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ABSTRACT

The design of a machine learning system is a comprehensive task and requires in-depth knowledge
of models and understanding of the task at hand. Automated machine learning (AutoML) aims to
automate this design process by objectively searching for the optimal pipeline. However, the search
space of possible pipelines is infinite, and finding a well performing pipeline for every new dataset
is very costly. To overcome this issue, the optimization procedure can be warm-started by using
information of previous runs. The most prominent warm-starting technique to date uses pipeline
portfolios for this task. This research focuses on dynamic portfolios, combined with clustering.
Dynamic portfolio methodologies exploit meta-learning to provide a portfolio that is supposed
to perform well on a given dataset. Previous dynamic portfolio approaches propose a portfolio
by learning a relation between meta-features and the suggested portfolio. However, variations in
these methods could lead to poor performing portfolios. The goal of this study is to improve upon
these methods by proposing portfolios with a high intragroup performance across similar datasets.
Additionally, this research aims to exploit these portfolios in an AutoML system by warm-starting
the optimization procedure by first evaluating the pipelines present in the proposed portfolio. We will
show that we can improve performance and converge to optimal pipelines considerably faster.



1 Introduction

The large increase of machine learning practitioners, both in industry and in academia, has led to a growing demand for
systems that can support developers in creating machine learning applications. These systems exist in many forms, such
as software packages, but also in low coding tools which are popular in industry, for example Rapid Miner [33] and
KNIME [6]. However, these systems require developers to manually configure hyper-parameters, a task dependent on
expert knowledge, which limits accessibility of optimally tuned models to only a small group of people. In addition,
machine learning systems encompass not only model development challenges, but also involve pre-processing, data
transformations and the composition of these into a pipeline. Automated machine learning (AutoML) aims to automate
the decision process of finding the optimal composition and hyper-parameter configuration of these pipelines.

Conventional AutoML systems initiate the search for optimal pipelines anew for each dataset. AutoML systems are
typically subject to a set of constraints, such as time and resource restrictions. Therefore, only a subset of possible
pipelines can be evaluated within these boundaries. The challenge lies in carefully selecting pipelines for evaluation,
particularly when confronted with novel datasets. Identifying high-performing pipelines for a new dataset remains
uncertain and may involve prolonged search times, potentially hindering conventional optimization techniques.

These limitations highlight the necessity of enhancing AutoML search procedures. Commencing an AutoML system
with a pre-established collection of high performing pipelines, known as warm-starting, holds the potential to reduce
the time needed to convergence to the optimal pipeline. Such a collection, referred to as a portfolio, can significantly
reduce the time required for the search. However, identifying suitable pipelines for a specific dataset is challenging due
to the substantial dissimilarity between datasets. This study introduces a methodology that recommends a portfolio
tailored to a given dataset, with the composition of the suggested portfolio being guided by distinct dataset attributes.

Portfolio construction can be approached by executing numerous pipelines with diverse configurations on representative
datasets, subsequently selecting the top-performing pipelines using a greedy approach. Research into portfolios within
the AutoML context is split into static and dynamic portfolios. Static portfolios remain invariant across datasets,
while dynamic portfolios adapt their composition to the specific dataset at hand. A popular method for representing
dataset characteristics involves using meta-features, which encapsulate properties and relationships among the dataset’s
features.

This study centers around meta-learning oriented portfolios, which are further enhanced through the incorporation
of groups. In this context, the formation of groups involves partitioning a collection of datasets within a training
set using a clustering methodology. The argument for adopting clustering arises from the notion that establishing a
direct relationship between meta-features and the portfolio could be susceptible to inaccuracies. Such inaccuracies, if
present, have the potential to yield underperforming portfolios. By initially organizing the meta-features into groups to
determine the optimal portfolio based on the intragroup performance of pipelines, the objective is to mitigate the impact
of this variability. Consequently, the aim is to construct more resilient portfolios that can effectively initialize AutoML
systems.

The application of portfolio-based warm-starting is a rather undiscovered research field. While previous approaches
focused on static portfolios or error-sensitive meta-learning methods, this research proposed a novel meta-learning
approach that leverages dataset clustering to construct portfolios tailored to each partition. The objective is to balance
performance variations among pipelines across individual datasets by creating portfolios that include pipelines achieving
high performance across all datasets within a single partition.

The outline of this paper is as follows. Chapter 2 covers our problem statement and states the ultimate goal of this
study. Chapter 3 covers the literature study, focusing on the algorithm selection problem, it’s evolution to the combined
selection and hyper-parameter optimization problem, and clustering algorithms in the context of our study. Following,
Chapter 4 thoroughly describes our methodology, including how we the approach can be used for inference. In Chapter
5, the experimental setup and details regarding the data is discussed. Finally, Chapter 6 covers the results of these
experiments, followed by a discussion in Chapter 7 and a conclusion in Chapter 8.

2 Problem Statement

As mentioned in the previous chapter, the application of pipeline portfolios to enhance the effectiveness of the AutoML
search process is a rather unexplored field of research. Nevertheless, research by Feurer et al. [19][18] shows very
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promising results in this direction. Feurer et al.’s initial strategy involved employing solely the top-performing pipeline
from the closest datasets as the basis for portfolio construction. In their subsequent approach, they adopted a fixed
portfolio strategy that depended on evaluating all datasets in a training set to determine pipeline effectiveness. In
contrast, our proposed approach seeks to achieve a middle ground between these two methodologies. It entails grouping
similar datasets into clusters, enabling us to establish generalizations within each cluster, while concurrently tailoring
distinct portfolios to suit to the diverse dataset categories.

In Chapter 1, we briefly introduced the objective of automated machine learning, which is to search for the optimal
pipeline configuration. The underlying challenge addressed by AutoML is commonly known as the Combined Algorithm
and Hyper-Parameter Selection (CASH) problem [42]. More formally, we are interested in finding the optimal pipeline
M∗

λ, hyperparameterized by λ ∈ Λ. We will base our notation for the CASH problem on the paper by Feurer et al [18],
and directly use their formula for empirically approximating the generalization error.

ĜE(Mλ, D) =
1

n

n∑
i=1

L(Mλ(xi), yi) (1)

In practice, the focus is on two disjoint sets, a training and a test set Dtrain and Dtest. AutoML systems use the
training set to automatically search for the best performing pipeline, while Dtest serves to evaluate the generalization
performance of the selected pipeline. As such, AutoML systems search for the optimal pipelineM∗

λ as follows:

M∗
λ = argmin

λ∈Λ
ĜE(Mλ, Dtrain) (2)

The remainder of this section is structured as follows, Section 2.1 extends Equation 2 to cover resource constraints.
Next, we will generalize the AutoML problem towards an AutoML system that works well on any given dataset in some
training set in Section 2.2. Finally, Section 2.3 extends the AutoML problem to include partitioning of the dataset space.

2.1 Resource Constrained AutoML

Equation 2 does not yet include any constraints, limiting its usability to theoretical use cases only. In a typical practical
situation, AutoML systems operate under resource constraints such as time, computing power and RAM. We denote the
time it takes to evaluate a pipeline by tλ and the total time budget by T . The approach in this study also incorporates the
calculation of meta-features prior to the search procedure. The time for the calculation of a collection of meta-features
is defined as tϕ. The total remaining time budget then changes to T − tϕ. We will denote this remaining time budget by
Tϕ. Then, we can use Equation 2 to define our constrained minimization problem.

M∗
λ = argmin

λ∈Λ
ĜE(Mλ, D),

s.t.
∑

tλ < Tϕ.
(3)

In practice, the actual time available to the AutoML system is slightly smaller than Tϕ, as some time is reserved for
post-processing of the evaluated pipelines. However, this time is negligible with respect to Tϕ, so we omit this here.

2.2 Generalization of AutoML systems

As explained earlier, AutoML systems start anew for every dataset. The approach in this study proposes a similarity-
based meta learning approach using portfolios, which is used to warm-start an AutoML system. We are interested in
finding an approach that works for any dataset. To this end, we define the collection of all datasets as D, where each
D ∈ D is a dataset consisting of n input-output pairs (xi, yi), where 1 ≤ i ≤ n. Ideally, we want to have an AutoML
system S that works well in general on any D ∈ D. An AutoML system is defined as:

S : D 7→ Mλ, D ∈ D. (4)
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WhereMλ is the solution to Equation 3. For this research, the access to datasets is limited. In Section 5.1, we will
have a more in depth discussion about the datasets used in this research. For now, we assume that the collection of
datasets that is used for this research is a representative sample of all possible datasets. We define this collection as D
with D ⊂ D.

To evaluate the approach taken in this study, it is important to have a separate set of datasets Dtest, with Dtest ⊂ D,
to benchmark whether the approach generalizes to unseen datasets. To this end, we can separate D into a training set
Dtrain and a test set Dtest, where Dtrain ∩ Dtest = ∅.

Now, we are able to formalize the minimization of the AutoML objective to a general setting for all datasets in our
training set1:

ĜEDtrain
(S) =

1

|Dtrain|
∑

Dt∈Dtrain

ĜE(S(Dt), Dt). (5)

2.3 Partition-based Generalization

Equation 5 shows a generic formula for the generalization of the AutoML problem. For the scope of this study, we are
interested in rewriting this equation and to make it more specific, such that it holds for a subset of the available datasets.
In mathematical terms, we want to find a partition K of Dtrain, where K contains a finite set of subsets of Dtrain. Each
element of K is denoted by K with |K| > 1, else the partition is trivial. Additionally, we have the following properties:

∀i ̸= j : Ki ∩Kj = ∅

|K|⋃
i=1

Ki = Dtrain.

The goal of partitioning the space of available datasets D, is to decrease the generalization error with reference to
Equation 5. We have shortly touched upon the intuition behind this in the Chapter 1. Constructing a portfolio based
on only its nearest dataset(s) and its best performing pipelines seems sensitive to error. First partitioning the dataset
space and determining well performing pipelines for each partition aims to average out this variation. In the context of
AutoML, we want to define S for a specific K. We will denote this by SK : Dk 7→ Mλ, Dk ∈ K. Details on SK will
be provided in the next chapter. Using our definition for SK and S, we can write the goal of this research as:

ĜE(SK(D), D) ≤ ĜE(S(D), D), D ∈ D. (6)

Important to note is that the assignment of K is not made explicit here. In chapter 4, we will have a more thorough
discussion about the assignment of K from D and the construction of portfolios from K. Furthermore, the utilization
of Equation 6 will enable us to further formalize the specific methodologies necessary to achieve this objective. This
research will focus on empirically showing the validity of Equation 6 by evaluating all D ∈ Dtest.

3 Related Work

This chapter starts with an introduction of the model selection problem, followed by its evolution to the Combined
Algorithm and Hyper-Parameter Selection (CASH) problem. Subsequently, we discuss different approaches to the
CASH problem, including methods within AutoML to effectively cope with this problem. Finally, the last section
discusses popular clustering algorithms that are interesting in the scope of this study.

1Note that the formal setting on D is omitted.
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3.1 Combined Selection and Hyper-Parameter Optimization

3.1.1 Model Selection

Selecting the best machine learning algorithm for a specific task and dataset is a problem that has been studied for
several decades. We define the model selection problem as follows.

Let H be a set of candidate models, where each hθ ∈ H is a function from a set of possible input data X to
a set of possible output values Y . We can thus view hθ ∈ H as a model, parameterized by a set of hyper-parameters θ,
where θ ∈ Θ. Let D be a dataset consisting of n input-output pairs (xi, yi) ∈ X × Y , where 1 ≤ i ≤ n. The goal of
model selection is to select a model h∗

θ ∈ H that best fits the data D in the sense that the model achieves the lowest
generalization error on the dataset D.

Early approaches tackle the model selection problem by predicting beforehand what the performance of a
machine learning algorithm will be [5]. One way is to focus on the runtime of models, which is especially relevant
for larger datasets. In order to evaluate multiple models on larger datasets in a reasonable time, information about
the runtime of the model is of crucial importance. Doan et al. [13] present such a method, where meta learning is
used to fit a spline-based regression model to predict the runtime of machine learning algorithms. Similarly, Reif et al.
[38] use a simple regression model to fit a model for predicting the runtime of a series of classifiers. Their work also
includes a parameter optimization search procedure, where the optimal configuration of hyper-parameters is given per
classifier with a low runtime as objective. Additionally, Reif et al. [39] propose a meta-learning method to optimize the
parameters of a given classifier by providing starting points for an evolutionary algorithm. Finding good configurations
of hyper-parameters is also an active research field, and will be elaborated on later in this chapter.

3.1.2 Model Selection with Ensembles

The papers mentioned until now focus solely on the effectiveness of a single machine learning model. An alternative
approach to the model selection problem is to construct ensembles of models to increase the efficacy of the predictive
model. Caruana et al. [9] successfully implemented an ensemble constructed on a large library of models with different
configurations using forward step-wise selection. Later work focuses on improving the selection procedure by pruning
the number of available models for the ensemble selection, as well as scaling the model predictions on a canonical scale
[8].

3.1.3 Pipeline Selection

Although the selection of algorithms is widely researched, these approaches merely focus on the model itself. It remains
to pre-process and/or transform the data accordingly for the selected model. The approaches discussed so far only focus
on the model and leave the remaining steps to the developer. Selecting the right combination of pre-processors and
data transformers without automation is a tedious task and requires in-depth knowledge of the problem at hand and
experience from the developer. Automated machine learning aims to include all these steps in the selection procedure
with the end goal of optimizing the performance of the entire pipeline. As such, the problem shifts from model
selection to the Combined Algorithm and Hyper-Parameter Selection(CASH) problem [42]. With the introduction
of pre-processors and data transformers, the amount of possible combinations, including all the configurations of
hyper-parameters, increases tremendously. As such, the need arises for tailored techniques that can effectively navigate
this large search space.

Escalante et al. [15] attempt to solve the CASH problem by finding the optimal composition of pre-processors, feature
selectors and classification models using particle swarm optimization [27]. Bürger et al. [7] provide a similar approach,
but use evolutionary optimization to find optimal pipelines. Later work by Escalante et al. [14] adds ensembles to their
previously discussed paper. While searching for the optimal pipeline, well performing compositions are stored and
used to construct intermediate pipeline ensembles. Sun et al. [41] also propose a framework for finding the optimal
pipeline by using particle swarm optimization. Rather than outputting a static pipeline, their approach outputs a DAG
with multiple well performing operators that are found to be capable to solve the classification problem.

5



3.1.4 AutoML Frameworks

With the increasing popularity of the AutoML research community in the past decade, a range of practical AutoML
frameworks were created and most frameworks are made available to the public to use. The first AutoML framework
is Auto-WEKA [42]. Their approach uses bayesian optimization to select a suitable pipeline for the dataset at hand.
The framework selects pipeline components from the WEKA library [25]. Olson et al. proposed TPOT [34], where
pipelines are constructed using genetic programming (GP) trees, with each component of the tree being a GP primitive.
For their pipeline optimization, 100 trees are generated, where the best performing 20 trees are selected and copied 5
times. Following, the trees mutate and this procedure is repeated until termination of the system. Later work on TPOT
includes the use of successive halving to increase the feasibility of the tool for larger datasets [35]. Another tool is
developed by Ledell et al. [28], and is named H2O AutoML. Their work is based on the H2O framework, which is a
scalable machine learning framework designed to handle large datasets. H2O AutoML uses a combination of random
search and stacked ensembles, as opposed to bayesian optimization and evolutionary algorithms, which are generally a
more popular choice for the search procedure within the AutoML research community.

Feurer et al. [19] propose the Auto-Sklearn framework. Their approach uses pipeline components from the sklearn
library and uses bayesian optimization to find the optimal pipeline. Additionally, they use a meta-learning approach to
warm-start the optimization. In the next section, where portfolios are discussed, a more in depth description of this
approach will be given. Moreover, Auto-Sklearn 2.0 will be discussed [18], which is related to the approach proposed
in this research.

The final AutoML framework that is discussed in this section is GAMA, developed by Gijsbers et al. [22]. The
overarching goal of this framework is to make it as accessible as possible for AutoML researchers to change certain
parts of the system. GAMA distinguishes itself from the previously discussed frameworks by its modularity and
extensibility. More specifically, the framework consists of components (e.g. search algorithm module), where each
component can easily be replaced. GAMA is most related to auto-sklearn and TPOT, whereas GAMA uses pipeline
components from the sklearn library while searching for the optimal pipeline. Additionally, GAMA uses genetic
programming, which, as discussed earlier, is also used in the TPOT framework.

AutoML systems typically operate under certain constraints, such as time and memory. The previously discussed
tools offer the possibility to select well-performing pipelines, but start searching from scratch for every new dataset.
Especially for larger datasets, or harder datasets, the AutoML system may fail to select a well-performing pipeline
within the boundaries of these constraints. Consequently, this highlights the necessity to enhance the search procedure’s
efficiency [24], as discussed in the subsequent section.

3.2 Automating the Selection of Starting Pipelines

In this section, we will first shortly discuss the origin of portfolios, followed by a discussion of static and dynamic
defaults. Finally, research in the field of static and dynamic portfolios in the context of AutoML is discussed.

A portfolio is a set of high-performing and complementary machine learning pipelines that perform well on a set of
datasets. Here, the set of datasets should be sufficiently large and representative. More specifically, the set of datasets
should be a representative set of all datasets such that we can assume the portfolio works well on any dataset. In Chapter
4, a more formal notion of portfolios will be provided.

Portfolio approaches have been used before in the context of search problems. An early approach by Gomes et al. [23]
uses portfolios as a solution to hard combinatorial problems. They mentioned that the runtime of different algorithms
can vary drastically, and using all computational resources on one algorithm is inefficient. As an alternative, they use
algorithm portfolios to allocate resources to different algorithms.

3.2.1 Defaults

In software packages, there is typically a default configuration of hyper-parameters when using a machine learning
model. The default configuration of hyper-parameters is tuned by the developers of these packages such that the
model is expected to perform well on most datasets. Several approaches to determine one or more alternative default
configurations have been reported in literature. Mantovani et al. [31] proposed a method to find a set of default
configurations for SVMs. However, to extend this method to AutoML, a more sophisticated set of defaults is required,
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as we are interested in finding the best possible configuration of pre-processors, data transformers and models, as
opposed to only the configuration of model parameters. In AutoML systems, the set of possible components is usually
almost the entire library of pre-processors, data transformers and machine learning models in a package like sklearn
[36] or WEKA [25].

An approach to find a more general set of default configurations is proposed by Pfisterer et al. [37]. Rather than using
the given defaults from a software package, they perform a parallel search on a small set of well performing default
hyper-parameter configurations, which are learned by considering a larger set of configurations on a collection of
datasets. As opposed to the previously discussed method by Mantovani et al., this approach considers a wide range of
machine learning models.

The paper by Pfisterer et al. uses a static approach, whereas the hyper-parameter configurations are pre-learned and
the collection of hyper-parameter is the same for every dataset. Contrary to this static configuration, Gijsbers et
al. [21] propose a dynamic approach to the problem of finding optimal hyper-parameters. In their research, they
learned symbolic configurations as formulas of dataset properties, or meta-features. As such, for every new dataset, the
meta-features map to the corresponding optimal hyper-parameter configuration according to their approach.

3.2.2 Portfolios

In Section 3.1, Auto-Sklearn was shortly introduced. Both the first approach of Auto-Sklearn and Auto-Sklearn 2.0, are
important in the context of this study, as the approaches closely relate to the methodology discussed in our research.
The first version of Auto-Sklearn is proposed by Feurer et al. [19]. In this study, they introduce the Auto-Sklearn
framework, including a meta-learning approach to warm-start the optimization algorithm. Starting from a collection
of datasets, the same set of pipelines is evaluated on every dataset and the best performing pipeline is stored on a per
dataset basis. Additionally, meta-features are calculated for each of these datasets. This results in a meta-feature space
where we have a collection of vectors for each dataset with its corresponding meta-features. Then, for a new dataset,
the meta-features are calculated and mapped to the same vector space. Finally, the closest 25 datasets according to
a particular distance metric are determined and the best performing pipeline per dataset is extracted and stored in a
portfolio. This portfolio is then used to warm-start the optimization algorithm of the system.

The next version of the system is also introduced by Feurer et al. [18]. Opposed to the previous version of Auto-Sklearn,
this version uses a static approach to construct the portfolio that is used for warm-starting the optimization algorithm.
From a collection of datasets, they ran the first implementation of Auto-Sklearn on all of these datasets and added the
best performing pipeline per dataset to a set of candidate pipelines. Next, the set of candidate pipelines is evaluated on
all datasets. The result is a performance matrix, where every row is a dataset and every column is a pipeline from the set
of candidate pipelines. Then, a portfolio is determined using a greedy approach, where the best performing P pipelines
across all datasets are saved. Here, P is the portfolio size. The most notable difference between the first and the second
version of Auto-Sklearn is that the first approach does take the dataset characteristics into account, and the second one
follows a static approach while constructing the portfolio. Most of their motivation for using a static approach comes
from the additional time complexity that computing meta-features adds to the optimization objective.

3.3 Clustering

In the previous section, the use case of clustering meta-features was discussed. To the best of our knowledge, the
specific use case of applying clustering on meta-features has not been reported in literature. Nevertheless, we can
consider the task of clustering meta-features as a regular clustering task. As clustering is a widely studied field, and
many approaches to the clustering problem have been reported in literature, we will only discuss the most prominent
clustering directions in research and discuss their use case in the context of this study.

K-means is a popular clustering algorithm, and is part of the centroid-based clustering sub-field. [30]. Improvements to
K-means include better initial centroid placement [4] and kernelizing the objective function to allow for identification
of non-linearly separable data [12]. Another clustering research area is density-based clustering. Popular algorithms
in this area are DBSCAN [16] and OPTICS [3]. A favorable property of density-based clustering in the scope of our
study is that outliers or noisy data points do not belong to a cluster. As such, separate portfolios can be learned for
this outlier group. Furthermore, distribution-based clustering [11] involves defining clusters as statistical distributions.
Nonetheless, when dealing with higher dimensional data, the task of estimating distribution parameters becomes
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increasingly challenging, leading to limitations in the effectiveness of these approaches. Lastly, hierarchical clustering
employs iterative bottom-up or top-down strategies to gradually form or disband clusters [40][10]. However, hierarchical
clustering techniques often yield suboptimal performance when faced with datasets containing outliers, as these data
points are frequently treated as distinct clusters.

Using the right clustering algorithm for the task at hand cannot be determined beforehand. As such, the best clustering
algorithm has to be decided by experimenting [17] and determining the required clustering algorithm properties for the
problem at hand. We will further elaborate on the requirements in the next chapter.

In summary, model selection and the CASH problem have been extensively studied. Various methods address default
configurations using static and meta learning techniques. The CASH problem has driven the development of AutoML
tools for selecting optimal pipeline configurations. Efficiently exploring this space is challenging. Leading techniques
employ portfolios to enhance search optimization and achieve state-of-the-art outcomes. Notably, there’s a gap in
literature regarding a clustering approach within meta learning and portfolios. This research aims to augment portfolio
research within the AutoML domain by introducing an approach that leverages an efficient meta-learning method,
resilient to resource constraints.

4 Portfolios with Similarity-based Meta-Learning

Chapter 2 formalized the high level objective of this research (Equation 6). In this section, we will introduce the
methodology of this research. We start with an overview of the different steps of the approach in Section 4.1. Following,
we will discuss the different components of the approach in more depth, including the interconnection between them.

4.1 Compositional Approach to Portfolios

The methodology in this research can be described as a sequential process. The process is depicted in Figure 1. Starting
from a set of datasets, we calculate a set of meta-features. For every dataset, we store the meta-features in a vector ϕ.
In practise, two different datasets will never have the same meta-feature vector. As such, this results in a collection
of |Dtrain| vectors, which we will refer to as Dmeta. The next step is to partition Dmeta into Kmeta according to a
specified similarity measure, using certain clustering algorithms. We will further formalize this similarity measure
and the selected clustering algorithms in this chapter. Finally, we want to construct a set of candidate pipelines C and
evaluate its performance on each dataset in Dtrain. Note that the space of datasets is partitioned in Ktrain according to
the similarity of meta-features. After evaluating C on Dtrain, we can directly infer the performance of C on K, with
K ∈ Ktrain. As the per partition performance is known, we can construct our portfolio P , by simply selecting the top
performing |P| pipelines that perform best on K ∈ Ktrain according to a pre-defined evaluation metric. |P| is the size
of the portfolio, which can be interpreted as a hyper-parameter and thus configured and optimized.

Set of datasets Calculate
meta-features

Define partition Portfolio per cluster

Figure 1: Portfolio Construction Process

4.2 Similarity-based Partitioning

We have touched upon the calculation of meta-features earlier. Here, we introduce a more formal notion of this
calculation. To this end, we first define the goal of calculating meta-features. The goal of calculating meta-features is to
construct a vector ϕ, where ϕ is a representation of a dataset D. We can write this calculation as a mapping F : D 7→ ϕ.

In Section 2.3, it was shortly mentioned that we want to warm-start an AutoML system S for a specific par-
tition K, such that Equation 6 holds. The first step in this process, is to find a finite partition of Dtrain. This study
partitions Dtrain using meta-features. We start by calculating the meta-features on all datasets in Dtrain. This
procedure is shown in Algorithm 1.
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Algorithm 1 Construction of Meta Dataset
Input: Dtrain, collection of datasets
Output: Dmeta, meta dataset
Initialize Dmeta

for D ∈ Dtrain do
ϕ← F(D)

add ϕ to Dmeta

return Dmeta

Every element of Dmeta is a representation of a dataset D ∈ Dtrain. As meta-features represent a dataset by its
characteristics, similar datasets are represented in a similar manner. Consequently, we are interested in partitioning
Dtrain using this similarity.

In Chapter 3.3, we explored popular clustering algorithms. For this study, we opted for centroid-based and density-based
clustering. We’ll start by explaining centroid-based clustering in our context, followed by density-based clustering.

In centroid-based clustering, centroids are used to represent clusters. A centroid is typically defined as a representative
point within a cluster that minimizes the distance to other data points within the same cluster. For this study, we use
K-means as centroid-based clustering algorithm. It partitions a dataset into K clusters by iteratively assigning data
points to the nearest centroid and updating the centroid positions based on the newly assigned points [30]. For K-means
to work well and converge to the optimal solution, it requires the data to be convex and isotropic, which might not hold
for all datasets in Dmeta. To address these limitations, we normalize Dmeta to improve its uniformity and employ the
kernelized K-means objective [12] to allow for the formation of non-convex clusters. Then, we define our partition as
K, where |K| is a parameter reflecting the number of centroids.

The alternative to centroid-based clustering that we will consider in this study is density-based clustering. Instead of
relying on explicit centroid computations or distance measurements, density-based clustering methods focus on the
local density of data points. The key idea is to identify regions of high data concentration, referred to as dense regions,
and separate them from regions with lower density, which we consider noise or outliers. This is favourable for our study,
as we can learn a separate portfolio for the low density group.

In this study, we will use OPTICS [3] as our density-based clustering algorithm. OPTICS extends the concept of
density-based clustering by introducing the notion of reachability distance. It constructs an ordering of data points
based on their reachability distances, allowing for the detection of clusters at multiple scales.

Using OPTICS, we can define our partition as K, where |K| is determined based on the amount of dense regions
contained in Dmeta. When using OPTICS, we have K1 ∈ K containing the noise or outliers of Dmeta. Here,

∀i ∈ {2, .., |Kmeta|} : K1 ∩Ki = ∅

Note that for the sake of this study, we restrict |Kmeta| to |Kmeta| > 1, otherwise the partition and Equation 6 are
trivial.

Independent of the chosen clustering algorithm, we can write the mapping of ϕ to an element of Kmeta as Q, where Q
is defined as Q : ϕ 7→ K.

4.3 Portfolio Construction

After partitioning Dmeta into Kmeta, we need one additional step to be able to construct our portfolios. A portfolio is a
set of pipelines, where each pipeline is denoted byMλ. Portfolios are constructed by considering a set of candidate
pipelines C, and selecting the best performing n pipelines evaluated on a set of datasets. Self-evidently, best performing
pipelines is directly related to a pre-defined evaluation metric. In this study, we will use a greedy approach, where the
selection of the top n best performing pipelines is determined based on the evaluation metric. Note that complementarity
of the portfolios is not enforced by the greedy selection, but depends on the diversity of the pipelines contained in C.
C is constructed by running GAMA without warm-starting on a sample of datasets from the training set(repeated for
every task). Then, the top five highest performing pipelines per dataset are selected and added to C. Algorithm 2 shows
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the construction of a portfolio in pseudo code. For convenience of notation, we will define an arbitrary2 scorer function
for the performance of a pipeline c on a dataset d as:

score : D × C 7→ R

Algorithm 2 Portfolio Building
Input: Set of candidate pipelines C, a set of datasets D, portfolio size p. |C| ≥ p
Output: Portfolio of size p
Initialize P = ∅
while |P| < p do

cBest = argminc∈C(
1

|D|
∑

d∈D score(d, c))

P = P ∪ {cBest}
C = C \ {cBest}

end while
return P

This greedy approach is only dependent on a performance matrix. We will define a performance matrix as a matrix with
dimensions |Dtrain|x|C|, where each element of the performance matrix is the outcome of our score function. The
domain of the performance matrix depends on the prediction task.

As mentioned earlier, this study focuses on three prediction tasks, binary classification, multi-class classification and
regression. For binary classification we use the area under the Receiver Operating Characteristic curve (ROC AUC)
[32]. The main reason for choosing the ROC AUC, is that the metric is robust against class imbalance. As we evaluate
models on a wide range of datasets, we need a versatile, robust evaluation metric that is eligible and representative on
different types of datasets. The domain of the ROC AUC is [0, 1], with 1 being a perfect classifier.

Multi-class classification problems also require a versatile evaluation metric, as we have both the problem of class
imbalance, as well as needing an evaluation metric suited for different amount of classes. As such, we choose to use the
Log Loss. This metric internally works based on probability estimates, where a probability is calculated for every class.
The domain of the Log Loss is [0,∞), where lower is better (0 is a perfect classifier).

Finally, we have regression as a prediction task. As we have datasets with a continuous predictor on a scale specific to
that dataset, we require an evaluation metric that accommodates the scale of continuous predictors and avoids overfitting
to outliers. As such, the Root Mean Squared Error (RMSE) is chosen as an evaluation metric due to its ability to
generalize well and provide a suitable scale for the continuous predictor. The domain of the RMSE is [0,∞), with
lower values better performance (0 is a perfect regressor).

In the previous section, we have shown how to partition Dmeta into Kmeta. After constructing a performance matrix of
|Dtrain|x|C| for a given task, we can apply the same partitioning of Dtrain into Ktrain to partition the performance
matrix. To achieve this, the rows of Dmeta are indexed by a dataset ID, which can be used to directly map a vector with
meta-features to its corresponding dataset ID in the performance matrix. In Table 1 and Table 2, an example is shown,
where the datasets with ID 2 and 5 are partitioned together based on their meta-features. Consequently, this partition
is directly transferable to the performance matrix. As such, we can select only the items in the performance matrix
that have the same ID as the items in the partition. Repeating this process for all elements in Ktrain results in |Ktrain|
performance matrices. Then, for K ∈ Ktrain, we can greedily construct portfolios and retrieve a per partition portfolio
as result. We will further refer to these per partition portfolios as PK . Note that if we consider two portfolios PK1

and
PK2

, K1,K2 ∈ Ktrain, the two are not enforced to contain only different pipelines. More specifically, this means that
PK1

∩ PK2
̸= ∅ is allowed.

4.4 Inference

This chapter has focused on explaining the methodology of the construction and training of portfolios using meta
learning. For every D ∈ Dtrain, the meta-features are calculated and C is evaluated. Due to the usage of a dataset ID,

2We have three tasks with different scorers, and thus different domains. This will be elaborated on later in this section.
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Dataset ID Size ... No. of Features
2 300 ... 10
5 320 ... 11
... ... ... ...

100 40000 ... 100
Table 1: Dataset Information

Dataset ID Pipeline 1 ... Pipeline |C|
2 0.74 ... 0.93
5 0.92 ... 0.78
... ... ... ...

100 0.94 ... 0.97
Table 2: Pipeline Performance

we can use this ID as a primary key and directly create a relation between Dmeta and the performance matrix. Then, we
can greedily construct portfolios by selecting the top n best performing pipelines per partition.

This compositional approach can be viewed as a standard machine learning training procedure, where the portfolios
have been constructed from a training set of datasets. Next, we will explain how this approach can be used on a novel
dataset Dnew, where Dnew /∈ Dtrain. We assumed that D is a representative sample of D, as the dataset repository
used in this study provides both a great variety and a vast amount of datasets [43]. As a result, we would expect that our
approach still works on Dnew.

To test the approach proposed in this study, the following phases have to be executed. First, we calculate the meta-
features ϕ ← F(D). Then, using the function Q, we can determine cluster K via the assignment of K ← Q(ϕ).
Finally, we can return portfolio PK . This portfolio can then be used to warm-start an AutoML system, which is the
main purpose of portfolios in this research. The process is depicted in Figure 2.

Calculate
ϕ ← F(D)

Decide partition
K ← Q(ϕ)

Assign Portfolio
PK ← K

Warm-start SK(D)

Figure 2: Portfolio Inference and Warm-Starting

In this research, we provide our portfolios as starting candidates to an asynchronous evolutionary algorithm. Without
warm-starting, the algorithm initializes from random pipelines. We expect that warm-starting with a portfolio containing
pipelines specific to a partition K results in both faster convergence and better performance.

Note that this is not the only use case of these portfolios, as the portfolios can also be solely evaluated as potential
high performing candidates for a machine learning task at hand. In this case, we select the best performing pipeline by
slightly modifying Equation 2. Rather than searching for the optimal λ ∈ Λ, we are instead interested in finding the
optimal pipeline in a portfolio P:

MP
λ = argmin

Mλ∈P
ĜE(Mλ, D) (7)

5 Experimental Design

The previous chapter focused on a thorough background discussion of the methodology of this study. The focal
point was more towards the theoretical boundaries and capabilities of the approach. In practise, there are a lot of
choices regarding the implementation that need to be carefully chosen and studied. The first choice is to decide on
the application scope of the supervised machine learning problems. This study will limit its scope to three supervised
learning categories: binary classification, multi-class classification and regression algorithms. As mentioned earlier, the
implementation is built as an extension of the GAMA AutoML system, which is an AutoML tool built in Python with a
focus on modularity and extendability. GAMA currently supports two search algorithms, asynchronous successive
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halving [29] and asynchronous evolutionary optimization. We will focus solely on the evolutionary algorithm in our
experiments.

All of the experiments are executed on a high performance cluster. In this cluster, we have access to 32 CPU cores
and 32 GB RAM. Furthermore, all of the pipelines are evaluated with a 15 minute timeout, after which we forcefully
terminate the evaluation procedure. Note that we choose 15 minutes for the experiments outside of the scope of AutoML,
and for the construction of the performance matrix. When running experiments for AutoML, we set the timeout time to
6 minutes, which is exactly 1/10 of 60 minutes, being the maximum time we set for the AutoML experiments.

Ideally, we would want to set a timeout of up to 60 minutes for pipeline evaluation outside of the AutoML scope, but
since we had to evaluate a large amount of pipelines, it was necessary to reduce this time to remain within the budget
constraints of this research. However, if we study the impact of timing out pipelines after 15 minutes, we find that this
timeout has little impact, if not found to be beneficial for our portfolios. Nearly all of the pipelines that often timed out,
were not found to have a higher performance, meaning that we have no use of these pipelines outside of the context of
AutoML. Additionally, within AutoML systems, we ideally want to construct a stable portfolio. This means that on
average, the pipelines in the portfolio should perform well and finish without any kind of error (including timeout).

This chapter starts with a summary of the selected datasets in this study (Section 5.1). Next, Section 5.2 discusses the
meta-features that are chosen. Finally, Section 5.3 provides a detailed overview of the experiments that were conducted.

5.1 Dataset Selection

This section clarifies the attempt of selecting datasets to construct D from D. The method’s applicability spans across
three domains, necessitating the inclusion of datasets that contain binary classification targets, multi-class classification
targets, and regression targets.

A substantial collection of datasets is available in the OpenML repository [43], which is an open source platform for
sharing datasets, algorithms and experiments. A set of logical rules was applied on simple dataset characteristics to
avoid including datasets that are either too small, or too large. The reason for excluding these is to avoid technical
issues like excessive memory usage or simply taking too long for large datasets. Similarly, for small datasets we ran
into issues with cross validation, not being able to represent every class in every fold. The selection rules are shown in
Table 3 and Table 4.

Name of Feature Logical Expression
Number of instances > 250 AND < 500.000
Number of features > 2 AND < 2.500
Number of classes > 1
Size3 < 10.000.000

Table 3: Classification Selection Rules

Name of Feature Logical Expression
Number of instances > 20 AND < 500.000
Number of features > 2 AND < 2.500
Number of classes < 1
Size4 > 2000 AND < 10.000.000

Table 4: Regression Selection Rules

Before continuing our discussion on the dataset selection process, it is important to state the data that compromises
Dtest. For this, the datasets from the AutoML benchmark are used [20]. These datasets are also available in the
OpenML repository. In the available datasets, there are several datasets that are exact copies, or derivatives of the
AutoML benchmark datasets. To prevent information leakage to the test set, we removed these datasets from our
training set.

Additionally, there are also datasets in our training set that are exact copies, later versions or derivatives of each other. To
prevent creating clusters of datasets that strongly reflect these similarities, we remove these from our set of datasets as

4The size is a dummy variable calculated by multiplying the number of instances by the number of features.
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well. Some other datasets have been removed for dataset specific reasons, for example because they contain unstructured
data like tweets. We will not fully cover these specifics in full detail in this section. For all the details, we refer to the
codebase, which can be found in our repository5. For the test sets, we provide a detailed overview in Appendix B.

5.2 meta-feature Selection

The methodology of this study is designed for three supervised learning problems. Each of these learning fields have its
own specifics in terms of dataset properties. We want to capture these properties as accurately as possible for each of
the three learning fields. The meta-features include statistical-, information theoretical-, and landmarking features. For
this, we selected a subset of meta-features based on the groups as defined in PyMFE [2].

We want to distinguish the way meta-features are calculated for the different learning fields. Most of the statistical
meta-features include aggregations of column statistics, for example the maximum or minimum of a numerical column.
Information theoretical meta-features capture between column relations. However, information theoretical meta-features
also capture relations between columns and the target feature. This raises the issue that for classification and regression,
we have different types of targets (discrete and continuous), meaning that we require different meta-features for these
targets.

As PyMFE currently does not support the following features:

• Parallel computing of meta-features

• Land-marking features for regression

• Regression target features and features capturing the relation between features and the target

We could not directly use PyMFE and had to pivot to an own implementation. An overview of all the different
meta-features per task is provided in Table 11 in the Appendix.

Finally, some meta-features are only defined on either categorical features or numerical features. As discussed in Chapter
4, the approach of this study is compositional, meaning that earlier steps influence the performance of downstream
steps. The partitioning part requires our meta-feature vector to contain only numerical values. As such, missing values
need to be imputed. The imputation strategy for each meta-feature has to be carefully chosen, as the imputed value
directly influences the partition the dataset at hand is assigned to. For this, we first distinguished the columns that
contain outliers and those that do not, where we used an interquartile range with a 1.5 whisker to filter outliers per
column. Following, we decided whether or not these columns were flagged as outlier columns. Next, the columns with
outliers are imputed with the median value of the respective column, and the columns without outliers with the mean.
We choose the median for outlier columns, as some outlier columns contained values only skewed towards very small
numbers or large numbers. The median is less sensitive to these particular cases.

5.3 Experimental Setup

In all of our experiments, we will refer to the results of the methodology presented in this paper as SBPort. For the
execution of our methodology, we use the workflow presented in Figure 2, where the last step is only executed for the
AutoML experiment.

5.3.1 Combined Cluster and Portfolio Selection

Clustering the dataset space based on meta-features is a comprehensive task, where we cannot decide on the exact
configuration of the clustering algorithm beforehand. Therefore, the first step towards finding the optimal similarity-
based portfolio strategy is executing a grid search on the configuration of the clustering algorithms, as well as varying
the size of the portfolio.

First, we define α as the number of clusters in the Kernel K-means algorithm. For OPTICS, we will only use one
configuration of hyper-parameters, as the tuning of the hyper-parameters of OPTICS are not as effective as changing α,
and leads to almost identical clusters. Therefore, we simply choose one hyper-parameter configuration to be included in
the grid. For convenience of notation, we denote this hyper-parameter configuration asR.

5github.com/Wman1001/MasterThesis
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We choose α ∈ {3, 5, 8} to test general larger clusters, as well as smaller clusters specific to a small partition.
Similarly, for portfolio P , we choose the sizes |P| ∈ {4, 8, 16} for our grid search. Then, we can define our grid as:
G = {(a, b)| a ∈ α ∪ {R} and b ∈ |P|}

As mentioned earlier, the datasets contained in the AutoML Benchmark [20] is used as a test suite for validating our
approach. As we are first conducting a grid search, we split the datasets from the benchmark using a 33.33%, 66.66%
validation test split, where we evaluate our approach on the validation set to decide on the best configuration of
hyper-parameters. We will refer to these two sets as Dval and Dtest.

Our methodology serves two purposes. We can evaluate the portfolios outside of the context of AutoML, meaning
that we use Equation 7 to determine the performance of the portfolio. However, in the case of using portfolios in
the context of AutoML, we have different requirements than simply selecting the best performing pipeline out of the
portfolio. More specifically, we are interested in the stability of the pipelines that are evaluated. Unstable portfolios
lead to pipelines being terminated by the system due to for example excessive memory usage or running out of time.
Therefore, for warm-starting the search procedure, we are interested in constructing a metric that does not only take
into account the performance of the best performing pipeline. First, we define failCount as a counter of the amount of
pipelines that were forcefully terminated because of an arbitrary error while evaluating a portfolio P . Then, we can
define our metric as:

1
|P|−failCount

∑
Mλ∈P ĜE(Mλ, D) + failCount

|P|

2
, D ∈ Dval.

6 (8)

Where we take the average of the pipelines that finished evaluating, add this to the ratio of pipelines that were forcefully
terminated during execution with respect to the size of the portfolio, divided by two. This provides a trade-off between
average performance and the stability of the portfolio.

From the results of our grid search, we select two portfolios for every learning task, the first one using Equation 8
for AutoML warm-starting, and the second portfolio using the metric defined by Equation 7 for detached portfolio
evaluation. We will refer to these portfolios as stable portfolio and max portfolio, respectively.

5.3.2 Cluster Selection Evaluation

Directly evaluating the clusters is hard, as we do not have a metric to evaluate the performance of a cluster without
testing the approach of this study as a whole. Nonetheless, we can evaluate the performance of the cluster by comparing
the performance of the predicted cluster, to all other clusters. This provides an insight whether the predicted cluster,
determined by the meta-features, also provides well performing pipelines for the dataset at hand. We will use the max
policy to determine the performance of the portfolios per cluster.

5.3.3 Baselines

Static Portfolio

Prior portfolio research in the context of AutoML focused on static portfolios [18]. As such, we are interested in testing
whether portfolios constructed using the approach in this study are beneficial when compared to static portfolios. For
this purpose, we construct two static portfolios per task, one with the size of the portfolio as selected by the max policy
and the other with the size of the portfolio as selected by the stable policy.

Alternatively, our max and stable portfolios are evaluated against the Auto-Sklearn 2 portfolios by Feurer et al. [18].
As their portfolios have a size of 32, we will select the first n pipelines in their portfolio, where n again is the size
of the portfolio of the task at hand. They constructed portfolios only for classification problems, where the portfolio
is constructed for both binary and multi-class classification problems. As such, we will compare both our binary
classification portfolios and multi-class classification portfolios to the same Auto-Sklearn 2 portfolios.

One Nearest dataset

6In practise, we employ a two-step scaling approach for ĜE(Mλ, D): initially applying outlier scaling, and subsequently
normalizing to constrain the values within the range of 0 to 1.
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Our methodology builds upon the intuition that creating portfolios based on the most similar dataset in the training set
seems sensitive to error. This experiment aims to validate this claim by implementing the one nearest dataset algorithm
based on meta learning, and comparing the results to the max and stable portfolio. The one nearest dataset algorithm is
shown in Algorithm 3

Algorithm 3 One Nearest dataset Portfolio Construction
Input: Set of candidate pipelines C, set of training datasets Dtrain, a new dataset Dnew, portfolio size p
Output: Portfolio of size p
Initialize P = ∅
closest_set = argminDm∈Dtrain

(∥F(Dnew)−F(Dm)∥)
while |P| < p do

cBest = argminc∈C(score(closest_set, c))
P = P ∪ cBest

C = C \ cBest

end while
return P

Here, the size of p is equal to the size of the portfolio we are comparing the one nearest dataset approach to. Additionally,
we use the score function that we defined prior to Algorithm 2 and the functionF defined in Chapter 4 for the assignment
of meta-features.

5.3.4 Portfolios in AutoML

Finally, we want to evaluate our portfolios in the context of AutoML. As mentioned earlier, we will use GAMA as
AutoML system, where the focus for this research is on the evolutionary optimization algorithm. The algorithm defaults
to random starting pipelines. In this experiment, we will use our stable portfolios to provide starting candidates that are
expected to work well on the dataset at hand. To evaluate the difference in performance, we will run GAMA without
warm-starting on Dtest for 10 minutes and 60 minutes. Following, we will execute the same experiment, but with
warm-starting. The deviations between these setups are assessed both by the pipeline evaluation over time, as well as
the final performance after 10 and 60 minutes. For post-processing, we will use the single best pipeline.

6 Results

6.1 Results Combined Cluster and Portfolio Selection

For this experiment, we evaluated our different configurations on Dval, which is a 33.33% holdout from the AutoML
benchmark, where we selected only datasets using the same set of rules as listed in Table 3 and Table 4. First of all, we
have evaluated OPTICS on Dval. However, not all of the clusters were of the desired sizes and quality for all three
tasks. This limitation was especially highlighted for the multi-class classification task, which resulted in rather poor
performing configurations for OPTICS.

As described earlier, OPTICS uses the notion of reachability distance to construct clusters. For prediction, we extracted
the per cluster maximum reachability distance and set it as a threshold for new data points. For every new data point, we
calculated the distance to near data points to decide whether the data point falls within the boundaries of this threshold
for one the clusters. If this was the case, we assigned the new data point to the same cluster as the nearest data point in
the training set.

Table 5 shows the results of the grid search on binary classification datasets in our validation set for the optimal
two portfolios, using the max policy and stable policy for evaluation. To determine the most suitable configuration
using the max policy, we aggregated the results over the validation datasets and calculated the cumulative frequency
of occurrences wherein the configuration was identified as best performing. The determination of the most suitable
configuration for the stable policy involves the computation of the mean performance across all datasets contained
within the validation set. The specific values for each dataset are derived utilizing the formulation outlined in Chapter 5.
Important to note is that we selected the best performing portfolio for the stable policy only based on the results of the
configurations with p = 16, as most of the smaller portfolios contain similar pipelines. This leads to little gain from
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MaxPolicy StablePolicy
DataSet Name α = 8, p = 16 BestMax α = 5, p = 16 BestStable

bank-marketing 0.779 0.779 0.942 0.997
Bioresponse 0.882 0.882 0.873 0.873

Click_prediction 0.698 0.705 0.997 0.999
PhisingWebsites 0.996 0.996 0.999 0.999
ozone-level-8hr 0.873 0.883 0.996 0.998

ada 0.917 0.918 0.990 0.999
pc4 0.949 0.949 0.996 0.999

MiniBoone 0.985 0.985 0.812 0.812
churn 0.920 0.922 0.998 0.999
gina 0.988 0.989 0.874 0.874

Table 5: Grid Search Results on Binary Classification tasks using a 33.33% holdout of the AutoML
Benchmark. The values represent the maximum ROC AUC calculated across the portfolio using 10-fold
cross-validation (1 is best). The best portfolio per dataset across the entire grid is shown for ease of
reference.

MaxPolicy StablePolicy
DataSet Name α = 8, p = 16 BestMax α = 8, p = 16 BestStable

cmc 0.924 0.902 0.246 0.046
okcupid-stem 0.570 0.569 0.099 0.001

eucalyptus 0.864 0.864 0.320 0.088
car 0.207 0.207 0.261 0.052

theorem-proving 1.241 1.240 0.115 0.026
helena 2.908 2.896 0.446 0.375

micro-mass 0.396 0.396 0.034 0.004
Table 6: Grid Search Results on Multiclass Classification tasks using a 33.33% holdout of the AutoML
Benchmark. The values represent the minimum Log Loss calculated across the portfolio using 10-fold
cross-validation (0 is best). The best portfolio per dataset across the entire grid is shown for ease of
reference.

warm-starting. The chosen portfolios for binary classification have parameters α = 8, p = 16 and α = 5, p = 16 using
the max and stable policy, respectively. The results for the entire grid can be found in Table 15 for the max policy and
Table 16 for the stable policy. The pipelines contained in each portfolio can be found in our repository7.

For multi-class classification, the results are shown in Table 6. Here, we find slightly more spread between the different
configurations. For multi-class classification, we choose portfolios with parameters α = 8, p = 16 for both the optimal
portfolio using the max policy and the stable policy (using the same aggregation strategy as described above). Again,
the results for the other datasets can be found in Table 17 and Table 18 for the max and stable policy, respectively.

Lastly, we ran the defined grid of portfolio configurations on the validation set of the regression AutoML benchmark.
The results can be found in Table 7. Here, we indeed see that the results per dataset are on completely different scales,
which highlights the necessity to scale accordingly when aggregating the results for the stable policy. The selected
portfolios for regression have parameters α = 3, p = 16 andR, p = 16 using the max and stable policy, respectively.
The results of the entire grid can be found in Table 19 and Table 20 for the max and stable policy, respectively.

6.2 Cluster Selection Results

As mentioned earlier, we could not directly assess the quality of the clusters. The results of this experiment attempt to
provide an insight in the performance of the predicted cluster, when compared to all of the other clusters. Figure 3
shows the results for this experiment. We utilized portfolios created through the max policy to assess how well the
performance of the anticipated cluster matches up against the portfolios associated with other clusters that were not
anticipated. The results reflect the performance compared to the best portfolio across all labels for a single dataset. This
allows for ease of comparison as the results across datasets are placed on a similar scale.

7https://github.com/Wman1001/MasterThesis/tree/main/portfolios
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MaxPolicy StablePolicy
DataSet Name α = 3, p = 16 BestMax R, p = 16 BestStable

pol 31.845 7.376 0.425 0.157
MIP-2016-regression 28883.452 28883.452 0.154 0.042

house_sales 270815.395 248885.402 0.202 0.008
tecator 2.635 2.635 0.094 0.089

black_friday 4645.942 4645.942 0.140 0.032
OnlineNewsPopularity 10953.811 10953.811 0.060 0.021

SAT11-HAND-runtime-regression 2136.192 2010.112 0.059 0.024
space_ga 1818.843 1818.843 0.201 0.003

Table 7: Grid Search Results on Regression tasks using a 33.33% holdout of the AutoML Benchmark. The
values repesent the minimum RMSE calculated across the portfolio using 10-fold cross-validation (0 is
best). The best portfolio per dataset across the entire grid is shown for ease of reference.

Figure 3: Cluster vs All results. The portfolios for all labels are evaluated on Dtest and compared to the
predicted label. The portfolios used are the portfolios as selected by the max policy. Depicted data points
reflect the best performing pipeline in the portfolio for every label. Predicted label is highlighted for ease of
comparison.

For binary classification, we find that in most cases, the portfolio attached to our predicted cluster provides either the
best performance at least a satisfactory level of performance. Although in 18/20 datasets we see this behavior, we can
observe that for dataset 41145 and dataset 1464, the chosen portfolio does not result in a near optimal performance due
to a wrong assignment to a partition.

For multi-class classification, we applied a log transformation to the data to get a visualization taking into account
various scales upon which the datasets exist. We can observe a bit more variation when compared to binary classification,
but in most cases, except from dataset 40685, close to optimal results can be observed.

For regression, a representative visualization was not possible, as we had multiple missing values and some results were
too far apart from each other to provide a proper reflection of the performance of the different clusters. Instead, we
report the results per cluster in Table 21 in the appendix.

6.3 Results of Portfolio Comparison

In order to assess the performance of our portfolios, we compared them against three baseline portfolios: a portfolio
constructed using the one nearest dataset algorithm (OND), a static portfolio that we build using our specific datasets
and candidate pipelines, and the static portfolio approach presented by Feurer et al. [18]. First, we show the results of
our approach(SBPort), the OND algorithm and our own static portfolio on the binary classification test set in Table 8.
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Max Policy Stable Policy
Dataset Name OND Static SBPort OND Static SBPort

adult 0.917 0.916 0.926 0.948 0.956 0.952
kc1 0.777 0.775 0.777 0.882 0.880 0.877

Satellite 0.993 0.994 0.994 0.978 0.994 0.995
Internet-Advertisements 0.969 0.968 0.973 0.913 0.606 0.854

madeline 0.873 0.950 0.951 0.924 0.659 0.878
philippine 0.870 0.887 0.872 0.923 0.564 0.558

kick 0.663 0.675 0.688 0.669 0.581 0.739
Amazon_employee_access 0.861 0.863 0.867 0.895 0.929 0.926

blood-transfusion-service-center 0.948 0.738 0.717 0.829 0.822 0.817
Australian 0.933 0.932 0.936 0.961 0.964 0.964

credit-g 0.799 0.798 0.796 0.864 0.896 0.890
kr-vs-kp 0.998 0.999 0.998 0.994 0.999 0.999
jasmine 0.886 0.884 0.885 0.872 0.938 0.938

qsar-biodeg 0.925 0.927 0.921 0.960 0.960 0.957
christine 0.825 0.820 0.817 0.902 0.532 0.782

wilt 0.994 0.994 0.993 0.962 0.989 0.994
numerai28.6 0.530 0.521 0.521 0.666 0.571 0.697

nomao 0.988 0.985 0.988 0.837 0.617 0.992
phoneme 0.956 0.968 0.972 0.969 0.979 0.979
sylvine 0.988 0.990 0.990 0.993 0.993 0.993
Total 5/20 4/20 11/20 6/20 4/20 10/20

Table 8: Portfolio results for Binary Classification task on the test split of the AutoML benchmark. We provide both
results using the max policy and the stable policy to evaluate the algorithms. The used metric is the ROC AUC.

We find that our portfolio constructed by using the max policy gives us the model with the best performance in 11 out
of 20 datasets. Additionally, the portfolios constructed using the stable policy show the best overall performance in
10/20 cases. The static portfolio tends to be quite unstable in numerous cases. For the SBPort portfolio, we only find an
instable portfolio for the philippine dataset. A possible cause could be a wrong assignment to a partition, leading to a
portfolio not well suited for the corresponding dataset.

For multi-class classification, the results are shown in Table 9. While observing the results for the stable policy, we see
that SBPort again shows the most stable portfolios overall. The results aggregated over the datasets are especially more
stable for SBPort when compared to OND. For OND, we see some very well performing portfolios for the shuttle and
jungle_chess datasets, but the opposite can be observed for most of the other datasets. Additionally, The static portfolios
tend to slightly more stability in the case of multi-class classification, when compared to the binary classification results.

For the comparison to the Auto-Sklearn portfolios, we ran their entire portfolio and retrieved the results of the first 16
pipelines that did not crash. We have chosen to do this, because there were some technical problems while running
portfolios out of the context of AutoML. As we wanted to have a fair comparison between SBPort and Auto-Sklearn,
including only the successfully evaluated pipelines, this was found to be the most suitable option. Also, for the multi-
class classification datasets, we had to remove some datasets, as we could not evaluate any of the Auto-Sklearn pipelines
on these datasets due to internal errors in the software for detached portfolio evaluation. Because of these issues, we
could not evaluate the results of this experiment using the stable policy, as we did not have an accurate representation of
the amount of failed pipelines. The results of the max policy for both binary and multi-class classification is shown in
Figure 4. We can see that Auto-Sklearn finds the best performing pipeline in most cases compared to SBPort, for both
binary and multi-class classification.

We show a strip plot to give an insight in the spread of the SBPort portfolios and Auto-Sklearn portfolios in Figure 5 for
binary classification and Figure 6 for multi-class classification. Here, it’s evident that the SBPort portfolios demonstrate
greater consistency in providing well performing pipelines when compared to Auto-Sklearn.

Finally, we report the results of the regression experiment for OND, our own static portfolio and SBPort, using both the
max policy and the stable policy to evaluate the performance. The results on the test set are shown in Table 10. Here,
we see that SBPort performs best on every dataset in our test set when compared to OND and our own static portfolio
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Max Policy Stable Policy
Dataset Name OND Static SBPort OND Static SBPort

yeast 1.227 1.107 1.108 0.414 0.389 0.282
dna 0.111 0.113 0.109 0.467 0.437 0.404

cnae-9 0.254 0.258 0.219 0.409 0.434 0.300
steel-plates-fault 1.012 0.969 0.943 0.361 0.393 0.182

GesturePhaseSegmentation 1.304 1.277 1.287 0.348 0.355 0.299
Diabetes130US 0.901 0.900 0.943 0.384 0.342 0.459

shuttle 0.112 0.001 0.001 0.210 0.355 0.247
mfeat-factors 0.105 0.108 0.104 0.431 0.333 0.356

vehicle 0.452 0.429 0.446 0.338 0.271 0.246
jannis 0.752 0.710 0.692 0.466 0.454 0.595

connect-4 0.763 0.780 0.791 0.421 0.426 0.507
segment 0.162 0.168 0.161 0.314 0.421 0.336

jungle_chess 0.713 0.728 0.790 0.451 0.347 0.409
wine-quality 1.396 1.108 1.127 0.386 0.361 0.320

fabert 0.878 0.864 0.917 0.406 0.401 0.486
Total 2/15 6/15 7/15 3/15 5/15 7/15

Table 9: Portfolio results for the multi-class classification task on the test split of the AutoML benchmark. We provide
both results using the max policy and the stable policy to evaluate the algorithms. The used metric is the Log Loss.

Max Policy Stable Policy
Dataset Name OND Static SBPort OND Static SBPort
wine quality 0.891 1.459 0.718 0.090 0.382 0.143
yprop_4_1 0.041 0.070 0.029 0.514 0.468 0.212
elevators 0.010 0.009 0.003 0.214 0.141 0.312
boston 9.86 194.39 4.093 0.189 0.465 0.037

Moneyball 91.833 89.751 24.793 0.115 0.083 0.43
Brazilian_houses 29446.95 29377.88 9668.785 0.338 0.373 0.153

abalone 3.086 3.088 2.149 0.273 0.329 0.161
us_crime 1.535 0.766 0.136 0.442 0.499 0.370
topo_2_1 0.045 0.047 0.029 0.423 0.381 0.256
diamonds 3672.09 3544.031 752.754 0.304 0.265 0.279
sensory 1.337 3.9 0.877 0.405 0.496 0.168
socmob 37.337 37.337 15.073 0.234 0.280 0.284

Mercedes_Benz_Greener_Manufacturing 21.646 26.976 8.79 0.5 0.407 0.213
colleges 0.277 0.312 0.149 0.312 0.365 0.195

house_prices_nominal 82786.677 89895.681 29165.251 0.153 0.319 0.302
quake 4.482 4.483 0.198 0.464 0.484 0.069

house_16H 65730.604 2323033.876 31688.139 0.252 0.467 0.037
Average 0/17 0/17 17/17 3/17 3/17 11/17

Table 10: Portfolio results for the regression task on the test split of the AutoML benchmark. We provide
both results using the max policy and the stable policy to evaluate the algorithms. The used metric is the
RMSE.
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Figure 4: Performance of SBPort and ASKL2 using the max policy. Here, the reported values are the
difference to the best value of SBPort and ASKL2 to provide a comparable metric for results that are on a
different scale.

Figure 5: Strip plot of the individual pipeline performance of SBPort compared to Auto-Sklearn for binary
classification datasets.

Figure 6: Strip plot of the individual pipeline performance of SBPort compared to Auto-Sklearn for multi-
class classification datasets.
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Figure 7: Results of warm-starting GAMA with portfolios. The figures represent aggregated results for
binary classification, multi-class classification and regression datasets, from left to right. We evaluate its
performance using the same metrics as for the other experiments.

when evaluated with the max policy. Additionally, the results using the stable policy show that the pipelines in our
portfolio rarely crash and perform well on average.

6.4 Results Portfolios in AutoML

As a last experiment, we assessed the effectiveness of our portfolios within the context of warm-starting GAMA. To
achieve this, we subjected each dataset to four separate runs of GAMA, allocating time limits of 10 and 60 minutes for
each run, while alternating between employing warm-starting and not. The combined outcomes across all datasets are
illustrated in Figure 7.

In the domain of binary classification, we find that warm-starting proves advantageous. The warm-starting approach
consistently outperforms its counterpart without warm-starting across the entire timespan. While observing multi-class
classification results, warm-starting appears not to lead to better pipelines in the first 20 minutes. Nonetheless, as time
unfolds, the difference becomes more noticeable, yielding the best overall performance after 60 minutes.

For regression, we evidently see that warm-starting is beneficial, leading to a clear increase of performance compared to
GAMA without warm-starting. The full results can be found in Table 22, Table 23 and Table 24 in the appendix for
binary classification, multi-class classification and regression respectively.

7 Discussion

7.1 Discussion of Experimental Results

In consideration of both predictive power and stability, high performing portfolios were elected through the utilization
of a grid search to determine the appropriate hyper-parameters for the number of pipelines in the portfolio and the
cluster configuration. To achieve this, we used a validation split of the AutoML benchmark. The results on the test split
demonstrate the advantage of using SBPort over our constructed static portfolios and portfolios constructed using the
OND algorithm. Especially for binary classification and regression prediction tasks, we clearly found improvements.

While Auto-Sklearn portfolios exhibit superior performance in predicting the optimal pipeline, they demonstrate less
stability compared to SBPort. A possible reason for this is that the pipeline configuration space of Auto-Sklearn
is notably different compared to our configuration space. The disparity in stability also highlights the drawback of
using static portfolios, whereas for every dataset, several pipelines may not be well suited to the dataset at hand and
demonstrate poor performance.

In the cluster quality experiment, we found that the assignment of a partition from the meta-features of a dataset is not
always optimal. We find that in some cases, another cluster would have yielded a more effective portfolio, which may
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be the result of a suboptimal selection of meta-features. Finally, the pipelines contained in the portfolios of SBPort
were used to warm-start GAMA. We found several improvements compared to GAMA without warm-starting. On all
three tasks, we found clear benefits of using warm-starting. For the majority of the datasets, GAMA with warm-starting
given a time budget of 10 minutes reaches similar performance compared to GAMA without warm-starting with a time
budget of 60 minutes for most datasets. However, wrong assignments to a partition lead to poor warm-starting, which in
turn also results in worse performance than GAMA without warm-starting.

7.2 Limitations and Future Research

Several limitations were identified during this research. First of all, we used OPTICS as a clustering algorithm to create
portfolios for high density clusters. However, especially for multi-class classification, no satisfactory configuration
could be found. The usage of other density-based algorithms, or other types of clustering as a whole, may work better
for this task. Nevertheless, as we conducted a grid search, which included Kernel K-means, we could simply select
solely Kernel K-means configurations to proceed with the experiments. For future research, it remains interesting to
investigate the usage of a clustering algorithm that creates a separate cluster for outliers or datasets that are not in the
span of the training set of datasets. Even though Kernel K-means has proven its usability in this study, we predicted
poor performing portfolios for a few datasets, highlighting the necessity to investigate other algorithms to partition the
set of datasets. Alternatively, the problem of predicting poor portfolios could also stem from the choice of meta-features.
A recommendation for future research is learn meta-features through the application of deep learning [26]. By adopting
this methodology, it becomes possible to represent individual datasets as embeddings. Much like the approach employed
in this paper, these embeddings can be clustered, thereby offering the potential for enhanced portfolio quality.

Another limitation of our research is that we selected our candidate pipelines based on 50 AutoML runs for 60 minutes,
and selected the top five best performing pipelines. This procedure was repeated for every task. However, as the top
five best performing pipelines on a dataset are sometimes very similar, this led to clusters having a portfolio with a
collection of near identical pipelines, especially for smaller portfolios. We particularly observed this for our binary
classification portfolios. A simple solution to this would be to run the AutoML system on all datasets in our training set,
and pick the single best performing pipeline for this respective dataset. However, in the timeline of this research, this
was not feasible.

Finally, the performance of a pipeline in our performance matrix is solely based on the predictive power of the
pipeline. However, especially for constructing portfolios in the context of AutoML, it would be interesting to extend the
performance to take into account the time it takes to evaluate a pipeline. For example, say we have a pipelineMλ1

and another pipelineMλ2, which we evaluate on a dataset D. After successfully evaluating both pipelines, we find
that ĜE(Mλ1, D) is slightly better than ĜE(Mλ2, D). However, tλ2 << tλ1. While inspecting the performance
matrix, we indeed found several cases where the difference in performance is negligible, but the evaluation time is
up to 100 times faster. In this case,Mλ2 would be a better pipeline to append to our stable portfolio. As such, an
interesting direction for future research would be to have a metric composed of a predictive power component and a
time component. Abdulrahman et al. [1] present a multi-objective measure with both these components for algorithm
selection. This measure could be adopted and used as a portfolio construction approach. This might benefit AutoML
warm-starting even more, especially for large datasets.

8 Conclusion

In this research, a novel meta-learning approach to building pipeline portfolios was developed. We partitioned the
dataset space and stored the best performing pipelines within this partition in a portfolio. We broadly tested the
performance of SBPort compared to alternative portfolios created by a static approach and by using the one nearest
dataset algorithm. Moreover, we compared SBPort to the portfolios of Auto-Sklearn 2.0, which is the current state-of-
the-art for warm-starting of AutoML systems. Here, it was found that SBPort did not find similar performing pipelines
using the max policy. Nevertheless, SBPort has clearly proven to be a competitive alternative solution while observing
the stability of the portfolio.

Prior portfolio research has only evaluated its performance on binary and multi-class classification problems. Our
research is the first to also include the regression task in our methodology. As such, no direct comparison could be
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made to other similar techniques. Nonetheless, competitive performance was observed compared to our static portfolios
and the OND portfolios.

Besides detached portfolio evaluation, SBPort has proven its usability within the context of warm-starting GAMA.
Across all three tasks, the utilization of warm-starting was found to be beneficial compared to GAMA without
warm-starting across a majority of the datasets in the AutoML benchmark.

Compared to static portfolios, we can conclude that in terms of predictive performance, our approach provides a
marginal advantage. However, the stability of the portfolios by SBPort has proven to be better compared to our own
static portfolios, but also the static portfolios by Feurer et al. [18]. Nevertheless, our approach is directly dependent on
the predicted cluster. Wrong cluster assignments directly lead to poor performing behaviour, both in terms of predictive
performance and stability. A potential solution to mitigate this behaviour in the context of AutoML would be to use
successive halving to provide less resources to poor performing pipelines.
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A Meta-features

Table 11 shows the meta-features used for clustering datasets in this paper. Each column denotes the features for a
different task type.

Binary Target Multi-Class Target Continuous Target

nr_cat nr_cat nr_cat
nr_num nr_num nr_num
num_to_cat_ratio num_to_cat_ratio num_to_cat_ratio
cor_mean cor_mean cor_mean
cor_sd cor_sd cor_sd
cov_mean cov_mean cov_mean
cov_sd cov_sd cov_sd
iqr_mean iqr_mean iqr_mean
iqr_sd iqr_sd iqr_sd
kurtosis_mean kurtosis_mean kurtosis_mean
kurtosis_sd kurtosis_sd kurtosis_sd
max_mean max_mean max_mean
max_sd max_sd max_sd
mean_mean mean_mean mean_mean
mean_sd mean_sd mean_sd
median_mean median_mean median_mean
median_sd median_sd median_sd
min_mean min_mean min_mean
min_sd min_sd min_sd
missing_mean missing_mean missing_mean
missing_sd missing_sd missing_sd
best_node_mean best_node_mean best_node_mean
nr_bin nr_bin nr_bin
outliers outliers outliers
sd_mean sd_mean sd_mean
sd_sd sd_sd sd_sd
nr_feat nr_feat nr_feat
nr_inst nr_inst nr_inst
attr_to_inst_ratio attr_to_inst_ratio attr_to_inst_ratio
skewness_mean skewness_mean skewness_mean
skewness_sd skewness_sd skewness_sd
variance_mean variance_mean variance_mean
variance_sd variance_sd variance_sd
attr_conc_mean attr_conc_mean attr_conc_mean
attr_conc_sd attr_conc_sd attr_conc_sd
class_conc_mean class_conc_mean attr_ent_mean
class_conc_sd class_conc_sd attr_ent_sd
attr_ent_mean attr_ent_mean kurtosis_target
attr_ent_sd attr_ent_sd bayesian_ridge_mean
eq_num_attr eq_num_attr skewness_target
joint_ent_mean joint_ent_mean linear_regr_mean
joint_ent_sd joint_ent_sd target_corr_mean
random_node_mean random_node_mean target_corr_sd
naive_bayes_mean naive_bayes_mean random_node_mean
worst_node_mean worst_node_mean worst_node_mean
linear_discr_mean linear_discr_mean -
majority_class_size majority_class_size -
minority_class_size minority_class_size -
- nr_class -

Table 11: Meta-features used in this paper.
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B Datasets

Table 12, Table 13 and Table 14 show the data sets from the AutoML benchmark that are used for validation and testing
in this study.

Dataset Instances Features Set

bank-marketing 45211.0 17.0 validation
Bioresponse 3751.0 1777.0 validation
Click_prediction_small 39948.0 12.0 validation
PhishingWebsites 11055.0 31.0 validation
ozone-level-8hr 2534.0 73.0 validation
ada 4147.0 49.0 validation
pc4 1458.0 38.0 validation
MiniBooNE 130064.0 51.0 validation
churn 5000.0 21.0 validation
gina 3153.0 971.0 validation
adult 48842.0 15.0 test
kc1 2109.0 22.0 test
Satellite 5100.0 37.0 test
Internet-Advertisements 3279.0 1559.0 test
madeline 3140.0 260.0 test
philippine 5832.0 309.0 test
kick 72983.0 33.0 test
Amazon_employee_access 32769.0 10.0 test
blood-transfusion-service-center 748.0 5.0 test
Australian 690.0 15.0 test
credit-g 1000.0 21.0 test
kr-vs-kp 3196.0 37.0 test
jasmine 2984.0 145.0 test
qsar-biodeg 1055.0 42.0 test
christine 5418.0 1637.0 test
wilt 4839.0 6.0 test
numerai28.6 96320.0 22.0 test
nomao 34465.0 119.0 test
phoneme 5404.0 6.0 test
sylvine 5124.0 21.0 test

Table 12: Specifics of the binary classification datasets from the AutoML Benchmark.
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Dataset Instances Features Set

cmc 1473.0 10.0 validation
okcupid-stem 50789.0 20.0 validation
eucalyptus 736.0 20.0 validation
car 1728.0 7.0 validation
first-order-theorem-proving 6118.0 52.0 validation
helena 65196.0 28.0 validation
micro-mass 571.0 1301.0 validation
yeast 1484.0 9.0 test
dna 3186.0 181.0 test
cnae-9 1080.0 857.0 test
steel-plates-fault 1941.0 28.0 test
GesturePhaseSegmentationProcessed 9873.0 33.0 test
Diabetes130US 101766.0 50.0 test
shuttle 58000.0 10.0 test
mfeat-factors 2000.0 217.0 test
vehicle 846.0 19.0 test
jannis 83733.0 55.0 test
connect-4 67557.0 43.0 test
segment 2310.0 20.0 test
jungle_chess_2pcs_raw_endgame_complete 44819.0 7.0 test
wine-quality-white 4898.0 12.0 test
fabert 8237.0 801.0 test

Table 13: Specifics of the multi-class classification datasets from the AutoML Benchmark.

Dataset Instances Features Set

pol 15000.0 49.0 validation
MIP-2016-regression 1090.0 145.0 validation
house_sales 21613.0 22.0 validation
tecator 240.0 125.0 validation
black_friday 166821.0 10.0 validation
OnlineNewsPopularity 39644.0 60.0 validation
SAT11-HAND-runtime-regression 4440.0 117.0 validation
space_ga 3107.0 7.0 validation
wine_quality 6497.0 12.0 test
yprop_4_1 8885.0 252.0 test
elevators 16599.0 19.0 test
boston 506.0 14.0 test
Moneyball 1232.0 15.0 test
Brazilian_houses 10692.0 13.0 test
abalone 4177.0 9.0 test
us_crime 1994.0 127.0 test
topo_2_1 8885.0 267.0 test
diamonds 53940.0 10.0 test
sensory 576.0 12.0 test
socmob 1156.0 6.0 test
Mercedes_Benz_Greener_Manufacturing 4209.0 377.0 test
colleges 7063.0 45.0 test
house_prices_nominal 1460.0 80.0 test
quake 2178.0 4.0 test
house_16H 22784.0 17.0 test
Table 14: Specifics of the regression datasets from the AutoML Benchmark.
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C Full Grid Search Results

Chapter 6 shows the results for the selected candidate of our defined grid. Here, we present the results of the entire grid
on the validation set for each task. Table 15, Table 17 and Table 19 show the results using the max policy for binary
classification, multi-class classification and regression respectively. Similarly, the results using the stable policy can be
seen in Table 16, Table 18 and Table 20.

p = 4 p = 4 p = 4 p = 4 p = 8 p = 8 p = 8 p = 8 p = 16 p = 16 p = 16 p = 16
DataSet ID α = 3 α = 5 α = 8 R α = 3 α = 5 α = 8 R α = 3 α = 5 α = 8 R

1461 0.67 0.508 0.702 0.774 0.691 0.666 0.779 0.774 0.709 0.696 0.779 0.774
4134 0.869 0.868 - 0.872 0.877 0.871 0.875 0.872 0.877 0.872 0.882 0.872

42733 0.686 0.686 0.682 0.69 0.705 0.689 0.693 0.69 0.705 0.689 0.698 0.697
4534 0.995 0.995 0.996 0.995 0.995 0.995 0.996 0.995 0.996 0.996 0.996 0.995
1487 0.873 0.874 0.865 0.868 0.876 0.874 0.871 0.878 0.882 0.876 0.873 0.883

41146 0.909 0.911 0.909 0.912 0.909 0.911 0.917 0.912 0.918 0.916 0.917 0.918
1049 0.941 0.947 0.948 0.949 0.946 0.947 0.949 0.949 0.947 0.947 0.949 0.949

41150 0.981 0.981 - 0.984 0.981 0.982 0.983 0.984 0.984 0.983 0.985 0.984
40701 0.918 0.920 0.914 0.911 0.921 0.921 0.914 0.919 0.921 0.922 0.920 0.920
41158 0.984 0.985 0.988 0.989 0.988 0.987 0.988 0.989 0.988 0.987 0.988 0.989

Table 15: Grid search results on binary classification tasks using a 33.33% holdout of the AutoML Benchmark. The
values represent the maximum ROC AUC calculated over the portfolio using 10-fold cross-validation.

p = 4 p = 4 p = 4 p = 4 p = 8 p = 8 p = 8 p = 8 p = 16 p = 16 p = 16 p = 16
DataSet ID α = 3 α = 5 α = 8 R α = 3 α = 5 α = 8 R α = 3 α = 5 α = 8 R

1461 0.975 0.997 0.984 0.964 0.955 0.948 0.954 0.883 0.946 0.942 0.916 0.904
4134 0.625 0.749 - 0.746 0.623 0.873 0.686 0.68 0.655 0.873 0.809 0.65

42733 0.997 0.999 0.997 0.994 0.990 0.997 0.993 0.994 0.989 0.997 0.993 0.992
4534 0.999 0.999 0.999 0.998 0.999 0.999 0.999 0.998 0.999 0.999 0.999 0.998
1487 0.998 0.997 0.998 0.997 0.997 0.997 0.996 0.995 0.993 0.996 0.997 0.994

41146 0.999 0.998 0.999 0.995 0.999 0.994 0.994 0.996 0.994 0.990 0.990 0.993
1049 0.998 0.999 0.997 0.999 0.997 0.998 0.996 0.998 0.996 0.996 0.997 0.998

41150 0.625 0.625 - 0.749 0.562 0.750 0.625 0.684 0.593 0.812 0.78 0.654
40701 0.999 0.999 0.997 0.998 0.998 0.998 0.997 0.996 0.998 0.998 0.996 0.997
41158 0.625 0.750 0.625 0.997 0.624 0.873 0.562 0.808 0.655 0.874 0.624 0.715

Average 0.884 0.911 0.760 0.944 0.874 0.943 0.880 0.903 0.882 0.948 0.910 0.890
Table 16: Grid search results on binary classification tasks using a 33.33% holdout of the AutoML Benchmark. The
values represent the stability values of the portfolios as calculated by the formula provided in Chapter 5.

p = 4 p = 4 p = 4 p = 4 p = 8 p = 8 p = 8 p = 8 p = 16 p = 16 p = 16 p = 16
DataSet ID α = 3 α = 5 α = 8 R α = 3 α = 5 α = 8 R α = 3 α = 5 α = 8 R

23 0.923 0.919 0.924 0.959 0.923 0.919 0.924 0.959 0.902 0.910 0.924 0.959
42734 0.572 0.571 0.573 0.791 0.569 0.569 0.570 0.791 0.569 0.569 0.570 0.646
188 1.267 1.216 0.864 9.619 1.221 1.216 0.864 3.735 0.870 0.865 0.864 3.070

40975 0.273 0.288 0.278 14.692 0.273 0.286 0.274 0.793 0.270 0.249 0.207 0.549
1475 1.258 1.244 1.251 10.795 1.242 1.244 1.242 10.795 1.242 1.240 1.241 4.819
41169 - - 2.952 2.896 - - 2.952 2.896 3.335 3.317 2.908 2.896
1515 - - 0.396 32.445 0.428 0.442 0.396 5.242 0.397 0.437 0.396 5.242

Table 17: Grid search results on multi-class classification tasks using a 33.33% holdout of the AutoML Benchmark.
The values represent the minimum log loss calculated over the portfolio using 10-fold cross-validation.
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p = 4 p = 4 p = 4 p = 4 p = 8 p = 8 p = 8 p = 8 p = 16 p = 16 p = 16 p = 16
DataSet ID α = 3 α = 5 α = 8 R α = 3 α = 5 α = 8 R α = 3 α = 5 α = 8 R

23 0.281 0.366 0.282 0.067 0.266 0.362 0.200 0.046 0.199 0.227 0.246 0.051
42734 0.040 0.167 0.141 0.001 0.117 0.192 0.089 0.068 0.188 0.152 0.099 0.132
188 0.088 0.34 0.249 0.375 0.295 0.313 0.315 0.218 0.408 0.355 0.32 0.227

40975 0.265 0.170 0.052 0.175 0.288 0.180 0.09 0.396 0.070 0.136 0.261 0.202
1475 0.051 0.092 0.026 0.313 0.094 0.082 0.056 0.225 0.165 0.079 0.115 0.455

41169 1 1 0.375 0.375 1. 1. 0.625 0.438 0.413 0.449 0.446 0.469
1515 1 1 0.053 0.004 0.253 0.254 0.005 0.030 0.132 0.13 0.034 0.053

Average 0.389 0.448 0.168 0.187 0.330 0.340 0.197 0.203 0.225 0.218 0.217 0.227
Table 18: Grid search results on multi-class classification tasks using a 33.33% holdout of the AutoML Benchmark.
The values represent the stability values of the portfolios as calculated by the formula provided in Chapter 5. Best
performing configuration with p = 16 is highlighted.

p = 4 p = 4 p = 4 p = 4 p = 8 p = 8 p = 8 p = 8 p = 16 p = 16 p = 16 p = 16
DataSet ID α = 3 α = 5 α = 8 R α = 3 α = 5 α = 8 R α = 3 α = 5 α = 8 R

201 41.182 41.856 39.779 40.32 40.543 39.768 39.779 31.845 31.845 31.922 31.922 7.376
43071 31208.159 31169.929 31169.334 31132.936 28883.452 31169.929 30678.909 28903.36 28883.452 29024.277 29005.065 28903.36
42731 356940.061 262414.766 248885.402 355909.641 270815.395 262414.766 248885.402 288373.359 270815.395 262414.766 248885.402 286080.127

505 3.972 3.751 4.165 9.144 3.972 3.751 4.165 8.098 2.635 2.635 2.635 2.635
41540 4645.942 4652.866 4652.024 4721.973 4645.942 4652.866 4652.024 4721.973 4645.942 4652.866 4652.024 4677.689
42724 11093.86 10979.282 11096.346 11084.422 10997.95 10979.282 11084.13 10983.078 10953.811 10979.282 10978.704 10953.811
41980 2537.652 2604.625 2351.699 2537.433 2136.192 2537.814 2010.112 2125.287 2136.192 2074.159 2010.112 2125.287

507 1818.843 1859.963 1871.278 2538.124 1818.843 1823.436 1864.482 2133.769 1818.843 1823.436 1850.551 2133.769

Table 19: Grid search results on regression tasks using a 33.33% holdout of the AutoML Benchmark. The values
represent the minimum RMSE calculated over the portfolio using 10-fold cross-validation.

p = 4 p = 4 p = 4 p = 4 p = 8 p = 8 p = 8 p = 8 p = 16 p = 16 p = 16 p = 16
DataSet ID α = 3 α = 5 α = 8 R α = 3 α = 5 α = 8 R α = 3 α = 5 α = 8 R

201 0.371 0.174 0.311 0.241 0.157 0.241 0.184 0.170 0.276 0.293 0.276 0.425
43071 0.042 0.284 0.251 0.292 0.168 0.223 0.224 0.198 0.133 0.250 0.204 0.154
42731 0.255 0.129 0.336 0.008 0.282 0.264 0.413 0.248 0.326 0.366 0.437 0.202
505 0.176 0.137 0.155 0.133 0.145 0.181 0.113 0.089 0.150 0.140 0.124 0.094

41540 0.162 0.032 0.099 0.250 0.194 0.192 0.183 0.143 0.245 0.193 0.181 0.140
42724 0.021 0.101 0.131 0.125 0.105 0.081 0.139 0.149 0.052 0.154 0.151 0.060
41980 0.024 0.107 0.170 0.134 0.098 0.158 0.131 0.106 0.100 0.089 0.088 0.059
507 0.021 0.027 0.003 0.165 0.030 0.053 0.003 0.338 0.099 0.017 0.005 0.201

Average 0.1146 0.1238 0.1662 0.179 0.136 0.1561 0.1611 0.1648 0.1788 0.1801 0.2031 0.1455
Table 20: Grid search results on regression tasks using a 33.33% holdout of the AutoML Benchmark. The values
represent the stability values of the portfolios as calculated by the formula provided in Chapter 5. Best performing
configuration with p = 16 is highlighted.
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D Additional Results

Table 21 shows the results for the cluster prediction quality experiment on the regression data sets.

DataSet Name Predicted Cluster 1 Cluster 2
wine_quality 0.721 0.741 0.723

ypro_4_1 0.029 - 0.029
elevators 0.003 0.003 0.003
boston 4.150 4.442 4.202

Moneyball 22.825 21.143 22.734
Brazilian_houses 2707.193 4.677 2018.178

abalone 2.102 2.098 2.097
us_crime 0.137 0.135 0.134
topo_2_1 0.029 - 0.029
diamonds 749.898 762.351 751.754
sensory 0.997 0.990 0.945
socmob 11.948 14.107 12.663

Mercedes_Benz_Greener_Manufacturing 8.440 - 8.503
colleges 0.146 0.146 0.145

house_prices_nominal 25755.142 27212.059 27175.521
quake 0.198 0.194 0.198

house_16H 31755.646 41991.149 32889.983
Table 21: ClustervsAll results for regression.

In Chapter 6, we showed the results of an AutoML run for the four defined configurations on a single data set. Here, we
present the final results after the time limit provided to GAMA was reached using single best post-processing. Table 22,
Table 23 and Table 24 show the results for binary classification, multi-class classification and regression respectively.

Data set ID 10_min 60_min 10_min_ws 60_min_ws
adult 0.923594 0.925601 0.925924 0.926511
kc1 0.801441 0.802823 0.808073 0.809803

Satellite 0.994237 0.995585 0.995012 0.996285
Internet-Advertisements 0.958102 0.96589 0.964452 0.96912

madeline 0.936496 0.916267 0.949869 0.9547
philippine 0.86937 0.90229 0.879298 0.914705

kick 0.69949 0.722744 0.68974 0.713144
Amazon_employee_access 0.85994 0.862141 0.861177 0.8653

blood-transfusion-service-center 0.887233 0.894302 0.891942 0.894094
Australian 0.941469 0.944124 0.945514 0.949371

credit-g 0.810667 0.812714 0.806429 0.819333
kr-vs-kp 0.999242 0.998858 0.99899 0.999403
jasmine 0.887762 0.892942 0.885844 0.891253

qsar-biodeg 0.929744 0.929948 0.929095 0.930601
christine 0.748926 0.798384 0.816967 0.824344

wilt 0.994606 0.995251 0.994453 0.994891
numerai28.6 0.530521 0.531049 0.52896 0.52896

nomao 0.971408 0.987089 0.986573 0.9874
phoneme 0.965964 0.967799 0.971024 0.971124
sylvine 0.988118 0.992922 0.989653 0.992942

Table 22: GAMA with and without warm-starting for binary classification data sets on the test split of the
AutoML benchmark.
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Data 10_min 60_min 10_min_ws 60_min_ws
yeast 1.05374 1.053594 1.049894 1.048065
dna 0.118895 0.117023 0.108739 0.102656

cnae-9 0.174766 0.162612 0.2103 0.141187
steel-plates-fault 0.976342 0.96058 0.961089 0.936625

GesturePhaseSegmentationProcessed 1.271437 1.26231 1.316602 1.254458
Diabetes130US 0.9079 0.900035 0.988155 0.91213

shuttle 0.001544 0.000506 0.0009 0.000564
mfeat-factors 0.317156 0.101972 0.107231 0.098772

vehicle 0.40636 0.424784 0.413516 0.406057
jannis 0.757079 0.820346 0.831641 0.716671

connect-4 1.179666 0.752063 0.846396 0.824721
segment 0.188393 0.155998 0.165571 0.155187

jungle_chess_2pcs_raw_endgame_complete 0.683737 0.667785 0.725787 0.691554
wine-quality-white 1.077738 1.072587 1.075761 1.07178

fabert 0.779211 0.778407 0.95021 0.847913
Table 23: GAMA with and without warm-starting for multi-class classification data sets on the test split of the AutoML
benchmark.

Data 10_min 60_min 10_min_ws 60_min_ws
wine_quality 0.723492 0.721097 0.722602 0.723707
yprop_4_1 0.028548 0.028492 0.028997 0.02834
elevators 0.002494 0.00236 0.00236 0.00229
boston 4.989596 3.755377 3.892941 3.658812

Moneyball 21.271697 21.232553 21.390523 21.151408
Brazilian_houses 1844.120194 5.142092 5.142486 5.140158

abalone 2.073261 2.066086 2.081072 2.057471
us_crime 0.133131 0.131961 0.131274 0.130405
topo_2_1 0.028845 0.028812 0.027065 0.026042
diamonds 1106.077502 1113.3382 1310.649137 1177.290506
sensory 0.794015 0.791785 0.784353 0.781132
socmob 15.299141 15.119294 16.28671 12.487201

Mercedes_Benz_Greener_Manufacturing 8.280768 8.268604 8.365599 8.31026
colleges 0.150908 0.1492 0.164852 0.149034

house_prices_nominal 27697.765827 27028.912379 26045.83275 25656.378829
quake 0.188217 0.188247 0.188586 0.188184

house_16H 31420.161379 31365.68261 33225.280806 31131.469199
Table 24: GAMA with and without warm-starting for regression data sets on the test split of the AutoML benchmark.
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