = Ψnf(g) for any local radial isometry φQ centred at g, then we get that Ψn = ∆|α|/2

if |α| = n is even. If n is odd, then Ψn = 0.
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Proof. Note that by observing that Ψn = T(i1,...,in)∂i1 . . . ∂in , we can regard T(i1,...,in) as tensor coefficients and
hence regard T as rank n tensor. Then we get that the condition (Ψn ◦ (φQ)∗)f(g) = Ψnf(g) implies that the
tensor T is a O(n) invariant under the normal coordinate chart. Now it is a standard result that O(n) invariant
tensors can be expressed as linear combinations of tensor products of knocker delta tensors. This implies that if
n is odd then as δij is rank 2, we get that if T is non-zero, we have that n is even. So if n is even, we get that

T(i1,...,in)∂i1 . . . ∂in = δi1i2δi2i3 . . . δin−1in∂i1 . . . ∂in

But this is precisely what we needed as

δi1i2δi2i3 . . . δin−1in∂i1 . . . ∂in = (δi1i2∂i1∂i2) . . . (δin−1in∂in−1∂in)
= ∆n/2

Corollary 5.1. Let Ψ be the generator defined in (5.5), then the time-scale equivariance axiom together
with the localized isometry axiom, force Ψ to be of the form

Ψ = ∆α/2 (5.12)

for some even α, up to a scalar multiple.

Proof. In general, the localized isometry axiom implies that Ψ ((5.5)) is a linear combination of powers of the
Laplacian. Because these terms scale differently w.r.t. metric, the time-scale equivariance axiom forces us to
only include one homogeneous power of the Laplacian.

Remark 5.5. The domain DL(Ψ) of Ψ in the linear semiring setting is given by the isotropic Sobolev space 
on G of order α. I.e. f ∈ DL(Ψ) if f is absolutely continuous and both f and the generalized Laplacian |∆|α/2 

applied to f s again in L2(G).
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Theorem 5.1. Constraint (5.11) with Axiom 2 & 4 again will yield us ψ(t) = t
1
α along with{

Φt quasi-linear ∀t ≥ 0 satisfying Axioms 1–5
and Ψ is a local differential operator

⇒

R=RL ⇒ Ψ is linear and for W (·, t) ∈ DL(Ψ) one has
ΨW = ∆α

G(W ) = (divG ◦ ∇G)α(W )
with α ∈ N yielding an

homogeneous generator
Ψcommuting with all (φQ)∗,

R=T± ⇒ If ΨW = ±HG(dW ) for a convex, superlinear
HG : T ∗(G) → R+, and W (·, t) ∈ DT±(Ψ)

then
(Hamiltonian) HG must be left-invariant
and α-homogeneous in the dual norm:
HG(p) = 1

α∥p∥α∗ = 1
α∥p∥αG−1yielding a

generator Ψ commuting with all (φQ)∗,

(5.13)

Proof. We first prove the case R = RT . Given that Φ is linear, it immediately follows that Ψ is also linear and
therefore, Ψ is a local linear operator on HG. But then by Peetre’s theorem, we get that Ψ is a differential
operator, but then by Lemma 5.4 and Corollary 5.1, we get that Ψ = ∆α for some α ∈ N.

Now for the case R = T+. By the equivariance axiom 2 and the local isotropy axiom 5, we have that

HG(dW ) = H1D(||dW ||G−1) = H1D(∥∇GW∥), (5.14)

where the second equality follows from the Riesz representation theorem and the fact that the gradient is the
Riesz representative of the derivative.

Then as HG was assumed to be convex, super-linear, and the semi-group property and quasi-linearity holds
we know from general results on weak-QAM theory Fahti [FM07] and Balogh et al. [Bal+12] that

Φtf = kt ⊛ f and
kt(g) = κ1D

t (dG(g, e)) = tκ1D
1 (dG(g, e)/t).

(5.15)

Furthermore one has by Lemma A.6 in Appendix A.3

kt+s(g) = (kt ⊛GR ks)(g) =
κt+s(dG(g, e)) = (κ1D

t ∗RR κ1D
s )(dG(g, e))

(5.16)

for all t, s ≥ 0, g ∈ G. By Item 4 we have

ΦG
t = Φψ(t)G

1

which via (5.15) gives
κ1(ψ(t)dG(g, e)) = κt(dG(g, e)), (5.17)

so then (5.16) and (5.17) with the same technique (via the Fenchel transform on the Rd-setting, but now for

43



d = 1) as in Lemma 4.7 we get

ψ(t) = t
1
α and κ1D(x) = t

β

(
x
t

)β
, with 1/α + 1/β = 1,

and associated 1D Hamiltonian
H1D(p) = 1

α |p|α.
(5.18)

Thereby the result follows from (5.18) and (5.14):

HG−1(dW ) = H1D(||dW ||G−1) = 1
α

||dW ||αG−1

and the result follows

Remark 5.6. In the linear semiring case R = RL the first implication in Theorem 5.1 could be replaced
by an equivalence, as then the reverse implication ‘⇐’ is true in view of [Bel+23, Prop.1], [Pai+23] (for
R = T±) and Lemma 5.3 and the fact that non-integer fractional powers of |∆G | involve non-local operators
[Yos68].

As the axiomatic approach for PDE-G-CNNs on G = R2 primarily went via the semiring Fourier transform,
we must investigate semiring Fourier transforms (linear and tropical) on the non-commutative group G = SE(2).

This will be the topic of the next two paragraphs.

5.3 The Linear Fourier Transform on SE(2)
For R = L the Fourier transform on G = SE(2) is the usual linear Fourier transform given by (5.20).

By Mackey’s imprimitivity theorem [Mac76], the dual group Ĝ is isomorphic to the set of compact dual orbits

AJ
p = {ATω | A ∈ SO(J)} = {Aω | A ∈ SO(J−T )}

where p =
√
ωJ−Tω ∈ R. Consequently, as commonly done in abstract harmonic analysis [Fol95; FF05], we can

identify the irreducible representation σp ∈ Ĝ with p ∈ R+:

p ↔ σp. (5.19)

Now in view of Theorem 2.2, the dual measure is given by dνG(σ) = pdp. Using the identification (5.19) and
writing σp(g) = σpg the Fourier transform becomes

FU(p) =
∫
G

U(g) σpg−1 dg, with p ∈ Ĝ, (5.20)

where Ĝ is the dual of group of G consisting of irreducible representations of G. Now, as SE(2) is type I, we
have by Theorem 2.2 that the inverse Fourier transform is given by

U(g) =
∫
Ĝ

trace{σpg ◦ FU(p)} dν(p) (5.21)

with dual measure ν(p).
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All UIRs (up to unitary equivalence) of SE(2) are indexed by p ∈ Ĝ = R+ and given by

(σpgϕ)(n) = eipx·nϕ(R−1
θ n), g = (x, θ) (5.22)

for all ϕ ∈ L2(S1), g = (x, Rθ). This is a well-known result [Sug90],[CK01, ch: 10.2], but the next remark gives a
quick view on where these UIRs originate from and how they relate 1-to-1 to the dual orbits of SO(2) acting on
dual spatial group R̂2.

Remark 5.7. These representations σp are unitary equivalent to the representations σ̃ρ=p that arise by
direct integral decompositions [FF05] of the left-regular unitary representation U : G → L2(R2) in the spatial
Fourier domain. Here

(Ugψ)(v) = ψ(R−1
θ (v − x)),

and g = (x, Rθ) ∈ G = SE(2), ψ ∈ L2(R2). Indeed

F ◦ Ug ◦ F−1 =
⊕∫

R+

σ̃ppdp

where F = FR2

L where σ̃ρ : G → L2(S1
ρ) is given by

σ̃ρgF (ρn(φ)) = ei(ρn(φ))·x F (ρn(φ− θ))),

for all g = (x, θ) ∈ G, ω =ρn(φ) ∈ R̂2, F ∈ L2(S1
ρ).

Remark 5.8. The unitary equivalence mentioned in the previous remark follows by scaling. Indeed
σ̃ρg = Dρ ◦ σρg ◦ D−1

ρ with Dρ : L2(S1
1) → L2(S1

ρ) given by Dρϕ(v) = ρ− 1
2 ϕ(ρ−1v).

So we have the linear Fourier transform on SE(2):

FG
L U(p) =

∫
G

U(g) σpg−1 dg, with p ∈ R+, (5.23)

and its inverse Fourier transform is given by:

U(g) =
∫
R+

trace{σpg ◦ FG
L U(p)} pdp. (5.24)

The linear Fourier transform on G = SE(2) has a fundamental property that allows us to solve convection-
diffusions and fractional diffusions on SE(2). It intertwines the right-regular representations (and their generators:
the left-invariant vector fields) with irreducible representations (and their generators):

Lemma 5.5. Set G = SE(2). For all f ∈ L2(G), g ∈ G, p ∈ R+ ≡ Ĝ and all A ∈ Te(G) we have:

(F ◦ Rgf)(p) = σpg ◦ (Ff)(p),
F ◦ dR(A) = dσp(A) ◦ F
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where in the 2nd row the unbounded operators have a domain (dense in L2(G)) consisting of all f ∈ L2(G)
s.t. the limit

dR(A)f = lim
t↓0

RetAf − f

t
exists.

Proof. The second identity follows by the first identity and the continuity of unitary operator F . The first
identity is simple is due to the fact G is unimodular: right Haar measure is left Haar measure:

(FG
L RgU)(p) =

∫
G

U(gh) σpg−1 dg =
∫
G

U(q) σphq−1 dq

=
∫
G

U(q) σph ◦ σpq−1 dq = σph ◦ FG
L U(p)

and the result follows.

Corollary 5.2. The previous lemma applies in particular to the basis {Ai = dR(Ai)}3
i=1 given in (2.2)

and the corresponding operators {dσp(Ai)}3
i=1 in the Fourier domain are

dσp(A1) = ip cos(ψ),
dσp(A2) = ip sin(ψ),
dσp(A3) = ∂ψ

(5.25)

and they obey the same commutator relations as both dR and dσp are Lie algebra isomorphisms.

Proof. We will prove Ai = A1 as the rest follow similarly. As we have that A1 = ∂x|e and e = ((0, 0), 0) we have
that etA1 = ((t, 0), 0). Now using (5.22), we get that

(σp
etA1ϕ)(n(ψ)) = eipt(1,0)·(cos(ψ),sin(ψ))ϕ(n)

Thus using the definition, we have

dσp(A1)(ϕ)(n) = lim
t→0

(
eipt cos(ψ)ϕ(n) − ϕ(n)

t

)
= ip cos(ψ)ϕ(n)

Corollary 5.3. The previous corollary shows that both convection-diffusions and fractional diffusions allow
for exact solutions via spectral decompositions of their kernels in the Fourier domain. Indeed, their linear
PDE generators (5.5) satisfy:

Ψ := ∆G =
3∑

i,j=1
gijAiAj ⇐⇒

Ψ̂p := (FG
L ◦ Ψ ◦ (FG

L )−1)(σp) =
3∑

i,j=1
gijdσp(Ai)dσp(Aj)

and the right-hand side is a self-adjoint Sturm-Liouville operator of Mathieu type with periodic boundary
conditions and allows for expansion in a complete ONB {ϕpk}k∈N. For explicit formulas see [DF10b; Agr+08]
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summarized in [Zha+16]. One has (with normalised ϕpk’s):

Φt = e−t|Ψ|
α
2 ⇐⇒ (5.26)

Φ̂pt = e−t|Ψ̂p|α

=
∑
k∈Z

e−(−λG
k

(p))
α
2 tϕpk ⊗ ϕpk (5.27)

Proof. Apply Lemma 5.5 to generator Ψ from Lemma 5.4, and realize that the Laplacian ∆G is as a Laplace-
Beltrami operator expressed in the left-invariant frame by (5.9). For the expansions into the Mathieu functions
ϕn, with negative eigenvalues related to the Mathieu characteristics, see [DF10a; Agr+08].

Corollary 5.4. The kernels of the left-invariant diffusions on G = SE(2) are given by

k̂t(σp) = e−t|Ψ̂G
p |

α
2 (5.28)

with isotropic generator

|Ψ̂G
p |α = −

−
3∑

i,j=1
gijdσp(Ai) ⊗ dσp(Aj)

α
2

with α > 0. This gives the following expressions for the diffusion kernels on G = SE(2):

kt(g) =
∞∫

0

∑
k∈Z

e−t|λG
k

(p)|
α
2 (σpg)k,k pdp, (5.29)

where (σpg)k,k = (σpg)−k,−k ∈ C are pre-computable complex numbers and given by (σpg)kk =
(
σpgϕ

p
k , ϕ

p
k

)
L2(S1).

Proof. We have that
kt(g) = (F−1

G k̂t)(g) =
∫
R+

tr(σpg ◦ k̂t(σp))pdp

Now, we have

tr(σpg ◦ k̂t(σp))p =
∑
m∈Z

(σpg ◦ k̂t(σp))mm

=
∑
m∈Z

e−t|λm(p)|α/2
(σpg)mm

and we get the result.

Remark 5.9. The series (5.29) is not converging very fast for very small t > 0. It has been used though for
numerics [Zha+16], and there is a technique of unfolding the circle and periodise afterwards that provides
a rapidly decaying series that can even be computed by the Floquet theorem [DV08; DF10c]. However, in
PDE-G-CNNs we need fast computations on the GPU, and rather rely on quick Gaussian approximations
[RDu+21].

Lemma 5.6. Suppose we have a spatially isotropic metric tensor field

[G] = diag(g11, g11, g33) ⇐⇒ G =
3∑
i=1

gii ω
i ⊗ ωi,
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with corresponding linear generator (a fractional Laplacian)

−|∆G | α
2 = −|g11(∂2

x + ∂2
y) + g33∂2

θ | α
2 , gii = g−1

ii ,

then the corresponding kernel left-invariant evolution kernel kαt = e−t|∆G |
α
2 δe is no longer positive if α > 2.

Proof. The fact that ∆G = g11(∂2
x + ∂2

y) + g33∂2
θ implies that in the Fourier domain, using (5.25),

∆̂G = g11(dσp(A1)2 + dσp(A2)2) + g33dσp(A3)2

= −g11p2(cos2(ψ) + sin2(ψ)) + g33∂2
ψ

= −g11p2 + g33∂2
ψ .

Now let ϕk ∈ L2(S1) be orthonormal eigenfunctions of −|∆̂G | α
2 with corresponding eigenvalues −|λk(p)| α

2 . Then
by [Agr+08, Corollary.28] we have that the corresponding linear kernel is given by

kαt (g) =
∞∫

0

∑
k∈Z

e−t|λG
k

(p)|
α
2 (σpgϕk, ϕk) pdp

Now we note that the 2π-periodic orthonormal eigenfunctions of operator ∆̂G take (due to the isotropy constraint
g11 = g22) a rather simple form:

ϕk(ψ) = 1√
2π
eikψ, k ∈ Z,

where the corresponding eigenvalues are

λG
k (p) = g33λk − g11p2 = −g33k2 − g11p2

where λk = −k2 gives the discrete spectrum of differential operator d2

dψ2 with 2π periodic boundary conditions.
We note that the functions ϕk actually do not depend on p while the eigenvalues λk(p) do. But then we have for
g = (x, y, θ)

(σpgϕ)(ψ) = eip(x sin(ψ)+y cos(ψ))ϕ(ψ − θ)

But then we get (only) for α > 2 that

0 = ∂2
pe

−t(g11)α/2|p|α
∣∣∣
p=0

= ∂2
pe

−t|λG
0 (p)|

α
2
∣∣∣
p=0

(5.30)

= ∂2
p(ϕ0, k̂

α
t (σp)ϕ0)

∣∣∣
p=0

(5.31)

⇐⇒ (5.32)

0 =
∫
G

kαt (g) ∂2
p(σpg−1(ϕ0), ϕ0)

∣∣∣
p=0

dg (5.33)

Now, we have ϕ0 = 1√
2π , λ0 = 0, λG

0 (p) = −g11p2 and

∂2
p(σpg−1(ϕ0), ϕ0)

∣∣∣
p=0

= (∂2
pσ

p
g−1(ϕ0), ϕ0)

∣∣∣
p=0

= −((x sin(·) + y cos(·))2ϕ0(· + ϕ), ϕ0(·))

= − 1
2π

∫ 2π

0
|x cosψ + y sinψ|2dψ

= −1
2(x2 + y2) ≤ 0.
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With respect to the second identity we note that g = (x, θ) ⇐⇒ g−1 = (R−1
θ x,−θ) and thereby the square

spatial norm ∥x∥2 = x2 + y2 is invariant under group inversion.
We finally conclude that by (5.30) the kernel must have zero crossings for α > 2 as the total integrand cannot

have the same sign to produce a zero value.

Next we generalize the previous lemma to the general left-invariant (diagonal ) Riemannian case. We also include
a sub-Riemannian extension (where either g11 or g22 is zero).

Theorem 5.2. Let ∞ ≥ g11 ≥ 0, ∞ ≥ g22 ≥ 0, g33 > 0, g11 + g22 > 0 to ensures that the Hörmander
condition is satisfied.

Suppose we have a diagonal metric tensor field

[G] = diag(g11, g22, g33) ⇐⇒ G =
3∑
i=1

gii ω
i ⊗ ωi,

with corresponding linear generator (again gii = g−1
ii ):

−|∆G | α
2 = −|g11A2

1 + g22A2
2 + g33A2

3| α
2 ,

with left-invariant vector fields {Ai}3
i=1 given by (2.2).

Then the corresponding left-invariant evolution kernel kαt = e−t|∆G |
α
2 δe is no longer positive if α > 2.

Proof. We follow the same approach as the previous lemma. To arrive at a contradiction, we assume positivity
of the kernel and we will first show that if α > 2,

∂2
p

(
ϕp0 , k̂

α
t (ϕp0)

)
L2

∣∣∣
p=0

= 0 (5.34)

where ϕp0 is the zeroth eigenfunction of the operator −|∆̂G | α
2 . We have from (5.26) that

k̂αt = e−t|Ψ̂p|α

=
∑
k∈Z

e−(−λG
k

(p))
α
2 tϕpk ⊗ ϕpk

Now from orthonormality of the eigenfunctions we immediately see that(
ϕp0 , k̂

α
t (ϕp0)

)
L2

= e−(−λG
0 (p))

α
2 t.

Now in order to show that
∂2
p

(
e−(−λG

0 (p))
α
2 t
)∣∣∣
p=0

= 0,

Since for an arbitrary twice continuously differentiable f , we have

∂2
pe
f(p) = f ′′(p)ef(p) + (f ′(p))2ef(p).

it suffices to show that ∂p(−(−λG
0 (p)) α

2 t)|p=0 = 0 and ∂2
p(−(−λG

0 (p)) α
2 t)|p=0 = 0.

Now we have using (5.25),

∆̂G = ∂2
ψ − p2 1

g33 (g11 cos2(ψ) + g22 sin2(ψ))

= ∂2
ψ − p2 1

g33 (g11( 1
2 + 1

2 cos2(2ψ)) + g22( 1
2 − 1

2 cos(2ψ)))

= ∂2
ψ − 1

2

(
g11+g22

g33

)
p2 − 1

2

(
g11−g22

g33

)
p2 cos(2ψ).
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Thereby the corresponding eigenvalues of the orthonormal eigenfunctions ϕpn of operator ∆̂G are given by

λG
n(p) = ±an(q) + 1

2

(
g22+g11

g33

)
p2

where q = 1
4

(
g22−g11

g33

)
p2 and an(q)’s are the eigenvalues corresponding to the operator ∂2

ψ − 2q cos(2ψ) which
are precisely the characteristic values of the Mathieu equation. Now the series expansion of a0(q) is given by
[AS64]

a0(q) = −q2

2 +O(q4).

From this, it is evident that ∂pa0(q)|p=0 = ∂2
pa0(q)|p=0 = 0 and hence ∂pλG

n(p)|p=0 = ∂2
pλ

G
n(p)|p=0 = 0. But then

this implies that ∂p(−(−λG
0 (p)) α

2 t)|p=0 and ∂2
p(−(−λG

0 (p)) α
2 t)|p=0 both equal 0 if α > 2 which implies (5.34) was

to be shown.
Now, on the other hand, we have by definition,

k̂αt (p)ϕp0 =
∫
G

kαt (g)σpg−1(ϕp0) dg

and as a vector-valued integral, we get(
ϕp0 , k̂

α
t (ϕp0)

)
L2

=
∫
G

kαt (g)
(
ϕp0 , σ

p
g−1(ϕp0)

)
L2

dg.

Now, we claim that

∂2
p

(
ϕp0 , σ

p
g−1(ϕp0)

)
L2

∣∣∣
p=0

= ∂2
p

(
ϕp0 , σ

p
g(ϕp0)

)
L2

∣∣∣
p=0

=
∫
S1
∂2
p

(
eip(x sin(ψ)+y cos(ψ))ϕp0(ψ)ϕp0(ψ − θ)

)∣∣∣
p=0

dψ

̸= 0.

We have that the power series expansion of ϕp0 in p is given by [AS64]

ϕp0(ψ) = ϕp0(ψ) = 1√
2π

(1 − q

2 cos(2ψ) +O(q2))

Now using this, we compute the integrand:

∂2
p

(
eip(x sin(ψ)+y cos(ψ))ϕp0(ψ)ϕp0(ψ − θ)

)∣∣∣
p=0

= 1
8π
(
−4C cos(2(θ − ψ)) − 4C cos(2ψ) − 4 sin2(ψ)(x+ y)2)

where C = 1
4

(
g22−g11

g33

)
. Now, integrating this over S1 yields

∫
S1
∂2
p

(
eip(x sin(ψ)+y cos(ψ))ϕp0(ψ)ϕp0(ψ − θ)

)∣∣∣
p=0

dψ

= −1
2(x2 + y2)
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which is strictly non-positive. Now, by

0 = ∂2
p

∫
G

kαt (g)
(
ϕp0 , σ

p
g−1(ϕp0)

)
L2

dg
∣∣∣
p=0

= −
∫
G

1
2k

α
t (g)(x+ y)2 dg

we see that the kernel cannot be strictly positive.

Theorem 5.3. Set R = L, G = SE(2).
Then the PDE-CNN Axioms (1,2,3,4,5) force solutions

Φtf = kL,αt ∗LG f, with α > 0

where the possibly complex-valued kernels satisfy

kL,αt ⊛ kL,αs = kL,αs+t for all s, t > 0

and where their Fourier transforms k̂L,αt (p) are given by (5.28). Moreover, if the metric tensor field is
diagonal w.r.t. left-invariant frame, then the kernels are positive for 0 < α ≤ 2.

Proof. By (5.13), axioms 1,2,3,4,5 implies forces the generator Ψ = ∇α/2
G and Corollary 5.3 and Corollary 5.4

implies that
Φtf = kαt ∗ f.

But then this combined with semi-group property, implies that

kαt ∗ kαs = kαt+s

which completes the result. The positivity follows from the previous theorem.
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Chapter 6
Experiment PDE-CNN on R2: Vessel Segmentation

For this experiment project, we will investigate if the PDE-CNNs have similar benefits as PDE G-CNNs when
it comes to training data reduction. It was already reported by [Cas21] that PDE-CNNs yield a reduction in
network complexity compared to CNNs with similar performance.

6.1 Experiment: Vessel Segmentation

In this section, we compare the performance of PDE-CNNs with CNNs on vessel segmentation tasks. In this
experiment, all the models used exclude diffusion as it was found by Castella [Cas21] that diffusion usually leads
to weaker performance. As diffusion is excluded, each layer in the network is comprised of convection, erosion
and dilation. For the PDE-CNNS, the models are divided into two types. First is, the GEN model where each
layer consists of the same modules which are any combination of erosion, dilation and convection. The second is
the DE(diffusion erosion) model where the first and the last layer is the convection dilation module and the layers
between them can be any combination that always includes convection. Unlike the GEN model, these middle
layers need not be the same. To describe the specific structures of the network, a binary notation is employed to
define the three layers that vary. For a single layer, a binary number of length 2 is utilized to indicate whether
dilation and/or erosion are utilized. The first digit represents dilation, while the second digit represents erosion.
Therefore, a binary number of 10 implies that dilation is used, but erosion is not. The structure of the three
layers is defined by a binary number of length 6 in this manner. With a binary value of 101101, the second
layer employs dilation, the third layer employs dilation and erosion, and finally, the fourth layer uses erosion. In
the paper [Cas21], it was found that combination 111011 on average was the best-performing model and as a
result, we will use this model for our comparison with CNNs along with one basic GEN model without diffusion.
It was also found that for models with comparable architectures namely, a comparable number of layers and
channels, PDE-CNN has significantly lower network complexity than the CNN counterpart. In the first part of
this section, we confirm this finding and assess the extent to which the decrease in network complexity decreases
the performance. We then explore the consequences of a reduction in training data. We then conclude the
section with some quantitative comparisons by plotting images which indicate the true positives (green), false
positives (red), true negatives (white), and false negatives (blue). For the testing of the network performance,
we use the DICE score.

6.2 Network Complexity Reduction

Model Layers Channels Parameters Dice score
CNN 6 14 14946 0.80160632
PDE-CNN 6 30 4998 0.80147527
CNN 9 10 16818 0.80477967
PDE-CNN 9 24 5922 0.80562725
CNN 12 18 76242 0.811019685
PDE-CNN 12 34 15318 0.812743681

Table 6.1: performance comparison for 6, 9 and 12 layered PDE-CNNs and CNNs.

In this section, we investigate the reduction in the network complexity for PDE-CNNs compared to CNNs
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for respective architectures with 6 and 9 layers. Namely, Given 6 layered PDE-CNN with 24 channels and 9
layered PDE-CNN with 20 channels both with the DE configuration 111011, we investigate how many channels
are required for CNNs with the same number of layers to perform equally. The DICE score of CNN is plotted
against the number of parameters for both 6-layered CNN and 9-layered CNN respectively. From the plots from
Figure 6.1, we see that PDE-CNNs have significantly lower network complexity than CNNs with comparable
performance. There are 3 fold, 2.8 fold and 5 fold decrease in the respective network complexity for 6,9 and 12
layered PDE-CNNs with each having a similar performance to the CNN counterpart.

Model 6 layers 12 layers
PDE-CNN 3 fold 5 fold
PDE-G-CNN 12 fold 32 fold

Table 6.2: Comparison in the decrease in network complexity for PDE-CNN and PDE-G-CNN. While PDE-CNN
has good decrease in network complexity, it was shown by Smets [Sme+21] that PDE-G-CNN has significantly
more.

53



Figure 6.1: We compare the performance of a 6-layered PDE-CNN with 30 channels(top), a 9-layered PDE-
CNN(bottom) with 30 channels and a 12-layered PDE-CNN(bottom) with 34 channels with CNNs of the same
layers with varying channel sizes. All networks are trained on DRIVE and training data testing data consist of
20(separate) images respectively. The score is taken to be the mean of 3 experiments.
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6.3 Training Data Reduction

As we have seen in the previous section, there is a significant reduction in network complexity for PDE-CNNs
with CNNs with comparable performance. In this section, we will investigate the performance of PDE-CNNS
compared to CNNs in terms of training data reduction.

6.3.1 Comparable Network Architecture

Figure 6.2: The mean dice score of PDE-CNNs compared
to CNNs with the same network width and depth and
the total number of parameters for each network.

First, we compare PDE-CNNs and CNNs with a com-
parable number of layers and channels. We namely
compare the performance of a 6-layer CNN and a
6-layer PDE-CNN on two different occasions, with
6 channels and 12 channels by reducing the amount
of training data. We conduct experiments on the
well-known DRIVE [Sta+04] datasets for the vessel
segmentation task. For default full training data set,
we use a 50-50 split of 40 images for training and test-
ing and employ overlapping patches of dimension 64
x 64 with a patch overlap of 16 for training the net-
works. To evaluate the impact of reduced input data
on the networks’ performance, we randomly shuffle the
training patches in the DRIVE dataset and gradually
compile 10% to 100% of the total patches, and then
use this reduced data for training all the networks.
The testing is done on the full testing data set of 20
images for each reduction. As expected, CNNs with
higher network complexity outperforms PDE-CNN
with significantly lower network complexity.

It is worth mentioning that for these network configurations, the difference between the dice score at 10%
compared to 100% is smaller for PDE-CNNs.

6.3.2 Comparable Network Complexity

Now, we compare the performances of PDE-CNNs and CNNs with comparable network complexity. We compare
them in two scenarios with high network complexity and low network complexity for both.

We see that for comparable number of parameters, PDE-CNNs are superior to CNNs especially for low
training data. Especially for low network complexity, when PDE-CNN and CNN have the same complexity,
CNN cannot even compete with PDE-CNN as the highest score it reaches at 100% of the training data is
barely higher than the score of PDE-CNN with 10% training data. The plots in Figure 6.3 also indicate
that the performances of PDE-CNNs with low training data approaches the performance with full training
data quicker than the CNNs. We again note that the difference between the dice score at 10% compared to
100% is smaller for PDE-CNNs. The differences are summarised in Table 6.4. In Figure 6.4, Pai compared
[Pai+23] the training data reduction of a CNN, a G-CNN and a PDE-G-CNN in the same fashion as our
comparison of data reduction. We see that although PDE-CNN does not have a similar level of improvement
as PDE-G-CNN, at least for networks with similar level of complexity, there is still a large improvement
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in performance with low training data. It seems according to Figure 6.4, the benefit of PDE-CNN lies es-
pecially in low training data as for PDE-G-CNN, the difference between the dice score of 10% and 100%
training data is not as significant as PDE-CNNs compared to CNNs. Although PDE-G-CNN is still clearly
superior to PDE-CNN as it achieves higher dice score with lower network complexity. This suggests that the
improvement in PDE-CNN with more training data tapers off for PDE-CNNs as we increase the training data size.

Now to more closely investigate the effects of low training data, we look at the performance of PDE-CNN
compared with CNN through 1 to 5 training images. The results are shown in Figure 6.5. One notable finding
from this experiment is the variance of dice score. On average, there seems to be a less variation in performance
for PDE-CNNs compared to CNNs with similar network complexity. In Figure the camprison for PDE-CNN
with 6 layers and 6 channels and CNN with 6 layers and 2 channels is made.

data = 1 data = 2 data = 3 data = 4 data = 5
PDE-CNN 0.0360 0.0210 0.0102 0.0141 0.0065
CNN 0.0880 0.03532 0.0382 0.0212 0.0275

Table 6.3: Standard deviation of dice score over 5 experiments.

Figure 6.3: The mean dice score of PDE-CNNs compared to CNNs with comparable network complexity.
The number of parameters for each network is indicated. On the left we have comparable networks with low
complexity, and on the right, we have comparable networks with high network complexity
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Figure 6.4: The comparison of a 6-layer: CNN
(25662 parameters), G-CNN (24632 parame-
ters), and a PDE-G-CNN (2560 parameters)
architectures with varying amounts of train-
ing data. All networks are trained only on
DRIVE.

Figure 6.5: Mean die score over 5 experiments
of PDE-CNNs compared to CNNs. For each
experiment, specified number of random im-
ages are selected from the full training set for
training.

Model Layers Channels Parameters score differ-
ence

PDE-CNN 6 6 438 0.040379
CNN 3 2 690 0.068294
PDE-CNN 5 3 1146 0.028646
CNN 5 3 1236 0.050465
PDE-CNN 6 30 4998 0.026177
CNN 6 7 4920 0.044212
PDE-CNN 9 30 8658 0.025325
CNN 6 11 11004 0.038585

Table 6.4: Side by side comparison of PDE-CNNs with CNNs with comparable network complexity. The
difference in the dice score with 10 % training data and 100 % training data is shown on the right most column.

57



Chapter 7
Conclusion

In this thesis, we aimed to underpin the PDEs used in PDE-G-CNNs. In particular, we aimed to derive them
from a list of axioms, when fixing the Lie group G and semiring R. As this is an ambitious goal, we decided to
constrain ourselves to the cases listed in Section 1.2.

In Chapter 3, we laid a foundation for this approach by introducing the notion of semirings, and the
corresponding semiring transform on a Lie group G. There, we have observed that two different types of scale
space operations namely, the diffusion operations and the morphological operations both arise from semiring
kernel operators. We have seen that the tropical semirings gives rise to morphological scale-spaces and the linear
semiring to the diffusion scale-spaces.

We then established the axioms for the case G = R2 in Chapter 4. Upon their introduction, it was shown
sequentially, how each axiom narrows down the possibility for the kernels which define the scale space operations.
The linear semiring leads to the kernel given by (4.23) in the Fourier domain which depends on a parameter α,
and trainable parameters c which corresponds to convection and G which is the metric tensor field which controls
the anisotropy. For the morphological semiring, the kernel in the Fourier domain was found to be given by (4.24)
where α, c and G respectively play the same role as in the linear case. It was then shown that these kernels give
rise to evolution PDEs: for the linear case, quantum mechanical wave propagation and for the morphological
case, HJB-PDE.

Next, we tackled the case for G = SE(2). We have seen that the axioms needed to be adapted as the group
structure of SE(2) was quite different from that of Rn. For example, in order to make sense of the notion of
localised isotropy, we introduced the concept of local radial isometry. Furthermore, we saw that this isotropy
was established in terms of a generator. Upon their introduction, for the case R = RL, we showed that the
generator must be of the form given by (5.12) given the axioms. We then proved main Theorem 5.1 to show
that in the linear case, the axioms force a PDE given by (5.13). Here, we have noted that if we assume that if
the PDE for the morphological case is given by a convex superlinear Hamiltonian HG , then HG(p) = 1

α∥p∥αG−1 .
Furthermore, we have seen in Theorem 5.2 that the optional positivity axiom forces the condition α ≤ 2. The
overall axiomatic derivation is summarised in Theorem 5.3.

Finally, in Chapter 6, we examine the effects of PDE-CNN on the network complexity and training data
and we compare them to those of CNNs and PDE-G-CNNs. We see that while compared to PDE-G-CNNs,
PDE-CNNs do not have the same level of decrease in network complexity and training data compared to similarly
performing CNNs, they still outperform CNNs and G-CNN by a significant margin and their benefits especially
come into play when testing on small training data.

Future Research

While we have made a decent progress in underpinning the PDEs used in PDE-G-CNNs axiomatically, there is
still quite some work to be done.

Firstly, while we have managed a fully axiomatic derivation for the case G = Rn, some of the results we used
rely on the fact that we assume the underlying ring to be either the linear or the tropical semiring. While the
scale-space operations arising from these semirings are of main interests in image processing, we would like to
extend the approach towards a broader class of semirings, including the logarithmic semiring (associated to
Hopf-Cole transformations) or the p-root semirings (that originate from the linear semiring by conjugation with
taking a p-th power). This is ongoing research by my supervisors.
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On top of this, for SE(2), while we did manage an axiomatic derivation for the linear case and prove a result
(Theoem 5.1) about the tropical case, the assumption we relied on (convex superlinear Hamiltonian) for the
tropical case is a very strong one and there is still a big gap to fill. Furthermore, it is unclear if the axioms that
we used to derive the linear case are the right axioms for the tropical case. For example, in the linear case, we
relied on the linearity of the generator to use the Peetre theorem which was essential in our argument.

In the tropical case, the quasi- linearity (i.e. linearity w.r.t. semiring R) of Φ does not imply the quasi-linearity
of the generator and on top of that, there seems to be no tropical equivalent of the Peetre theorem. These facts
suggest that the approach requires serious adaptation for the tropical case and they still pose a highly significant
challenge, even though one would expect it involves a decomposition into tropical (quasi-linear) version of the
linear irreducible representations (5.22).
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Appendix A

A.1 Measurable Semiring Valued Functions on a Lie group

Let G be a Lie group, and R a semiring. Let e⊗ ∈ R denote the unity element of ⊗ in the semiring. Let e⊕ ∈ R

denote the unity element of ⊕ in the semiring R.

Definition A.1 (Indicator). Let ω ⊆ G be any set and R a semiring. The indicator function Iω : G → R

of ω is given by

1R,Gω (x) =
{

e⊗ for x ∈ ω

e⊕ for x /∈ ω
(A.1)

Definition A.2 (Simple Function). Finite quasi-linear combinations of indicator functions of measurable
sets Ai will be called simple functions.

n⊕
i=1

ai ⊗ 1Ai
(A.2)

Definition A.3 (Sum Approachable). A function f : G → R is called sum approachable if there exists
ai ∈ R and Ai ⊆ G open, such that

f(g) = lim
n→∞

n⊕
i=1

ai ⊗ 1Ai
(g) (A.3)

The set of all sum-approachable functions from G to R is denoted by SR.

Remark A.1. In the linear semiring case every pointwise limit of simple functions is sum-approachable.
However, in general this is not the case. For instance in the tropical. Now let us consider R = T+. Then
the morphological delta in the tropical max semiring is

δT+(g) =

0 if g = e

−∞ otherwise
(A.4)

This function is a pointwise of simple functions (take the sequence fn = 1T+
(−1/n,1/n) for n ∈ N). However,

the morphological delta is not sum-approachable as we will see below in Cor. A.1.

Definition A.4 (Measurable). A function f : G → R is measurable if the pre-image of measurable sets is
measurable. Here we use the Borel sigma algebra generated from the standard topology given by the metric.
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Lemma A.1. A sum-approachable function f : G → R is measurable.

Proof. Let X be a measure space and Y a metric space. The pointwise limit given by f(x) = lim
n→∞

fn(x)
of measurable functions fn : X → Y is again measurable, and the sums in the right hand side of (A.3) are
measurable.

Next we investigate the tropical semiring cases.

Lemma A.2. The pointwise supremum of lower-semi continuous (l.s.c.) functions from G to R that are
bounded from above is again a l.s.c. function from G to R that is bounded from above.

Proof. A function f : G → R is l.s.c. iff given g ∈ G and r < f(g) there is an open neighborhood U of g such
that r < f(g) for all g ∈ U .
Taking g ∈ G and any r < f(g) := sup

i∈I
fi(g) it must be that there exists and i ∈ I (the index set) s.t. r < fi(g).

Since fi is lower semicontinuous there is an open neighborhood U of g such that r < fi(g) for all g ∈ U . As
fi(g) ≤ f(g) for all g, it follows that r < f(g) for each g ∈ U .

Lemma A.3. A sum approachable function in the tropical semiring T+ that is bounded from above is l.s.c.
and bounded from above A sum approachable function in the tropical semiring T− that is bounded from
below is u.s.c. and bounded from below.

Proof. In the tropical semiring T+ we have that (A.3) boils down to

f(g) = lim
n→∞

max
i∈{1,...,n}

ai + 1Ai
(g) = sup

i∈N
ai + 1Ai

(g) =: sup
i∈N

fi(g)

Now the functions fi behind the supremum are lower semi-continuous as all 1Ai
given by (A.1) with e

T+
⊗ = 0

and e
T+
⊕ = −∞ are lower-semi continuous, so that the result for T+ follows by Lemma A.2.

Now the result for T− follows from the result for T+ and:

• min(x) = − max(−x),

• f is l.s.c. if and only of −f is u.s.c,

• e
T−
⊕ = −eT+

⊕ = ∞.

so that the result follows.

Corollary A.1. The morphological delta δT+ is not sum-approachable in the the tropical semiring T+

Proof. Suppose it was sum-approachable then by Lemma A.2 it would be lower-semicontinuous which is not the
case.

Lemma A.4. In the linear semiring case a measurable function is sum-approachable. In the tropical
semiring case a measurable function need not be sum-approachable.

63



Proof. The first statement for R = RL is a well-known property of measurable functions from metric spaces to
metric spaces (endowed with corresponding Borel sigma algebra’s), [Dud02].

Now let us consider R = T+. Then the morphological delta in the tropical max semiring is

δT+(g) =

0 if g = e

−∞ otherwise
(A.5)

This function is clearly measurable. However, it not sum-approachable as it is not l.s.c, recall the previous
lemma.

A.2 Semiring Integration on a unimodular Lie group

For convenience we restrict ourselves to unimodular Lie groups G. This allows us to talk about the Haar measure
on G (up to scalar multiplication) without a need to distinguish between left and right Haar measures.

We define the integral IGR : SR → R by requiring that

1. IGR is quasi-linear,

2. IGR is continuous.

The above definition is compatible with measurable functions in the linear semiring where IGL (1L,Gω ) = µG(ω)
and IGR (f) =

∫
ω
f(x) dµG(x) with µG the up to scalar multiplication unique left-Haar measure on Lie group G.

We write IGR (f) symbolically as IGL (f) =:
⊕
x∈G

f(x).

In the tropical setting we define IGR (1T+,G
A ) = 0 for all open sets A in G.

Lemma A.5. For f : G → R with f ∈ ST− one has

IGT−(f) = inf
x∈G

f(x)

For f : G → R with f ∈ ST+

IGT−(f) = sup
x∈G

f(x)

Proof. Set R = T−. Let f ∈ SR. Then by Def. A.3 and Lem. A.3 we approximate u.s.c. f by u.s.c. simple
functions

f = lim
n→∞

n⊕
i=1

cin ⊗ 1Rωi
.

By quasi-linearity IGR (1Rωi
) = IGR (1Rωi

⊗ 1Rωi
) = IGR (1Rωi

) ⊗ IGR (1Rωi
) ⇒ IGR (1Rωi

) = 0. Then by continuity of IGR , resp.
quasi-linearity of IGR we have

IGR

(
lim
n→∞

n⊕
i=1

cin ⊗ 1Rωi

)
= lim
n→∞

IGR

(
n⊕
i=1

cin ⊗ 1Rωi

)
= lim
n→∞

n⊕
i=1

cin ⊗ IGR (1Rωi
) = lim

n→∞
inf

i∈{1,...,n}
cin

= inf
x∈G

f(x).

from which the first claim follows. The second claim is tangential.
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A.3 Relating morphological convolutions on (G, G) to morphological
convolutions on R via the distance map

Lemma A.6. A kernel corresponding to a convex, superlinear Hamiltonian HG(p) = H1D(||p||G−1) depends
only on the norm of the argument, i.e. kt(g) = κ1D

t (dG(g, e)).
Furthermore both kernels satisfy the semigroup property on resp. G and R+ and relate via (5.16):

kt+s(g) = (kt ⊛GR ks)(g) = κ1D
t+s(dG(g, e)) = (κ1D

t ∗RR κ1D
s )(dG(g, e)).

Proof. We note that from [Bel+23, Prop.1], that we have

κ1D
t (dG(g, e)) = tL1D(d(g, e)/t)

where L1D denotes the corresponding Lagrangian of H1D Now, our assumption of convex superlinearity of H
implies that this condition also holds for the corresponding Lagrangian L. Now, note that if HG is convex, then
it is easy to see that H1D is convex as well. Indeed, for x, y ∈ R+, let p such that ||p|| = x, then

H1D(tx+ (1 − t)y) = H1D(t||p|| + (1 − t)y
x

||p||)

= H1D(||tp+ (1 − t)y
x
p||)

= HG(tp+ (1 − t)y
x
p)

≤ tH1D(x) + (1 − t)H1D(y)).

With a similar argument, we can show that H1D is superlinear as well. Therefore, we have that L1D convex
super linear and hence κ1D

t as well. But then we have that κ1D
t is monotonically increasing on R+. Now, we

have (omitting labels 1D in κ and G in d)

κt+s(d(g, e)) = kt+s(g) = kt ⊛
G
R ks(g)

= inf
h∈G

κt(d(g, h)) + κs(d(h, e))

= inf
h∈γmin

e,g

κt(d(g, h)) + κs(d(h, e))

= inf
h∈γmin

e,g

κt(d(g, e) − d(h, e)) + κs(d(h, e))

= inf
0≤r≤d(g,e)

κt(d(g, e) − r) + κs(r)

= (κ1D
t ∗R κ1D

s )(d(g, e))

The third equality follows from the fact that κt and κs are monotonically increasing and the fact that for any
h ∈ G there is an element h̃ ∈ γmin

e,g such that d(g, h̃) ≤ d(g, h) and d(e, h̃) ≤ d(e, h). The fourth equality holds
since h ∈ γmin

e,g implies d(g, e) = d(g, h) + d(h, e).
Now for the final equality we must motivate that the constraint 0 ≤ r ≤ dG(g, e) is a redundant one. To this

end we define

G(r) := κt(d− r) + κs(r) = tL1D ((d− r)/t) + sL1D(r/s)

implies
G′(r) = 0 ⇐⇒ L1D ′((d− r)/t)) = L1D ′(r/s)
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Now we have that L1D is convex on R. But then L1D monotonically increasing. But then it is injective and
hence we have

G′(r) = 0 ⇐⇒ d− r

t
= r

s
⇐⇒ r = d

t
s + 1

.

Therefore, as t, s ∈ R+, we get that G(r) attains the global minimum for 0 ≤ r ≤ d.
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