

A Bayesian optimization framework for the automatic tuning of
MPC-based shared controllers
Citation for published version (APA):
van der Horst, A., Meere, B., Krishnamoorthy, D., Bakker, S., Vrande, B. V. D., Stoutjesdijk, H., Alsonso, M. A.,
& Torta, E. (2024). A Bayesian optimization framework for the automatic tuning of MPC-based shared
controllers. arXiv.org. https://doi.org/10.48550/arXiv.2311.01133

DOI:
10.48550/arXiv.2311.01133

Document status and date:
Published: 02/11/2024

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 13. Oct. 2024

https://doi.org/10.48550/arXiv.2311.01133
https://doi.org/10.48550/arXiv.2311.01133
https://research.tue.nl/en/publications/6fca3903-9653-4f2c-bdd0-8bf6070aa542

A Bayesian optimization framework for the
automatic tuning of MPC-based shared controllers

Anne van der Horst 1∗, Bas Meere1∗, Dinesh Krishnamoorthy1,
Saray Bakker1,2, Bram van de Vrande3, Henry Stoutjesdijk3, Marco Alonso3 and Elena Torta1

Abstract—This paper presents a Bayesian optimization frame-
work for the automatic tuning of shared controllers which are
defined as a Model Predictive Control (MPC) problem. The
proposed framework includes the design of performance metrics
as well as the representation of user inputs for simulation-based
optimization. The framework is applied to the optimization of
a shared controller for an Image Guided Therapy robot. VR-
based user experiments confirm the increase in performance of
the automatically tuned MPC shared controller with respect to a
hand-tuned baseline version as well as its generalization ability.

Index Terms—MPC, Bayesian Optimization, Shared Control,
VR

I. INTRODUCTION

Shared control [1] is a paradigm for robot semi-autonomous
task execution which requires the graceful blending of users’
and robots’ own decision-making to achieve a shared task.
For semi-autonomous navigation, typically users provide de-
sired navigation targets or movement directions and the robot
performs obstacle avoidance autonomously while trying to
reach the user’s goal. The performance of such a control
algorithm often depends on the tuning of its parameters.
The tuning process notoriously takes the form of a trial-and-
error approach which is time-consuming, error-prone, and can
become frustrating. Bayesian Optimization (BO) [2] is a data-
based optimization technique that has surged in popularity as
a viable way of automatically tuning controller parameters
for robotic systems (e.g., [3]–[5]). Contrary to Reinforcement
Learning, BO is a gradient-free method and typically reaches
convergence with fewer iterations. Both aspects are important
to incorporate direct user feedback in the tuning process of
algorithms for human-robot interaction tasks.
While previous work has addressed the development of BO
algorithms for autonomous motion tasks of manipulators [4],
[5] and drones with emphasis on safety constraints [3], [6],
little attention has been given to controller optimization for
human-robot interaction tasks, such as shared control.
The contribution of this paper relates to the definition of a
BO framework for the automatic tuning of shared controllers
for robot navigation. In addition to the design choices of the
algorithm itself, distinctive challenges relate to the definition
of representative user inputs and the identification of the
performance metrics for the optimization process.

∗Equal contribution.
1 Eindhoven University of Technology, The Netherlands (e-mail:

a.v.d.horst1@tue.nl)
2 Delft University of Technology, The Netherlands
3Philips IGT Systems Mechatronics, The Netherlands

q1

q2
q3

End-e�ector

z

x

y

Fig. 1: The IGT robot with its prismatic joint q1, two revolute
joints q2 and q3 and the end-effector position. The 12 spheres
for obstacle avoidance capture the relevant geometry of the
robot.

The proposed BO framework is applied to the optimization
of an MPC-based shared controller for an Image Guided
Therapy (IGT) robot, shown in Fig. 1. These robots are
used to create medical images via X-ray during minimally
invasive procedures and are constituted by several links with
the terminal link presenting the classical C-shape carrying the
X-ray generator and detector. In the current state-of-practice,
the (re)positioning of the robot in the operating room requires
inputs from the physician through a joystick-like control
module. The development of a shared controller is expected
to facilitate positioning because the robot can automatically
avoid obstacles while following users’ commands as closely as
possible. The motion performance of the automatically-tuned
MPC shared controller is compared with a baseline, hand-
tuned controller, by means of Virtual Reality (VR) experiments
involving users interacting with the system through a joystick-
like control module. The comparison is based on metrics that
measure the safety and smoothness of the trajectories as well
as the efficiency of the controller. Results show an overall
performance improvement of the automatically tuned shared
controller w.r.t. the baseline as well as a good generalization
for user input sequences not used during optimization.
Related Work: BO has been successfully applied for the auto-
matic tuning of controllers for several robotic tasks. One of the
earlier examples is the work of Marco et al. [5] that optimized
an LQR controller for an inverted pendulum actuated by a
robotic arm. It showed the successful application of BO to a
physical robotic system. Subsequent work has focused on safe
BO [3], [6] which aims at enabling a safe exploration strategy

ar
X

iv
:2

31
1.

01
13

3v
1

 [
cs

.R
O

]
 2

 N
ov

 2
02

3

mailto:a.v.d.horst1@tue.nl

of the algorithm’s tuning parameters. The latter is particularly
relevant for the application of the optimization framework on
physical systems or with direct user’s involvement. Recent
applications of BO to robotic systems also investigated its
relation to the selection of rewards for reinforcement learning
algorithms (e.g., [7], [8]) as well as the automatic tuning of
MPC-based controllers (e.g., [9]–[11]).
Edwards et al. [9] devised AutoMPC; a software package to
jointly identify the underlying system dynamics and automat-
ically tune the parameters of data-driven MPC controllers for
robotics applications. AutoMPC was validated in an OpenAI
Gym environment. An example involving the application of
BO to the automatic tuning of an MPC controller on a scaled
model of a racing car is proposed in [10].
Semi-autonomous navigation under shared control requires a
seamless integration of inputs from a human operator and an
autonomous controller. To this end, MPC is an advantageous
technique as it can incorporate constraints on a robot’s ac-
tuation limits as well as predictions of future system’s states
and user’s commands. Several examples of MPC-based shared
controllers for semi-autonomous robot navigation are proposed
in the literature (e.g., [12]–[14]). In [12], the controller is
employed to blend human input and autonomous behavior to
enable the autonomous navigation of a mobile robot in a clut-
tered environment. Another example of an MPC-based shared
controller is given in the experimental study of Zarei et al. [13],
where a mobile robot could navigate semi-autonomously by
minimizing the deviations from a human input while uphold-
ing obstacle avoidance constraints. Taking one step further,
Chipalkatty et al. [14] design the control problem such that
it includes the system dynamics to minimize deviations from
a human input while safeguarding a linear state constraint.
Since the current paper aims to apply the shared controller
to a robot that resembles a mobile manipulator, we designed
the controller based on an adaptation of the perceptive MPC
architecture for mobile manipulators presented in [15].

II. SHARED CONTROL FRAMEWORK

The shared controller for robot semi-autonomous navigation
is designed to optimize the tradeoff between following user
commands as closely as possible while autonomously avoiding
obstacles. The architecture proposed in [15] has been adapted
for a navigation task under shared control by considering a
target velocity provided by the user. The block diagram of the
resulting architecture is illustrated in Fig 2.
User input is gathered from a joystick-like control module
in the form of a reference velocity vector, i.e., _xd, which
represents the velocity the robot is required to track. The
reference velocity is applied to the robot’s end-effector which,
specifically for the IGT robot, is defined as the midpoint
between the X-ray generator and detector (see Fig. 1).
A voxel map of the environment is created which is sub-
sequently converted into a Euclidean Signed Distance Field
(ESDF) [16] that reports, for every voxel, the distance to
the closest obstacle. For computational efficiency, the entire
geometry of the robot is approximated using a set of spheres

Fig. 2: The control architecture of the proposed MPC-based
shared controller.

(as depicted in Fig. 1). The number of spheres for the specific
IGT robot, ncs, was 12, all with a radius rcs = 0.4 m.
Relying on the gradient of the ESDF, it is possible to derive the
preferred direction to move each sphere away from obstacles.
The control effort, in the form of joints’ velocities, is com-

puted by solving a non-linear MPC problem whose expression
is given by the following equations:

min
x,u

α

Nc−1X

k=0

l
�
x(k),u(k)

�
+ (1� α)

NpX

k=1

ncsX

m=1

Bm

�
x (k)

�
,

(1)

s.t. x (k + 1) = x (k) + Tsf
�
x (k) ,u (k)

�
, (2)

x (0) = x0, (3)

h
�
x (k) ,u (k)

�
� 0. (4)

The state vector is defined as x(k) =
�
xe(k) q(k)

�T
with

xe(k) representing the 2D pose of the end-effector and q(k)
representing the vector of the positions of the joints. For the
IGT robot, q(k) represents the positions of the prismatic joint
q1 and the revolute joints q2 and q3 (see Fig. 1). The control
effort, u(k), is chosen as the velocity of the joints. The stage
cost in Eq. 1 includes a term to penalize the deviation of
the end-effector’s Cartesian velocity from the joystick input
provided by the user:

l
�
x(k),u(k)

�
=
Je

�
x(k)

�
u(k)� _xd(k)

2

Q , (5)

where Je is the Jacobian matrix of the robot and Q 2 R3×3 a
positive definite weight matrix. The reference input _xd(k) is
assumed constant over the prediction horizon Np. The other
term of the stage cost penalizes joint configurations that bring
the collision spheres closer to obstacles. Its expression is given
by:

Bm

�
x (k)

�
=

c1

1 + ec2(sd(x(k))−c3)
, (6)

which is taken as a function of the state vector. Here, sd(x(k))
is the signed distance of the center of each collision sphere
to the closest obstacle, and c1, c2 and c3 are scaling factors.
In this work, c3 = rcs. Individual contributions are summed
in Eq. 1 over the entire prediction horizon Np. The blending
scalar, a typical element of shared controllers that specifies the
priority between tracking user input and avoiding obstacles,
is defined as α, which is a scalar between 0 and 1. In this
study, α = 0.5, to assign equal value to the human input
and obstacle avoidance term. In our formulation, the control
horizon Nc can be different from the prediction horizon Np.
Furthermore, Eq. 2 discretizes the forward kinematics of the
system 8k 2 Np, where Ts denotes the discrete sample time

using the zero-order hold method [17]. The initial conditions
are defined in Eq. 3, while Eq. 4 contains position, velocity,
acceleration and jerk constraints on the joints of the robot
as well as the end-effector. The constraints are summed
8k 2 Np, Nc, depending on whether the constraint relies on
states x(k) or inputs u(k).
The choice of the MPC parameters for automatic tuning
depends on several factors such as the robot’s geometry and the
task’s specifications. Due to scalability issues of BO [2], [18],
it is recommended to keep the amount of tuning parameters
low. For the validation use-case, a sensitivity analysis with the
elementary effect method [19] was performed which resulted
in the selection of the following parameters; the prediction and
control horizon Np and Nc, the three elements of the Q matrix
in Eq. 5 that penalizes differences between reference end-
effector velocities and computed velocities, and the two scaling
variables of the obstacle avoidance term, i.e., c1 and c2 of
Eq. 6. To summarize, seven tuning parameters were selected,
given by � = [Np, Nc, Qx, Qy, Qθ, c1, c2]. The choice of
tuning parameters is in line with related works. For example,
selecting the individual elements of the matrix Q is quite
common practice (e.g., [20], [21]). The selection of the control
Nc and prediction horizon Np is also reported in [22].

III. BAYESIAN OPTIMIZATION FRAMEWORK

In this section, we describe the proposed setup of the
BO framework for the shared controller. For background
information on BO and its theoretical underpinning, the reader
is referred to [2], [23].
We cast the BO problem as a multi-objective constraint
optimization problem:

min
�

Jξ = nmov

nmovX

j=1

nobjX

h=1

whFhj(�),

s.t. Np � Nc,

nsucc(�) = nmov,

sd(x) � rcs.

(7)

The term � represents the vector of tunable MPC parame-
ters. we assume the objective function can be evaluated pre-
cisely only at the point �i selected for the i� th optimization
iteration [2]. The objective function is thus approximated by a
statistical surrogate model which commonly takes the form of
a Guassian Process [2], [23]. For this work, the kernel of the
Gaussian Process is chosen as a Matérn 5/2 kernel [23]. The
next sampling set, �i, is determined by maximizing the ac-
quisition function of which an analytical expression is known.
The acquisition function can take different expressions. For the
validation use-case, we opted for the Expected Improvement
(EI) [2]. The value of the objective function, Jξ, at the
sampling point �i, can be evaluated by means of experiments
in which the performance of the robot’s motion is quantified
with a set of nobj = 6 performance metrics (i.e., Fhj(�),
where h denotes the metric index and j the movement index).
The proposed analytical formulation of Fhj(�) is described in
detail in Section III-A. The relative importance of the metrics

is expressed through the weights wh. At every iteration, nmov

movements are performed with the MPC controller configured
with the current parameter set �i. At every iteration of the
optimization algorithm, the performance metrics are computed
for each movement and summed over the total number of
movements nmov . For the validation setup reported in the pa-
per, movements were performed in a simulation environment.
Executing a movement in simulation requires the formulation
of a user input which we elaborate on more extensively in
Section III-B. The full procedure is reported in Algorithm 1.
For the validation use-case, the procedure was implemented

Algorithm 1 BO procedure for shared controller tuning.

1: Define a set of nmov movements (see Section III-B)
2: � ξ0 (initialize tuning parameters)
3: for i = 0 to nmax do (optimization iterations)
4: for j = 0 to nmov do
5: Perform a movement, evaluate metrics
6: Compute objective function for iteration i (Eq. 7)
7: Update the surrogate function
8: Update the acquisition function
9: Select a new value of � by maximizing the acquisition

function
10: return � with the smallest objective function

in Matlab using the statistics and machine learning toolbox.
Simulations were performed in Simulink Simscape.

A. Metrics definition

Based on prior work on the evaluation of mobile robot
local planners [24] and pure-motion tasks of mobile robots
[25], we identified nobj = 6 metrics by which to evaluate the
performance of the MPC-based shared controller. Each metric
relates to one of three fundamental aspects for human-robot
interaction namely safety, smoothness and efficiency.
Safety is arguably one of the most important aspects since
shared control is often deployed in robots that operate in
human-populated environments. We identified two metrics to
evaluate safety, i.e., obstacle proximity and time spent close
to obstacles.
The obstacle proximity metric, denoted as dob, serves as an
indicator of safety as it represents the closest approach of the
robot to a potential collision during its movement. The metric
is calculated as the minimum distance between any link of the
robot and obstacles throughout the entire motion of the robot:

F1 : dob = min
g

n
min

m
fdg,mg

o
, 1 � g � N, 1 � m � ncs,

(8)

where g is the index of the sample, N is the total number of
samples in a movement, and m is the index of the link. For the
validation use-case, the links of the robots are approximated
with the collection of spheres, ncs, with the distance measured
from the center of each sphere.
The second safety metric, tob, quantifies the time that the robot
spends within a certain distance from the obstacles during a

movement. The metric is calculated as the fraction of time
spent with any of the links of the robot closer than a threshold
dsafe to obstacles. Its expression is given by:

F2 : tob =
P

(tb � ta)
tF

� 100%, (9)

where the subscripts a and b are the indices of timestamps
satisfying ds � dsafe , a � k � b, and ds representing the
distance between any of the links and obstacles. For the
validation use-case, we tailored dsafe to be equal to the radius
of the collision spheres rcs.
Smoothness metrics quantify the oscillations in a robot’s trajec-
tory. For shared controllers, oscillations often result from the
trade-off between reference tracking and obstacle avoidance.
We identified three smoothness metrics, i.e., end-effector path
smoothness, curvature change and velocity smoothness. The
end-effector path smoothness, fps, quantifies oscillations of
the end-effector in Cartesian space and its expression is given
by:

F3 : fps =
1
S

N−1X

g=2

k�pg+1 ��pgk
2

, (10)

where g denotes the sample, N the total number of samples,
pg is the end-effector Cartesian position at sample g and S is
the total travelled path computed as S =

PN
g=2 k�pgk which

normalizes the path smoothness over the traveled distance.
Curvature change is the second smoothness metric and it
is complementary to path smoothness. Given the linear and
angular Cartesian velocity, v(t) and ω(t), of the end-effector
the curvature equation becomes:

κ(t) =
����
ω(t)
v(t)

���� . (11)

The curvature change metric as defined in [25] is given by:

F4 : fcc =
1
S

Z tF

0

jκ′(t)j dt, (12)

where the measure is divided by the path length to normalize
for different movements.
The third smoothness metric measures velocity smoothness
and captures oscillations at the joint level. This metric is
relevant when the controller can influence multiple actuated
joints. The metric, fvs, is calculated as the zero crossing rate
of the acceleration for all joints composing the robot:

ag =
vg+1 � vg

tg+1 � tg
, (13)

F5 : fvs =
1

N � 1

N−1X

g=1

jsign(ag)� sign(ag−1)j, (14)

where vg denotes the joint linear velocity at sample g. The
joint subscript is omitted.
Efficiency relates to the computation performance of the MPC
controller and measures how fast, on average, the controller

can compute a sample. The average computation time tC is
defined as:

F6 : tC =
1
N

NX

g=1

tg+1 � tg, (15)

where t is the time required to compute the sample, g is
the sample index and N is the total number of samples. To
summarize, Eq. (8), (9), (10), (12), (14), (15) are the six
performance metrics used in this work.

B. User input representation

The evaluation of the performance metrics requires gather-
ing data about the performance of the robot during a movement
under shared control. As we rely on simulation for data collec-
tion, our challenge lies in accurately representing user inputs
to encompass a wide spectrum of scenarios, including both
typical and corner cases. For every movement, we propose
to represent user inputs as a concatenation of n velocity
vectors which are applied each for a time T/n where T is
the total time allowed to complete a movement. The velocity
vector can have different magnitudes and directions which is
what is expected from typical inputs of joystick control. The
concatenation of velocity vectors with different magnitudes
and directions allows the simulation of different acceleration
and deceleration profiles. The initial robot joints’ configuration
is assumed to be randomized for every movement which means
that for some movements the application of the velocity input
might result in a request to move towards obstacles. This is
beneficial during optimization since it replicates edge cases
that exemplify the tradeoff between following user commands
and avoiding obstacles.
For the validation use-case, we concatenated two velocity
vectors per movement and considered a maximum execution
time T of 20s. Three magnitudes were defined: k

3vmax for
k = 1, 2, 3, where vmax represents the maximum velocity
magnitude the user can request via the joystick. A simulation
environment was created to emulate rooms where IGT robots
usually operate. The environment comprises a room with two
walls and a patient table and was implemented in Simscape
Multibody. The lateral view of the simulated room is visible
in Fig 3. In the same figure, an image of an actual room is
also reported. A total of nmov = 40 different concatenation
options were generated. A topdown view of the room with
superimposed all generated movements is displayed in Fig. 4.

Fig. 3: The environment created for the simulations (left). An
image of a real operating room (right).

Fig. 4: All concatenated velocity vectors for simulation. The
first vector is in red, the second is in orange, and obstacles
are in black.

IV. EXPERIMENTAL VALIDATION

We applied the BO framework of Alg. 1 to the automatic
tuning of the MPC-based shared controller in Eq. 1 for the IGT
robot in Fig.1. The performance of the optimized controller
is compared to the performance of a baseline, hand-tuned,
controller. Furthermore, we performed a VR-based user study
to validate the generalization of the optimized controller to
user input not provided during the automatic tuning procedure.
A weighted sum of the metrics is a crucial term in the
definition of the objective function Jξ in Eq. 7. The choice of
the weights reflects the relative prioritization of the metrics and
it is a task-dependent choice. For the validation use-case, their
prioritization is reported in Table I. As mentioned in Section II,
seven parameters were selected for the optimization procedure,
i.e., � = [Np, Nc, Qx, Qy, Qθ, c1, c2]. Their values after the
application of the BO procedure are reported in Tab. II. For
comparison purposes, the values of those parameters for the
baseline, hand-tuned controller, are reported as well.

A full optimization procedure could be executed on a
computer with an Intel Core i7 10th generation processor
running at 2.7 GHz in less than 120 minutes. The performance
metrics, defined in Section III-A, were evaluated for a set of 50
movements executed with the optimized MPC parameter set
as well as with the hand-tuned set. The results are reported in
Table III.

For every metric, the collected performance values were
subject to a one-tailed t-test to assess if the observed difference
between the optimized and the nominal parameter set is
statistically significant. The optimized set returned an overall
objective function improvement of 14% with respect to the
hand-tuned controller (from 0.42 to 0.36) without introducing
any infeasible solution. Overall, the optimized set significantly
improved the curvature change metric. No other metric was

TABLE I: Overview of the metrics and their weights.

Type Metric Fhj w h

Safety Obstacle proximity dob [m] 0.15
Time spent near obstacles tob [%] 0.30

Smoothness
Path smoothness f ps [m] 0.15
Curvature change f cc [rad=m] 0.25
Velocity smoothness f vs [m=s2] 0.10

Efficiency Computation time tC [ms] 0.05

TABLE II: The baseline and optimized MPC parameters.

N p N c Q x Q y Q � c1 c2
base 25 13 1 1 1 5 20
opt. 21 5 3.047 0.62117 5.9981 7.3219 20.138

TABLE III: Performance data for 50 simulated movements.
The confidence interval is reported in brackets.

dob tob f ps f cc f vs tC

[m] [%] [m] [rad=m] [m=s2] [ms]
base 0.68 0 1:2 � 10−5 38.38 0.29 43.60

(0.05) (0) (1:6 � 10−5) (8.91) (0.05) (1.82)
opt. 0.63 0 1:1 � 10−5 19.96 0.25 50.63

(0.06) (0) (1:4 � 10−5) (4.63) (0.07) (2.26)

found to be statistically different. This result is in line with
the weights associated to the curvature change metric (see
Table II) which is the second largest after time spent near
obstacles.

A. Comparison in Virtual Reality

To validate the generalization of the optimized controller
for user inputs that were not provided during the optimization
procedure, we tested the controller performance in a VR setup
comparing the optimized controller with respect to the hand-
tuned one. A VR simulation of the IGT robot was created
which was connected to a joystick-like control module. The
control module was used to gather user input in the form of
desired velocity of the robot end-effector. Commands were
communicated to the MPC controller implemented in Matlab.
The VR simulation was realized in Unity. A two way Mat-
lab/Unity connection was established via a ROS bridge. The
environment used for the simulations during optimization (see
Fig. 3) was replicated exactly in Unity. During the experiment,
users were requested to move the end-effector of the robot
from an initial position on one side of the patient table to the
opposite side, mimicking typical usage. A visualization of the
VR experimental setup is displayed in Fig. 5. The experiment
had a within-subject design. Two variables were manipulated
during the experiment, the pair initial and final position of
the end-effector (goal) and the controller configuration (hand-
tuned or optimized). This led to a 3 (goals) x 2 (MPC
configurations) experimental design which resulted in 6 trials
per participant. A total of 25 participants, with a mean age of
38 years, took part in the user study. However, data from 3
participants were excluded due to setup errors. Approximately
73% of the participants had prior experience with the IGT

Fig. 5: The setup of the VR experiment.

Fig. 6: The end-effector path for all users with the initial
position (light blue circle) and the desired final position
(red circle). Top hand-tuned controller. Bottom optimized
controller.

robot used in the study, while 45% had prior experience with
VR. The 6 trials were presented in random order.
The resulting paths of the end-effector for all users for every
experimental condition are displayed in Fig. 6. For every
condition that configured the controller with the hand-tuned
set, none of the users was able to move the end-effector on
the other side of the table by letting the C-shaped link traverse
the tabletop (see Fig 6, top graphs). It was achievable, though,
with the optimized set (see Fig 6, bottom graphs). Verbal
user feedback provided during the experiment confirmed that
the hand-tuned shared controller was too conservative w.r.t.
repulsive actions in the vicinity of obstacles which was not
the case for the optimized set. By observing the paths obtained
from the optimized set (Fig 6, bottom graphs) one can see that
not every user achieved the goal position by traversing the
tabletop. This is likely due to the design of the experiment
itself, users that experienced the hand-tuned condition first
were biased thinking that the robot could not traverse the
tabletop and they did not try to do so in the follow-up trials.
This was also confirmed by verbal feedback from users during
the experiment.
The values of the metrics computed on the data set from
the VR experiments are reported in Table IV. Surprisingly,
a one-tail t-test shows a statistically significant improvement
in all metrics apart from time spent close to obstacles. We
can argue that the difference in performance between sim-

TABLE IV: Performance data for the VR user experiments.
The confidence interval is reported in brackets.

dob tob f ps f cc f vs tC

[m] [%] [m] [rad=m] [m=s2] [ms]
base 0.55 0 2:4 � 10−5 142.30 0.13 112.90

(0.01) (0) (3 � 10−6) (88.5) (0.02) (0.64)
opt. 0.52 0.08 2:0 � 10−5 49.11 0.22 105.30

(0.02) (0.16) (3:1 � 10−6) (30.05) (0.02) (1.46)

ulation and VR is likely due to differences in the type of
user input. Nevertheless, the optimized controller appears to
have generalized to user-requested movements that were not
provided during the optimization procedure. A problem that
emerged during VR validation is the number of infeasible
solutions encountered when solving the MPC problem. Recall
that no infeasible solutions were encountered for the simulated
movements. In VR, the optimized controller encountered an
infeasible solution on 9% of its iterations, while the baseline
controller only encountered them on 0.2% of its iterations.
During VR experiments, when infeasibility occurred, the robot
kept executing the feasible effort computed in the previous
sample and users autonomously adapted their input until a
feasible solution was found again. Nevertheless, we can argue
for the importance of reducing the number of infeasible
solutions to the minimum. A possible improvement is the
addition of real user inputs alongside simulated ones during
optimization, at the likely cost of longer optimization time.
It is also important to notice that in one trial the distance
between the robot and obstacles was less than the radius of
the collision spheres. This is an unwanted situation and further
underlines the need to improve user input representation during
optimization.
The computation time tC of the optimized controller was
reduced with respect to the baseline controller likely due to
the shorter control horizon Nc.
For the smoothness metrics, the larger improvement is seen
for the curvature change, as expected since that metric has the
largest weight in its category.

V. CONCLUSION

This paper presented a framework for the tailoring of
Bayesian optimization to the automatic tuning of MPC-based
shared controllers, including a proposal for performance met-
rics and representation of user inputs. The performance of
the tuned controller has been validated in simulation and
with a VR-based user study. Results showed a significant
performance improvement of the optimized controller w.r.t.
a hand-tuned version. While tuning in simulation allowed to
rapidly reach an optimized controller configuration, the user
study outlined further challenges for the generalization of
the results. Future work will look at enhancing the repre-
sentation of the user input during the optimization process,
possibly complementing it with data from experiments with
users. While the proposed methods effectively reduced the
performance metrics, it can be argued that other factors might
be important in shared control such as user-perceived comfort
or ergonomics. Extending the work considering an enlarged set
of metrics constitutes another interesting research direction.

REFERENCES

[1] D. A. Abbink, T. Carlson, M. Mulder, J. C. De Winter, F. Amin-
ravan, T. L. Gibo, and E. R. Boer, “A topology of shared control
systems—finding common ground in diversity,” IEEE Transactions on
Human-Machine Systems, vol. 48, no. 5, pp. 509–525, 2018.

[2] P. I. Frazier, “Bayesian optimization,” in Recent advances in optimization
and modeling of contemporary problems. Informs, 2018, pp. 255–278.

[3] F. Berkenkamp, A. Krause, and A. P. Schoellig, “Bayesian optimization
with safety constraints: safe and automatic parameter tuning in robotics,”
Machine Learning, pp. 1–35, 2021.

[4] A. Marco, F. Berkenkamp, P. Hennig, A. P. Schoellig, A. Krause,
S. Schaal, and S. Trimpe, “Virtual vs. real: Trading off simulations
and physical experiments in reinforcement learning with bayesian op-
timization,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), 2017, pp. 1557–1563.

[5] A. Marco, P. Hennig, J. Bohg, S. Schaal, and S. Trimpe, “Automatic lqr
tuning based on gaussian process global optimization,” in 2016 IEEE
international conference on robotics and automation (ICRA). IEEE,
2016, pp. 270–277.

[6] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and
A. P. Schoellig, “Safe learning in robotics: From learning-based control
to safe reinforcement learning,” Annual Review of Control, Robotics,
and Autonomous Systems, vol. 5, pp. 411–444, 2022.

[7] N. Jaquier, L. Rozo, S. Calinon, and M. Bürger, “Bayesian optimization
meets riemannian manifolds in robot learning,” in Conference on Robot
Learning. PMLR, 2020, pp. 233–246.

[8] M. Turchetta, A. Krause, and S. Trimpe, “Robust model-free reinforce-
ment learning with multi-objective bayesian optimization,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 10 702–10 708.

[9] W. Edwards, G. Tang, G. Mamakoukas, T. Murphey, and K. Hauser,
“Automatic tuning for data-driven model predictive control,” in 2021
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2021, pp. 7379–7385.

[10] L. P. Fröhlich, C. Küttel, E. Arcari, L. Hewing, M. N. Zeilinger,
and A. Carron, “Contextual tuning of model predictive control for
autonomous racing,” in 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 10 555–10 562.

[11] M. H. Yeganegi, M. Khadiv, A. Del Prete, S. A. A. Moosavian, and
L. Righetti, “Robust walking based on MPC with viability guarantees,”
IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2389–2404, 2021.

[12] J. G. Storms and D. M. Tilbury, “Blending of human and obstacle
avoidance control for a high speed mobile robot,” in 2014 American
Control Conference. IEEE, 2014, pp. 3488–3493.

[13] M. Zarei, N. Kashi, A. Kalhor, and M. Tale Masouleh, “Experimental
study on shared-control of a mobile robot via a haptic device with
an optimal velocity obstacle based receding horizon control approach,”
Journal of Intelligent & Robotic Systems, vol. 97, no. 2, pp. 357–372,
2020.

[14] R. Chipalkatty and M. Egerstedt, “Human-in-the-loop: Terminal con-
straint receding horizon control with human inputs,” in 2010 IEEE
International Conference on Robotics and Automation. IEEE, 2010,
pp. 2712–2717.

[15] J. Pankert and M. Hutter, “Perceptive model predictive control for
continuous mobile manipulation,” IEEE Robot. Autom. Lett., vol. 5,
no. 4, pp. 6177–6184, 2020.

[16] C. R. Maurer, R. Qi, and V. Raghavan, “A linear time algorithm
for computing exact euclidean distance transforms of binary images
in arbitrary dimensions,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 25, no. 2, pp. 265–270, 2003.

[17] I. D. Landau and G. Zito, Digital control systems: design, identification
and implementation. Springer, 2006, vol. 130.

[18] B. Letham, R. Calandra, A. Rai, and E. Bakshy, “Re-examining linear
embeddings for high-dimensional bayesian optimization,” Advances in
neural information processing systems, vol. 33, pp. 1546–1558, 2020.

[19] M. Binois and N. Wycoff, “A survey on high-dimensional gaussian
process modeling with application to bayesian optimization,” ACM
Transactions on Evolutionary Learning and Optimization, vol. 2, no. 2,
pp. 1–26, 2022.

[20] M. Mehndiratta, E. Camci, and E. Kayacan, “Automated tuning of
nonlinear model predictive controller by reinforcement learning,” in
2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 3016–3021.

[21] A. Gharib, D. Stenger, R. Ritschel, and R. Voßwinkel, “Multi-objective
optimization of a path-following MPC for vehicle guidance: A bayesian
optimization approach,” in 2021 European Control Conference (ECC).
IEEE, 2021, pp. 2197–2204.

[22] A. Kapnopoulos and A. Alexandridis, “A cooperative particle swarm
optimization approach for tuning an MPC-based quadrotor trajectory
tracking scheme,” Aerospace Science and Technology, vol. 127, p.
107725, 2022.

[23] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[24] J. Wen, X. Zhang, Q. Bi, Z. Pan, Y. Feng, J. Yuan, and Y. Fang,
“Mrpb 1.0: A unified benchmark for the evaluation of mobile robot
local planning approaches,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2021, pp. 8238–8244.

[25] D. Calisi and D. Nardi, “Performance evaluation of pure-motion tasks
for mobile robots with respect to world models,” Autonomous Robots,
vol. 27, no. 4, pp. 465–481, 2009.

	Introduction
	Shared control framework
	Bayesian optimization framework
	Metrics definition
	User input representation

	Experimental validation
	Comparison in Virtual Reality

	Conclusion
	References

