Liquid-solid mass transfer to a rotating mesh electrode in a rotor-stator spinning disc configuration

Citation for published version (APA):

DOI:
10.1016/j.ijheatmasstransfer.2016.08.076

Document status and date:
Published: 01/01/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication
Liquid–solid mass transfer to a rotating mesh electrode in a rotor–stator spinning disc configuration

P. Granados Mendoza a, S.J.C. Weusten a, M.T. de Groot b, J.T.F. Keurentjes a, J.C. Schouten a, J. van der Schaaf a,b,*

a Eindhoven University of Technology, Eindhoven, The Netherlands
b Akzo Nobel Industrial Chemicals B.V., Amsterdam, The Netherlands

Abstract

Here we present the mass transfer coefficient for liquid–solid mass transfer to a rotating mesh electrode and a smooth flat disc electrode in a rotor–stator spinning disc reactor. The mass transfer coefficients are measured with the limiting current density technique. Additionally, the torque is measured and the energy dissipation rate in the system is calculated. The volumetric mass transfer coefficient of the mesh electrode increases a factor 5 compared to that of the flat disc electrode at virtually equal energy dissipation rates. Due to the characteristics of the mesh, the mesh electrode offers 2.77 times higher electrode area than the flat disc. The mass transfer coefficients measured for the rotating mesh electrode are a factor 1.74 higher compared to the flat disc. Average Sherwood numbers are reported and a correlation is presented that predicts mass transfer rates of rotating meshes in rotor–stator spinning disc reactor configurations.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Electrochemical processes play an important role in the chemical industry, for instance in the production of important chemicals such as chlorine, sodium hydroxide, sodium chlorate, hydrogen, oxygen, and aluminium among others [1,2]. Due to the intrinsic characteristic of being an energy-intensive industry, there is a continuous drive for process improvement in order to increase the production rate with minimal power consumption. By increasing the current density of an electrochemical process, the rate of production proportionally increases. One of the challenges of operating at high current densities is that the rate at which reactants and/or products are transported to/from the electrode becomes the limiting step. When the limiting current density is reached, the rate of reaction can no longer be compensated with the rate of mass transport to/from the electrode and the process becomes mass transfer controlled. A further increase in the current density leads to undesired reactions at the electrodes and higher power consumption due to a steep increase in the cell potential. It is therefore desired to increase the mass transfer rate in electrochemical reactors. An option for this intensification is the use of high shear forces that promote a rapid mixing of fluids and a high surface renewal rate. A type of rotating equipment that uses these principles is the rotor–stator spinning disc reactor (RS-SDR) [3].

This reactor consists of a rotating disc in a cylindrical housing, with a typical gap distance between the rotor and the stator in the order of 1 mm. The high velocity gradient between the rotor and the stator and high shear forces cause high turbulence that intensifies the gas–liquid [4–6], liquid–liquid [7] and liquid–solid [8] mass transfer, as well as heat transfer [9,10]. Moreover, due to the small reactor volume, the RS-SDR offers a fast start-up and shut down which is beneficial when intermittent production is required, e.g. at peak electricity production by wind or solar energy.

Mesh electrodes are used in industrial cells, for instance in zero gap cell configurations [11,12], where the electrode and membrane are in close contact and the mesh electrodes allow the contact with the electrolyte. Furthermore mesh electrodes offer the advantage of promoting turbulence, higher surface area and facilitating gas removal [13]. Rotating mesh electrodes have been previously studied by Sedahmed et al. [14]. These authors reported higher mass transfer coefficients for the rotating mesh than the predictions for the free disc in laminar regime. The flow pattern for the configuration used by Sedahmed et al. resembles that of a free disc, where the gap between the rotating disc and the bottom stator is very large. Alternatively, the reactor volume can be significantly reduced by using the RS-SDR configuration previously described, where the rotating disc electrode is placed at a small distance from...
the stator which is then used as counter electrode. In practical applications the RS-SDR configuration exhibits a lower ohmic drop and therefore lower cell voltage due to the small gap distance between electrodes. This configuration resembles that of the pump and therefore lower cell voltage due to the small gap distance the stator which is then used as counter electrode. In practical application the type:

Therefore, this paper presents liquid–solid mass transfer coefficients (kLS) of a rotating mesh electrode in a RS-SDR configuration determined by measuring the limiting current density [17,18]. Furthermore, mass transfer coefficients for a flat smooth disc in the RS-SDR configuration are also reported. The values of mass transfer coefficients presented here correspond to the average values over the entire surface of the rotating mesh or rotating disc. The system investigated here corresponds to Schmidt numbers much larger than unity, for which several empirical and semi-empirical mass transfer equations have been reported. In Table 1 we present some examples of correlations reported in literature, though the list is not exhaustive. For free discs, an overview of the available equations can be found in [19].

The results obtained in this study are also reported in the form of a Sherwood correlation as a function of the Reynolds number of the type:

\[
Sh = a Re^b Sc^{0.33}
\]

(1)

where \(Sh = k_{LS}R/D\) is the Sherwood number, \(Re = \omega R^2/\nu\) is the rotational Reynolds number and \(Sc = \nu/D\) is the Schmidt number with \(k_{LS}\) being the mass transfer coefficient, \(R\) the disc radius, \(D\) the diffusion coefficient, \(\omega\) the rotational speed, \(\nu\) the kinematic viscosity, \(a\) and \(b\) are fitting parameters.

2. Methodology

2.1. Limiting current density method

The mass transfer coefficient was measured using the limiting current density method. When the rate of reaction is so high that the concentration at the electrode becomes zero, the limiting current density \(i_L\) is reached and the rate of reaction can be expressed by:

\[
\frac{i_L}{nF} = \frac{D}{\delta} \frac{C}{k_{LS}C} = k_{LS}C
\]

(2)

where \(i_L\) is the limiting current density, \(n\) is the number of electrons transferred, \(F\) is the Faraday constant, \(D\) is the diffusion coefficient, \(\delta\)
is the thickness of the diffusion layer, C^* is the concentration of the electroactive species at the bulk, and k_{ls} is the mass transfer coefficient. In a current vs potential plot, the limiting current density results in a plateau of constant current for a certain potential range. Therefore a direct measurement of the mass transfer coefficient is possible by determining the limiting current density plateau from linear sweep voltammograms and knowing the bulk concentration. Further details of this method can be found elsewhere [17,18]. In the present study the limiting current density for the reduction of hexachloroiridate (IV) [20] is investigated:

$$\text{IrCl}_6^{2-} + e^- \rightarrow \text{IrCl}_6^{3-} \quad (3)$$

2.2. Experimental setup

Fig. 1 shows a schematic representation of the experimental setup consisting of the rotor–stator spinning disc reactor (RS-SDR) connected to a PGSTAT30 potentiostat/galvanostat (Autolab). The RS-SDR consists of an acrylic (PMMA) housing with a disc of radius $R = 0.065\text{ m}$ mounted on a rotating shaft. The rotating disc was placed at a gap distance $h = 1\text{ mm}$ from the top and bottom stators forming a top and a bottom cavity. For this experimental setup the rotating disc was used as a working electrode (WE) which is the cathode in this case, and the stator as counter electrode (CE) that corresponds to the anode.

Two WE configurations were used: a smooth flat disc and a woven mesh. For the flat disc, the WE was a nickel disc (99+% purity, Alfa Aesar) of size $d_w = 100\text{ mm}$, wire diameter $d_w = 0.1\text{ mm}$ and opening size $d_o = 0.15\text{ mm}$ was used (see Fig. 2). This mesh was mounted on a PMMA disc of $R = 0.065\text{ m}$ and was secured using thin polyester thread through small holes (0.2 mm) on the disc. After securing the mesh, the small holes on the disc were closed with epoxy resin to prevent liquid penetrating through them. In the centre of the disc a small Ni insert was placed in order to allow the electrical connection between the Ni mesh and the connecting spring/wire in the same way as the disc. The disc and mesh-disc were mounted on the shaft using small insulating plastic screws. The CE consisted of a nickel disc of $R = 0.065\text{ m}$ and 2 mm thickness mounted flush on the bottom stator using epoxy resin to glue both parts. A Ni rod protruding to the exterior of the PMMA bottom stator and attached to the CE served for the connection to the potentiostat/galvanostat.

The flat disc WE and CE were polished using a STRUERS grinding/polishing machine with alumina slurries down to 0.5 μm, rinsed with demineralized water and sonicated to remove alumina rests. To remove oxides H_2 gas was evolved at 10 mA/cm2 for 15 min for both flat disc and mesh disc WE’s. No further pretreatment was performed for the mesh electrode.

A peristaltic pump Masterflex-77201-60 was used to circulate the electrolyte through the reactor with flowrates up to 10 ml/s. The inlet of the liquid is from the top of the rotating cavity at the shaft as depicted in Fig. 1. The liquid then flows radially outwards through the top cavity and then radially inwards through the bottom cavity. This bottom cavity corresponds to the WE-CE gap where the electrochemical processes occur. The liquid exits the reactor through a hole in the centre of the stator. The exit line of the electrolyte serves also for connecting to a Ag/AgCl reference electrode. The electrolyte vessel allows for the recirculation of the liquid. Prior to the experiments the electrolyte was deaerated with argon flushing for 30 min. During the measurements the Ar flow was kept above the liquid level to prevent oxygen from air entering the reactor.

Electrochemical measurements were performed using the AUTOLAB software NOVA. This software was additionally used to remotely control the RS-SDR rotational speed by connecting the reactor motor to the analog voltage input/output ports of the potentiostat/galvanostat. During the experiments the rotational speed ω was varied between 0 and 132 rad/s. Records of the torque of the RS-SDR were also taken in order to estimate the energy dissipation. All experiments were performed at room temperature of 20 °C.

Electrolytes were prepared in demineralized water and 0.5 M KNO$_3$ (Sigma Aldrich) was used as supporting electrolyte. The concentration of the redox pair was 0.3 and 3 mM of hexachloroiridate (IV) and (III) respectively (Alfa Aesar). Electrolytes were stored in brown bottles to prevent decomposition. Electrolyte concentrations were verified by UV–Vis spectroscopy. Calibration curves and details on the UV–Vis measurements are shown in the Appendix A.

Electrolyte density and viscosity were obtained from reported literature [21]. The diffusion coefficient was obtained by measuring the limiting current density of hexachloroiridate (IV) over a small rotating disc electrode (RDE) of $R = 0.0025\text{ m}$. Details on the methodology can be found elsewhere [22]. These measure-
mments were carried out in a typical three-electrode cell. The WE was a nickel disc embedded in an insulating Teflon holder (Pine Instruments), the CE was a platinum wire and a Ag/AgCl electrode was used as RE. Electrode pretreatment and electrolyte concentration were the same as those described before.

3. Results and discussion

3.1. Diffusion coefficient of hexachloroiridate

According to the derivation of Levich [23] the diffusion coefficient can be experimentally obtained by determining the dependence of the limiting current density \(i_L\) on the rotational speed of a rotating disc electrode in laminar regime and free disc configuration. The Levich equation [23] is an analytical equation that describes this relationship and for a one-electron transfer reaction like the one investigated here, it can be written as:

\[
\frac{i_L}{C} = 0.620F\nu^{-1/6}D^{2/3}G^{1/2}
\]

(4)

At the small radius of the RDE used here and for a wide range of rotational speeds (0 and 314 rad/s used in this case) the RDE is in the laminar regime where the Levich Eq. (4) is applicable [18] and the diffusion coefficient can be directly determined. Fig. 3 shows the obtained experimental results for the reduction of hexachloroiridate (IV). The experimental data was fitted to Eq. (4) and the results are in good agreement with the theoretical predictions. The resulting diffusion coefficient is \(D = 8.46 \times 10^{-10} \text{ m}^2/\text{s}\). Petrovic reported a diffusion coefficient of 8.93 \(10^{-10} \text{ m}^2/\text{s}\) for the reduction current can be determined. The measurements of the diffusion layer thickness. The measurements of the mass transfer coefficients are obtained from the current plateaus of Linear Sweep Voltammograms as a function of the rotational speed as shown in Fig. 4. As shown in this figure, well-defined current plateaus were observed from which the limiting current can be determined. The measurements of the \(k_{LS}\) presented hereafter correspond to the average of the current measured in the range of \(-0.2\) and \(-0.4 \text{ V}\).

The obtained \(k_{LS}\) values are shown in Fig. 5 for both flat disc and mesh electrodes as a function of the rotational speed. For both cases an increase in the \(k_{LS}\) with increasing \(\omega\) is observed. An increase in the rotational speed from \(\omega = 0\) to 132 rad/s results in
an increase of \(k_{LS} \) from \(5.92 \times 10^{-6} \) to \(1.16 \times 10^{-4} \) \(m^3 m^{-2} s^{-1} \) for the flat disc. For all rotational speeds, higher values of \(k_{LS} \) are obtained for the rotating mesh electrode compared to those obtained for flat disc. At the highest rotational speed measured in these experiments of \(\omega = 132 \) rad/s (corresponding to a Reynolds number of \(Re = 6.72 \times 10^5 \)) the mass transfer coefficient for the rotating mesh electrode is \(k_{LS} = 2.02 \times 10^{-4} \) \(m^3 m^{-2} s^{-1} \) and for the rotating flat disc \(k_{LS} = 1.16 \times 10^{-4} \) \(m^3 m^{-2} s^{-1} \). The higher \(k_{LS} \) values obtained for the rotating mesh electrode are attributed to a higher degree of turbulence and surface renewal compared to the flat disc. The mesh acts as a turbulence promoter distorting the fluid boundary layers and promoting the formation of eddies at the electrode surface.

The results obtained here can be compared to those obtained by Sedahmed et al. [14] for rotating meshes in free disc configuration. The mass transfer coefficients reported by Sedahmed et al. [14] at \(Re = 3.4 \times 10^5 \) range between \(k_{LS, Sedahmed} = 1.3 \times 10^{-4} \) and \(3.7 \times 10^{-4} \) \(m^3 m^{-2} s^{-1} \) depending on the mesh type used. The woven meshes used by Sedahmed et al. ranged in wire diameter \(d_w \) between 0.27 to 0.71 mm in contrast to 0.1 mm used here. The size of the opening is also significantly larger for Sedahmed’s work where \(d_w \) ranged between 0.59 and 1.86 mm compared to 0.15 mm used in the present work.

The performance of the reactor is not only given by the mass transfer coefficient \(k_{LS} \) but more importantly by the volumetric mass transfer coefficient represented by the product of the mass transfer coefficient \(k_{LS} \) and the liquid solid interfacial area per unit volume of reactor \(a_{LS} \). The reactor volume in this case is \(2.8 \times 10^{-3} \) \(m^3 \) resulting in \(a_{LSD, disc} = 477 \) \(m^{-2} \) \(m^{-3} \) and \(a_{LSD, mesh} = 1322 \) \(m^{-2} \) \(m^{-3} \) for the flat disc and the mesh, respectively. The \(k_{LS} a_{LS} \) values are plotted as a function of Reynolds number in Fig. 6 where it can be observed that for the highest rotational speed (\(\omega = 132 \) rad/s) the volumetric mass transfer coefficient for the mesh is ~5 times higher for the mesh than for the disc. This shows evidently one of the benefits of using a rotating mesh in RS-SDR configuration for the intensification of chemical and electrochemical processes.

3.3. Mass transfer correlations

From the measured mass transfer coefficients, the corresponding \(Sh \) numbers were calculated and the data was fitted to obtain correlations as a function of the \(Re \) number. Table 1 presents a summary of the available mass transfer correlations including those proposed here.

Fig. 7a shows the results for the flat disc where two regions can be distinguished: (1) a laminar region at \(Re < 2.2 \times 10^5 \) and 2) a transition to turbulent region at \(Re > 2.2 \times 10^5 \). A power law model of the form \(Sh = \alpha Re^{0.5} \) is used to fit the experimental \(Sh \) and to obtain the mass transfer correlations for these two regions:

\[
Sh = 0.799Re^{0.492}Sc^{0.33} \quad \text{for} \quad 5.89 \times 10^3 < Re < 2.24 \times 10^5 \quad \text{(11)}
\]

\[
Sh = 7.27 \times 10^{-4}Re^{1.055}Sc^{0.33} \quad \text{for} \quad 2.24 \times 10^5 < Re < 6.72 \times 10^5 \quad \text{(12)}
\]

The experimental results and the fitted curves are shown in Fig. 7a. The laminar correlations of Levich [23] and the turbulent correlation of Daguenet [26] for free discs are also plotted in Fig. 7a. For \(Re < 2.2 \times 10^5 \) the proportionality of \(ShRe^{0.492} \) is in line with the predictions for rotating discs in the laminar regime with \(ShRe^{0.5} \) according to Levich [23] for free discs and Cavalcanti et al. [27] for rotor–stator configurations (Eqs. (6) and (9), respectively). The values of \(Sh \) obtained here are also close to the values predicted by the correlation of Levich (Eq. (6)). Similar dependencies have been reported for the heat transfer coefficient for the fluid-rotor heat transfer in a flow configuration similar to the one studied here [10]. The proportionality of \(ShRe^{1.055} \) for \(Re > 2.2 \times 10^5 \) can be interpreted as a transition region. The onset of transition from
laminar to turbulent flow observed here is in accordance with the reported literature for rotor–stator systems where it at \(Re < 2\times10^4 \) [28,29]. The turbulent regime is fully developed at the rim of the disc, but at lower disc radii the regime is still in transition. This has been previously reported by Owen et al. [29] and Meeuwsse et al. [8]. This explains the higher exponent of \(Re \) found here, i.e. 1.055 compared to the expected exponent 0.9 typical for rotating discs in the turbulent regime at high Sc numbers [26]. Typically in the transition region, the Sh number grows faster than in fully developed turbulent flow [19,29]. It must be noted that for lower Sc numbers, for instance for mass transfer measurements using the naphthalene sublimation technique for which the Schmidt number is in the range of 2.28–2.5, the exponent of the \(Re \) number is 0.8 [24]. Similarly for heat transfer measurements in air, with Prandtl numbers close to unity, the exponent of the \(Re \) number is 0.8 [19,29]. The correlations (6) and (7) are applicable only for the range of \(Re \) numbers indicated. At higher \(Re \) numbers it is expected that the Sh number for a flat disc will approach the predictions of Daguenet [26] for a free disc in turbulent regime.

For the case of the rotating mesh electrode a power law model is also used to obtain a mass transfer correlation. In this case, no transition between laminar and turbulent was observed as in the case of the flat disc. The obtained correlation for the mesh electrode is:

\[
Sh = 0.892Re^{0.57}Sc^{0.33} \quad \text{for} \quad 5.89 \times 10^3 < Re < 6.72 \times 10^5 \quad (14)
\]

Fig. 7b shows a comparison of the experimental results obtained with the mesh in the RS-SDR and the correlation of Daguenet [26] for free discs in the turbulent regime. It can be observed that significantly higher Sh numbers are obtained with the mesh in the RS-SDR compared to the free disc. This is the case even for low rotations, where for instance at \(Re = 1.5 \times 10^5 \) (\(\omega = 32 \text{ rad/s} \)) the Sh number is increased from \(Sh_{\text{free-disc}} = 0.35 \times 10^3 \) for a free disc in the turbulent regime to \(Sh_{\text{mesh-RS-SDR}} = 9.95 \times 10^4 \) for the rotating mesh in the RS-SDR. For the case of a rotating mesh in a free disc configuration, Sedahmed et al. [14] found a proportionality of \(Sh \propto \omega^{0.5} \) for \(Re \) between \(5.25 \times 10^3 \) and \(3.40 \times 10^4 \) similar to the proportionality \(Sh \propto \omega^{0.5} \) found here. The proportionality of \(Re^{0.5} \) found by Sedahmed and Re0.57 found here for the rotating mesh resembles the proportionality \(Re^{0.5} \) found for flat discs in laminar regime, suggesting that a similar mass transport mechanism occurs. For the case of a flat disc in laminar regime the convective flow towards the disc increases the radial outflow that increases with radius, consequently there is a convective azimuthal flow towards the disc. This flow significantly increases the mass transfer towards the disc and leads to the \(Re^{0.5} \) proportionality. In the case of the rotating mesh, the open structure of increases the convective flow even more, leading to higher mass transfer and maintaining the proportionality of \(Re^{0.5} \).

The correlation presented by Sedahmed et al. [14] is also a function of the ratio between the mesh radius \(R \) and the wire diameter \(d_w \) (\(R/d_w \)), as seen in equation (13). In the present study only one mesh type is used and therefore correlations as a function of the wire diameter are not attempted. The range of ratio of mesh radius and wire diameter used by Sedahmed et al. is \(35.7 < R/d_w < 92.6 \) whereas for the present work this results in \(R/d_w = 650 \) which is significantly different. Calculating using Sedahmed’s correlation (Eq. (13)) for \(Re = 6.72 \times 10^5 \) and the mesh characteristics of this study (\(R/d_w = 650 \)), the Sherwood number predicted is \(Sh = 5.92 \times 10^4 \) compared to \(Sh = 1.99 \times 10^4 \) obtained experimentally (Fig. 7b). Using Sedahmed’s correlation for \(Re = 6.72 \times 10^5 \) and a maximum \(R/d_w \) ratio used by the authors (\(R/d_w = 92.6 \)) [14], a Sherwood number of \(Sh = 2.23 \times 10^4 \) is obtained, which is closer to the experimental value obtained here (see Fig. 7b).

3.4. Energy dissipation

The rotational energy dissipation rate \(E_{dr} \) of the RS-SDR is calculated from the torque \(\tau \) exerted on the rotor which is directly measured by the control interface of the RS-SDR and is given by:

\[
E_{dr} = \omega(\tau - t_0) \quad (15)
\]

where \(\tau \) is the torque measured while the reactor is in operation, i.e. with the electrolyte flowing through, and \(t_0 \) is the torque of the reactor while running idle, i.e. without fluid. Results are shown in Fig. 8 where it can be observed that the energy dissipation rate for the flat disc and the mesh disc are in the same order of magnitude and practically the same for \(Re < 6 \times 10^2 \). At higher Reynolds numbers, \(E_{dr} \) for the mesh disc is slightly higher compared to the flat disc, being \(E_{dr,\text{mesh-disc}} = 18.8 \text{ W} \) for the mesh disc compared to \(E_{dr,\text{flat-disc}} = 16.4 \text{ W} \) for the flat disc at the highest \(Re \) measured (\(Re = 7.8 \times 10^3 \)) corresponding to a rotational speed of \(\omega = 157 \text{ rad/s} \). These results show that the increase in energy dissipation rate by using a rotating mesh in a RS-SDR is not significant compared to the energy dissipation rate for a rotating flat disc. This means that by using a rotating mesh in a RS-SDR one can obtain significantly higher \(k_{j,\text{dia}} \) (Fig. 6) than the flat disc at virtually the same energy dissipation rate (Fig. 8).

The obtained results of the energy dissipation rate are fitted to a power law model as a function of the Reynolds number and the results are given by the following equations for the mesh disc and for the flat disc respectively:

Fig. 7. Sherwood number as a function of the Reynolds number for (a) a flat disc and (b) a mesh disc, both in a RS-SDR configuration. The data markers correspond to obtained experimental data. The lines correspond to the power law fitting shown in Eqs. (11)-(14).
which leads to lower ohmic drop compared to free discs where the distance between electrodes is significantly larger. These results show the potential of the RS-SDR configuration for the intensification of chemical and electrochemical processes.

Acknowledgements

This project is funded by the Action Plan Process Intensification of the Dutch Ministry of Economic Affairs (project PI-00-04). The authors acknowledge A. Colau for his assistance in the preparative experimental work. Also, the authors acknowledge M.T.M. Koper, E. Perez Gallent and I.D. Ledezma Yanez from the Leiden Institute of Chemistry, Leiden University, for their assistance with the RDE measurements.

Appendix A. Concentration determination via UV–Vis spectrophotometry

Fig. A.1 shows the UV–Vis spectrum of hexachloroiridate (III) and (IV) in the concentration range used in this study. For the redox species of interest, i.e. the hexachloroiridate (IV), peaks are observed at 415 and 486 nm. A calibration curve was made for each species from which the concentrations could be obtained.

Appendix B. Calculation of the mesh electrode area

A formula is derived to calculate the area of the mesh electrode based on its geometry and dimensions. The mesh used in this study is a plain weaved mesh as depicted in Fig. 2. We assume that the wires are cylinders of diameter \(d_w\). The mesh design consists of woven wires that cause a curvature of the cylinders as they are woven over and under the other cylinders. This woven curvature is approximated by a triangular wave as shown in Fig. 2. To correct for the overlap between mesh wires in the junctions, \(0.5 \times d_w\) is subtracted from the horizontal length \(d_m + d_w\). The area of one mesh unit can then be calculated and multiplied by the number of units in the mesh \(n_m\). The mesh area is then related to the geometrical area and this ratio becomes:

\[
\frac{A_{\text{mesh}}}{A_{\text{disc}}} = 0.0031 \pi d_w n_m \sqrt{(0.5d_w + d_m)^2 + (2d_w)^2}
\]

(18)

The value of \(n_m\) is also known as the mesh size and conventionally it is given by the supplier in units/in\(^2\). The numerical factor in Eq. (18) accounts for the conversion of \(n_m\) to SI units, thus the mesh size in units/in\(^2\) should be used directly for calculations in Eq. (18). Note
that d_w and d_a are given in millimeters in the above formula. For this study, the mesh type used is a woven mesh of $n_{\text{w}} = 100$ units/in² with wire diameter $d_w = 0.1$ mm and opening area $d_a = 0.1524$ mm. The resulting ratio is calculated as:

$$\frac{A_{\text{mesh}}}{A_{\text{disc}}} = \frac{0.0031 \times \pi \times 0.1 \times 100^2}{\sqrt{(0.5 \times 0.1 + 0.1524)^2 + (2 \times 0.1)^2}} = 2.77$$

Thus, for any given geometric area, the area of the mesh electrode is 2.77 times larger.

References

