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Abstract

In this paper methods from di�erential algebra are used to study
the structural identi�ability of biological models expressed in state�
space form and with rational polynomial structure
 The focus is on the
examples and on e�cient� automatic methods to test identi�ability for
various input�output experiments
 Di�erential algebra is coupled with
Gr�obner basis� Lie derivatives and the Taylor series expansion in order
to obtain e�cient algorithms
 Two algorithms are discussed in details

In particular an upper bound on the number of derivatives needed for
the Taylor series approach is given
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� Introduction

In this paper we show that di�erential algebra techniques are useful for the
structural identi�ability analysis of a large class of biological models� with
non�zero input and time�dependent parameters� We consider state�space
models de�ned by the state equations��

�
x��t� p� 	 f�x�t� p�� u�t�� p�
y�t� p� 	 g�x�t� p�� p�
x�
� p� 	 x��p�

���

where x�t� p� � Rn� u�t� � Rs and y�t� p� � Rm are the state variables� the
input functions and the observation functions respectively� and � indicates
the vector of �rst derivatives� The entries of the vectors f and g are poly�
nomials or fractions of polynomials in x� u and p� In general the parameter
vector p is assumed to belong to an open set � � Rl� and the aim is to
determine whether the parameter vector p is structurally identi�able� that
is whether with perfect input�output data from a speci�ed experiment the
parameter vector can be uniquely determined� As we deal with rational
polynomials a statement of identi�ability true on an open set is valid on all
Rl except for the set of Lebesgue measure zero where the rational polyno�
mials are not de�ned� The techniques used in identi�ability testing di�er
depending� for example� on whether the model output is linear with respect
to the input� In the literature several approaches are established for linear
systems� see �
�� and ���� for a review� In contrast relatively few methods
are available for the identi�ability analysis of non�linear models �
� 
�� 
���

The di�erential algebra method considered here requires that all the
functions involved are polynomial or rational polynomial in form and deals
with both linear and non�linear models� Di�erential algebra has already
proved to be an interesting and useful tool in the study of identi�ability
�see ��� ��� 
��� when applied alone or together with techniques like the simi�
larity transformation approach and the Taylor series method� The technique
requires that the input function u is di�erentiable while other methods may
only require that it is piecewise constant or measurable� This is a drawback
of the di�erential algebra method which on other hand can handle models
that proved too di�cult for other approaches� An example is the model in
Section � which could not be solved with the Taylor series method �see ��
���

A major advantage of the di�erential algebra method is that� once the
model to be studied is presented in polynomial form� the study of identi�a�
bility is an automatic procedure limited only by the power of the computer�
The di�erential algebra method returns polynomial di�erential equations in
the unknown parameters and the identi�able quantities which de�ne alge�
braic varieties�

The starting point is to transform a rational polynomial model to one
in pure polynomial form that is equivalent from a structural identi�ability






point of view� Initially we assume that in Model ��� g is a polynomial in

the indicated variables and fi 	
ri�x� p� u�

q�x� p� u�
� where q is a polynomial� Then

we can write xn���t� p� 	 q���x� p� u�� The state�space vector �x�� � � � � xn���
satis�es a system of di�erential equations and thus Model ��� can be written
in a polynomial form as

��������
�������

x��t� p� 	 xn���t� p�r�x�t� p�� u�t�� p�

x�n���t� p� 	 �xn���t� p��
Pn

i��

�q

�xi
xn���t� p�ri�x�t� p�� u�t�� p�

y�t� p� 	 g�x�t� p�� p�
x�
� p� 	 x��p�
xn���
� p� 	 q���x�
�� p� u��

�
�

For the equivalence of Model ��� and Model �
� from a structural identi�a�

bility viewpoint see Vajda �
��� Note that the general case of fi 	
ri�x� p� u�

qi�x� p� u�
can be dealt similarly to the case of one common denominator by reducing
the model to a common denominator or introducing more than one variable
of the type xn���

In Section 
 the relevant notions from di�erential algebra are introduced�
Section � describes the di�erential algebra method for identi�ability� Sec�
tions � and � present two algorithms for the determination of the identi�
�ability of Model ��� expressed in form �
�� The second algorithm allows
us to determine an upper�bound for the number of derivatives necessary for
the identi�ability analysis with the Taylor series approach� Section � where
various examples are presented is the main section of this paper�

� Characteristic sets

We �rst introduce some notions leading to the de�nition of characteristic
sets� crucial to the di�erential algebra approach to structural identi�ability�
References are ���� ��� ��� 

�� The aim of this application of di�erential
algebra is to determine a basis of the set of �rational� polynomial functions of
the parameters which are indenti�able by a given input�output experiment
and to deduce model iden�ability from such a basis�

De�nition � �� The di�erential ring R fx�� � � � � xng is the set of all

polynomials in the in�nite set of indeterminates xi� x
�
i� � � � � x

�m�
i � � � �

for i 	 �� � � � � n� where x
�m�
i represents the m�th derivative of xi with

respect to t� that is
��m�xi

�t�m�
and the coe�cients of the polynomials are

real numbers�

�� A di�erential polynomial is an element of R fx�� � � � � xng�

�



�� A di�erential ideal is a subset I of R fx�� � � � � xng such that

	i
 f � g � I for all f� g � I �

	ii
 fg � I for all f � I and g � R fx�� � � � � xng�

	iii
 f �m� � I for all f � I�

An example is the ring R�x�� � � � � xn� of all polynomials in the indeter�
minates x�� � � � � xn with coe�cients in the �eld R� It is a di�erential ring
with the trivial derivation that maps a polynomial to zero�

In this paper the elements of Rfx�� � � � � xng are called di�erential polyno�

mials and the elements of R�x�� x
�
�� � � � � x

�l��
� � � � � � xn� x

�
n� � � � � x

�ln�
n � are called

polynomials� where l�� � � � � ln are non�negative integers�
The di�erential ring Rfxg represents the set of all polynomial functions

in the state variable x�t� and its derivatives with coe�cients in R� For ex�
ample the polynomial x��� �

�x
���x is in Rfxg and an example of di�erential

ideal in Rfxg is
nP

i�� �ix
i �
P

j�� �jx
�j� � �i� �j � R

o
�

As an example� the state�space model �see Vajda �
���

��
�

x�� 	 p�x
�
� � p�x�x�

x�� 	 p�x
�
� � p	x�x�

y 	 x�

���

corresponds to the ideal of Rfx�� x�� yg generated by the following three
di�erential polynomials

x�� � p�x
�
� � p�x�x��

x�� � p�x
�
� � p	x�x��

y � x�

���

where the parameters p�� p�� p�� p	 are in R� In order to consider unknown
constant parameters we might need to extend the coe�cient �eld to the
set of all rational polynomials in the parameters� namely as a coe�cient
�eld we consider R�p�� p�� p�� p	�� At times it is convenient to consider the
parameters as di�erential indeterminates and the di�erential polynomials p�i
are added to indicate that p is an unknown constant� We shall come back
to this�

De�nition � A ranking of �x�� � � � � xn� is a total ordering on the set of all

derivatives x
�m�
i such that

	i
 x
�m�
i � x

�m�k�
i and

	ii
 x
�m�
i � x

�l�
j implies x

�m�k�
i � x

�l�k�
j

for all i� j 	 �� � � � � n and for m� l� k non�negative integers�

�



Note that a ranking of �x�� � � � � xn� induces in a natural way a ranking or

term�ordering over the monomials of R�x�� x�
�� � � � � x

�l��
� � � � � � xn� xn

�� � � � � x
�ln�
n ��

Namely for v� w monomials in R�x�� x�
�� � � � � x

�l��
� � � � � � xn� xn

�� � � � � x
�ln�
n �� v

is smaller than w if v is smaller than w with respect to the ranking of
�x�� � � � � xn�� We use the same notation for the two rankings� in the di�er�
ential framework and in the polynomial framework�

In this paper we consider two types of ranking�

�� x � y stands for the ranking

x� � � � � � xn � y� � � � � � ym � x�� � � � � � x�n � y�� � � � �


� x �� y stands for the ranking

x� � � � � � xn � x�� � � � � � y� � � � � � ym � y�� � � � � �

For example in Rfx�� x�� yg� if we assume that x� is smaller than x� then
the ranking x � y is

x� � x� � y � x�� � x�� � y� � � � � � x
�l�
� � x

�l�
� � y�l� � � �

and the ranking x �� y is

x� � x� � x�� � x�� � � � � � x
�l�
� � x

�l�
� � � � � � y � y� � � � � � y�l� � � �

De�nition � �� Given a ranking of �x�� � � � � xn� and a di�erential poly�

nomial f in Rfx�� � � � � xng� the leader v of f is the largest derivative

in f with respect to the ranking�

�� Let d be the degree of v in f � The rank of f is vd and the di�erential

polynomial f can be written as a polynomial in v� i�e� f 	
Pd

i�� Iiv
i

where the Ii�s are di�erential polynomials�

With respect to both rankings � and �� the leaders of the polynomials
in Model ��� are x��� x

�
� and y� The degree of both leaders is �� In particular

the rank and the leader coincide�

De�nition � Let f and g be di�erential polynomials and let v and d be as

in De�nition � above� then

�� g is said to be partially reduced with respect to f if no proper derivative

of v appears in g�

�� g is said to be reduced with respect to f if g is partially reduced with

respect to f and its degree in v is less than d�

�



�� A set of di�erential polynomials A is called autoreduced if A�R 	 �
and each element of A is reduced with respect to all the other elements�

For example the polynomial y � x� is reduced with respect to the �rst
two polynomials in Model ����

De�nition � An autoreduced subset A of a set E of polynomials is called

a characteristic set if E does not contain any non�zero element reduced with

respect to A�

The three polynomials in ��� form a characteristic set of the di�erential
ideal they generate with respect to the ranking x � y�

Characteristic sets can be computed in Maple with the package diffalg

in the di�erential case ��� and with the package charset in the non�di�erential
case �
��� We prefer to use the charset package as it turns out to be faster
for our kind of computation� Alternative algorithms are proposed in ���
and �����

� Identi�ability and Di�erential Algebra

Given the di�erential polynomial Model �
� we consider the di�erential ideal
I in Rfu� x� y� pg generated by the following di�erential polynomials

x��t� p�� f�t� x� p� u��

p�� ���

y�t� p�� g�t� x� p� u��

where now the vector x represents the extended set of state�space variables�
We call I the model ideal� Note that a di�erential polynomial model is
characterised by its ideal�

The di�erential equations p� 	 
 are adjoined to the model according
to the hypothesis that the parameters are time�independent� Likewise the
equations p� 	 h�p� are adjoined in the case of time�dependent parameters�
where h�p� is a vector of polynomials in p�

Cobelli et al� ��� consider the following time�dependent model to assess
glucose metabolism in the brain �see Schmidt et al� ���� �
�����

�
x�� 	 p�u� �p��t� � p��t��x�
x�� 	 p��t�x�
y 	 x� � x�

with p��t� 	 p��� � p	e
�p�t� and p��t� 	 p��� � p	e

�p�t�� The model can be
reparameterised as follows�����

���

x�� 	 p�u� �p��� � x�� � p��� � x���x�
x�� 	 p��� � x��x�
x�� 	 �p
x�
y 	 x� � x�

���

�



where x� 	 p	e
�p�t and the parameters pi are now time�independent�

Structural identi�ability is a minimal� necessary condition for achieving
a successful estimation of a model from real input�output data� A classical
de�nition of structural identi�ability from control theory is as follows�

De�nition � Let p � � � Rl and let x��p� be the initial condition� Assume
that the solution of Model 	�
 with initial condition x��p� exists and consider

the input�output map� T
x��p�
p � u��� ��	 y��� p�� The parameter values p and

�p are said to be equivalent� p 
 �p if and only if T
x��p�
p �u� 	 T

x���p�
�p �u� for all

u � U � Rs�

�� Model 	�
 is said to be globally identi�able at p if p 
 �p for all �p � �
implies p 	 �p� It is locally identi�able at p if there exists an open

set W � p � W � � 	with respect to the Euclidean topology
 such that

p 
 �p for all �p � W implies p 	 �p� Otherwise it is said unidenti�able
at p�

�� Model 	�
 is said to be globally �locally� structurally identi�able if it

is globally �locally� identi�able at p for almost all parameter value

p � �� Otherwise it is said structurally unidenti�able�

For the algebraic counterpart of De�nition � we follow the approach of
Fliess and Diop ����

De�nition 	 Consider Model 	�
 and its characterisation as a di�erential

ideal 	

�

�� The parameter vector p is locally identi�able if� for each unknown pa�

rameter pi� i 	 �� � � � � l� there exists a di�erential polynomial in pi� u� y
in the ideal I� Moreover the polynomial does not contain derivatives

of pi�

�� The unknown parameter vector p is globally identi�able if for each i�
i 	 �� � � � � l there exists a di�erential polynomial in pi� u� y which is

linear in pi and free of derivatives of pi in the ideal I�

Fliess and Glad ���� give a clarifying interpretation of identi�ability in
terms of non�linear observability of the parameters� Indeed if a parameter p
is globally identi�able according to De�nition �� then that same parameter is
structurally identi�able� De�nition �� This is because� with perfect data for
a given input�output experiment� derivatives of u and y are known and there
are algebraic relationships that allow us to �measure� p� If a parameter is
unidenti�able then by algebraic manipulation of the model equations it is
not possible to determine the parameter uniquely or locally� An example
of an unidenti�able model is Model ���� Indeed it is su�cient to consider

�



the simplest polynomial in the corresponding di�erential ideal that does not
involve x� and x�� namely

y��y � �p� � p	�y
�y� � y�

�
� �p� � p�p	�y

	

It does not contain the parameter p� which� as a consequence� is uniden�
ti�able� Other references on the algebraic di�erential �translation� of the
notion of structural identi�ability are ���� ���� ����

Theorem � gives the main properties of model ideals�

Theorem � �� The di�erential ideal I de�ned by 	

 is prime� that is if

fg � I then f � I or g � I�

�� The three sets of polynomials in 	

 form a characteristic set with

respect to the ranking u �� p � x � y�

For a proof see ����
Ljung and Glad ���� have shown that a characteristic set with respect to

a ranking eliminating the variables x and p solves the identi�ability problem�
An example of such a ranking is u �� y �� p � x� The characteristic set
with respect to u �� y �� p � x has the structure given by Equation ���
in Theorem 
�

Theorem � Consider a model of type 	�
 with n state�space variables� l
parameters and m observation functions� There are m � l � n di�erential

polynomials in the characteristic set with respect to the ranking u �� y ��
p � x� namely

A��u� y�� � � � � Am�u� y��
B��u� y� p�� � � � � Bl�u� y� p��
C��u� y� p� x�� � � � � Cn�u� y� p� x�

���

Moreover yi is the leading variable of Ai� pk is the leading variable of Bk

and xj is the leading variable of Cj�

Three di�erent situations can arise�

	i
 If there exists an i such that Bi 	 p�i then the model is not identi�able

at any p�

	ii
 If all of the Bi� i 	 �� � � � � l are of order zero and degree one in pi then
the model is globally identi�able at pi� If the model is globally identi�

�able at each parameter then we can write Bi in the linear regression

form Bi�u� y� pi� 	 Pi�u� y�pi � Qi�u� y��

	iii
 If all of the Bi� i 	 �� � � � � l are of order zero in pi and some Bj is of

degree larger than one in pj then the model is locally� but not globally�

identi�able at pj�

�



Ollivier �

�� �
�� proposes a di�erent ranking for the study of identi�a�
bility� The method by Ollivier is applied when the ideal de�ned by equa�
tions ��� has a generic solution� Eva Here we simply observe that a solution
is generic if it does not satisfy any polynomial in the di�erential ideal For a
deeper insight see Ollivier ������ �
��� In the method proposed by Ollivier
the elimination of the variable x su�ces in order to determine identi�ability
results� In fact we determine the m � n di�erential polynomials

A��u� y� p�� � � � � Am�u� y� p�� C��u� y� p� x�� � � � � Cn�u� y� p� x�

where the set

A��u� y� p�� � � � � Am�u� y� p��
p��� � � � � p

�
l�

C��u� y� p� x�� � � � � Cn�u� y� p� x�
���

is a characteristic set with respect to the ranking u �� y � p �� x� The
di�erential polynomials Aj are considered as polynomials having coe�cients
in R�p�� rational polynomials in p� and their leading monomials are taken
to have coe�cient one� The coe�cients of Aj are polynomial �or rational
polynomial� functions of the parameters� The analysis of the coe�cients of
Aj allows us to establish the identi�ability of the parameter vector p� Note
that the testing for identi�ability does not depend on the ranking� but only
rankings that eliminate the variables x can be considered� This fact allows
us to choose a ranking for which the calculation is less computationally
intensive�

The set of coe�cients Aj can contain a large number of �rational� poly�
nomials in the parameters which can make the analysis di�cult by hand�
D�Angio et al� ��� propose the use of Gr�obner bases in the analysis of the
coe�cients� Their method is justi�ed by the Implicit Function theorem for
algebraic varieties� We shall discuss this further� In Section ��� computa�
tional aspects are discussed�

The straightforward calculation of di�erential characteristic sets in The�
orem 
 is generally very computationally intensive� In the next sections we
present two new algorithms that somewhat simplify the computation�

� Algorithm �

So far we have seen that the di�erential polynomials in ��� form a charac�
teristic set of the di�erential ideal I generated by the di�erential polyno�
mials ��� with respect to the ranking u �� y � p �� x� Note that the
derivatives of the parameters pi do not appear in the di�erential polynomi�
als Ai and Ci because of the conditions p�i	
� By analysis of the coe�cients
of Aj it is possible to establish the identi�ability of the parameter vector

�



p� It will turn out that is is su�cient to determine y
�ei�
i � the leader of Ai�

i 	 �� � � � �m�
In this section we introduce e�cient ways to �nd the di�erential poly�

nomials Ai and to perform the analysis of the coe�cients� For this we need
to consider the Lie�derivative operator �see for example ��
���

Let f be a di�erential polynomial in Rfx�� � � � � xng� The Lie�derivative
operator Lf with respect to f is de�ned as

Lf 	
nX

i��

fi
�

�xi
�

�X
i��

u�i�
�

�u�i���
�

Note that the de�nition of the Lie�derivative operator involves an in�nite
number of derivatives with respect to the variables u but for each poly�
nomial h in R�x� p� u� u�� � � � � u�s��� Lfh�x� p� u� involves only the variables
x� p� u� u�� � � � � u�s���� For positive integers a�� � � � � am let I�a�� � � � � am� be
the polynomial ideal generated by

yi � gi� � � � � y
�ai�
i � Lai

f gi� for i 	 �� � � � �m� ���

The ideal I�a�� � � � � am� is contained in the polynomial ring

R�u� u�� � � � � y�� � � � � y
�a��
� � � � � � ym� � � � � y

�am�
m � x� p��

Recall that the ranking u �� y � p �� x over the di�erential ring
Rfu� x� y� pg induces in a natural way a ranking or term�ordering over the
polynomial ring above�

In Theorem � we determine the non�negative integers e�� � � � � em by com�
puting characteristic sets of suitable ideals of type I�a�� � � � � am��

Theorem � Let ek� � � � � � e
k
m� k 	 
� �� � � � be the sequence of non�negative

integers de�ned recursively as follows�

�� e�� 	 
� � � � � e�m 	 
�

�� Let Ik be the ideal I�ek� � � � � � e
k
m�� Let Tk be a characteristic set of Ik

with respect to the ranking u �� y � p �� x and let Yk be the set of

leaders of

Tk �R�u� u�� � � � � y�� � � � � y
�ek

�
�

� � � � � � ym� � � � � y
�ekm�
m ��

	i
 If there exists a positive integer di� such that y
�di�
i is the derivative

of yi of lowest order in Yk� i�e� y
�di�
i is a leader of the character�

istic set Tk and y
�di���
i is not a leader of Tk� then ek��

i 	 di�

	ii
 If there is no positive integer di� i�e� y
�ek
i
�

i is not a leader of the

characteristic set Tk� then ek��
i 	 eki � ��

�




Then there exists an integer r such that for all i and for all s � r� esi 	 ei�
where the ei�s are the leaders of the Ai�s� i 	 �� � � � �m�

Note that the polynomial ideal I�e�� � � � � em� contains all the information
we need for an identi�ability analysis� In fact� for all i� the polynomials Ai of
Theorem � are in I�e�� � � � � em�� Thus a characteristic set of I�e�� � � � � em�
with respect to the ranking u �� y � p �� x allows us to �nd Ai� i 	
�� � � � �m� See ���� and �
��� The analysis of the coe�cients of the Ai�s can
be performed using Gr�obner basis methods or by choosing a random point
in the parameter space ��

Example � As a simple example consider again Model ���� The ideal I�
is the ideal generated by y � x�� The ideal I� is generated by y � x� and
y� � p�x

�
� � p�x�x�� its characteristic set as for Item 
 of Theorem � is

y � x�� y� � yp�x� � y�p�

and the leaders are x� and x�� Note that since p�i 	 
 for all parameters pi
and in Theorem � we are interested to determine the polynomials Ai only�
then the computation of the above characteristic set is done with respect to
the polynomial ranking y � y� � y�� � x� � x�� The ideal I� is generated by

y � x��
y� � p�x

�
� � p�x�x��

y�� � 
p�
�x�

� � �p�x�
�p�x� � p�

�x�x�
� � p�x�

�p� � p�x�
�p	x�

and has the following characteristic set

f � yy�� � y�� � �p�p� � p�p	�y
	 � �p� � p	�y

�y��
y � x��
y� � yp�x� � y�p� g �

In the �rst polynomial above there is no xi variable and thus� according to
the method by Ollivier� we consider its coe�cients� which are

p�p� � p�p	� p� � p	� ��� �� ��
�

Since we have only two coe�cients involving the parameters and there are
four parameters we deduce that the model is unidenti�able�

The algorithm is outlined as follows�

�� Reparameterise the model as described in Section � and derive a dif�
ferential polynomial formulation�


� Find the sequence ek� � � � � � e
k
m� k 	 
� �� � � � � r of non�negative integers

as described in Theorem ��

��



�� Compute the characteristic set with respect to the ranking u �� y �

p �� x of I�er�� � � � � e
r
m�� Consider the polynomials with leaders y

�ei�
i �

for i 	 �� � � � �m as polynomials in R�p� and reduce them to monic
form� i�e� with leading coe�cient one� Consider the set C of coe��
cients of the polynomials so obtained� Note that the elements of C
are identi�able quantities and are a basis of the ideal of all identi�able
quantities�

�� Each polynomial in the set C is set equal to a new variable cj and the
set � of the resultant equations is formed� There are two alternatives�

�a� A Gr�obner basis of the set � is computed with an ordering elimi�
nating p� for example the lexicographic ordering with the pi vari�
ables bigger than the ci variables� That is� one could try and
rewrite the set of polynomial equations in � so that the parame�
ters pi are functions of the ci�s� If this is possible then the system
is uniquely identi�able�

�b� A numerical point p� is randomly chosen in the parameter space
� and each polynomial in the set C is evaluated at the numerical
point p�� Each polynomial is set equal to its corresponding nu�
merical value and the set � of the resultant equations is formed�

A Gr�obner basis of the set � is computed� A system of polynomial
equations is obtained by setting each element of the Gr�obner basis
equal to zero� The number of solutions for each parameter is de�
rived� For almost all points p�� if the system has in�nite solutions�
�nite but more than one� only one� the model is unidenti�able�
locally identi�able or globally identi�able respectively�

In Step �b we use the idea in D�Angio et al� ��� which as mentioned is justi�ed
by the Implicit Function Theorem� In fact the set of coe�cients de�nes a
polynomial map �� for which we want to �nd the rational polynomial inverse�
If �� admits a rational inverse then� for almost all points of the domain� the
map �� is one�to�one� Since the point p� is generic� with probability � it
is in the domain where the map �� is one�to�one if the model is globally
identi�able�

Example � To illustrate Step � we use again Model ���� Since there is only
one observation m 	 �� the polynomials in ��
� give the set C� The set � is

� 	 fc� � p�p� � p�p	� c� � p� � p	g

and its �reduced� Gr�obner basis with respect to the lexicographic ordering
with c� � c� � p	 � p� � p� � p� is

f � c� � p	 � p�� �c� � c�p	 � p�	 � p�p� g �

�




The model is unidenti�able because it is not possible to express all the
parameters pi as functions of the ci�s�

Alternatively the point p� 	 �
�� ���� ����� �
� is chosen arbitrarily and
the set

� 	 fp�p� � p�p	 � �
��


� p� � p	 � ���g

is derived� with Gr�obner basis with respect to the term�ordering p	 � p� �
p� � p�

fp� � p	 � ���� p�p� � �
��


 � p�	 � ���p	g

The corresponding system of polynomial equations has in�nitely many so�
lutions and thus the model is unidenti�able�

� The Taylor series approach

The Taylor series approach is based on the Taylor series expansion of the
observation functions around t 	 


yi�t� 	 yi�
� � ty�i�
� �
t�


 
y
���
i �
� � � � � �

The successive derivatives y
�j�
i �
� are assumed measurable and contain in�

formation about the parameter vector p� The idea is to study the number
of possible solutions for the parameter vector from knowledge of each term
of the Taylor series� namely the solutions with respect to p of the system

of polynomials y
�j�
i �
� 	 �j where the �j �s are known� In particular the

parameter vector is locally identi�able if the set of solutions is �nite� it is
globally identi�able if there is a unique solution� otherwise it is unidenti��
able� To determine the upper bound on the number of successive derivatives
of y�t� p� needed� however� becomes a problem� According to Chappell et
al� �
� the following upper bounds have been established�


n� � for linear systems �
���


�n � � for bilinear systems �
���

�q�n � ����q � �� for homogeneous polynomial systems� where q is the
degree of the polynomials �
���

One of the main results presented here is an upper bound for a generic
state�space model of the form in ���� equivalently ���� obtained with di�eren�
tial algebra methods� Let Lfh�x�
�� p� u� be the Lie�derivative Lfh�x� p� u�
in which the initial conditions x�
� is used instead of x� Next consider

y�j��
� � L
�j�
f
g�x�
�� p�� for j 	 
� �� � � � � instead of successive derivatives�

��



This will not e�ect the Taylor series analysis but enables us to avoid the
derivatives of the state variables x� Consider the ideal J�e�� � � � � em� gener�
ated by

yi�
�� gi�x�
�� p�� � � � � y
�ei�
i �
�� Lei

f gi�x�
�� p�� ����

for i 	 �� � � � �m� The proofs of the following theorems are given in �����

Theorem � Consider the characteristic set of the model ideal I with respect
to the ranking u �� y �� p � x given in Theorem �� Equations 	�
� Let�

�� y
�ei�
i be the leader of Ai� i 	 �� � � � �m�

�� T be a characteristic set of J�e�� � � � � em� with respect to the ranking

u �� y �� p�

�� X be the set of ranks of T and Y be the set of leaders of T �

Then three situations can arise�

	i
 If there exists an index i such that the parameter pi is not a leader of

T � i�e� pi �� Y � then the model is not structurally identi�able for any

p�

	ii
 If all parameters pi are ranks of T � i�e� pi � X� i 	 �� � � � � l� then the

model is globally structurally identi�able at p�

	iii
 If all parameters pj are in Y � but pi is not in X� for some i� then the

model is locally structurally identi�able at pi�

Theorem � For m 	 �� the single output model� n � l derivatives are

su�cient to determine the identi�ability structure with the Taylor series

method� that is� it is enough to consider J�n � l�� where n is the number of

state variables in the polynomial model 	�
�

Example � Consider again Model ��� with the initial conditions x��
� 	
�� x��
� 	 
 and n�l 	 �� The set J���� that contains the �rst six derivatives
of y� is

f y � ��
y� � p��
y�� � 
p�� � p�p��

y��� � �p�� � �p�p�p� � p�p�p	�

y�	� � 
�p	� � p�p
�
	p� � �p�p�p�p	 � ��p��p�p� � �p��p

�
��

y�
� � ��p�p�p
�
	p� � ��p�p

�
�p

�
� � �
p��p�p�p	 � 
�
p��p�p� � ��p��p

�
�p	

�p�p
�
	p� � �

p
��

y��� � ��

p	�p�p� � p�p
	
	p� � ���p��p�p

�
	p� � ��
p��p

�
�p

�
� � �

p�� � ��p��p

�
�

��

p��p�p�p	 � ��p�p�p
�
	p� � ��p��p

�
�p

�
	 � ��
p�p

�
�p

�
�p	 g �

��



The model is unidenti�able because the parameters p� and p� always appear
as the product p�p� and cannot be written in regression form� Again Gr�obner
bases will allow us to formalise this intuitive idea�

��� Algorithm �

The principal steps of the proposed algorithm for the Taylor series approach
are as follows�

�� Rewrite the model to a di�erential polynomial formulation�


� Find non�negative integers �e�� � � � � em� such that y
�ei�
i is one of the

leaders of the characteristic set with respect to the ranking u ��
y �� p � x of the di�erential ideal I�

�� Construct the set

J�e�� � � � � em� 	
n
yi � gi�x�
�� p�� � � � � y

�ei�
i � Lei

f
gi�x�
�� p� �

for i 	 �� � � � �mg

�� Compute a characteristic set with respect to the ranking u �� y �� p
of J�e�� � � � � em�� If it is not possible to compute a characteristic set
of the ideal J�e�� � � � � em� because the computations are too complex
then go to Step ��

�� Chose at random a numerical point p� in the space � of the admissible
parameters and evaluate each polynomial in the set J�e�� � � � � em� at
p�� Set each polynomial equal to its corresponding numerical value
and consider the set � of the obtained equations�

�� Compute the Gr�obner basis of the set � and �nd the number of so�
lutions for each parameter� For almost all points p�� if the system
has in�nite solutions� �nite but more than one solution or only one
solution� the model is unidenti�able� locally identi�able or globally
identi�able respectively�

There are two main di�erences between this and the algorithm in Sec�
tion �� one a consequence of the other� The �rst one is in the choice of
the ranking and the second one is the characteristic set derived� Note that
the rationales behind the algorithms are di�erent as in Algorithm 
 the ini�
tial conditions are used� Note also that in general Algorithm 
 uses more
derivatives of the output function y�

The characteristic set of Step 
 can be computed in Maple with the
package diffalg� The computations of the characteristic set can be very
di�cult to perform and note that only the numbers e�� � � � � em are necessary

��



for the algorithm� If it is not possible to �nd such a characteristic set then
Step 
 can be avoided in several ways� as follows�

It is known that

mX
i��

ei � n � l ��
�

�see ����� where l is the number of the parameters and n is the number of
the states in the polynomial formulation� In particular ei � n � l�

In the single output case� m 	 �� by Theorem � we can chose e� 	 n� l�
In the case of more outputs� divide n � l by m� i�e� n � l 	 qm � r and

r � m� Then de�ne e�i for all i 	 �� � � � �m as follows�

if r 	 
 then e�i 	 q for i 	 �� � � � �m�

if r 
	 
 then e�i 	

�
q for i 	 �� � � � � r
q � � for i 	 r � �� � � � �m�

It is reasonable to chose the above values as there exists a j such that ej �
e�j and then

Pm
i�� e

�
i 	 n� l ����� Then a characteristic set for J�e��� � � � � e

�
m�

is computed and the lowest leader y
�s�
t �s 	 
� found� It follows that ei � s

for all i 	 �� � � � �m� Furthermore from the other derivatives of y that are
leaders and from Equation ��
� it is possible to �nd an integer bi� for all
i 	 �� � � � �m� as small as possible such that ei � bi�

Algorithm 
 has been implemented in Maple V Release � and can be
found in ����� The computation of the characteristic set in Step � is per�
formed using the package charset�

� Case Study �

Consider the following model that has been derived to model the interaction
of E�coli and somatic cells during persistent and acute bovine mastitis �D�orte
D�opfer 



 ����

�������������
������������

x�� 	 p�x� �
p�x�x�
x� � p�

x�� 	

�
��

x�
K�x��

�
x� �p
 � p�x��

x��
� 	 x��
x��
� 	 x��
y� 	 x�
y� 	 x�

����

where K�x�� 	 p	 �
p
�p	 � p��

x� � p

� x��� x

�
� � 
 and the parameter set is

fp� � � � � p�g�

��



The �rst two equations can be rewritten as

x�� 	 p�x� � p�x� �
p�p�x�
x� � p�

�

x�� 	
�p	x� � p
p� � x�x� � x�p
�x��p
 � p�x��

p	x� � p
p�
�

As there are two di�erent denominators� it is convenient from a compu�
tational point of view to introduce two new variables� one for each denomi�
nator� Thus the set of di�erential equations becomes

x�� 	 p�x� � p�x� � p�p�x�x�

x�� 	 �p	x� � p
p� � x�x� � x�p
�x��p
 � p�x��x	

x�� 	 �x��x
�
�

x�	 	 �p	x
�
	x
�
��

We use Algorithm � to determine the di�erential polynomials involving
the derivatives of the observations y� 	 x� and y� 	 x� and the parame�
ters� We obtain the following six polynomials of which only the �rst two
polynomials are input!output relations�

T� 	 �y��y��p�p� � y��� � y��p�p�y�� � y��y��p�p�p� � 
y��y
�
��p�

�y���p�
�y�� � 
y��y

�
��p� � y��p�y��p�p� � 
y��y��p�y��p� � y���p�

�y��

T� 	 �y��y
�
��p	 � y���p
p�p
 � y��y��p
p�p
 � 
y��y

�
��p
p
 � y��y��y��p	p


�y��y��y��p
p�p� � y���y��p
p
 � y���y��y��p
p� � y���y��y��p


�y��y
�
��p
p�p� � y��y

�
��p	p
 � 
y��y��y

�
��p
p� � y��y��y��p	p


�y��y��y��p
p�p� � 
y��y��y
�
��p
 � 
y��y��y��y��p	p� � y��y

�
��y��p
p�

�y��y
�
��y��p
 � 
y��y

�
��y��y��p� � y���y

�
��p	p� � y���y��y��p	p�

�
y���y��y
�
��p� � y���y

�
��y��p�

T� 	 y�� � x�

T	 	 y�� � x�

T
 	 y�� � p�y�� � p�y�� � p�p�y��x�

T� 	 y�� � y��x	p	y��p
 � y��x	p	y��
�p� � y��x	p
p�p
 � y��x	p
p�p�y��

�y��
�x	y��p
 � y��

�x	y��
�p� � y��

�x	p
p
 � y��
�x	p
p�y���

The symbol yij stands for the jth derivative of the ith variable� For example
y�� is y� and y�� is y���

Next we consider the leading terms of T� and T� with respect to the
term�ordering y�� 	 y�� 	 y�� 	 y�� 	 y�� 	 y�� according to Theorem ��
The leading monomial of T� is y��� and of T� is y��y

�
��y��y�� with leading

coe�cients � and 
p� respectively� The coe�cients of T� and T���
p�� give
a basis for the identi�able quantities� The coe�cients of T� are

�p�p�p�� �p�p�� �
p�p�� p�p�p�� �� 
p�� p��� �
p�� p��� p�p�

��



and the coe�cients of T���
p�� are the following seventeen relationships

�
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p
p�p
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� �
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� �
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p
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� �
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� �
p	p


p�

�
p
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�

p

p�

� p
�
p	p


p�

�
p
p�



� �

p	p


p�

�
p
p�



�

p


p�

�
p



� �� �p	�

��
�




p	
p�
�

Notice that some of the relationships above are redundant as they are
either repeated or easily deduced from other relationships� In this example
we included them all for completeness� A minimal generating set for �the
T� coe�cients� is

A� 	 �
p�� A� 	 
p�� A� 	 �p�p��

There we mean generating set in the sense of polynomial ideals� For example
the coe�cient p�p�p� can be rewritten using ideal operations as A�A��
� The
parameters p�� p�� p� are identi�able because p� appears in the coe�cient A��
p� in A�� The identi�ability of p� follows from A� as p� is identi�able�

The analysis of the T���
p�� coe�cients is slightly more complicated�
We still perform it by hand� Clearly p	 is identi�able as it appears alone
in a coe�cient expression� The identi�ability of p� follows from the last
relationship� The parameter p� is identi�able as it comes from the ratio of
the second and eighth relationships� The parameter p
 can be written in
terms of identi�able quantities as

p
 	

�p
p


p�

�
p
p�



�
p	p


p�

�
�

�
p


p�

�
p




��
p
p�p



p�

�
�
�p
p



p�

��
p	

p�

�
�

�
p
p�p



p�

�

and p
 is identi�able from the second coe�cient� In conclusion the model
in Equation ���� is globally identi�able�

��� Coe�cient analysis

In this section we detail Item � of Algorithm � and Items � and � of Al�
gorithm 
 using the above example� We concentrate on the analysis of the
second set of coe�cients� those involving the parameters p	� � � � � p��

��



For each �T���
p�� coe�cient� �excluding the two � values� a new vari�
able ci� i 	 �� � � � � �� is introduced� Thus the ci�s are a basis for the set
of identi�able quantities� In this way a map M from R�p	� � � � � p�� into
R�c�� � � � � c�
� has been de�ned� The aim is to invert this map� If we can
express each parameter in terms of c�� � � � � c�
 then the model is globally
identi�able� If the map is only locally invertible� then the model is locally
identi�able and if the map is not invertible then the model is unidenti�able�
The �rst three relationships are as follows

�
�



p	 � c��

�




p
p�p

p�

� c��
�



p	 � c�� � � � ����

The invertibility of the complete map is here performed using a sym�
bolic computation method from algebraic geometry based on Gr�obner bases
with respect to the lexicographic term�ordering� A general reference to the
theory of Gr�obner bases for polynomials is ���� Here we simply say that
given a set of polynomials and a ranking� Gr�obner bases are special rep�
resentation of the set of polynomials with respect to the ranking� That is
the system of polynomial equations obtained by setting to zero the elements
of the Gr�obner basis has the same solutions as the original set of polyno�
mials� Moreover each polynomial in the original set can be rewritten as a
polynomial combination of elements of a Gr�obner basis� and vice�versa� In
particular the Gr�obner basis with respect to a lexicographic term�ordering
rewrites the original system of equations in a triangular form� From this
form it is easier to check whether the corresponding system of polynomial
equations admits solutions and it can be solved by backwards substitution�

The study of the invertibility of the map M is a specialisation of the
above arguments� Firstly we multiply the set in ���� by 
p� in order to have
polynomials instead of rational polynomials and add the equation � � p�T
to record the fact that p� cannot be zero� We obtain the set of polynomials
in ����

�p	 � 
c�� p
p�p
 � 
c�p�� p	 � 
c��
��� 
c	� �p
p�p
 � 
c
p�� �p
 � p
p� � 
c�p��
p
p
 � c
p�� �p
p
 � 
c�p�� �p	p
 � p
p�p� � 
c�p��
p
 � p
p� � c��p�� p	p
 � p
p�p� � 
c��p�� �p	p
 � p
p�p� � 
c��p��
p
 � p
p� � 
c��p�� �� c�	� �p	 � c�
�
�� c��� p	 � 
c�
p�� �� p�T�

����

Next we consider ���� as a set of polynomials in T � p	� � � � � p� and
c�� � � � � c�
� Its Gr�obner basis with respect to the lexicographic ordering
for which T 	 p	 	 � � � 	 p� 	 c� � � � 	 c�
 �which is an elimination ordering

��



of the T variable� is given by the polynomials in ���� below

Tp
 � p
 � 
c��� �� � p�T� 
c�
 � Tc�
� p	 � c�
 �

�
c� � p

� � 
p
c��� 
c�� � 
c�
p
 � p
p� � p
p
 � 
c�p�� p
 � p
p� � 
c��p��


c�c�� � 
c�c�
p
 � c
p
� c�c�
 � c
 � 
c��c�
p
 � c��p
 � 
c��c���
p
c�
 � 
c�
p
 � 
c��c�
� p�p
 � 
p�c��p� � c�
p
 � 
c��p��

c��c�
c�� � 
c��

� � c�

�c� � 
c
c�
 � 
c��

�c�
p� � 
c��p�c�� � p�c
�

�c
 � p�c� � �
c�p�
� � p


� � 
p
c��p��

c�c�
p
 � 
c�c��p� � p
c
 � 
c
c��p� �

�c
p� � p
c��c�
 � c��p
 � c�
c�p�� 
c�
p� � c�
 �

�c�
 � 
c�� c
 � c�� c�
 � 
c�� � � 
c	

c��c�c�
c�� � 
c�c��

� � c�
�c�


� � 
c��
�c�
c
 � 
c��c��c
 � 
c
c�c�
 � c


��
c�� � c�� 
c� � c
� �c�� � c�� �
c�� � c��
c�� � c��� �� � c�	� �� � c���

����

From the fourth polynomial of ���� we have that p	 is identi�able as we can
write p	 	 �c�
� From the fourteenth polynomial of ���� we have that p�
is identi�able as p� 	 c
�c�� From the eighteenth polynomial we have that
p� is identi�able as p� 	 c�
�
c�
� The identi�ability of p
 follows from the
sixteenth polynomial as p� is identi�able and

p
 	

c�c��p� � 
c
c��p�

c
 � c�c�

�

Note that c
 � c�c�
 	 
 occurs when p
p�p
�p� � p	� 	 
� That is either
when p
 	 
� p� 	 
� p
 	 
 or p	 	 p�� All these cases cannot happen
as the parameters are supposed to be positive and distinct� In general
the set where as above zero denominators occurs has Lebesgue measure
zero� Finally the identi�ability of p
 follows from the sixth polynomial p
 	
�c�� � c��p
��p� as both p
 and p� are identi�able� In conclusion the model
is globally structurally identi�able�

In theory the computation of a lexicographic Gr�obner basis is always pos�
sible� But in some cases it is too computationally intensive� An alternative
method to study the invertibility of the map M with Gr�obner basis methods
is as in Items � and � of Algorithm 
� Some values for the parameters are
chosen randomly within the admissible region� namely p�� 	 �
�� p�� 	 ����
p�� 	 ���� p�	 	 ����� p�
 	 ����� p�� 	 ��
�� p�
 	 �
� and p�� 	 ����
� The
corresponding Gr�obner basis is

f �� � 
�



�
��
T� p� � �
�� p� � ���� ���� � p��
p	 � ����� p
 � ����� p� � ��
�� p
 � �
�� p� � ����
 g

where again T is the product of the denominators�
If in p� we had chosen equal values for p	 and p� then the Gr�obner basis

method would have returned that the model is unidenti�able� For example







�
�

p�
�

p�



�

p�
p
 � x�

Figure �� A two compartment model with Michaelis�Menten elimination
kinetics�

for the point p�� 	 �� p�� 	 ��� p�� 	 �� p�	 	 ���� p�
 	 ��� p�� 	 ���� p�
 	


� p�� 	 �
 the Gr�obner basis below has an in�nite number of solutions as
p� is missing

f�� � ���T� p� � �� ��� � p�� p	 � ���� p
 � ��� p
 � 

� p� � �
g �

A way to prevent the miss�determination of identi�ability because of a bad
choice of the point p��� is by trying a full grid of points�

For the application of Algorithm 
 we have assumed that x��
� 	 � and
x��
� 	 �� But the computation was too intensive for the platform and
the software used and the result crashed� The experiment was performed
in Maple V Release � under a OS Solaris SparcStation �� This is a further
con�rmation that algorithms to study identi�ability are e�cient for some
models but not for other models�

	 Case Study �

Consider the pharmacokinetic model studied in ��
� and shown in Figure ��
The state�space equations of the system are�������

������

x�� 	 �p�x� � p�x�

x�� 	 p�x� �
p�x�

p	 � x�
� p�x�

x��
� 	 a
x��
� 	 
�

First the system is reformulated as follows��������
�������

x�� 	 �p�x� � p�x�
x�� 	 p�x� � p�x� � p�x�x�
x�� 	 �p�x�x

�
� � p�x�x

�
� � p�x�x

�
�

x��
� 	 a
x��
� 	 

x��
� 	 p


where x� 	
�

p	 � x�
� Furthermore� p
 	

�

p	
so that if the parameter p
 is


�



identi�able then the same holds for the parameter p	 in the original model�
A �rst experiment consists of observing compartment � only� that is

y 	 x�� The initial condition� a is assumed to be known and the set of
unknown parameters is fp�� p�� p�� p
g�

By Theorem � it is su�cient to consider the ideal J��� and the polyno�
mials of J��� of interest are

y� � p� a�

ay��� � y�a p� � �y����

y�a����y���y�	� � �y�����y� � 
�y���y���y��� � y�a�y�����

�ay���y�y�	�� p� � y�a��
a�y����	 � �y�ay����y�����

�
�y���a�y�������

y�a	��
�y��	�y����� � 
a�y����y�����y��� � ��y���y����y����� � �ay�y����y�����

�
�y����y����	 � 
a�y����
� p
 � y�a	���y����


�y�	��y���y��� � a�y�����y�	� � y�	��y����y�����

�
�y�����y����y��� � �y����y�����y� � y�a�y�����

�a�y������y����� � y�ay���y�	�y����

Global identi�ability follows readily�
A second experiment is considered as in ��
� and compartment 
 is ob�

served� that is y 	 x� and with initial conditions x��
� 	 
 and x��
� 	 ��
The computation of the characteristic set for Algorithm 
 did not pro�

duce a result as it proved computationally too intensive� Then we perform
Steps ���� select the point p� 	 ����� ���� ���� ���� and compute the Gr�obner
basis

fp� � ���� p� � ���� p� � ���� p
 � ���g �

The system has one solution� thus� with probability one� the model is glob�
ally identi�able� Where possible we prefer the computation of the charac�
teristic set rather than performing Steps ��� of Algorithm 
� This is because
the characteristic set also gives information �although indirect� on where the
model is unidenti�able and it shows which speci�c parameters are unidenti�
�able�

This case study has shown that� in some cases� as for the �rst experiment�
the computation of the characteristic set requires a few seconds while for
others� as in the second experiment� which is super�cially very similar� it
can prove very di�cult�








 Examples

Example � The non�linear di�erential equations��������
�������

x�� 	
p�x�

p� � x�
x� � p�x�

x�� 	 �p	
p�x�

p� � x�
x�

x��
� 	 a
x��
� 	 b

have been used to describe microbial growth in a batch reactor ����� �����
Both x� and x� are observed� that is y� 	 x� and y� 	 x� and an identi�a�
bility analysis of the unknown parameters fp�� p�� p�� p	g is required�

By introducing the state variable x� 	
�

p� � x�
the system becomes

������������
�����������

x�� 	 p�x�x�x� � p�x�
x�� 	 �p�p	x�x�x�
x�� 	 p�p	x�x�x

�
�

y� 	 x�
y� 	 x�
x��
� 	 a
x��
� 	 b
x��
� 	 p


where p
 	
�

p� � b
� The unknown parameter set becomes fp�� p�� p	� p
g�

We perform the steps of Algorithm 
 automatically using Maple� The fol�
lowing polynomials of the characteristic set are linear in p�� p�� p	 and p

respectively�

�a�by��
� � 
aby��y��y�� � y��

�y��
�b� a�y��y��

� � ay��
�y���y��

� p�
�y��

���y��
�y��

� � y��
�ay����

y��

a�y��y�� � ay��� p� � y��


a��y��y�� � y��y����

y��
��ay�� � y��

�� p	 � y��
���y��y�� � ay����

y��
���y��

�a�y��b � y��
�y��

�ab� p
 � y��
���a�y��by�� � y��ay��y��b

�y��
�a�y�� � y��

�aby�� � y��
�y��b� y��

�y��
�a�

and thus the parameters p�� p�� p	� p
 are globally identi�able� Hence in the
original model p�� p�� p�� p	 are globally identi�able and the model is globally
identi�able�

Example � Let us consider the one�compartment model with non�linear
Michaelis�Menten elimination shown in Figure 
 and presented in �
�� The
state�space equations are


�



�

�

u�t�

�

p�

�

p�
p� � x

Figure 
� One�compartment model with parallel linear and non�linear elim�
ination pathways

���
��

x� 	 �
p�x

p� � x
� p�x

x�
� 	 a�

We rewrite them as follows

�����
����

x�� 	 �p�x�x� � p�x�

x�� 	 p�x�x
�
� � p�x�x

�
�

x��
� 	 a
x��
� 	 p	

with x� 	 x� x� 	
�

p� � x�
and p	 	

�

p� � a
� Only x� is observed� y 	 x�

and the unknown parameter set is fp�� p�� p	g� Applying Algorithm 
 yields

�
a�y�y�
� � 
ay�

	� p	 � y�a
�y� � 
y�

	 � 
ay�y�
� � a�y�

��

�a	y�
�y�

� � �y�y�

a� � �y�y�y�

�a� � 
y�y�
�y�a

	 � �y�
� � �y�

�ay�
��a�y�

�y�
� � a	y�

	� p� � �a�y�
�y�

� � �
a�y�
�y�


 � �
ay�y�

 � �y�

��

a�y�a
�y� � 
y�

	 � 
ay�y�
� � a�y�

�� p� � a���y�
�y�a � 
y�y�

� � y�
�ay���

From these linear equations in the pi�s we deduce that the model is globally
identi�able�

We now consider the case of non�zero input u and zero initial conditions�
An alternative and equivalent way to rewrite the model equations is by

de�ning x� 	
�

� � x�
p�

and p	 	 �
p�

� Thus the polynomials for which the

characteristic set is computed are

x�� � p� � p�x� � p�x� � u� x�� � p	p�x
�
� � p�p	x

�
� � p	p�x�x

�
� � up	x

�
�

and the initial condition for x��
� is one� Algorithm � returns only one


�



polynomial

�y�p	p
�
� � 
y�p�y

�p�p	 � 
y�p� � yp	u� y�p�
�p	y

�p	u
� � 
� y��p	u � �y�up	yp�

�
uy�p�
�p	 � p�y

��yp	 � p	y
�� � y�p�

�p�p	 � p�yp	u
� � u�p	yp� � 
up�p	yp�

��y�p�p	yp� � �y��p	yp� � 
p�p	y
�� � 
y�p�p�

�p	 � 
y�p�p	u � 
y�p�
�yp	

�
y�p�
�p�p	 � yp	p�

� � 
yp	p�
�u � u�p� � �y�y�p�

�p	 � 
up�y
�p�p	 � y�p�p�

�yp	p�
�p� � p�y

���

with coe�cients �divided by the leading term p��


p	 �
p	
p�

�
�p�

�p	��p� � p��

p�
� �p	p���p� � p�� �

p	p� � p��
p	
p�
�

�
p	
p�

� �
p	�p� � 
p���

�
p	�
�p	��p� � p��

p�
� 
p	��p� � p���


p	�p� � 
p��

p�
�


p	p���p� � p��

p�
�
�p	���p� � p��

p�
�
�p	p����p� � 
p��

p�
� �
p	p���p� � p���

From the �rst relationship above we deduce identi�ability of p	� from the
second one the identi�ability of p� and from the fourth one we see that p� is
identi�able too� Thus we can conclude that the model is globally structurally
identi�able� This result is con�rmed by applying Algorithm 
� for example
for the point p� 	 ��� p� 	 ���� p	 	 �� the Gr�obner basis is

fp	 � ��� p� � ���� ��� � p�g �

Example � We now consider a purely polynomial model which is an im�
munological model for mastitis in diary cows introduced in ���

�
x�� 	 p�x� � p�x�x�
x�� 	 p�x���� p	x�� � p
x�x��

If all the variables are observed� that is y� 	 x� and y� 	 x� then the model
is structurally globally identi�able� Indeed from Algorithm � we have the
following two polynomials

�y�� � y��p� � y��y��p�� y�� � y��p� � y���p�p	 � y��y��p
�

The coe�cient analysis is very straightforward and allows us to deduce
global identi�ability�

Next� we consider the experiment with only one observation y� 	 x��
There is only one polynomial in the characteristic set of interest� namely�

y���p� � y���p�p	 � y��p�y�� � y��y��p�p� � 
y��y��p�p�p	
�y���y��p�p
 � y���p�p�p� � y���p

�
�p�p	 � y���p�p�p



�



and its coe�cients divided by the leading term� p� are

c� 	 
p�p�p	�p� � p�� c� 	 �� c� 	 �p

c	 	 p�p� � p��p�p	�p�� c
 	 p�p
� c� 	 ��� p�p	�p��

The Gr�obner basis computed according to Step �a of Algorithm � yields

f � p� � c�p� � �Tp	c	 � �Tc�p	c	 � Tp	c�
�� � � p�T�

�
c	 � c�p� � p�p�� �c�p� � �p	c	 � p�p� � 
p�p	c��
c
 � p� c�� c� � p� � 
p� � 
p�c��

�c	 � �c�c	 � c�
� � p�

�� c�p� � p� � p�p	�
��p	c	 � �c�p	c	 � p	c�

� � p�p� � c�p�p��
�
c
 � 
c�c
 � c�c� � p�c�� 
c	c� � c�c
 � p� c
�

c� � p
 � �p�
� � 
c�p�

� � c�
�p�

� � �p	
�c	 � �p	

�c�c	 � p	
�c�

��

�c�p� � c�c�p� � 
p	c
 � 
p	c�c
 � p	c�c��
c
p� � c�c
p� � 
p	c�c	 � p	c�c
�
�c�c
p� � c�c
c�p� � p	c


� � c�c

�p	 � p	c�

�c	�
�c


� � c�c

� � c�

�c	 � c�c�c
� �� � c� g

where again the variable T takes into account the denominator� �p��
By performing Steps ��� of Algorithm �� at the point p�� 	 
��� p�� 	

����� p�� 	 �� p�	 	 
��

� p�
 	 ��� we obtain


��

 � ����p	T� �
�� � p�� 
��

p� � ����p	� p� � �� p
 � ���

and we �nd a relationship between p� and p	� Thus� knowing p� or p	 would
make the model globally structurally identi�able�

For the experiment y 	 x� the parameter p
 is not identi�able� Indeed
in the characteristic set there is only the polynomial

y��y�� � y��y��p� � y��y
�
���p� � p�p	�� y��� � y���p�p�

�y����p�p� � p�p	p�� � y	��p�p	p��

The coe�cients are

�p�� p� � p�p	� p�p�� �p�p� � p�p	p�� p�p	p�

from which we deduce the identi�ability of the parameters p�� p�� p� and p	
but p
 is not identi�able as it does not appear�

Example 	 The following example is similar to Example � and the extra
variable models intra cellular reservoir �see ����

���
��

x�� 	 p�x� � p�x�x� � p�x� � p
x�

x�� 	 p�x���� p	x�� � p
x�x�
x�� 	 �p�x� � p
x��


�



Both y� 	 x� and y� 	 x� are observed� The characteristic set contains the
polynomial

y�� � y��p� � y���p�p	 � y��y��p


with coe�cients
p�p	� �� �p
� �p�

and the polynomial

�y�� � y��y
�
��p�p�p	 � y���y��p�p
 � y���p� � p
 � p��

�y��y��p� � y��p�p� � y��y���p�p� � p�p��

with coe�cients

p� � p
 � p�� p�p�p	� �p�p
� �p�� �p�p� � p�p�� p�p��

By performing Steps ��� of Algorithm � we deduce the structural global
identi�ability of the model�

Example 
 We conclude with the model in Equations ��� from Section ��
The set C of Algorithm �� Step �� has ��� elements� too many and too
long to write here� None of them contain p	 as expected because p	 is
incorporated in the state variable x�� Thus p	 is not identi�able� By the
analysis of the set C we deduce that the other parameters are identi�able�
Cobelli et al� ��� observes that p	 can be identi�ed by x��
�� It is a structural
feature of the model that p	 is problematic to deal with and not structurally
globally identi�able in the way discussed in this paper� This is also shown by
introducing x��t� 	 e�p�t� Now the parameter p	 is in the model equations
but it is not in the set C obtained when running Algorithm ��

� Conclusions

Di�erential algebra techniques for non�linear control theory are presented
in Fliess ������ ��� and also by other authors� See the bibliographies in
Margaria ���� and at the end of this paper�

In this paper we have presented two methods based on di�erential algebra
techniques to study structural identi�ability of biological models expressed
in state�space form� We focus on �rational� polynomial systems� �Rational�
polynomial systems of �rst order di�erential equations are translated into
prime di�erential ideals� Convenient representations �characteristic sets� of
these ideals are sought in order to determine identi�ability of the original
model� As computation in the di�erential environment is in general compu�
tationally intensive� we have developed a polynomial version of the method
presented by Ollivier �
��� In addition when computation of the character�
istic set in the polynomial ring proves too di�cult� in Algorithm � the test
of identi�ability is performed locally at a point chosen randomly and by the


�



Implicit Function theorem for algebraic varieties the result is valid on the
whole space with probability one�

The second algorithm presented is based on the Taylor series method
for identi�ability� It solves the problem of �xing an upper bound for the
number of derivatives required and study the coe�cients of the Taylor series
expansion using characteristics sets� As typical in identi�ability analysis
whether to apply Algorithm � or 
 depends on the model studied� The
authors found Algorithm � faster in most cases while Algorithm 
 has the
advantage of returning algebraic relationships between the parameters and
the identi�able quantities� An issue of interest is the comparison of the
performances of the existing algorithms �not only those in this paper� for
the study of identi�ability�

Details on the implementation of Algorithm � and 
 can be found in
Margaria �����
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