

Algorithms for fat objects : decompositions and applications

Citation for published version (APA):
Gray, C. M. (2008). Algorithms for fat objects : decompositions and applications. Technische Universiteit
Eindhoven. https://doi.org/10.6100/IR636648

DOI:
10.6100/IR636648

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 19. Sep. 2020

https://doi.org/10.6100/IR636648
https://doi.org/10.6100/IR636648
https://research.tue.nl/en/publications/algorithms-for-fat-objects--decompositions-and-applications(02ea00db-6423-4a4e-8a7e-27dbb01b3c9c).html

Algorithms for Fat
Objects: Decompositions

and Applications

Christopher Miles Gray

Algorithms for Fat
Objects: Decompositions

and Applications

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op maandag 25 augustus 2008 om 16.00 uur

door

Christopher Miles Gray

geboren te Flint, Verenigde Staten van Amerika.

Dit proefschrift is goedgekeurd door de promotor:

prof.dr. M.T. de Berg

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Gray, Christopher Miles

Algorithms for Fat Objects: Decompositions and Applications / by Christopher Miles Gray.
Eindhoven: Technische Universiteit Eindhoven, 2008.
Proefschrift. ISBN 978-90-386-1347-5
NUR 993
Subject headings: computational geometry / data structures / algorithms
CR Subject Classification (1998): I.3.5, E.1, F.2.2

Promotor: prof.dr. M.T. de Berg
faculteit Wiskunde & Informatics
Technische Universiteit Eindhoven

Kerncommissie:
prof.dr. B. Aronov (Polytechnic University)
prof.dr. P.K. Bose (Carleton University)
dr. B. Speckmann (Eindhoven University of Technology)
prof.dr. G. Woeginger (Eindhoven University of Technology)

The work in this thesis is supported by the Netherlands’ Organization for Scientific Re-
search (NWO) under project no. 639.023.301.

The work in this thesis has been carried out under the auspices of the research school
IPA (Institute for Programming research and Algorithmics).

c© Chris Gray 2008. All rights are reserved. Reproduction in whole or in part is pro-
hibited without the written consent of the copyright owner.

Cover Design: Abby Normal
Printing: Eindhoven University Press

Contents

Preface iii

1 Introduction 1

2 Triangulating fat polygons 19

3 Decomposing non-convex fat polyhedra 35

4 Ray shooting and range searching 51

5 Depth orders 69

6 Visibility maps 83

7 Concluding remarks 97

References 101

i

ii

Preface

I can still remember the sequence of events that led me to write this thesis: I was sitting in
my office at the University of British Columbia and chatting online with my friend Chris
Wu1. He mentioned that he had heard of a Ph.D. position that was open at the Technical
University of Eindhoven with Mark de Berg. I knew of Mark fromthe book he had written
on computational geometry, but Eindhoven was new to me. Still, the position seemed like
a good one, so I made up a CV and sent it along. I heard back fairly quickly that I had
been accepted, and I made the decision to come to Eindhoven after a few days of thinking.

I have never regretted that decision. The people in Eindhoven have been extremely kind
and it has been a wonderful environment in which to do research.

I started working right away on topics related to my thesis—abit of a surprise after seeing
the normal procedure at North American universities, whichis to do a lot of reading for
the first two years before deciding on a topic. Within the firstfew months, I had results
that are included in this thesis.

Since then, in collaboration with many coauthors, I have been fortunate enough to have
written quite a few papers that have been published in conferences and scientific journals.
Many of the results from those papers are included in this thesis.

I must thank many people who have made my time in Eindhoven theenjoyable time that
it has been. First, my advisor Mark de Berg. He has been a wonderful teacher. He has
directed me to many good problems, and then has been extremely patient as he tries to
help me write down a clear and understandable solution. My work has benefited greatly
from our collaboration.

1Incidentally, Chris also convinced me to take my first coursein computational geometry as well as to apply
to UBC for the Master’s program. He has had a strangely disproportionate influence on my life up to now.

Next, I would like to thank all of my coauthors. Since I have come to Eindhoven, this list
includes Greg Aloupis, Boris Aronov, Mark de Berg, Prosenjit Bose, Stephane Durocher,
Vida Dujmović, James King, Stefan Langerman, Maarten Löffler, Elena Mumford, Ro-
drigo Silveira, and Bettina Speckmann. Many of the results that we have collaborated on
are included in this thesis. The reading committee also contributed to the thesis through
their helpful comments. They were Boris Aronov, Mark de Berg, Prosenjit Bose, Bettina
Speckmann, and Gerhard Woeginger.

I would also like to thank my officemates over the last four years: Karen Aardal, Dirk Ger-
rits, Peter Kooijmans, Elena Mumford, Sarah Renkl, and Shripad Thite. Elena deserves
special thanks because she has had to put up with me for the whole time. Furthermore, I
would like to thank everyone in the Algorithms group.

Since I have been in Eindhoven, I have also attempted to maintain a nice schedule of
activities. I have especially enjoyed the sports that I haveplayed while here. I would like
to thank the three sports teams that have had me: Flying High of Tilburg, the Eindhoven
Icehawks, and Eindhoven Vertigo.

Finally, and most importantly, I would like to thank my family. Mom, Dad, and Cath, this
is dedicated to you.

Chris Gray
Eindhoven, 2008

iv

CHAPTER 1

Introduction

1.1 Computational geometry

Computational geometry is the branch of theoretical computer science that deals with
algorithms and data structures for geometric objects. The most basic geometric objects
include points, lines, polygons, and polyhedra. Computational geometry has applications
in many areas of computer science, including computer graphics, robotics, and geographic
information systems.

Perhaps a sample computational-geometry problem would help give a more clear view of
what computational geometry is. The problem of finding the convex hull of a set ofn
input points is a convenient such example. Theconvex hullof a set of points is the convex
polygon with the smallest area that contains all the points—see Figure1.1(a). (A convex
setS is one where any line segment between two pointsp andq in S is completely inside
S).

A naı̈ve algorithm for finding the convex hull, known as thegift-wrapping algorithm[17],
is as follows. Find the lowest pointp—we assume for simplicity that this is unique—of
the input (this is guaranteed to be a vertex of the convex hull) and letℓ be an imaginary
horizontal ray starting atp, directed rightwards. Then find the pointq—again, we assume
that this is unique—where the angle betweenpq andℓ is the smallest. Thus, conceptually,
we rotateℓ counterclockwise aroundp until we hit another pointq—see Figure1.1(b).
Add the edgepq to the convex hull, letℓ be the ray contained inpq that starts atq and let
p point toq. Then repeat this procedure untilp is the lowest point of the input again.

1

p

q

ℓ

Figure 1.1 (a) A convex hull. (b) The gift-wrapping algorithm after oneedge has been
added.

This example shows how we can construct the convex hull as a sequence of edges that are
themselves made out of pairs of input vertices. Since the algorithm looks at every vertex
of the input for every convex-hull vertex that it finds, and since every vertex can be on the
convex hull, the gift-wrapping algorithm is clearly aΘ(n2) algorithm, meaning that its
worst-case running time grows quadratically with its inputsize. Can we do better?

It turns out we can—there are algorithms that use more advanced techniques like divide-
and-conquer or sorting that takeΘ(n log n) time [74]. If we disregard the constants hid-
den in theΘ-notation, this means that these more advanced algorithms would take about
ten thousand steps versus about a million for the gift-wrapping algorithm on an input of
one thousand points. There is a lower bound ofΩ(n log n) on finding the convex hull of
n vertices, so we can not do any better than these more advancedalgorithms in theory.

So why do we remember the gift-wrapping algorithm? Is it simply a relic that can be
discarded? If one implements and runs the gift-wrapping algorithm and compares it head-
to-head with a more advanced algorithm, a surprising event can occur. On some inputs,
the gift-wrapping algorithm actually runs faster. How can this happen?

The problem was in our analysis of the gift-wrapping algorithm. It was not incorrect: in
the worst case, the algorithm can takeΩ(n2) time. However, this worst case only happens
if there areΩ(n) points on the convex hull. If there is only a constant number of points
on the convex hull, then the algorithm runs inO(n) time. This disparity leads us to look
at the time complexity in terms ofn and a different parameterh—the number of points
on the convex hull. The time complexity of the gift-wrappingalgorithm when using these
parameters has been shown to beΘ(nh). It has been shown, in fact, that the expected
number of points on the convex hull isO(log n) for points spread uniformly at random
inside a convex polygon [45]. Hence, on such inputs the gift-wrapping algorithm has an
expected running time ofO(n log n).

2

1.2 Realistic input models

The previous example illustrates a problem with the worst-case analysis that we employ
in theoretical computer science. That is, we concentrate (by definition) on the worst case
that the input can take, no matter how unlikely it is.

A number of solutions to this problem have been proposed, including looking at the output
complexity, as illustrated above, and looking at the expected complexity of the algorithms
on random inputs. The solution that we explore in this thesislooks at the “geometric
complexity” of the input.

(a) (b)

Figure 1.2 (a)n triangles. (b) Their union.

As an example, it is easy to see thatn triangles in the plane can have a union with com-
plexity Θ(n2)—see Figure1.2. However, we can also see that these triangles must have
an angle that is very small—in fact, to make the grid-like example of Figure1.2, one
needs angles whose size depends on1/n. Thus the largern is, the smaller angles are
needed. If we restrict the smallest angle of any triangle to be larger than a constantα,
though, then it has been shown that the complexity of the union drops toO(n log log n)
(where the constant in theO-notation depends onα) [65]—see Figure1.3.

In most realistic situations, the angles of input trianglesdo not depend on the size of the
input. The model where the input triangles are required to have a constant minimum angle
is an example of arealistic input model[41] (having to do with thefatnessof the input).

There are two categories of realistic input models: those that make assumptions about the
shapeof the individual input objects and those that make assumptions about thedistribu-
tionof the input objects. One example of a realistic input model which makes assumptions
about the shape of the objects was just given—triangles are said to beα-fat if their mini-
mum angle is bounded from below by a constantα. An example of a realistic input model
that makes assumptions about the distribution of the input is theλ-low-densitymodel.
Here, we assume that the number of “large” objects in a “small” region is bounded by a

3

(a) (b)

Figure 1.3 (a)n fat triangles. (b) Their union.

constantλ. More formally, if we letsize(o) denote some measure of size of an objecto,
then a low-density scene is one where the number of objectso intersecting a regionR
wheresize(o) > size(R) is at most some constantλ for all regionsR.

It is often the case that realistic input models that make assumptions only on the distribu-
tion of the input are more general than those that make assumptions about the shape of
the input. Our example realistic input models are a case in point: any scene consisting of
disjoint fat triangles inR2 is low-density, but not all low-density scenes consist onlyof
fat objects. A hierarchy of such relations has been previously given [41].

As suggested above, one primary motivation for using realistic input models is the notion
that they do a better job at predicting the performance of algorithms in reality. Further-
more, algorithms for realistic input are often simpler thanalgorithms that must be tuned
to arbitrary worst-case examples.

One caveat about working with realistic input models: we must be careful to show the
dependence on the constants associated with the models thatcould be hidden in theO-
notation in the analysis. This is because any object could becalledα-fat and any collec-
tion of objects could be calledλ-low density ifα andλ are chosen suitably small (in the
case ofα) or large (in the case ofλ). If, on the other hand, we show the dependence in the
analysis, then it is clear that at some value of the constant the result becomes less useful.

1.2.1 Previous work

The past work on realistic input models has focused on four main areas: union complex-
ity, motion planning, point location and range searching, and certain computer-graphics
problems. More recently, there have been some new results related to realistic terrains.

4

Union complexity. The complexity of the union of a set of objects is a combinatorial
property that is interesting from an algorithmic point of view because it influences the
running times of some algorithms. One area where it is especially important is in robotics
and motion planning. This is because the first step of the standard technique for determin-
ing whether a robot can move between two points is to shrink the robot down to a point,
expanding the obstacles accordingly. The algorithm then determines whether there are
any paths that can go from the starting point to the target. The computational complexity
of this technique depends in large part on the complexity of the union of the expanded
obstacles.

The union complexity ofn fat triangles was first shown to beO(n log log n) by Ma-
toušeket al. [65] and the dependence on the fatness constant was later improved by Pach
and Tardos [76]. In fact, since convex fat polygons of complexitym can be covered by
O(m) fat triangles (as we show in a later chapter), the same is truefor this class of ob-
jects. Furthermore, under a different definition of fatness, Van Kreveld showed [98] that
non-convex polygons have the same property.

For objects that are not convex and that can have curved edges, De Berg showed that the
union complexity is also close to linear [30]. For locally-γ-fat objects (and thus(α, β)-
covered objects)—defined in Section1.4—whose curved edges can intersect at mosts
times, the union complexity isO(λs+2(n) log2 n), whereλs(n) represents the length of
an(n, s) Davenport-Schinzel sequence. Such a sequence has a length that is near-linear
in n for any constants [87].

It has recently been shown that the union of fat tetrahedra inR
3 is O(n2+ε) [51]. There

has been some work done under other definitions of fatness as well: Aronov et al. [11]
showed that the complexity of the union of so-calledκ-round objects isO(n2+ε) in three
dimensions andO(n3+ε) in four.

Robotics and motion planning. The application of realistic input models to motion
planning has been quite successful. For example, when a robot hasf degrees of freedom,
the free space (that is, the set of places into which the robotcan move without colliding
with an obstacle) has complexityΘ(nf). This implies that any exact solution to the mo-
tion planning problem has time complexityΩ(nf). Currently, the algorithm with the best
time complexity for motion planning has time complexityO(nf log n) [16]. However,
when the obstacles form a low-density scene and the robot is not much larger than the
obstacles, the complexity of the free space isO(n) [97]. This has enabled the develop-
ment of motion-planning algorithms with running times thatare nearly linear given these
realistic input assumptions [96].

Point location and range searching. There has been some research into data structures
for point location and range searching in a setS of disjoint fat objects. In the first problem,
one wishes to find the specific object fromS containing a query point. In the second, the
problem is to find all objects fromS intersecting a query range. That is, we wish to report

5

all objects that intersect some specific part of space. Thesetwo problems are related and
often treated in tandem.

Point location has been well studied in two dimensions, while it remains essentially open
in higher dimensions. A common data structure for point location in two dimensions,
known as the trapezoidal map, is given in the book by De Berget al.[42]. In arrangements
of hyperplanes ind dimensions, Chazelle and Friedman give a data structure [23] that can
answer a point-location query inO(log n) time usingO(nd) space.

Range searching is another well-studied problem. For arbitrary input, the two best-known
data structures are partition trees and cutting trees. Eachhas a trade-off: partition trees use
linear space, but queries takeO(n1−1/d+ε) time [66], while cutting trees haveO(logd n)
query time, but takeO(nd+ε) storage [20]. It is also possible to trade storage for query
time by combining the two types of trees: for anyn ≤ m ≤ nd, there exists a data
structure withO(m1+ε) storage andO(nε/m1+d) query time.

Overmars and Van der Stappen first showed [75] that point-location and range-searching
queries can be handled efficiently when the input is fat. Theypresented a data structure
that supports point-location and range-searching queriesin O(logd−1 n) time that requires
O(n logd−1 n) storage afterO(n logd−1 n log log n) preprocessing. However, the range-
searching portion of this result requires the range to be nottoo much larger than the
objects being queried. Subsequently, the same bounds for query time and storage space
were obtained for low-density input at the expense of a smallincrease in preprocessing
time [85]. This was further improved by De Berg, who gave [29] a linear-sized data
structure with logarithmic query time forunclutteredscenes (another realistic input model
on the distribution of the input that generalizes low density).

Most recently, object BAR-trees were employed to perform approximate range queries on
low-density input in approximatelyO(log n + k) time using linear space [40].

Computer graphics. Some of the problems related to computer graphics that have been
studied in the context of realistic input models are hidden surface removal, ray shooting,
and the computation of depth orders. We study these problemsin later chapters and give
detailed overviews of the related work in the next section.

Realistic terrains. A polyhedral terrain(also known as a triangulated irregular net-
work) is a 2.5-dimensional representation of a portion of a surface. The most common
surface that is represented by a terrain is the Earth. A terrain is modeled as a planar trian-
gulation of a set of two-dimensional points. That is, it is a tiling of the convex hull of the
points by triangles with the condition that every point is the vertex of at least one triangle.
Each of the points has additional height information, and itis assumed that the elevation
of any point inside a trianglet is given by interpolating the heights of the vertices oft.

Realistic terrainsare a newer area of research related to realistic input models that are
inspired by geographic information systems. Here, a few restrictions are placed on the
terrain:

6

• The triangles of the terrain are fat.

• The triangles are not too steep.

• The triangles are all nearly the same size.

• The projection of the terrain onto thexy-plane is a rectangle that is nearly a square.

Certain properties of these terrains, such as the complexity of a geodesic bisector between
two points, have been shown to be lower than in general terrains [71]. Also, some experi-
ments have been done that show that these assumptions are in fact realistic [70]. In addi-
tion, there has been some work done on finding the watersheds of such terrains [32] and
on computing the overlay of maps of such terrains in a manner that attempts to minimize
the number of disk accesses [37].

1.3 Overview of this thesis

In the remainder of this chapter, we give a short outline of the chapters to follow. We
also mention some of the relevant related work. We begin withtwo chapters related to
the decomposition of fat polygons and polyhedra, which we follow with three chapters
related to new algorithms for problems related to computer graphics.

Triangulating fat polygons. In Chapter2, we examine triangulation of a polygon—
probably the most-used decomposition in computational geometry. We examine the prob-
lem in the context of fat objects. Connections between the running time of a triangulation
algorithm and the shape complexity of the input polygon havebeen studied before. For
example, it has been shown that monotone polygons [92], star-shaped polygons [84], and
edge-visible polygons [93] can all be triangulated in linear time by fairly simple algo-
rithms. Other measures of shape complexity studied includethe number of reflex vertices
[57] or the sinuosity [27] of the polygon.

We give a simple algorithm for computing the triangulation in time proportional to the
complexity of the polygon and the number of guards that are necessary to “see” the entire
boundary of the polygon. We also show that a certain type of fat polygons needs a con-
stant number of guards—meaning that our algorithm is a linear-time algorithm for these
polygons.

As of this writing, portions of Chapter2 are to appear at the20th Canadian Conference
on Computational Geometry.

Decomposing non-convex fat polyhedra. In Chapter3, we look at decompositions of
non-convex fat polyhedra in three dimensions. Here, we attempt to find decompositions
where the number of pieces is not too high. We show in a few cases that this can be done,

7

and we prove that it can not be done in most cases. This is, as far as we know, the first
investigation of the possibilities of decomposition for the various types of fat polyhedra in
three dimensions. In two dimensions, Van Kreveld showed [98] that non-convex polygons
can be covered by fat triangles.

A preliminary version of Chapter3 appeared at the24th European Workshop on Computa-
tional Geometry, and the full paper has been invited to the special issue ofComputational
Geometry: Theory and Applicationsthat accompanies that workshop. As of this writing,
the paper is to appear at the16th European Symposium on Algorithms.

Ray shooting and simplex range searching. In Chapter4, we look at the problem of
ray-shootingamidst fat objects from two perspectives. This is the problem of preprocess-
ing data into a data structure that can answer which object isfirst hit by a query ray in
a given direction from a given point. In the first part of the chapter we fix the direction,
while in the second part of the chapter the direction is allowed to be arbitrary. We then
conclude with a data structure that reports the objects intersected by a query simplex that
works in a similar manner to the data structure for ray shooting in arbitrary directions.

Data structures for vertical ray-shooting queries among sets of arbitrary disjoint triangles
in R

3 have rather high storage requirements. WhenO(log n) query time is desired, the
best-known data structure needsO(n2) space [28]. Space can be traded for query time:
for anym satisfyingn ≤ m ≤ n2, a data structure can be constructed that usesO(m1+ε)
space and allows vertical-ray-shooting queries that takeO(n1+ε/m1/2) time [28].

Given the prominence of the ray-shooting problem in computational geometry it is not
surprising that ray shooting has already been studied from the perspective of realistic
input models. In particular, the vertical-ray-shooting problem has been studied for fat
convex polyhedra. For this case Katz [58] presented a data structure that usesO(n log3 n)
storage and hasO(log4 n) query time. Using the techniques of Efratet al. [47] it is
possible to improve the storage bound toO(n log2 n) and the query time toO(log3 n) [59].
Recently De Berg [31] presented a structure withO(log2 n) query time; his structure uses
O(n log3 n(log log n)2) storage.

Similarly, in the case of ray-shooting in arbitrary directions, the results achieved for non-
fat objects require a lot of storage. If the input consists ofn arbitrary triangles, the best
known structures withO(log n) query time useO(n4+ǫ) storage [28, 78], whereas the
best structures with near-linear storage have roughlyO(n3/4) query time [7]. More gen-
erally, for anym with n < m < n4, one can obtainO((n/m1/4) log n) query time using
O(m1+ε) storage [7]. Better results have been obtained for several special cases. When
the setP is a collection ofn axis-parallel boxes, one can achieveO(log n) query time
with a structure usingO(n2+ε) storage [28]. Again, a trade-off between query time and
storage is possible: withO(m1+ε) storage, for anym with n < m < n2, one can achieve
O((n/

√
m) log n) query time. IfP is a set ofn balls, then it is possible to obtainO(n2/3)

query time withO(n1+ε) storage [90], or O(nε) query time withO(n3+ε) storage [72].

When the input is fat, the results are somewhat better. For the case ofhorizontal fat

8

triangles, there is a structure that usesO(n2+ε) storage and hasO(log n) query time [28],
but the restriction to horizontal triangles is quite severe. Another related result is by
Mitchell et al. [69]. In their solution, the amount of storage depends on the so-called
simple-cover complexityof the scene, and the query time depends on the simple-cover
complexity of the query ray. Unfortunately the simple-cover complexity of the ray—and,
hence, the worst-case query time—can beΘ(n) for fat objects. In fact, this can happen
even when the input is a set of cubes. The first (and so far only,as far as we know)
result that works for arbitrary rays and rather arbitrary fat objects was recently obtained
by Sharir and Shaul [89]. They present a data structure for ray shooting in a collection of
fat triangles that hasO(n2/3+ε) query time and usesO(n1+ε) storage. Curiously, their
method does not improve the known bounds at the other end of the query-time–storage
spectrum, so for logarithmic-time queries the best known storage bound is stillO(n4+ε).

We present a new data structure for answering vertical ray-shooting queries as well as a
data structure for answering ray-shooting queries for rayswith arbitrary direction. Both
structures improve the best known results on these problems. Finally, we use ideas from
the second data structure to make a data structure for simplex range searching.

Portions of Chapter4 appeared at the22nd European Workshop on Computational Geom-
etry, where the full paper was also invited to the special issue ofComputational Geometry:
Theory and Applicationsthat accompanies that workshop [9]. The paper also appeared at
the22nd Symposium on Computational Geometry[8].

Depth order. Another problem that is studied in the field of computer graphics is the
depth-orderproblem. We study it in Chapter5 in the computational-geometry context.
This is the problem of finding an ordering of the objects in thescene from “top” to “bot-
tom”, where one object is above the other if they share a pointin the projection to the
xy-plane and the first object has a higherz-value at that point.

The depth-order problem for arbitrary sets of triangles in 3-space does not seem to admit
a near-linear solution; the best known algorithm runs inO(n4/3+ε) time [39]. This has
led researchers to also study this problem for fat objects. Agarwalet al. [5] gave an
algorithm for computing the depth order of a set of triangleswhose projections onto the
xy-plane are fat; their algorithm runs inO(n log5 n) time. However, their algorithm
cannot detect cycles—when there are cycles it reports an incorrect order. A subsequent
result by Katz [58] produced an algorithm that runs inO(n log5 n) time and that can detect
cycles. In this case, one of the restrictions placed on the input is that the overlap of the
objects in the projection is not too small. Thus, the constant of proportionality depends
on the minimum overlap of the projections of the objects thatdo overlap. If there is a
pair of objects whose projections barely overlap, then the running time of the algorithm
increases greatly. One advantage that this algorithm has isthat it can deal with convex
curved objects.

We give an algorithm for finding the depth order of a group of fat objects and an algorithm
for verifying if a depth order of a group of fat objects is correct. The latter algorithm is
useful because the former can return an incorrect order if the objects do not have a depth

9

order (this can happen if the above/below relationship has acycle in it). The first algorithm
improves on the results previously known for fat objects; the second is the first algorithm
for verifying depth orders of fat objects.

Portions of Chapter5 appeared at the17th ACM-SIAM Symposium on Discrete Algo-
rithms [34]. The full version of the paper has appeared in theSIAM Journal on Comput-
ing [36].

Hidden-surface removal. The final problem that we study is thehidden-surface re-
movalproblem. In this problem, we wish to find and report the visible portions of a scene
from a given viewpoint—this is called thevisibility map. The main difficulty in this prob-
lem is to find an algorithm whose running time depends in part on the complexity of the
output. For example, if all but one of the objects in the inputscene are hidden behind
one large object, then our algorithm should have a faster running time than if all of the
objects are visible and have borders that overlap. We give such an algorithm—called an
output-sensitivealgorithm—in Chapter6.

The first output-sensitive algorithms for computing visibility maps only worked for poly-
gons parallel to the viewing plane or for the slightly more general case that a depth order
on the objects exists and is given [15, 53, 54, 80, 81, 88]. Unfortunately a depth order
need not exist since there can be cyclic overlap among the objects. De Berg and Over-
mars [38] (see also [28]) developed a method to obtain an output-sensitive algorithm that
does not need a depth order. When applied to axis-parallel boxes (or, more generally,
c-oriented polyhedra) it runs inO((n + k) log n) time [38] and when applied to arbitrary
triangles it runs inO(n1+ε + n2/3+εk2/3) time [6]. Unfortunately, the running time for
the algorithm when applied to arbitrary triangles is not near-linear inn—the complexity
of the input—andk—the complexity of the output; for example, whenk = n the running
time is O(n4/3+ε). For general curved objects no output-sensitive algorithmis known,
not even when a depth order exists and is given.

Hidden-surface removal has also been studied for fat objects: Katzet al.[60] gave an algo-
rithm with running timeO((U(n) + k) log2 n), whereU(m) denotes the maximum com-
plexity of the union of the projection onto the viewing planeof any subset ofm objects.
SinceU(m) = O(m log log m) for fat polyhedra [76] andU(m) = O(λs+2(m) log2 m)
for fat curved objects [30], their algorithm is near-linear inn andk. However, the algo-
rithm only works if a depth order exists and is given.

We give an algorithm for hidden-surface removal that does not need a depth order and
whose running time is still near-linear inn andk.

Portions of Chapter6 appeared at the10th International Workshop on Algorithms and
Data Structures[35] and the full paper was also invited to the special issue ofComputa-
tional Geometry: Theory and Applicationsthat accompanies that workshop.

Conclusions. We end the thesis with some conclusions and we state some openprob-
lems in Chapter7.

10

1.4 Definitions and basic techniques

Many realistic input models (and measures of fatness) have been proposed. In the next few
paragraphs, we define those that we use most in this thesis anddiscuss some techniques
that we feel are important to know about when dealing with realistic input.

β-fat objects. The best-known and most widely used of the realistic input models isβ-
fatness. This is the model of fatness that we employ in this thesis, unless otherwise noted.
It is defined as follows.

Definition 1.1 Let β be a constant, with0 < β ≤ 1. An objecto in R
d is defined to be

β-fat if, for any ball b whose center lies ino and that does not fully containo, we have
vol(b ∩ o) ≥ β · vol(b).

There have been other definitions of fatness proposed (such as the one given in Section1.2,
restricting the minimum angle of triangles), but when the input is convex, they are all
equivalent up to constant factors.

Locally-γ-fat objects. When the input is not convex, defining fatness in such a way
that the objects satisfy the intuitive definition of fatnessis trickier. Many of the results
stated for fat objects break completely under Definition1.1when the input is not convex—
for example, the union complexity of two non-convexβ-fat objects can beΩ(n2) as can
be seen in Figure1.4(b). (In fact,n constant-complexity non-convexβ-fat objects can
also have a union complexity ofΩ(n2), but the example is more complicated [30].) We
use two definitions of fatness for non-convex objects in thisthesis that satisfy the intuitive
definition better than Definition1.1. The first is of locally-γ-fat objects. See Figure1.4(a).

(a) (b)

Figure 1.4 (a) A locally-fat polygon. Note that only the part of the intersection containing
the center of the circle is counted. (b) An object that is approximately(1/4)-fat, but not
locally-(1/4)-fat.

11

Definition 1.2 For an objecto and a ballb, defineb ⊓ o to be the connected component
of b ∩ o that contains the center ofb. Let γ be a constant, with0 < γ ≤ 1. An objecto in
R

d is defined to belocally-γ-fat if, for any ballb whose center lies ino and that does not
fully containo, we havevol(b ⊓ o) ≥ γ · vol(b).

(α, β)-covered objects. Definition 1.2 is a small modification of Definition1.1—we
simply replace∩ by ⊓. The second definition that we use shares less with Definition1.1.
It is illustrated in Figure1.5.

α

β

Figure 1.5 An (α, β)-covered polygon with diameter 1.

Definition 1.3 LetP be a polyhedron inRd andα andβ be two constants with0 < α ≤ 1
and0 < β ≤ 1. A good simplexis a simplex that has fatnessα (using Definition1.1) and
has smallest edge-lengthβ · diam(P). P is (α, β)-coveredif every pointp on the bound-
ary ofP admits a good simplex that has one vertex atp and stays completely insideP .

Definition 1.3 is a generalization to higher dimensions of the(α, β)-covered polygons
proposed by Efrat [46]. As observed by De Berg [30] when he introduced the class of
locally-γ-fat polygons, the class of locally-γ-fat objects is strictly more general than the
class of(α, β)-covered objects: any object that is(α, β)-covered for some constantsα
andβ is also locally-γ-fat for some constantγ depending onα andβ, but the reverse is
not true.

Low-density scenes. Another realistic input model assumes that the input islow density.
This means, essentially, that there can not be too many largeobjects intersecting a small
space. The formal definition is given below. We definesize(o), thesizeof an objecto, to
be the radius of the smallest enclosing ball1 of o.

Definition 1.4 The densityof a setS of objects is defined as the smallest numberλ such
that any ballb is intersected by at mostλ objectso ∈ S such thatsize(o) ≥ size(b).

1It is also possible to use the diameter ofo as the measure of its size. This leads to slightly different constants
in the analysis, but has no asymptotic effect.

12

Figure 1.6 A low-density scene. Note that the small triangles are not counted, since they
are not as large as the circle.

The following lemma relates the density of a set of disjoint objects to their fatness.

Lemma 1.5 (De Berget al. [41]) Any set of disjointβ-fat objects has densityλ for some
λ = O(1/β).

Below, we look at three techniques that are useful when dealing with realistic input.

Canonical directions. One simple but powerful tool often used when designing algo-
rithms and combinatorial proofs for fat objects is a small set of canonical directions. It is
difficult to define such a set in the absence of the context of a specific problem, so we first
give an example.

We again restrict the input to triangles that have a minimum angle that is at least some
constantα. Let D = {0, α/2, α, 3α/2, . . .} be a set of directions with|D| = ⌈4π/α⌉.
Then at every vertexv of a trianglet, there must be at least one direction~d ∈ D where a
line segment placed atv in direction~d stays in the interiort. It is important to note that
the size ofD is independent of the number of triangles in the input set; nomatter how
many triangles are input, if they are allα-fat, thenO(1/α) directions suffice.

One application in which such a set of canonical directions is useful is the following.
Let P be a set ofn points. We wish to query a data structure onP with ranges that
are fat triangles. The data structure should return all the points inside the range. This
is known assimplex range searching. For arbitrarily skinny ranges,cutting treeshave
near-logarithmic query times andO(n2+ε) storage requirements, andpartition treeshave
near-linear storage requirements but have query times thatareO(n1/2+ε) [42].

13

Figure 1.7 A set of canonical directions forα = 48◦.

Figure 1.8 A fat triangle divided into triangles with two edges that have canonical direc-
tions. The canonical directions are those shown in Figure1.7.

However, anα-fat triangle can be divided into four smaller triangles that each have two
edges that have directions fromD—see Figure1.8. This allows us to design a more effi-
cient data structure. Each range query with a triangle can bethought of as the intersection
of three range queries with half-planes. When the directionof an edge of the triangle is
known beforehand, such a half-plane query is simple: a balanced binary search tree will
suffice.

Therefore, we can constructO(1/α2) multi-level data structures—see [42] for a good in-
troduction to multi-level data structures—with three levels. Each of the first two levels
corresponds to a half-plane query data structure optimizedfor one of the canonical direc-
tions (that is, the balanced binary search tree). The final level of the data structure is a
data structure by Chazelleet al. [26]. This is a slightly more complex data structure that
usesO(n) space and can answer half-space range queries in timeO(log n+k), wherek is
the size of the output. Our data structure then has query timeO(log3 n + k), while using
O(n log2 n) space. In other words, its query time is approximately the same as the query
time for cutting trees while its space requirement is about the same as that of partition
trees.

14

In this example, the property that the canonical directionshave is that a segment travelling
in a direction fromD away from a vertex stays inside the triangle. In later chapters, we
use sets of canonical directions with more complicated properties, such as when we define
towers in Chapter3 and when we define witness edges in Chapter5.

Guards. Another tool used when dealing with realistic input is aguarding set. The goal
when creating a guarding set is to define a set of points that have the property that any
rangethat does not contain one of the points must intersect a smallnumber of the input
objects. A range, in this context, is an element of a familyR of shapes. An example
family R could be the set of all squares inR2, and a range from that family would then
be a specific square.

Given a setD of disjoint disks, we can build a guarding set by placing a guard at each
corner of the axis-aligned bounding square of each disk inD as well as at the center of
each disk inD. Using the same family of rangesR defined above—namely the set of all
squares—any ranger from R that contains no guard can intersect at most four disks from
D. This property is useful for constructing data structures,such as binary space partitions,
discussed below.

Figure 1.9 A set of circles with guards. No square can intersect more than four circles
without containing a guard.

In contrast to the example above, where the size of the guarding set depends onn, in cer-
tain situations the size of the guarding set is a constant depending on the fatness constant
of the input. In Chapter4, for example, we create a constant-sized grid that guards against
a family of ranges that consists of a subset of the input. However, in this thesis, guarding
sets are most often used implicitly in the construction of binary space partitions, which
we discuss next.

15

Binary space partitions. Another technique used in computational geometry is the de-
composition of space into cells. Generally the goal is to obtain a constant number of (frag-
ments of) input objects in each cell. This is a widely used technique, and when the objects
conform to a realistic input model, properties of the decompositions often improve.

One decomposition of space is known as thebinary space partition, or BSP. BSPs are
widely used in practice despite the fact that their use oftendoes not lead to the best-known
theoretical time bounds. However, their actual performance is often better than the theory
predicts. One reason for this might be that the objects inputto BSPs in practice tend to fit
realistic input models.

The main idea behind a BSP is to recursively split space untilthe remaining subspaces
each contain at most one fragment of an input object. This process can be modeled as a
tree structure. A BSP is constructed as follows: first, a hyperplane (a line in two dimen-
sions or a plane in three dimensions)h1 splits space. Then two hyperplanesh2 andh3

split the parts of space on either side ofh1. Two hyperplanes then split the parts of space
on either side ofh2 and two more hyperplanes split the parts of space on either side ofh3.
This process continues until each part of space contains at most one piece of input.

The BSP tree structure is defined as follows: every fragment of an object is contained in
some leaf. A nodeν contains a splitting hyperplaneh (the root node containsh1) and has
two BSP trees as children. The left child ofν is the BSP tree on the space aboveh and
the right child ofν is the BSP tree on the space belowh. See Figure1.10.

h1

h2

h3

h4

above below

h3

h1

h2

h4

Figure 1.10 A BSP and its associated tree.

Thesizeof a BSP is defined to be the number of fragments that are storedin the nodes
of the BSP. It is generally desirable to have a BSP that has a small size. However, even
for segments inR2, it is not always possible to obtain a linear-sized BSP, as T´oth has
shown [91] that there are input configurations that imply a BSP of sizeΩ(n log n/ log log n).
In R

3, the situation is even worse: Paterson and Yao show [77] that binary space parti-

16

tions for disjoint triangles can be forced to have sizeΩ(n2). This is too large for many
applications, so BSPs were often ignored by the theoretical-computer-science community.
However, when the input conforms to a realistic input model,the situation does not look
so bad. First, De Berg designed [29] a BSP with linear size for low-density scenes. Then
De Berg and Streppel designed [40] the object BAR-tree, which also has linear size for
low-density scenes as well as a few other nice properties that we discuss below.

The object BAR-tree is an extension of thebalanced aspect-ratio tree, or BAR-tree, intro-
duced by Duncanet al. [44]. This is a BSP on points that has linear size (as do all BSPs
on points, since points can not be split). The cells of the BAR-tree are fat, and the depth
of a BAR-tree onn points isO(log n).

The object BAR-tree is constructed by surrounding each input object by a set of guards
and then building a BAR-tree on the guards. As long as the input objects have low density,
the tree has the same properties as a BAR-tree: linear size, fat cells, and logarithmic depth.
These properties are quite useful, and we see examples of theuse of the object BAR-tree
in many chapters of this thesis.

17

18

CHAPTER 2

Triangulating fat polygons

2.1 Introduction

Polyhedra and their planar equivalent, polygons, play an important role in many geometric
problems. From an algorithmic point of view, however, general polygons and polyhedra
are unwieldy to handle directly: many algorithms can only handle them when they are
convex, preferably of constant complexity. Hence, there has been extensive research into
decomposing polyhedra (or, more generally, arrangements of triangles) into tetrahedra
and polygons into triangles or other constant-complexity convex pieces. The two main
issues in developing decomposition algorithms are (i) to keep the number of pieces in the
decomposition small, and (ii) to compute the decompositionquickly.

In the planar setting the number of pieces is, in fact, not an issue if the pieces should be tri-
angles: any polygon admits atriangulation—that is, a partition of a polygon into triangles
without adding extra vertices—and any triangulation of a simple polygon withn vertices
hasn − 2 triangles. Hence, research focused on developing fast triangulation algorithms,
culminating in Chazelle’s linear-time triangulation algorithm [19]. An extensive survey
of algorithms for decomposing polygons and their applications is given by Keil [61].

In this chapter, we look at the problem in the planar context;we study the problem in
R

3 in the next. In particular, in this chapter we look at the triangulation problem with
respect to fat objects. Polygon triangulation is a common preprocessing step in geometric
algorithms.

19

It has long been known that linear-time polygon triangulation is possible but the algo-
rithm by Chazelle [19] that achieves this is quite complicated. There are severalimple-
mentable algorithms which triangulate polygons in near-linear time. For example, Kirk-
patrick et al. [64] describe anO(n log log n) algorithm and Seidel [86] presents a ran-
domized algorithm which runs inO(n log∗ n) expected time. However, it is a major open
problem in computational geometry to present a linear-timeimplementable algorithm.

We study triangulation in the context of fat objects. Relationships between shape com-
plexity and the number of steps necessary to triangulate polygons have been investigated
before. For example, it has been shown that monotone polygons [92], star-shaped poly-
gons [84], and edge-visible polygons [93] can all be triangulated in linear time by fairly
simple algorithms. Other measures of shape complexity studied include the number of re-
flex vertices [57] or the sinuosity [27] of the polygon. However, no linear-time algorithm
(except Chazelle’s complicated general algorithm) is known for fat polygons, arguably
the most popular shape-complexity model of the last decade.This is the goal of our work:
to develop a simple linear-time algorithm for fat polygons.

We begin, after defining some terms and setting up some tools in Section2.2, by showing
that(α, β)-covered polygons can be “guarded” by a constant number,k, of points in Sec-
tion 2.3. We call polygons that have this propertyk-guardable. In this context, a polygon
is guarded by a set of pointsG if, for each pointp on the boundary of the polygon, there is
a line segment betweenp and one of the guards inG that is contained inP . Note that this
is a different definition than the one we gave in Chapter1 when discussing techniques for
dealing with realistic input. We conclude in Section2.4by giving two algorithms for tri-
angulatingk-guardable polygons inO(kn) time. If the link diameter of the input—see the
next section for a formal definition—isd, then one of our algorithms takesO(dn) time—
a slightly stronger result. We also describe an algorithm which triangulatesk-guardable
polygons inO(kn) time. That algorithm uses even easier subroutines than the other, but
it requires the actual guards as input, which might be undesirable in certain situations.

As mentioned in Chapter1, there are several algorithms and data structures for collec-
tions of realistic objects. For example, the problem of ray-shooting in an environment
consisting of fat objects has been studied extensively [31, 58] (see also Chapter4 of this
thesis). However, there are few results concerning individual realistic objects. We hope
that our results on triangulating realistic polygons will encourage further research in this
direction.

2.2 Tools and definitions

Throughout this chapter letP be a simple polygon withn vertices. We assume thatP has
no vertical edges. IfP has vertical edges, it is easy to rotate it by a small amount until the
vertical edges are eliminated.

We denote the interior ofP by int(P), the boundary ofP by ∂P , and thediameterof P
by diam(P). The boundary is considered part of the polygon, that is,P = int(P) ∪ ∂P .
We say that a pointp is in P if p ∈ int(P) ∪ ∂P .

20

p

w
P Pw

Figure 2.1 The visibility polygonVP (p, P) is shaded.Pw is the pocket ofw with respect
to VP (p, P).

The segment or edge between two pointsp andq is denoted bypq. The same notation
implies the direction fromp to q if necessary. Two pointsp andq in P seeeach other if
pq ∩ P = pq. If p andq see each other, then we also say thatp is visible from q and vice
versa. We call a polygonP k-guardableif there exists a setG of k points inP called
guardssuch that every pointp ∈ ∂P can see at least one point inG.

A star-shapedpolygon is defined as a polygon that contains a set of points—thekernel—
each of which can see the entire polygon. If there exists an edgepq ⊂ ∂P such that each
point in P sees some point onpq, thenP is weakly edge-visible. Thevisibility polygon
of a pointp ∈ P with respect toP , denoted byVP (p, P) is the set of points inP that are
visible fromp. Visibility polygons are star-shaped and have complexityO(n).

Figure 2.2 A polygon with low link diameter that needsO(n) guards.

A concept related to visibility in a polygonP is the link distance, which we denote by
ld(p, q) for two pointsp andq in P . Consider a polygonal pathπ that connectsp andq
while staying in int(P). We say thatπ is a minimum link path if it has the fewest number
of segments (links) among all such paths. The link distance of p andq is the number of
links of a minimum link path betweenp andq. We define thelink diameterd of P to be
maxp,q∈P ld(p, q). The link diameter of a polygon may be much less than the number
of guards required to see its boundary, and is upper bounded by the number of guards
required to see the boundary. This can be seen in the so-called “comb” polygons—see
Figure2.2—that generally have a low link diameter but need a linear number of guards.

21

Let Q be a subpolygon ofP (that is, a simple polygon that is a subset ofP), where all
vertices ofQ are on∂P . If all vertices ofQ coincide with vertices ofP , then we callQ
a pure subpolygon. If ∂P intersects an edgew of ∂Q only at w’s endpoints, thenw is
called awindowof Q. Any windoww separatesP into two subpolygons. The one not
containingQ is thepocketof w with respect toQ (see Figure2.1). Any vertex added to
the polygon (such as the endpoint of a window) is called aSteiner point.

Lemma 2.1 (El Gindy and Avis [48]) VP (p, P) can be computed inO(n) time.

This algorithm, while not trivial, is fairly simple. It involves a single scan of the polygon
and a stack. See O’Rourke’s book [73] for a good summary.

2.3 Guarding realistic polygons

In this section we discuss several realistic input models for polygons and their connection
to k-guardable polygons. We first consider the so-calledε-good polygons introduced
by Valtr [95]. An ε-good polygonP has the property that any pointp ∈ P can see a
constant fractionε of the area ofP . Valtr showed that these polygons can be guarded
by a constant number of guards. Henceε-good polygons fall naturally in the class of
k-guardable polygons. Kirkpatrick [63] achieved similar results for a related class of
polygons, namely polygonsP where any pointp ∈ P can see a constant fractionε of the
length of the boundary ofP . These polygons can be guarded by a constant number of
guards as well, and hence arek-guardable polygons.

Figure 2.3 A polygonP that is(α, β)-covered but notε-good. By scaling the length of
the edges, the central point ofP can be made to see an arbitrarily small fraction of the
area ofP .

We now turn our attention to fat polygons. In particular, we consider(α, β)-covered
polygons—see Chapter1 for the definition. It is easy to show that the classes of(α, β)-
covered polygons andε-good polygons are not equal—any convex polygon that is not
fat is ε-good but not(α, β)-covered, and the polygon in Figure2.3 is (α, β)-covered but
not ε-good. In the remainder of this section we prove that(α, β)-covered polygons can
also be guarded by a constant number of guards and hence arek-guardable polygons. In
particular, we prove with a simple grid-based argument thatwe can guard the boundary
of an(α, β)-covered polygon with⌈32π/(αβ2)⌉ guards.

22

Let P be an(α, β)-covered polygon with diameter 1 and letp be a point on∂P . We
construct a circleC of radiusβ/2 aroundp and place⌈4π/α⌉ guards evenly spaced on
the boundary ofC. Call this set of guardsGp. By construction, the triangle consisting of
p and any two consecutive guards ofGp has an angle atp of α/2. Hence any good triangle
which is placed atp must contain at least one guard fromGp. Now consider the circleC′

centered atp with radiusβ/4. We show in the lemma below that any good triangle placed
at a point inside the circleC′ must contain at least one guard fromGp.

Lemma 2.2 Let T be a good triangle with a vertex inside the circleC′. ThenT contains
at least one guard fromGp.

Proof. Let v be the vertex ofT that lies insideC′. SinceT is a good triangle, all of its
edges have length at leastβ. Also, all of its angles are at leastα. In particular, the angle
that is atv is at leastα. Since all angles inT are at leastα, α is at mostπ/3.

β/4

β/4

δ

g1

g2
p v

C
C ′

Figure 2.4 The guarding setGp.

Let r be the ray that bisects the angle atv. Assume thatT contains no guards fromGp.
It is easy to see that we lose no generality by assuming thatv is on the boundary ofC′.
Indeed, movingT towards the boundary ofC′ alongr, no guards fromGp can enterT .
We also lose no generality by assuming thatr is orthogonal toC′ at v and that it passes
through the center point of the segment connecting two consecutive guards fromGp. We
now show that even in this worst case, pictured in Figure2.4, there must be a guard from
Gp in T .

We show that there is a segment connecting two consecutive guards fromGp that is com-
pletely contained inT . Let g1 andg2 be the guards which have the property thatr passes
through the segmentg1g2. We denote the length of the segmentg1g2 by 2δ. Hence
tan(α/4) = 2δ/β. Let the angleg1vg2 be denoted by2θ. We havetan θ = 4δ/β. There-
fore, tan θ = 2 tan(α/4). Since0 < α/4 ≤ π/12 < π/4, we have0 < 2 tan(α/4) <
tan(α/2) (by double-angle identities fortan). This implies thattan θ < tan(α/2) and

23

hence2θ < α. It follows thatT must contain the segmentg1g2. Since we chose the worst
possibleT , any good triangle insideC′ must contain at least one guard fromGp. 2

This lemma almost immediately provides a guarding set for∂P .

Theorem 2.3 Let P be a simple(α, β)-covered polygon. The boundary ofP can be
guarded by⌈4π/α⌉⌈2

√
2/β⌉2 guards.

Proof. Assume without loss of generality that the diameter ofP is1. Thus,P has a bound-
ing squareB with area1. The circleC′ in the guarding setGp from Lemma2.2contains
a square with areaβ2/8. We coverB by ⌈2

√
2/β⌉2 such squares that are each surrounded

by a copy ofGp. Since every point of∂P is contained in at least one such square, this
must be a guarding set by Lemma2.2. Since each copy ofGp contains⌈4π/α⌉ guards,
we need at most⌈4π/α⌉⌈2

√
2/β⌉2 guards to guard∂P . 2

2.4 Triangulating k-guardable polygons

We present two algorithms that triangulate ak-guardable polygon. The first algorithm is
slightly simpler, but it needs the set of guards as input. Thesecond algorithm does not.
The model under which the first algorithm operates, that is, that it needs the guards as
input, may seem strange at first. However, given the results of the previous section for
(α, β)-covered polygons, we can easily find a small guarding set in linear time for certain
fat polygons.

2.4.1 Triangulating with a given set of guards

Let G = {g1, . . . , gk} be a given set ofk guards inP that jointly see∂P . In this section
we describe a simple algorithm that triangulatesP in O(kn) time.

A vertical decompositionof P—also known as a trapezoidal decomposition ofP , leading
to the notationT (P)—is obtained by adding avertical extensionto each vertex ofP . A
vertical extensionof v, denoted vert(v), is the maximal vertical line segment which is
contained in int(P) and intersectsv. We sometimes refer to anupward(resp.downward)
vertical extensionof v. This is the (possibly empty) part of vert(v) that is above (resp.
below)v.Let g be a guard andw be a window ofVP (g, P). Pw denotes the pocket ofw with
respect toVP (g, P). The vertical projection ontow is the ordered list of intersection
points ofw with the vertical extensions of the vertices ofPw (see Figure2.5).

Our algorithm finds the vertical decompositionT (P) of P in O(kn) time. In particular,
we show how to compute all vertical extensions ofT (P) that are contained in or cross the
visibility polygon of a guard inO(n) time. Since each vertex ofP is seen by at least one
guard, every vertical extension is computed by our algorithm. It is well known that finding
a triangulation of a polygonP is simple given the vertical decomposition ofP [27]. The

24

x2

v2

g

Pw

w
x1

x3

v1

v3

Figure 2.5 The vertical projection ontow is (x1, x2, x3).

most complicated procedure used in our algorithm has the difficulty level of computing
the visibility polygon of a point.

Below is a high-level description of our algorithm. The details of the various steps will
be discussed later.

TRIANGULATEWITHGUARDS(P, G)

1 for each guardg ∈ G
2 do find the visibility polygonVP1(g, P).
3 for each windoww in VP1(g, P)
4 do compute the vertical projection ontow and add the resulting Steiner

points tow.
� After all windows of VP1(g, P) have been processed, we have a simple

polygonVP2(g, P) that includes the points in the vertical projections as
Steiner points on the windows.

5 Compute the vertical decomposition ofVP2(g, P). For every vertexv of
VP2(g, P) that is not a Steiner point created in Step2, add the vertical ex-
tension ofv to ∂VP2(g, P), creatingVP3(g, P).

� We have now computed the restriction ofT (P) to VP (g, P). That is, every
vertical extension that is part ofT (VP3(g, P)) is contained in a vertical ex-
tension ofT (P) and every vertical extension ofT (P) that crossesVP (g, P)
is represented inT (VP3(g, P)) for someg ∈ G.

6 For each vertexv of VP3(g, P), determine the endpoints of vert(v) on∂P .

By Lemma2.1, Step2 takesO(n) time. We now discuss the other steps of the algorithm.

Step4: Computing a vertical projection onto a window. Without loss of generality,
we assume thatw is not vertical and that int(VP (g, P)) is abovew (see Figure2.7).
Let v be a vertex ofPw such that vert(v) intersectsw. Furthermore, letz be a point at
infinite distance vertically above some point onw. Observe that if we remove the parts
of P abovew so thatz can see all ofw, thenz can seev. This implies that we should

25

(2) (4) (5) (6)

Figure 2.6 Sample execution of the algorithm. The box is the guard, unfilled circles
are new Steiner points, and filled circles are points from which a vertical extension is
computed.

remove all parts ofPw that are inside the “vertical slab” abovew, so that vertices whose
vertical extensions intersectw are precisely those that form the visibility polygon ofz.
The technique of computing a visibility polygon of a point atinfinity was first used by
Toussaint and El Gindy [94].

x2

v2

P̂w
w x1 x3

v1

v3

z

g
Pw

w

r1 r2

g
Pw

w

r1 r2

(a) (b) (c)

v4

x4

i1

i2
i3

i4

i5

i6

Figure 2.7 Computing a vertical projection. (a) A polygon that does notwrap around
w. (b) Its vertical projection. (c) A polygon that wraps around w. The counterc2 is
incremented ati1 andi2, decremented ati3, incremented again ati4, and decremented
two more times ati5 andi6, at which time it is once again0.

We remove all the parts ofPw that are outside the vertical slab directly beloww, as
follows. Imagine shooting two rays downward from the start-and end-points ofw. We
call the raysr1 andr2. We keep two counters calledc1 andc2 that are initialized to0,
and are associated tor1 andr2, respectively. Assume thatr1 is to the left ofr2. We begin
scanning∂Pw at one of the endpoints ofw and proceed toward the other endpoint. If an
edge of∂Pw intersectsr1 from the right, we incrementc1 and proceed as follows until
c1 is again0. We continue scanning∂Pw, throwing away edges as we go. If an edge

26

intersectsr1 from the right, we incrementc1 and if an edge intersectsr1 from the left,
we decrementc1. Whenc1 is 0, we connect the first and last intersections of∂Pw by a
segment. The procedure is essentially the same when an edge intersectsr2 except that we
interchange “right” and “left”. Note that ifPw winds aroundw many times,c1 or c2 might
be much larger than1. Finally, once∂Pw has been traced back tow, we remove potential
intersections between newly constructed line segments along r1 by shifting them to the
left by a small amount proportional to their length. We shiftthe new segments alongr2 to
the right by a small amount proportional to their length. Thesimplicity of P implies that
the new segments are either nested or disjoint, so we obtain asimple polygon that does
not cross the vertical slab abovew. Finally, we removew and attach its endpoints toz,
thus obtaining polygon̂Pw. The vertices ofVP (z, P̂w) are precisely those vertices ofPw

whose vertical extensions intersectw and appear as output in sorted order.

Lemma 2.4 The vertical projection ontow can be computed inO(|Pw |) time.

Proof. The algorithm described in the text consists of a scan of∂Pw and a visibility
polygon calculation, which has complexityO(|Pw |). Therefore, it remains to show that a
pointx is added tow if and only if there is a corresponding vertexvx in Pw whose vertical
extension intersectsw atx.

Suppose there is a vertexvx whose vertical extension intersectsw. Thenvx is visible
from z, so vx is included inVP (z, P̂w) and thusx is added tow. On the other hand,
suppose there is a pointx added tow. This occurs if there is a vertexvx which is visible
to z throughw. Since this is the case, the vertical extension ofvx intersectsw. 2

Step5: Computing a vertical decomposition of a star-shaped polygon. Let S be a
given star-shaped polygon andg be a point inside the kernel ofS. We assume that the
vertices ofS are given in counterclockwise order aroundS. To simplify the algorithm,
we describe only the computation of the upward vertical decomposition (that is, for each
vertexv, we find the upper endpoint of vert(v)) of the part ofS that is to the left of the
vertical line throughg. See Figure2.8. We say that a vertexv supportsa vertical lineℓ if
the two edges adjacent tov are both on the same side ofℓ.

The algorithm for finding the upward vertical decompositionof S consists of a sequence
of alternating leftward and rightward walks: a leftward walk which moves a pointer to a
vertex which supports a vertical line (locally) outsideS, and a rightward walk which adds
vertical decomposition edges. The algorithm begins with the leftward walk which starts
from the point directly aboveg. It ends when the rightward walk passes underg.

The leftward walk simply moves a pointer forward along∂S until a vertexvs which
supports a vertical line outsideS is encountered—so we concentrate on describing the
rightward walk. The rightward walk begins with two pointers, pu andpd, which initially
point to vs, the last point encountered in the leftward walk. The pointers are moved
simultaneously so that they always have the samex-coordinate, withpd being moved
forward along∂S—that is, counterclockwise—whilepu is moved backward along∂S
(imagine sweeping rightward with a vertical line fromvs). If pd encounters a vertex, then

27

g

pd

pu

vs S

Figure 2.8 Upward vertical decomposition of the part ofS to the left of the guardg.

a vertical decomposition edge is created betweenpd andpu. If pu encounters a vertex
v to which a vertical decomposition edge vert(v) is already attached (which implies that
v supports a vertical line), thenpu moves to the top of vert(v) and continues from there.
Whenpd encounters a vertexv that supports a vertical line, the rightward walk ends and
the leftward walk begins anew atv.

Lemma 2.5 The vertical decomposition of a star-shaped polygonP is correctly com-
puted by the above algorithm inO(n) time.

Proof. The algorithm outlined in the text maintains the followingextension invariant: the
correct upward vertical extension has been found for every vertex to whichpd has pointed.
Initially, the invariant is trivially true.

By construction,pd visits all vertices ofS that are the endpoints of the edges of the upward
vertical decomposition ofS in counterclockwise order. Hence the algorithm constructsa
vertical extension for each of these vertices. It remains toshow that the upper endpoint
of the vertical extension is correctly identified. Denote the current position ofpd by vd.
Again by construction,pu lies vertically abovevd at positionvu. We need to show that
vdvu is not intersected by an edge ofS.

Consider the trianglegvdvu. Sinceg sees all ofS, gvd andgvu can not be intersected
by an edge ofS. This implies that any edgee that intersectsgvdvu must intersectvdvu.
Furthermore,e must be an edge in the chainCL, which is the chain fromvu to vd in
counterclockwise order. To show that no edge fromCL intersectsvuvd, we establish the
order invariant: CL is always to the left ofpupd. The invariant is trivially true whenever
pu andpd point to vs, that is, whenever we begin a rightward walk. Suppose that the
invariant has been true until stepk and we will show that it is still true at stepk + 1. Let
C′

L be the chain frompu to pd at stepk andCL be the chain frompu to pd at stepk + 1.
There are three cases in stepk: (a) pd is pointing to a vertex ofS, (b) pu is pointing to
a vertex ofS without a vertical extension, or (c)pu is pointing to a vertexv of S with a
vertical extension. See Figure2.9. In the first two cases, the invariant is maintained since
CL only differs fromC′

L by two segments that by definition both lie to the left ofpupd.
Since the vertices inCL come beforevd, the correct vertical extension of each vertex in

28

CL has been computed by the assumption of the extension invariant. This implies that the
order invariant is also maintained in the case wherepu is pointing to a vertexv of S with
a vertical extension and is moved to the top of vert(v). This is becauseC′

L differs from
CL by a segment which is to the left ofpd and a chain which must be to the left ofpupd

since vert(v) is a valid vertical extension.

Bothpd andpu visit every vertex ofS at most once, hence the running time isO(n). 2

vs

vs
vs

pu

pd

pd

pu

pd

pu(a) (b) (c)

Figure 2.9 Establishing correctness of the order invariant: three cases.

Step 6: Computing the endpoints of vertical extensions. The final step of the algo-
rithm is to find and connect the endpoints of the vertical extensions of every vertex of
VP3(g, P). Let v be an arbitrary vertex ofVP3(g, P). If both endpoints of vert(v) are
on the boundary ofVP (g, P), we have already found and connected them in the previ-
ous step. Thus, let us assume that at least one of the endpoints of vert(v) is not on the
boundary ofVP (g, P). That is, vert(v) intersects at least one window ofVP (g, P). Since
we have already connected the endpoints of vert(v) ∩ VP (g, P) in the previous step, it is
sufficient to find the endpoints of vert(v) that are outside ofVP (g, P). Thus, it suffices
to examine vertices that are Steiner points on windows.

Let v1, . . . , vj be vertices on windoww, in sorted order. Again without loss of generality,
we assume that int(VP (g, P)) is abovew. To find the endpoint of vert(v) that is beloww

for all v ∈ {v1, . . . , vj}, we use the visibility polygonVP (z, P̂w) computed in Step4 of

the algorithm. Note that the vertices ofVP (z, P̂w) as well{v1, . . . , vj} are sorted byx-
coordinate. Thus we find the endpoints of{vert(v)|v ∈ {v1, . . . , vj}} by simultaneously

scanning inVP (z, P̂w) and {v1, . . . , vj} (as though performing a merge operation in
merge-sort). Since

∑

w |Pw| ≤ n and the number of Steiner points added to windows is
at mostn, we find the endpoints of the vertical extensions of all Steiner points on windows
in O(n) time.

Since each guard is processed in linear time, we obtain the following.

Theorem 2.6 The algorithmTRIANGULATEWITHGUARDS computes the vertical decom-
position of ann-vertexk-guardable polygon inO(kn) time, if thek guards are given.

29

2.4.2 Triangulating without guards

In many situations where triangulation is desired, it may beunrealistic to expect a set
of guards as part of the input. In this section we show how to triangulate ak-guardable
polygon inO(kn) time without knowing the guards. The most complicated procedure
used in our algorithm is computing the visibility polygon from an edge in linear time [56].
This is, in fact, considerably more complicated than all thesteps of the previous algorithm.
We begin with some new notation and definitions.

The edge-visibility polygon, EVP (e, P), of an edgee with respect to polygonP con-
sists of all points inP that are visible from at least one point one. We sometimes call
EVP (e, P) theweak visibility polygonof the edgee if the polygon is clear from the con-
text. We define anextended edge-visibility polygonof e with respect toP , denoted by
EEVP (e, P), to be the smallest (in terms of the number of edges) pure subpolygon ofP
that containsEVP (e, P). These concepts are illustrated in Figure2.10.

(a) (b)

e

x

y

P (wi)

wi

q

p

Figure 2.10 (a) The weak visibility polygon of the dotted edge. (b) The associated
extended edge visible polygon.EEVP (e, P) is the union of the light and dark gray
regions.

Thegeodesicbetween two points inP is the shortest polygonal path connecting them that
is contained inP . The vertices of a geodesic (except possibly the first and last) belong to
∂P . Below, we show that Melkman’s algorithm [68] can find a specific type of geodesic
related to finding theEEVPof a polygon.

Lemma 2.7 Let x be a vertex of polygonP and lety be a point on edgevw ∈ P . If y
seesx, then the geodesic betweenx andv: (a) is a convex chain and entirely visible from
y, and (b) can be computed inO(n) time.

Proof. Property (a) holds trivially ifx seesv. Consider the case wherex does not see
v. Then, the triangle (x, y, v), denoted byT , must contain at least one vertex ofP in its

30

x

v w
y

Figure 2.11 The geodesic fromx to v.

interior. LetI be all the vertices ofP insideT and letCH(I) be the convex hull ofI. The
pathS = ∂CH(I) \ xv is the geodesic fromx to v. Any other path fromx to v insideT
can be shortened. Thus, property (a) holds.

To prove property (b), note that since the geodesic we seek isentirely visible fromy by
part (a) it is fully contained inVP (y, P). We computeVP (y, P) in linear time. Con-
sider the polygonal chain fromx to v along∂VP (y, P) that avoidsy. By construction
of VP (y, P), the shortest path fromx to v is part of the convex hull of this chain. Using
Melkman’s algorithm, we compute the convex hull of a simple polygonal chain in lin-
ear time. 2

Finally, a weakly edge-visible polygon can be triangulatedusing a very simple algorithm
known as Graham’s scan. The following lemma formalizes that.

Lemma 2.8 (Toussaint and Avis [93]) Let P be a weakly edge-visible polygon. By
performing Graham’s scan on the points ofP we can obtain a triangulation ofP .

We now show how to compute and triangulate the extended edge visibility polygon, which
is the main subroutine of our algorithm.

Lemma 2.9 EEVP (e, P) can be computed and triangulated inO(n) time.

Proof. We begin by computingEVP (e, P) in O(n) time using the algorithm of Heffernan
and Mitchell [56]. This yields a set of windowsW and their associated pockets. For each
windowwi ∈ W that is not a diagonal ofP , we do the following.

Let x be the endpoint ofwi closer toe, and lety be the endpoint farther frome. Then
x is a vertex ofP , andy is an interior point on some edgepq of P . Without loss of
generality letp be the endpoint ofpq that is inside the pocket ofwi, as illustrated in
Figure2.10(b). Sincex seesy, we can use Lemma2.7(b) to compute the geodesic from
x to p. Let P (wi) denote the polygon enclosed by the geodesic fromx to p, py and
wi. It is simple to verify that the extended edge-visibility polygon is EEVP (e, P) =
EVP (e, P) ∪

(⋃

wi∈W P (wi)
)
.

By Lemma2.7 (b), each pocketP (wi) can be computed in time linear in the size of the
pocket ofwi. Since pockets are disjoint and can be processed in order,

⋃

wi∈W P (wi),
and thusEEVP (e, P), can be computed inO(n) time.

31

We now proceed to triangulateEEVP (g, P). ConsiderP (wi). Let T be the triangle
determined by the pointsx, y andq. If e seesq, thenq sees each vertex inP (wi) ∪ T by
Lemma2.7(a). Therefore,P (wi)∪T is a weakly edge-visible pure subpolygon ofP . By
Lemma2.8, we can triangulateP (wi) ∪ T in O(|P (wi)|) time.

If e does not seeq then q ∈ P (wj) for somewj ∈ W with j 6= i. Let Q be the
quadrilateral determined by the endpoints ofwi andwj . The polygonY = P (wi) ∪
P (wj)∪Q is a pure subpolygon ofP and each of its vertices is visible fromp or q, which
means thatY is weakly edge-visible frompq. This implies thatY can be triangulated
using a simple method as before.

It is straightforward to verify that all of the pure subpolygons ofEEVP (e, P) triangulated
thus far are pairwise non-overlapping. IfT is the union of these subpolygons then the clo-
sure ofEEVP (e, P) \ T is a weakly edge-visible pure subpolygon ofEEVP (e, P) and
thus can also be triangulated in linear time. This results ina triangulation ofEEVP (e, P),
as required. 2

WhenEEVP (e, Pi) is triangulated, diagonals ofP that are on∂EEVP (e, Pi) become
windows of new pockets. Each such window serves as the edge from which a new vis-
ibility polygon will be computed and triangulated, within its respective pocket. In this
recursive manner we break pockets into smaller components until all of P is triangulated.
The procedure, although straightforward, is outlined below in more detail. This is fol-
lowed by the analysis of the time complexity, where we show that the recursion depth is
of the order of the number of guards that suffice to guard∂P .

We will maintain a queueS of non-overlapping polygons such that eachPi ∈ S has
one edgewi labelled as a window. Thus elements ofS are pairs(Pi, wi). We start with
S := (P, w), wherew is an arbitrary boundary edge ofP . We process the elements ofS
in the order in which they were inserted. The main loop of our algorithm is as follows:

TRIANGULATEWITHOUTGUARDS(P)

1 S := (P, w) wherew is an arbitrary edge ofP
2 while S 6= ∅
3 do for each(wi, Pi) ∈ S
4 do remove(wi, Pi) fromS.
5 Compute and triangulateEEVP (wi, Pi).
6 Add the edges of the triangulation toP .
7 for each boundary edgewj of EEVP (wi, Pi) that is a diagonal

of P .
8 do identify Qj as the untriangulated portion ofP whose

boundary is enclosed bywj and∂P .
9 Add every remaining untriangulated portion(wj , Qj) to S.

10 return P .

32

Theorem 2.10 The algorithmTRIANGULATEWITHOUTGUARDS triangulates ann-vertex
k-guardable polygon inO(kn) time.

Proof. We first note that theEEVPs created by our algorithm define a tree structureT ,
as follows. At the root ofT is EEVP (w, P). For every windowwj of EEVP (wi, Pi),
we have thatEEVP (wj , Pj) is a child ofEEVP (wi, Pi). The construction of the child
nodes from their parents ensures that noEEVP overlaps with any other and that the
triangulation covers the entire polygonP .

We now show thatT has at most3k levels (alevel is a set of nodes at the same distance
from the root) which implies that the main loop of the algorithm performs at most3k
iterations. Letℓi, ℓi+1, andℓi+2 be three successive levels ofT , in which all the nodes in
ℓi+1 are descendants of the nodes inℓi, and where all the nodes inℓi+2 are descendants
of the nodes inℓi+1. Further, letG be a point set of sizek such that every pointp ∈ ∂P
sees at least one guard ofG. Assume, for the purpose of obtaining a contradiction, that
there are no guards fromG in theEEVPs corresponding to the nodes in levelsℓi, ℓi+1,
or ℓi+2.

Let g be a guard which sees into a nodeni at levelℓi through windowwi. There are two
cases: eitherg is at a higher level thanℓi or it is at a lower level. Ifg is in a higher level
and is visible from a window ofni, theng can be in only one level:ℓi+1 (becauseℓi+1

contains the union of all the edge-visibility polygons of the windows of the nodes inℓi).
We have assumed that this can not happen. Otherwise, ifg is in a lower level,g can not
see into any level higher thanℓi, becausewi must be the window which createdni.

The combination of these two facts implies that no guard fromG can see intoℓi+1. This
is a contradiction toG being a guarding set. Therefore,G must have at least one guard in
ℓi, ℓi+1, or ℓi+2. This implies that there is at least one guard for every threelevels, or at
most three levels per guard.

Each level of the tree can be processed inO(n) time by Lemma2.9, since all nodes of a
level are disjoint. Therefore, the algorithm terminates inO(kn) time. 2

As is apparent from the proof of Theorem2.10, our algorithm runs inO(tn) time, wheret
is the number of iterations of the while-loop. The above argument also implies a stronger
result. The number of iterations,t, of the while loop is proportional to the link diameter,
d, of the polygon, since any minimum link path between two points must have at least
one bend for every three levels. This leads to the following corollary:

Corollary 2.11 The algorithmTRIANGULATEWITHOUTGUARDS triangulates ann-vertex
polygon with link diameterd in O(dn) time.

33

2.5 Conclusion

Several known classes of realistic polygons are in factk-guardable. In particular, we have
shown that the boundary of an(α, β)-covered polygon can be guarded by a constant—
depending onα andβ—number of guards, which implies that(α, β)-covered polygons
arek-guardable. We also gave two simple algorithms that triangulatek-guardable poly-
gons in linear time, ifk is a constant. The first algorithm is slightly simpler, but does
require the guards as input, while the second algorithm doesnot need the guards.

Figure 2.12 A locally-γ-fat polygon that requiresΩ(n) guards.

Our work leaves some open problems. First, can the techniques shown here be used to
design a triangulation algorithm which does not depend on the number of guards? Second,
are there other problems that can be solved efficiently fork-guardable polygons? Finally,
are there more general classes of polygons that can be triangulated in linear time with
simple algorithms? For example, our approach does not work with locally-γ-fat polygons
because they can requireΩ(n) guards—see Figure2.12. However, we believe it is likely
that there is a simple triangulation algorithm that works for locally-γ-fat polygons.

34

CHAPTER 3

Decomposing non-convex fat polyhedra

3.1 Introduction

In the previous chapter, we studied triangulation—a commondecomposition of polygons
in the plane. We saw that every simple polygon of complexityn admits a partition into
n − 2 triangles and that we do not need to add any extra vertices; every triangle edge is
either a boundary edge or a diagonal.

For 3-dimensional polyhedra, however, the situation is much less rosy. First of all, not
every non-convex polyhedron admits a tetrahedralization:there are polyhedra that can-
not be decomposed into tetrahedra without using Steiner points, such asScḧonhardt’s
polyhedron[83]. Moreover, deciding whether a polyhedron admits a tetrahedralization
without Steiner points is NP-complete [82]. Thus we have to settle for decompositions
using Steiner points. Chazelle [18] has shown that any polyhedron withn vertices can be
decomposed intoO(n2) tetrahedra, and that this is tight in the worst case: there are poly-
hedra withn vertices for which any decomposition usesΩ(n2) tetrahedra. (In fact, the
result is even stronger: anyconvex decomposition—a decomposition into convex pieces—
usesΩ(n2) pieces, even if one allows pieces of non-constant complexity.) Since the
complexity of algorithms that need a decomposition dependson the number of pieces in
the decomposition, this is rather disappointing. The polyhedron used in Chazelle’s lower-
bound example (known as Chazelle’s polyhedron) is quite special, however, and one may
hope that polyhedra arising in practical applications are easier to handle. This is the topic
of this chapter: are there types of polyhedra that can be decomposed into fewer than a

35

quadratic number of pieces?

Erickson [50] has answered this question affirmatively for so-calledlocal polyhedra(see
below) by showing that any such 3-dimensional polyhedronP can be decomposed into
O(n log n) tetrahedra and that this bound is tight. We considerfat polyhedra.

Types of fatness. Before we can state our results, we first need to give the definition of
fatness that we use. When the input is convex, most of these definitions are equivalent
up to constants. When the input is not convex, however, this is not the case: polyhedra
that are fat under one definition may not be fat under a different definition. Therefore we
use two different definitions from Chapter1: locally-γ-fat polyhedra and(α, β)-covered
polyhedra.

For comparison, let us also give the definition of a local polyhedronP [50]. To this end,
define thescale factor at a vertexv of P as the ratio between the length of the longest
edge incident tov and the minimum distance fromv to any other vertex. Thelocal scale
factorof P is now the maximum scale factor at any vertex. Theglobal scale factorof P is
the ratio between the longest and shortest edge lengths of the whole polyhedron. Finally,
P is called alocal polyhedronif its local scale factor is a constant, while its global scale
factor is polynomial in the number of vertices ofP .

Our Results. First we study the decomposition of(α, β)-covered polyhedra and locally-
γ-fat polyhedra into tetrahedra. By modifying Chazelle’s polyhedron so that it becomes
(α, β)-covered, we obtain the following negative result.

• There are(α, β)-covered (and, hence, locally fat) polyhedra withn vertices such
that any decomposition into convex pieces usesΩ(n2) pieces.

Next we restrict the class of fat polyhedra further by requiring that their faces should be
convex and fat, when considered as planar polygons in the plane containing them. For
this class of polyhedra we obtain a positive result.

• Any locally-fat polyhedron (and, hence, any(α, β)-covered polyhedron) withn
vertices whose faces are convex and fat can be decomposed into O(n) tetrahedra in
O(n log n) time.

Several applications that need a decomposition or coveringof a polyhedron into tetrahedra
would profit if the tetrahedra were fat. In the plane any fat polygon can be covered1 by
O(n) fat triangles, as shown by Van Kreveld [98] (for a slightly different definition of
fatness). We show that a similar result is, unfortunately, not possible in 3-dimensional
space.

1A coveringof a setS is a set of subsets ofS where every element ofS is in at least one subset. This is as
opposed to apartition of S which is a set of subsets ofS where every element ofS is in exactly one subset. A
decompositionis a generic term that can refer to either a covering or a partition.

36

• There are(α, β)-covered (and, hence, locally-fat) polyhedra withn vertices and
convex fat faces such that the number of tetrahedra in any covering that only uses
fat tetrahedra cannot be bounded as a function ofn.

For some applications—ray shooting is an example—we do not need a decomposition
of the full interior of the given polyhedronP ; instead it is sufficient to have aboundary
covering, that is, a set of objects whose union is contained inP and that together cover the
boundary ofP . Interestingly, when we consider boundary coverings thereis a distinction
between(α, β)-covered polyhedra and locally-fat polyhedra:

• The boundary of any(α, β)-covered polyhedronP , can be covered byO(n2 log n)
fat convex constant-complexity polyhedra, and there are(α, β)-covered polyhedra
that requireΩ(n2) convex pieces in any boundary covering. If the faces of the
(α, β)-covered polyhedron are fat, convex and of approximately the same size, then
the boundary can be covered with onlyO(n) convex fat polyhedra. Furthermore,
the worst-case number of convex pieces needed to cover the boundary of a locally-
fat polyhedron cannot be bounded as a function ofn.

Finally, we consider boundary coverings using so-calledtowers[9]—see Section3.3 for
a definition. Such coverings are useful for ray shooting.

Table3.1summarizes our results.

decomposition of interior by covering of boundary by
tetrahedra fat tetrahedra fat convex polyhedra towers

general Θ(n2) [18] × × unbounded
local Θ(n log n) [50] × × unbounded
locally fat Θ(n2) unbounded unbounded unbounded

with fat faces Θ(n) unbounded unbounded unbounded
(α, β)-covered Θ(n2) unbounded O(n2 log n), Ω(n2) Θ(1)

with fat faces Θ(n) unbounded O(n2 log n) Θ(1)

Table 3.1 Overview of results on decomposing and covering polyhedra.An entry marked
× means that the corresponding decomposition or covering is not always possible. (For
example, since general polyhedra can have arbitrarily sharp vertices, they cannot always
be decomposed into fat tetrahedra.)

Applications. As already mentioned, decomposing polyhedra into tetrahedra or other
convex pieces is an important preprocessing step in many applications. Below we mention
some of these applications, where our results help to get improved performance when the
input polyhedra are fat.

Hachenberger [55] studied the computation of Minkowski sums of non-convex polyhedra.
To obtain a robust and efficient algorithm for this problem, he first decomposes the poly-

37

hedra into convex pieces. Our results imply that this first step can be done such that the
resulting number of pieces isO(n) if the input polyhedra are locally fat with fat faces,
while in general this number can be quadratic.

Another application is in computing depth orders. The best-known algorithm to compute
a depth order forn tetrahedra runs in timeO(n4/3+ε) [28]. In Chapter5 we show that for
fat convex polyhedra of constant complexity, this can be improved toO(n log3 n). Our re-
sults imply that any constant-complexity(α, β)-covered polyhedron can be decomposed
into constant-complexity fat convex polyhedra. It can be shown that this is sufficient to be
able to use the depth-order algorithm of Chapter5. Similarly, our results imply that the
results from Chapter4 on vertical ray shooting in convex polyhedra extend to constant-
complexity(α, β)-covered polyhedra. Finally, our results on boundary coverings with
towers imply that we can use the method of Chapter4 to answer ray-shooting queries in
(α, β)-covered polyhedra inO((n/

√
m) log2 n) time with a structure that usesO(m1+ε)

storage, for anyn ≤ m ≤ n2. This is in contrast to the best-known data structure for
arbitrary polyhedra [28], which givesO(n1+ε/m1/4) query time withO(m1+ε) storage
for n ≤ m ≤ n4.

3.2 Decomposing the interior

In this section we discuss decomposing the interior of fat non-convex objects into tetrahe-
dra. We start with decompositions into arbitrary tetrahedra, and then we consider decom-
positions into fat tetrahedra.

3.2.1 Decompositions into arbitrary tetrahedra

The upper bound. LetP be a locally-γ-fat polyhedron inR3 whose faces, when viewed
as polygons in the plane containing the face, are convex andβ-fat. We will prove thatP
can be decomposed intoO(n) tetrahedra inO(n log n) time.

In our proof, we will need the concept of density. Recall fromChapter1 that thedensity
of a setS of objects is defined as the smallest numberλ such that the following holds:
any ballB ⊂ R

3 is intersected by at mostλ objectso ∈ S such thatsize(o) ≥ size(B).

We also need the following technical lemma.

Lemma 3.1 Let P be a convexβ-fat polygon embedded inR3 wherediam(P) ≥ 1. Let
C andC′ be axis-aligned cubes centered at the same point. Let the side length ofC be1
and the side length ofC′ be2

√
3/3. If P intersectsC, thenP ′ := P ∩ C′ is β′-fat for

someβ′ = Ω(β).

Proof. SinceP must cross the region betweenC andC′ to be different fromP ′, size(P ′) ≥
(
√

3/3) − 1/2. For the same reason and sinceP is fat, this implies that the area ofP ′ is

38

at least((2
√

3 − 3)/12)2βπ. Since the diameter ofC′ is 2, the diameter ofP ′ is at most
2. SinceP ′ is convex, its fatness is determined by a circle whose centeris placed at one
of the vertices that determines the diameter ofP ′. This implies that the fatness ofP ′ is at
least

π
(

2
√

3−3
12

)2

β

π22
=

7 − 4
√

3

96
β .

2

The following lemma shows that the faces of a locally-γ-fat polyhedron have low density
if they are fat themselves.

Lemma 3.2 Let FP be the set of faces of a locally-γ-fat polyhedronP treated as poly-
gons. If the faces ofP are themselvesβ-fat and convex, thenFP has densityO(1/γβ3).

Proof. Without loss of generality, letS be a sphere with unit radius. We wish to show that
the number of facesf ∈ FP with size(f) ≥ 1 that intersectS is O(1/γβ3).

Partition the bounding cube ofS into eight equal-sized cubes by bisecting it along each
dimension. Consider one of the cubes: call itC. Also construct an axis-aligned cubeC′

that has side length2
√

3/3 and concentric withC. For all facesf intersectingC that have
size(f) ≥ 1, we definef ′ := f ∩ C′. By Lemma3.1, we know thatf ′ is β′-fat for some
β′ = Ω(β).

Sincef ′ is a fat convex polygon with a diameter of at least2
√

3/3 − 1, it must contain a
circle c of radiusρ = β′(2

√
3/3 − 1)/8 [96]. For any such circlec, there is a faceF of

C′ such that the projection ofc ontoF is an ellipse which has a minor axis with length at
leastρ/

√
2.

box

2
√

3
3

ρ
2

(a) (b)

fi

interior in positive x-direction

interior in negative x-direction

si

b

Figure 3.1 (a) A box. (b) A boxb (side view) and the different types of faces assigned to
it.

We make a grid on each face ofC′ where every grid cell has side lengthρ/2. We call the
rectangular prism between two grid cells on opposite faces of C′ abox—see Figure3.1(a).

39

Each facef ′ has an intersection with some box that is the entire cross-section of the box.
We assign each face to such a box.

We now consider the set of faces that can be assigned to any onebox b. There are two
types of faces in this set—see Figure3.1(b). For example, ifb has its long edges parallel
to thex axis, there are the faces that have the interior ofP in the positivex direction and
the faces that have the interior in the negativex direction. We consider one type of face
at a time. For each facefi, we place a spheresi with radiusρ/4 so that its center is onfi

and in the center ofb (that is, the center is exactly between the long faces ofb). SinceP
is locally-γ-fat,

vol(P ⊓ si) ≥
γ4π

3

(ρ

4

)3

=
γπρ3

48
.

Since we only consider one type of face,(P⊓si)∩(P⊓sj) = ∅ for anysj 6= si. Therefore
the number of faces of one type that can cross one box is8

√
3/γπρ. The number of faces

that can cross one box is twice that. The number of boxes per direction is

(

2
√

3/3

ρ/2

)2

=
16

3ρ2

and the number of directions is 3. Hence, the number of faces that can intersectS is at
most

2 · 3 · 8
√

3

γπρ
· 16

3ρ2
=

256
√

3

πγρ3
.

Sinceρ = Ω(β), this isO(1/γβ3). 2

Since the setFP of faces of the polyhedronP has densityO(1/γβ3) = O(1), there is
a BSP forFP of sizeO(n) that can be computed inO(n log n) time [29]. The cells of
the BSP are convex and contain at most one facet, so we can easily decompose all cells
further intoO(n) tetrahedra in total.

Theorem 3.3 Let γ andβ be fixed constants. Any locally-γ-fat polyhedron withβ-fat
convex faces can be partitioned intoO(n) tetrahedra inO(n log n) time, wheren is the
number of vertices of the polyhedron.

The lower bound. Next we show that the restriction that the faces of the polyhedron are
fat is necessary, because there are fat polyhedra with non-fat faces that need a quadratic
number of tetrahedra to be covered.

The polyhedron known asChazelle’s polyhedron[18]—see Figure3.2(b)—is an impor-
tant polyhedron used to construct lower-bound examples. Wedescribe a slight modifica-
tion of that polyhedron which makes it(α, β)-covered and retains the properties needed
for the lower bound.

The essential property of Chazelle’s polyhedron is that it contains a region sandwiched
between a setL of line segments defined as follows. Fix a small positive constantε > 0.

40

For an integeri with 1 ≤ i ≤ n, define the line segmentℓi as

ℓi := {(x, y, z) : 0 ≤ x ≤ n + 1 andy = i andz = ix − ε}

and the line segmentℓ′
i as

ℓ′
i := {(x, y, z) : x = i and0 ≤ y ≤ n + 1 andz = iy}.

Next define
L := {ℓi : 1 ≤ i ≤ n} ∪ {ℓ′

i : 1 ≤ i ≤ n}.
The regionΣ := {(x, y, z) : 1 ≤ x, y ≤ n andxy − ε ≤ z ≤ xy} between these segments
has volumeΘ(εn2). Chazelle showed that for any convex objecto that does not intersect
any of the segments inL we havevol(o ∩ Σ) = O(ε). These two facts are enough to
show thatΩ(n2) convex objects are required to cover any polyhedron that containsΣ but
whose interior does not intersect the segments inL.

n2

n + 1
n + 1

(b)(a)

Figure 3.2 (a) The line segments used in the lower-bound construction (not to scale). (b)
Chazelle’s polyhedron before modification (also not to scale).

Chazelle turns the set of line segments into a polyhedron by putting a box aroundL, and
making a slit into the box for each segment, as shown in Figure3.2(b). The resulting poly-
hedron has each of the segments inL as one of its edges, and contains the sandwich region
Σ. Hence, any convex decomposition or covering of its interior needsΩ(n2) pieces.

Chazelle’s polyhedron is not(α, β)-covered. We therefore modify it as follows. First of
all, we make the outer box from which the polyhedron is formeda cube of size6n2×6n2×
3n2 centered at the origin. Second, we replace the slits by long triangular prisms—we will
call the prismsneedlesfrom now on—sticking into the cube. Thus, for each segment in
L, there is a needle that has an edge containing the segment. Wedo not completely pierce
the cube with the needles, so that the resulting polyhedron,P , remains simple (that is,
topologically equivalent to a sphere). Note thatΣ is still contained inP , and that for each
segment inL there is an edge containing it.

Next we argue thatP is (α, β)-covered. First, consider a pointp ∈ ∂P on one of the
needles. Assume without loss of generality that the needle is parallel to thexz-plane.
If p is near one of the needles going into the other direction, then the situation is as in
Figure3.3. Note that the distance between consecutive needles of the same orientation—

41

Figure 3.3 Cross-section of the polyhedronP shown with the cross-section of a good
tetrahedron (shaded).

that is, the distance between the small triangles in Figure3.3—is at least 1. Moreover,
we can choose the distanceε between the needles of opposite orientation—that is, the
distance between the small triangles and the long needle in Figure3.3—as small as we
like. The same is true for the “width” of the needles—that is,the size of the small triangles
in the figure. Hence, we can make the construction such that wecan always put a good
(that is, large and fat) tetrahedron atp.

Next, consider a pointp ∈ ∂P that is near one of the places where a needle “enters” the
cube. Note that the segments inL have slopes ranging from 1 ton, and that any needle
passes near the center of the cube—this is true since the cubehas size6n2 × 6n2 × 3n2,
while the segments inL all pass at a distance at mostn from the cube’s center. Hence,
the needles will intersect the bottom facet of the cube, and they make an angle of at least
45◦ with the bottom facet. This implies that also for pointsp near the places where these
needles enter the cube, we can place a good tetrahedron.

Finally, it is easy to see that for pointsp on a cube facet, and for points on a needle that
are not close to a needle of opposite orientation, we can alsoput a good tetrahedron. We
can conclude with the following theorem.

Theorem 3.4 There are constantsα > 0 andβ > 0, such that there are(α, β)-covered
polyhedra for which any convex decomposition consists ofΩ(n2) convex pieces, where
n is the number of vertices of the polyhedron.

3.2.2 Decompositions and coverings with fat tetrahedra

When we attempt to partition non-convex polyhedra into fat tetrahedra, or other fat convex
objects, the news is uniformly bad. That is, no matter which of the realistic input models
we use (of those we are studying), the number of fat convex objects necessary to cover
the polyhedron can be made arbitrarily high. For polyhedra without fatness restrictions,
there are many examples which require an arbitrary number offat convex objects for
partitioning. In fact, for any constantβ > 0 we can even construct a polyhedron that
cannot be covered at all intoβ-fat convex objects—simply take a polyhedron that has a
vertex whose solid angle is much smaller thanβ. It is also not hard to construct, for any

42

givenβ > 0, a local polyhedron that cannot be covered withβ-fat convex objects. For
instance, we can take a pyramid whose base is a unit square andwhose top vertex is at
distanceε ≪ β above the center of the base.

Next we show how to construct, for any givenk, an(α, β)-covered polyhedron of constant
complexity and with convex fat faces, which requiresΩ(k) fat convex objects to cover it.
First we observe that a rectangular box of size1 × (β/k) × (β/k) requiresΩ(k) β-fat
convex objects to cover it. Now consider the(α, β)-covered polyhedron in Figure3.4.

β/k

1

α

(a) (b)

Figure 3.4 (a) An (α, β)-covered polyhedron with fat faces whose interior cannot be
covered by a bounded number of fat tetrahedra. (b) The part ofthe polyhedron seen by a
point in the center. Note that the polyhedron is constructedso that a good tetrahedron just
fits at the points on the boundary inside the central “tube”.

The essential feature of the construction in Figure3.4 is that from any pointp along the
long axis of the tube, one cannot see much outside the tube. Thus any convex object
insideP that containsp must stay mainly within the tube, and the tube basically actsas a
rectangular box of size1 × (β/k) × (β/k). Hence,Ω(k) β-fat tetrahedra are required in
any convex covering of the polyhedron. We obtain the following result.

Theorem 3.5 There are(α, β)-covered (and, hence, locally-fat) polyhedra withn ver-
tices and convex fat faces, such that the number of objects used in any covering by fat
convex objects cannot be bounded as a function ofn. Furthermore, for any givenβ > 0
there are local polyhedra for which no convex covering withβ-fat tetrahedra exists.

3.3 Covering the boundary

In the previous section we have seen that the number of fat convex objects needed to cover
the interior of a fat non-convex polyhedronP cannot be bounded as a function ofn. In
this section we show that we can do better if we only wish to cover the boundary ofP .
Unfortunately, this only holds whenP is (α, β)-covered; whenP is locally fat, we may
still need an arbitrarily large number of fat convex objectsto cover its boundary.

Recall that for each pointp on the boundary of an(α, β)-covered polyhedronP , there is

43

a good tetrahedronTp ⊂ P with one vertex atp, that is, a tetrahedron that isα-fat and has
diameterβ · diam(P). We first observe that we can actually replaceTp by a canonical
tetrahedron, as made precise in the following lemma.

Lemma 3.6 Let P be an(α, β)-covered polyhedron. There exists a setC of O(1/α)
canonical tetrahedra that areΩ(α)-fat and have diameterΩ(β · diam(P)) with the fol-
lowing property: for any pointp ∈ ∂P , there is a translated copyT ′

p of a canonical
tetrahedron that is contained inP and hasp as a vertex.

Proof. Cover the boundary of the unit sphereS in a grid-like fashion byO(1/α) triangular
surface patches, each of area roughlycα, for a suitably small constantc as in Figure3.5(a).
For each triangular patch, define a canonical tetrahedron that has the origin as one of its
vertices, and that has edges going through the vertices of the patch—see Figure3.5(b).
Scale the resulting set of tetrahedra appropriately, thus giving the setC. Now consider
a good tetrahedronp. Place (a suitably scaled copy) of the sphereS with its center atp.
Tp will intersectS in a fat regionR of areaα. Hence, by choosingc appropriately we
can ensure thatR contains one of the triangular patches. This implies we can select a
tetrahedronT ′

p from C with the required properties. 2

Now we can prove that we can cover the boundary of an(α, β)-covered polyhedron with

(a) (b)

Figure 3.5 (a) A canonical tetrahedron defined by a triangular patch on asphere. (b) A
sphere with a triangular grid.

a bounded number of fat convex objects.

Theorem 3.7 The boundary of an(α, β)-covered polyhedron with complexityn can be
covered byO(n2 log n) convex, fat, constant-complexity polyhedra.

Proof. Let C be the set of canonical tetrahedra defined in Lemma3.6. Fix a canonical
tetrahedronT ∈ C. Note that when we put a translated copy ofT at some pointp ∈ ∂P

44

according to Lemma3.6, we always put the same vertex,v, at p. (Namely, the vertex
coinciding with the origin before the translation.) For a face f of P , let f(T) ⊂ f be
the subset of pointsp on f such that we can placeT with its designated vertexv at p in
such a way thatT is contained inP . The regionf(T) is polygonal. We triangulatef(T),
and for each trianglet in this triangulation, we define a convex polyhedron by taking the
union of all the translated copies ofT that havev ∈ t. By doing this for all facesf , we
get a collectionCT of convex polyhedra that together cover

⋃

f f(T).

We claim that every convex objecto ∈ CT is fat. This follows from the fact thatT is
fat and thatT cannot be much smaller thant. Indeed,diam(T) = Ω(β · diam(P)) =
Ω(β · diam(t)).

Next, we claim that|CT | = O(n2 log n). This follows directly from the fact that the
complexity of

⋃

f f(T) is upper bounded by the complexity of thefree spaceof T , when
it is translated amidst the faces ofP . Aronov and Sharir [12] showed that this free space
has complexityO(n2 log n).

Finally, we observe that
⋃

T ∈C
⋃

f f(T) = ∂P by Lemma3.6. In other words, the convex
objects in the set

⋃

T ∈C CT together cover the boundary ofP . 2

Theorem3.7 implies that the boundary of a constant-complexity(α, β)-covered polyhe-
dronP can be covered by a constant number of fat objects. Unfortunately, the number of
convex objects used in the boundary covering grows quadratically in the complexity ofP .
If P has convex fat faces that are roughly the same size, then the number of convex fat
objects required to cover the boundary reduces to linear.

Theorem 3.8 Let P be an(α, β)-covered polyhedron with convexβ′-fat faces. Further,
let there be a constantc where, for any two facesf1 andf2 of P , diam(f1) ≤ c·diam(f2).
Then the boundary ofP can be covered byO(n) convex, fat, constant-complexity poly-
hedra.

Proof. The proof is very similar to the proof of Theorem3.7, with one simple change,
namely that we shrink the canonical tetrahedra such that their diameter is roughly the
same as the size of the faces. Note that the setsCT still contain fat objects. It remains to
argue that each setCT has sizeO(n).

To this end, recall from Lemma3.2that the set of faces of a fat polyhedron with fat faces
has low density. Thus the free space of a canonical tetrahedron T amidst the faces of
P is the free space of a translating tetrahedronT in a low density environment, whose
obstacles (the faces) are not much smaller thanT . Van der Stappen [96] has shown that
such a free space hasO(n) complexity. 2

We claim that any covering of the boundary of an(α, β)-covered polyhedron by fat convex
objects requiresΩ(n2) pieces. To show this, we slightly modify our version of Chazelle’s
polyhedron from the previous section. In particular, we replace the edges of the needles
that contain the segments in the setL by long and thin rectangular facets. The resulting
polyhedron is still(α, β)-covered, and it requiresΩ(n2) fat convex polyhedra to cover the
newly introduced facets.

45

Theorem 3.9 There are constantsα > 0 andβ > 0 such that there are(α, β)-covered
polyhedraP for which any decomposition of∂P into fat convex polyhedra requiresΩ(n2)
pieces.

The number of fat convex polyhedra necessary to cover the boundary of a polyhedronP
that is not(α, β)-covered can not be bounded as a function ofn. To see this, we make
a simple modification to the polyhedron of Figure3.4. We reduce the gaps that separate
the interior “tube” from the rest ofP to some arbitrarily small constantε. This forces
any fat convex polyhedron that covers the part of the boundary of the polyhedron inside
the tube to be inside the tube. Now for anyk, we can reduce the width and height of the
tube until its boundary requires more thank fat convex polyhedra to be covered. This
example remains locally fat with fat convex faces and it is a local polyhedron. Note that
P is no longer(α, β)-covered: reducing the gaps that separate the tube from the rest of
the polyhedron causes the points on the boundary inside the tube to no longer have a good
tetrahedron.

Theorem 3.10 For any givenk, there exist locally-γ-fat polyhedra for some absolute
constantγ with faces that areβ fat for some absolute constantβ which require at leastk
fat convex polyhedra to cover their boundaries. These polyhedra are also local polyhedra.

3.3.1 Boundary covering by towers

In Chapter4, we describe a data structure for ray shooting in a setS of fat polyhedra. This
result uses a covering of the boundaries of the polyhedra inS by so-calledtowers. Here
we first describe how to obtain such a covering for convex fat polyhedra. Following that,
we extend the covering to(α, β)-covered polyhedra.

We first show that anyβ-fat convex objecto admits two concentric cubes, one containing
o and one contained ino, whose size ratio is bounded by a function ofβ only. For a cube
C, definesize(C) to be the edge length ofC.

Lemma 3.11 Let σ := ⌈54
√

3/β⌉. For any convexβ-fat objecto in R
3, there exist

concentric axis-aligned cubesC−(o) andC+(o) with C−(o) ⊆ o ⊆ C+(o) such that

size(C+(o))

size(C−(o))
= σ .

Proof. Let ρ = ρ(o) be the radius of the smallest enclosing ball ofo. From the results in
Section 3.2.1 of Van der Stappen’s thesis [96], it follows that o contains an axis-aligned
cubeC−(o) with edge length2βρ/(27

√
3). Let p be the center of such a cube. Observe

thatp is at distance at mostρ from the center of the minimum enclosing ball ofo. Let
C+(o) be the axis-aligned cube with edge length4ρ and centerp. Theno ⊆ C+(o) since
the ball centered atp with radius2ρ clearly containso andC+(o) is a bounding box for

46

that ball. Therefore, we have
size(C+(o))

size(C−(o))
= σ .

2

Next we define the canonical directions that we will use in ourdecomposition. LetC+

andC− be two concentric axis-aligned cubes such thatsize(C+)
size(C−) = σ, whereσ is defined

as in Lemma3.11; refer to Fig.3.6(a). Sinceσ is an integer, we can partition each face

C
+

C
−

(a)

P

C
−(P)

C
+(P)

cap(t)

base(t)

t

~d

(b)

Figure 3.6 (a) Swept volume defining a tower. (b) Two-dimensional analogue of a towert.

of C+ into σ2 squares of the same size as the facets ofC−. We use this to define a set
D of O(1/β2) canonical directions, as follows. For each squares on the top facet of
C+, we add toD the direction in which the top facet ofC− must be translated to make it
coincide withs. The remaining five facets ofC+ are treated similarly. The resulting set
D of canonical directions2 has size6σ2 = O(1/β2).

Finally, we define the towers. Atower in the direction~d ∈ D is a convex polyhedront
with the following properties:

(i) One of the facets oft is an axis-parallel square; this facet is called thebaseof
t, denoted bybase(t). We require that the orientation of the base—whether it is
parallel to thexy-plane, to thexz-plane, or to theyz-plane—be uniquely determined
by the direction~d. Hence, all towers in a given direction~d have parallel bases.

(ii) The remaining facets oft form a terrain in direction~d, that is, any line parallel to
~d and intersecting the base intersects the remaining facets either in a single point
or in a line segment. We call the union of these remaining facets, excluding facets
parallel to~d, thecapof the tower, denotedcap(t).

2In fact, some of the directions defined for, say, the top facetof C+ are identical to a direction defined for a
side facet. It will be convenient to treat these directions as different.

47

Let P be aβ-fat convex polyhedron. The decomposition ofP is performed in a manner
similar to the way we constructed the canonical directions.Let C−(P) andC+(P) be
cubes with the properties given in Lemma3.11. Partition each facet ofC+(P) into σ2

equal-sized squares. For each such squares we construct a tower by sweepings towards
the corresponding facet ofC−(P), and taking the intersection of the swept volume and
the polyhedronP—see Fig.3.6(b) for an illustration. This way we obtain for each poly-
hedronP one tower for each of the|D| canonical directions. We denote the set of towers
constructed forP by T (P). The union of the towers inT (P) is contained inP ; the
boundary of this union consists of the boundaries ofP and ofC−(P).

Since|D| is O(1/β2), our construction leads to the following theorem:

Theorem 3.12 The boundary of aβ-fat convex polyhedron can be covered byO(1/(β)2)
towers.

The natural generalization of towers to non-convex polyhedra is to allow more than one
set of towers to be present inside a polyhedron at a time. A single set of towers generated
by one pair of cubes would then not need to cover the entire boundary of the polyhedron—
see Figure3.7. As long as all of the points of the boundary of the polyhedronare covered
by some tower, the results from Chapter4 hold. We could apply the results from the
previous section to do this: cover the boundary of the(α, β)-covered polyhedronP by
fat convex polyhedra and then cover the boundary of those polyhedra by towers using
the method described above. Unfortunately, this is not veryefficient, since the boundary
covering presented in the previous section usesO(n2 log n) convex polyhedra. Therefore
we describe a direct method to cover the boundary by towers. Our method only uses a
constant number of towers per polyhedron.

P

C
−(P)

C
+(P)

base(t)

t

~d

Figure 3.7 A tower in a non-convex polyhedron.

Next we explain how to get a set of towers covering the boundary of an (α, β)-covered
polyhedronP . Recall that for every pointp ∈ ∂P there is a good tetrahedronTp, that is,
a tetrahedron that stays completely withinP that isα-fat, has diameterβ · diam(P), and
hasp as a vertex.

48

Lemma 3.13 There is a set ofO(1/(αβ)3) axis-aligned congruent cubes of edge length
Ω(αβ · diam(P)) such that the good tetrahedronTp of every pointp ∈ ∂P contains at
least one such cube.

Proof. Consider a good tetrahedronTp. Since it isα-fat and has diameterβ · diam(P), it
contains a ballBp of radiusρ = Ω(αβ · diam(P)). Halve the radius of this ball, while
keeping its center at the same position, and letB∗

p denote the resulting ball. LetC be a
bounding cube ofP . If we put a sufficiently fine grid insideC, thenB∗

p must contain at
least one grid point. SinceB∗

p has radiusΩ(αβ · diam(P)), andC has edge length at
mostdiam(P), it suffices to put a grid withO(1/(αβ)3) grid points [33].

For each grid pointq insideP , put a cubeCq centered atq with edge lengthρ/2. If
q ∈ B∗

p , thenCq ⊂ Bp ⊂ Tp. Since there is a grid pointq inside everyB∗
p , this implies

we have a cubeCq inside everyTp. 2

We now have a collectionC of O(1/(αβ)3) = O(1) cubes of sizeΩ(αβ · diam(P)).
Next we construct a cubeC+ of sizec · diam(P) wherec is a constant such thatP ⊂ C+

whenever the center ofC+ is in P . Finally, we construct towers for each cubeC− ∈ C,
by placingC+ concentric withC− and using the approach described above. Clearly, this
gives us a set ofO(1) towers in total. Note that ifC− ⊂ Tp, then one of the towers
created forC− coversp.

Theorem 3.14 O(1/(αβ)5) towers are sufficient to cover the boundary of an(α, β)-
covered polyhedron.

Proof. We already noted that the number of towers in our construction is O(1). (More
precisely, it isO(1/(αβ)5), since we haveO(1/(αβ)3) cubes inC, and for each cube
we generateO(1/(αβ)2) towers.) Moreover, each pointp ∈ ∂P is covered, because
C− ⊂ Tp for at least oneC− ∈ C. 2

Note that construction of the towers in Theorem3.14is very similar to the construction of
the guarding set from Theorem2.3. In fact, the existence of a guarding set (with the extra
property that the guards are a sufficient distance from the boundary of the polyhedron) is
a sufficient condition for the construction of a set of towers.

By slightly modifying the example from Theorem3.10, we see that the number of towers
necessary to cover the boundary of a polyhedronP that is not(α, β)-covered can not
be bounded. Recall that we modified Figure3.4 so that the “tube” in the middle of the
polyhedron was very skinny and had arbitrarily small gaps tothe rest of the polyhedron.
If we further modify the polyhedron so that the tube does not have its long axis parallel
to any of the directions fromD, then, givenk, we can force∂P to require more thank
towers to be covered3. This polyhedron remains locally-fat with fat faces and local.

3One could, of course, “cheat” and defineD so that it contained a direction parallel to the tube. However, as
we have noted,D should not depend on any specific polyhedron, as this would render the decomposition useless
when applied to multiple polyhedra.

49

Theorem 3.15 For any givenk, there exist locally-γ-fat polyhedra for some absolute
constantγ with faces that areβ-fat for some absolute constantβ which require at leastk
towers to cover their boundaries. These polyhedra are also local polyhedra.

3.4 Conclusion

We studied decompositions and boundary coverings of fat polyhedra. Our bounds on the
number of objects needed in the decomposition (or covering)are tight, except for the
bound on the number of convex fat polyhedra needed to cover the boundary of an(α, β)-
covered object. In particular, there is still a large gap forthe case that the facets of the
polyhedron are also fat. It would be interesting to get tightbounds for this case.

50

CHAPTER 4

Ray shooting and range searching

4.1 Introduction

The ray-shooting problemis to preprocess a setP of objects inR
d for the following

queries: what is the first object (if any) inP hit by a query ray? Such queries form the
basis of ray-tracing algorithms, they can be used to approximate form factors in radiosity
methods, and they can be used for other visibility problems.Since ray shooting is an
integral part of many graphics applications, it should not be surprising that it has received
much attention, both in computer graphics and computational geometry. In fact, after the
range-searching problem it is probably one of the most widely studied data-structuring
questions in computational geometry. The survey by Pellegrini [79] and the book by De
Berg [28] discuss several of the data structures that have been developed within compu-
tational geometry for the ray-shooting problem (although there is also much work that
is not covered there, for example, research concerning ray shooting in two-dimensional
scenes, or ind-dimensional space, ford > 3). In the discussion below, we will restrict
our attention to results on ray shooting inR

3.

In the first part of the discussion below, we examine ray shooting when the ray is restricted
to travel in a single direction. We assume without loss of generality that this direction is
parallel to thez-axis and thus call this type of problemvertical ray shooting. Afterwards
we remove the restriction and give a data structure for answering ray-shooting queries
where the query ray can have any direction.

51

Related work. Data structures for vertical ray-shooting queries among sets of arbitrary
triangles inR

3 have rather high storage requirements. When aO(log n) query time is
desired, the best-known data structure needsO(n3) space [28]. Space can be traded for
query time: for anym satisfyingn ≤ m ≤ n3, a data structure can be constructed that
usesO(m1+ε) space that allows vertical-ray-shooting queries that takeO(n1+ε/m1/3)
time [28].

Given the prominence of the ray-shooting problem in computational geometry it is not sur-
prising that ray shooting has already been studied from the perspective of realistic input
models. In particular, the vertical-ray-shooting problemhas been studied for fat convex
polyhedra. For this case Katz [58] presented a data structure that usesO(n log3 n) storage
and hasO(log4 n) query time. (In fact, Katz’s solution works for polygons whose projec-
tions onto thexy-plane are fat, but it is not difficult to see that it works for fat 3D poly-
topes as well.) Using the techniques of Efratet al.[47] it is possible to improve the storage
bound toO(n log2 n) and the query time toO(log3 n) [59]. Recently De Berg [31] pre-
sented a structure withO(log2 n) query time; his structure usesO(n log3 n(log log n)2)
storage.

Similarly, in the case of ray-shooting in arbitrary directions, the results achieved for non-
fat objects require a lot of storage. If the setP consists ofn arbitrary triangles, the
best known structures withO(log n) query time useO(n4+ǫ) storage [28, 78], whereas
the best structures with near-linear storage have roughlyO(n3/4) query time [7]. More
generally, for anym with n < m < n4, one can obtainO((n/m1/4) log n) query time
usingO(m1+ε) storage [7]. Better results have been obtained for several special cases.
When the setP is a collection ofn axis-parallel boxes, one can achieveO(log n) query
time with a structure usingO(n2+ε) storage [28]. Again, a trade-off between query time
and storage is possible: withO(m1+ε) storage, for anym with n < m < n2, one
can achieveO((n/

√
m) log n) query time. IfP is a set ofn balls, then it is possible to

obtainO(n2/3) query time withO(n1+ε) storage [90], or O(nε) query time withO(n3+ε)
storage [72].

Both axis-parallel boxes and balls are very special objects, and in most graphics applica-
tions the scene will not consist of such objects. The question thus becomes: is it possible
to improve upon the ray-shooting bounds for classes of objects that are more general
than axis-parallel boxes or spheres? This is the problem we tackle in this chapter. More
precisely, we study the ray-shooting problem for convex polyhedra that arefat—see Chap-
ter 1 for a formal definition.

For the case ofhorizontalfat triangles, there is a structure that usesO(n2+ε) storage and
hasO(log n) query time [28], but the restriction to horizontal triangles is quite severe.
Another related result is by Mitchellet al. [69]. In their solution, the amount of storage
depends on the so-calledsimple-cover complexityof the scene, and the query time de-
pends on the simple-cover complexity of the query ray. Unfortunately the simple-cover
complexity of the ray—and, hence, the worst-case query time—can beΘ(n) for fat ob-
jects. In fact, this can happen even when the input is a set of cubes. The first (and so far
only, as far as we know) result that works for arbitrary rays and rather arbitrary fat objects

52

was recently obtained by Sharir and Shaul [89]. They present a data structure for ray
shooting in a collection of fat triangles that hasO(n2/3+ε) query time and usesO(n1+ε)
storage. Curiously, their method does not improve the knownbounds at the other end of
the query-time–storage spectrum, so for logarithmic-timequeries the best known storage
bound is stillO(n4+ε).

Our results for ray shooting. First, we present a new data structure for vertical ray
shooting in a collection ofn convex constant-complexity fat polyhedra1 in R

3. Our data
structure usesO((1/β)n log2 n) storage and hasO((1/β2) log2 n) query time. Compared
to Katz’s structure [59] it has a better query time (while the storage is the same) and
compared to the De Berg’s structure [31] it has a better storage bound (while keeping the
same query time).

We then present a data structure for ray shooting with arbitrary rays in a collectionP
of (not necessarily disjoint) convex fat polyhedra withn vertices in total. Our structure
requiresO(n2+ε) storage and has query timeO(log2 n). A trade-off between storage and
query time is also possible: for anym with n < m < n2, we can construct a structure that
usesO(m1+ε) storage and hasO((n/

√
m) log2 n) query time. Compared to the bounds

obtained by Sharir and Shaul there are two differences: our query time for near-linear
storage isO(

√
n log2 n) while the query time of Sharir and Shaul isO(n2/3+ε), and we

get improved bounds at the other end of the spectrum while Sharir and Shaul will need
O(n4+ε) storage forO(log n) query time. Of course, the two settings are not the same:
Sharir and Shaul consider fat triangles, whereas we consider fat polyhedra. Indeed, our
solution makes crucial use of the fact that fat polyhedra have a relatively large volume.
Note that neither setting implies the other: fat triangles need not form fat polyhedra, and
fat polyhedra do not necessarily have fat facets. (For example, a polyhedral model of a
cylinder is likely to contain long and thin facets.)

Results on range searching. The intersection-searching problem is to preprocess a set
of objects such that all objects intersecting a query range can be reported efficiently. If
the objects are points, then the problem becomes the standard range-searching problem:
report all points inside a query range. Range searching and intersection searching have
been studied extensively—see for example the surveys by Agarwal [2] and Agarwal and
Erickson [4]. For intersection-searching with a query simplex in a set of simplices inR

3

one can, for anym with n < m < n4, obtainO((n/m1/4) log n + k) query time using
O(m1+ε) storage, wherek is the number of reported simplices. Using our technique of
covering with towers, we show that simplex-intersection queries can be answered more
efficiently if the objects are fat convex polyhedra of constant complexity: for anym with
n < m < n3, we obtainO((n/m1/3) log n + k) query time with a structure using
O(m1+ε) storage. This matches the best known bounds for simplex range searching in
point sets inR3. So far, no general results were known for intersection searching among

1Though results are presented in terms of fat polyhedra, our results for vertical ray shooting also work
without modification in the more general setting of objects that project to fat polygons.

53

fat polyhedra that were better than those for arbitrary polyhedra—there has been work on
intersection searching in fat objects [29, 75, 85] but these results require the query range
to be not too large compared to the input objects and they require the input objects to
be disjoint.

4.2 Preliminaries

Basic properties of fat objects. We need a result that will allow us to stab a set of
relatively large fat objects that all intersect some regionR using only a few points. Similar
results have been proved earlier [33].

Lemma 4.1 Let R be a bounded region in the plane, and letc be a constant that satisfies
0 < c ≤ 1. Then there is a collectionQ of O(1/(cβ)2) points with the following property:
anyβ-fat objecto with size(o) ≥ c · size(R) that intersectsR contains at least one point
from Q.

Proof. Let U be a bounding square ofR, and letÛ be the concentric square twice the
size ofU . Consider aβ-fat objecto with size(o) ≥ c · size(R) that intersectsR. Then
area(o∩ Û) ≥ c′cβ · area(Û) for a suitable constantc′ (cf. Van der Stappen’s thesis [96],
Theorem 2.9). Hence, a regular grid onÛ with ⌈M⌉2 cells, whereM = 2/(c′cβ), must
have at least one grid point insideP , because the area of any convex object missing all
grid points is less than2 · area(Û)/M . 2

The following lemma was proved by Van Kreveld [98] for non-convex polygons. How-
ever, his definition of fatness is different from ours and is not obviously compatible. There-
fore we have proved it independently using our definition. The proof is rather long, so it
can be found in the appendix to this chapter. In the lemma below, anα-fat triangle refers
to a triangle all of whose angles are at leastα. (Such a triangle isα′-fat according to
Definition1.1for someα′ = Ω(α).)

Lemma 4.2 Let P be aβ-fat convex polygon withn vertices. There is a setT of α-fat
triangles that coverP where|T | = O(n) andα = Θ(β).

Ray shooting and parametric search. Agarwal and Matoušek [6] described a tech-
nique that reduces the ray-shooting problem on a setP of objects to the segment-emptiness
problem,i.e., testing whether a query segment intersects any of the objects in P . Since
then their technique has been used in several papers dealingwith ray shooting [72, 89, 90].
We will also use this technique.

Theorem 4.3 (Agarwal and Matoǔsek [6]) Let P be a set of objects. Suppose that
we have a data structureΣ supporting segment-emptiness queries with respect toP , for

54

arbitrary segments. LetAp be a parallel algorithm for answering a segment-emptiness
query, which uses at mostp processors and runs in at mostTA parallel steps, and such
that for a query segmentox, the computation ofAp uses the information aboutx only in
deciding the signs of certain fixed-degree polynomials in the coordinates ofx. Let B be
another version of the segment-emptiness algorithm, whichcan report an objectPi ∈ P
containing the endpoint of the query segment, provided thatthe segment is otherwise
empty, and letTB be the maximum running time ofB. Then the ray-shooting problem
for rays inR can be solved using the same data structureΣ, in timeO(pTA +TBTA log p).

Finally, we will need the following result.

Theorem 4.4 (Chazelleet al. [22]) Let L be a set ofn lines in 3-space. For anym with
n < m < n2, we can preprocess the setL usingO(m1+ε) time and storage so that we
can detect inO((n/

√
m) log n) time whether a query lineℓ lies above all the lines inL.

4.3 Vertical ray shooting

Let P = {P1, . . . , Pn} be a collection ofn constant-complexity convexβ-fat polyhedra
that we wish to preprocess for vertical ray shooting. We start by studying the simpler case
where all the objects are intersected by a common vertical line. After that we will show
how to use this structure to obtain an efficient solution to the general problem.

Agarwalet al. [5] already described a data structure for the case where all objects are in-
tersected by a common vertical line and project to triangles. We observe that it is possible
to apply fractional cascading to their structure to obtain the following result.

Lemma 4.5 Let P = {P1, . . . , Pn} be a set ofn disjoint convex constant-complexity
β-fat polyhedra that are all stabbed by a vertical lineℓ and that all project to fat trian-
gles. Then there is a data structure such that vertical ray shooting queries onP can be
answered inO(log n) time. The structure usesO((1/β)n log n) storage and it can be
built in O((1/β)n log n) time.

Proof. As stated above, all we need to do is apply fractional cascading to the structure of
Agarwalet al. [5]. For completeness, we briefly describe their solution and explain how
to apply fractional cascading.

The structure is a balanced binary treeT with the objects in the leaves, sorted by their
position alongℓ; the lowest object is in the leftmost leaf, the second lowestobject in the
next leaf, and so on. Since the objects are non-intersectingand convex, this ordering is
well-defined.

For a nodeν, letP(ν) denote the set of objects stored in the leaves of the subtree rooted
at ν. At each non-leaf nodeν of T , we store the unionU(ν) of the vertical projections
of the objects inP(ν). We preprocessU(ν) for point-enclosure queries—that is, queries

55

that ask whether a pointq in thexy-plane lies insideU(ν)— as follows. Letpℓ be the
point whereℓ intersects thexy-plane. Then all projections containpℓ, and since they are
convexU(ν) is star-shaped withpℓ in the kernel. Hence, if we partition the plane into
cones by drawing half-lines frompℓ through all breakpoints on the boundary ofU(ν),
then a point-enclosure query can be answered inO(1) time after we have determined in
which cone the query point lies.

To perform a query with a vertical ray starting above all objects, we walk down the tree
as follows. Suppose we reach a nodeν. When the pointp where the ray hits thexy-plane
lies inside the union of the right child ofν we proceed to the right child, otherwise we
proceed to the left child. The leaf we reach must store the first object hit (if any object
is hit at all). When the starting point of the ray does not lie above all objects, things are
more complicated. However, Agarwalet al.have shown that a query can still be answered
by walking down the tree, although now up to four nodes per level may be visited. In any
case, we visitO(log n) nodes in total, and at each node we have to do a point-enclosure
query. As explained above, a point-enclosure query can be answered inO(1) time after
we have determined in which cone the query point lies. Finding the right cone can be
done inO(log n) time by binary search, but this can be made faster: using fractional
cascading [24, 25] finding the cones can be done inO(1) time, except for the search
at the root. Since the application of fractional cascading is completely standard in this
setting we omit further details.

To build the structure, we sort the objects alongℓ in O(n log n) time, and then we con-
struct the unions to be stored at each node in a bottom-up fashion. Hence, when we arrive
at a nodeν, we have to merge the two unions of the children ofν. Because the unions
are star-shaped with respect to the same point, computing the union of these unions boils
down to merging the two circularly sorted lists of breakpoints. Hence, this can be done in
linear time. The total time to construct all unions is therefore equal to the total size of the
data structure, which is

∑

ν O(|P(ν)|) = O(n log n). Adding the additional pointers for
the fractional cascading does not increase the preprocessing time or the amount of storage
asymptotically. 2

Now consider the general case, where the objects inP are not necessarily stabbed by
a vertical line. We can cover each object byO(1) subobjects whose projections are fat
triangles using the technique of Lemma4.2, so we can assume without loss of generality
that all objects project to fat triangles. We shall make use of two-dimensional BAR-
trees. Recall from Chapter1 thatBAR-trees(or balanced aspect ratio trees) are a special
type of BSP trees for point sets. A BSP treeT for a setS of points contained in some
bounding squareσ is a recursive partitioning ofσ by splitting lines, such that the final
cells of the subdivision do not contain any points in their interior. Each nodeν of T
corresponds to a regionregion(ν) ⊂ σ, which is defined recursively as follows. The
regionregion(root(T)) is the whole squareσ. Furthermore, if the splitting line stored
at a nodeν is ℓ(ν), thenregion(leftchild (ν)) = region(ν) ∩ ℓ(ν)−, whereℓ(ν)− is the
half-plane belowℓ(ν). Similarly, region(rightchild (ν)) = region(ν) ∩ ℓ(ν)+, where

56

ℓ(ν)+ is the half-plane aboveℓ(ν).

The special properties of BAR-trees that are relevant for usare the following. First, a
BAR-tree on a setS of points has depthO(log |S|) and sizeO(|S|). Furthermore, the
regions corresponding to a node in a BAR-tree have bounded aspect ratio, which implies
they arec-fat for some constantc. It has been shown by De Berg and Streppel [40] that
this implies the following.

Lemma 4.6 (De Berg and Streppel [40]) Let o be aβ-fat object. Then there is a set
G(o) of 12 points—we call these pointsguards—such that for any BAR-tree regionR
that intersectso but does not contain a guard fromG(o) in its interior we havesize(o) =
Ω(size(R)).

De Berg and Streppel [40] used this to design a so-called object BAR-tree: this is a BAR-
tree that can be used for approximate range searching in a setof objects rather than in
a point set. Our ray-shooting structure combines BAR-treesand the lemma above in a
different way, as described next.

Let P = {P1, . . . , Pn} be a set ofn constant-complexityβ-fat polyhedra. LetGi =
G(proj(Pi)) be a set of guards for the projection ofPi, as in Lemma4.6. Our data
structure for vertical ray shooting onP is defined as follows.

• The main treeT is a BAR-tree for the setG = G1 ∪ · · · ∪ Gn.

• Let ν be a node inT . We say that an objectPi is large at ν if (i) proj(Pi) in-
tersectsregion(ν), and (ii) region(parent(ν)) contains a guard fromGi in its
interior but region(ν) does not. Note that Lemma4.6 implies thatsize(Pi) =
Ω(size(region(ν))) if Pi is large atν. LetP(ν) ⊂ P be the subset of objects that
are large atν.

Let Q(ν) be a set of points such that for anyPi ∈ P(ν), there is a pointq ∈ Q(ν)
with q ∈ proj(Pi). By Lemma4.1 there exists such a setQ(ν) of sizeO(1/β2).
Assign each objectPi ∈ P(ν) arbitrarily to one of the pointsq ∈ Q(ν) contained
in its projection. LetP(q) denote the set of objects assigned toq. We store the
setP(q) in a data structureT (q) for vertical ray shooting according to Lemma4.5.
Thus each nodeν has|Q(ν)| associated structures.

Let’s first see how to answer a vertical ray-shooting query with this structure.

Lemma 4.7 A vertical ray-shooting query can be answered inO((1/β2) log2 n) time.

Proof. Let p be the point where the line through the query ray intersects the xy-plane.
Search withp down the treeT . At every nodeν on the search path, perform a query in
the associated structureT (q) of eachq ∈ Q(ν). A query thus takesO(log n·logn·(1/β2))
time—that is, the length of every search path, times the query time in the associated data
structures along the search path, times the size ofQ(ν).

57

To prove the correctness, it suffices to argue that any objectPi whose projection contains
p must be large at one of the nodes on the search path ofp. To see this, we observe that
region(root(T)) contains all guards fromGi while the leaf regions do not contain any
guards in their interior. It follows that when we follow the path ofp, the objectPi must
become large at some node. 2

We can now prove our final result on vertical ray shooting.

Theorem 4.8 Let P be a collection ofn convex disjoint constant-complexityβ-fat poly-
hedra inR

3. Then there is a data structure such that vertical ray shooting queries onP
can be answered inO((1/β2) log2 n) time. The structure usesO((1/β)n log2 n) storage
and it can be built inO((1/β)n log2 n) time.

Proof. The correctness of the query procedure and the query time have been shown in
Lemma4.7.

It remains to prove the bound on the construction time; the storage bound then follows
trivially. Computing the guards for each object takes constant time per object, and con-
structing the BAR-tree takesO(n log n) time [44]. We claim that an objectPi is large at
O(log n) nodes. Indeed, any guard is contained in the regions of the nodes on a single
path down the tree, and an object can only be large at a node if the parent region contains
one of its guards. Hence,

∑

ν |P(ν)| = O(n log n). We can generate the setsP(ν) in
O(n log n) time by filtering the objects down the treeT . The setQ(ν) can be constructed
in O(|Q(ν)|) time, and associating the objects with the points inQ(ν) can be done in a
brute-force way inO(|Q(ν)| · |P(ν)|). Finally, constructing the associated structures of
ν takes time

∑

q∈Q(ν)

O((1/β)|P(q)| log |P(q)|) = O((1/β)|P(ν)| log |P(ν)|)

by Lemma4.5. Hence, the overall construction time is
∑

ν O(|P(ν)| · (|Q(ν)| + (1/β) log |P(ν)|))
= O((1/β)n log2 n + (1/β2)n log n)

= O((1/β)n log2 n).

2

4.4 A ray-shooting data structure for arbitrary directions

Let P be the set of either convex fat polyhedra or(α, β)-covered polyhedra that we wish
to preprocess for ray-shooting queries with query rays thathave arbitrary directions. We

58

usen to denote the total number of vertices of the polyhedra. Our global strategy is
roughly as follows.

We first decompose of the boundary of each polyhedron into a constant number of towers.
This is the same decomposition that we mentioned in Chapter3. Recall that for a convex
β-fat polyhedronP , we can cover the boundaryP with O(1/β2) towers by Theorem3.12.
By Theorem3.14, for an(α, β)-covered polyhedronP , we can cover the boundary ofP
with O(1/(αβ)5) towers, where the towers haveO(1/(αβ)2) canonical directions. Next,
we present a data structure to efficiently perform segment-emptiness queries on the towers.
Using Agarwal and Matoušek’s parametric-search technique mentioned above, we then
convert this structure into a structure for ray shooting.

Testing for segment emptiness. Before we describe the data structure for segment-
emptiness queries, we describe necessary and sufficient conditions for a segment to in-
tersect a polyhedronP . We treatP as a solid, meaning that a segments intersectsP even
if both endpoints ofs are insideP .

In the lemma below and in the rest of the chapter, whenever we speak of “above” and
“below” when referring to a specific tower, this is always with respect to the canonical
direction ~d of that tower. More precisely, we say that an objecto is belowan objecto′

whenever there exists a directed line with orientation~d that first intersectso and theno′.
A point is inside a tower, for instance, if and only if it is above the base and below the cap.
Finally, we useproj(o) to denote the projection of an objecto in direction~d onto a plane
orthogonal to~d.

Lemma 4.9 A segments = pq intersects a polyhedronP ∈ P if and only if one of the
following conditions holds:

1. p or q is insideP , or

2. there is a towert ∈ T (P) such that

(a) pq intersectsbase(t), or

(b) pq passes below an edge ofcap(t) and above an edge ofbase(t), or

(c) pq passes below an edge ofcap(t) andp or q is abovebase(t).

Proof. If one of the conditions is met,s clearly intersectsP . Therefore, we will concen-
trate on the “only if” part of the proof. Ifs meetsP but misses allt ∈ T (P), condition1
clearly holds. Supposes intersects somet ∈ T (P). Putb := base(t). Up to exchanging
p andq, there are three possible scenarios forp andq with respect tot:

Case (i):proj(p) is insideproj(t) butproj(q) is not. Thenp is either abovet, below it,
or inside it. Ifp is insidet, then condition1 is satisfied. Ifp is belowb, then there
must be some other point ons that is aboveb, which implies thats must satisfy

59

condition2a. Finally, if p is aboveb but not insidet, then condition2c is satisfied
by the property thatt is a terrain and the fact thatproj(q) is not insideproj(t).

Case (ii): bothproj(p) and proj(q) are insideproj(t). If either p or q are insidet,
then condition1 is satisfied. Ifp is belowb andq is above it (or vice versa), then
condition2a is satisfied. If bothp andq are belowb, thens can not intersectt.
If both p andq are aboveb but not insidet, then they must both be abovecap(t).
Sinces intersectst, this implies that condition2c is satisfied.

Case (iii): neitherproj(p) norproj(q) is insideproj(t). Now condition2b must always
be satisfied.

2

Lemma4.9 allows us to treat a segment-emptiness query as the disjunction of several
different conditions and test separately for each of these conditions. Developing data
structures for each of these conditions is relatively routine; they can be implemented
using standard multi-level range-searching data structures. Below we provide some of the
details.

Lemma 4.10 LetP be a set ofβ-fat convex polyhedra inR3 of total complexityn. Given
a query segments, we can detect inO((n/β2√m) log n) time whether an endpoint ofs is
inside a polyhedron ofP using a data structure that requiresO(m1+ε/β2) preprocessing
time and storage, for any parameterm with n < m < n2. If the polyhedra are disjoint,
this can be improved toO(n/β) storage and preprocessing time andO((1/β) log n) query
time.

If P is a set ofn (α, β)-covered polyhedra inR3 with total complexityn, then the bounds
are the same except for the dependence on the fatness constant: in all cases,O(1/β2) is
replaced byO(1/(αβ)2).

Proof. When the objects inP may intersect, we treat the towers and the inner cubes of
each object separately.

We preprocess the cubes into a three-level segment tree [42]. This tree usesO(n log3 n)
storage and allows us to check if any of the cubes contains a query point inO(log3 n)
time. By increasing the degree of the nodes in the segment tree toO(nε), we can reduce
the query time toO(log n) at the cost of usingO(n1+ε) storage.

The towers are handled as follows. Consider the collection of towers for a fixed canonical
direction. Assume without loss of generality that the basesof the towers are parallel
to thexy-plane. A towert contains a query pointq if and only if the following three
conditions hold: the projection ofq is contained in the projection of the base oft (here the
projections are onto thexy-plane and in the canonical direction of the tower),q is above
that base, andq is below the plane through the cap facet whose projection containsq. This
means we can detect this using a multi-level tree: the first two levels are segment trees on
the projections of the bases onto thexy-plane (these are used to select the bases whose
projections contain the projection ofq), the third level is a binary tree on height (used to

60

select those bases that are belowq), the next three2 levels are partition trees on the edges
of the projected cap facets (to select the cap facets whose projections containq), and the
final level is a structure to test ifq is above the upper envelope of the planes through
the cap facets. As usual with this type of multi-level data structure, the performance is
determined by the worst-case performance of any of the levels. Hence, we get the same
bounds as in a two-dimensional partition tree, as stated in the lemma; the extra factor
O(1/β2) for convex objects orO(1/(αβ)2) is because each of the canonical directions is
treated separately.

When the objects inP are guaranteed not to intersect, we use the so-calledobject BAR-tree
designed by De Berg and Streppel [40]. Recall from Chapter1 that this is a BSP-tree with
O(n) nodes and depthO(log n), such that every leaf region intersects at mostO(1/β) ob-
jects. Therefore, assuming the polyhedra have constant complexity, we can test whether
p is inside any of the polyhedra inP simply by finding the cell containingp in O(log n)
time and then testing whetherp is inside any of the polyhedra in the cell. If the polyhe-
dra do not have constant complexity, we apply the Dobkin-Kirkpatrick hierarchy [43] to
each polyhedron. In either case, the test takesO(log n) to determine which cellp is in
andO((1/β) log n) to test ifp is inside any of theO(1/β) polyhedra meeting that cell.2

Lemma 4.11 LetP be a set of convexβ-fat polyhedra. Assuming there is no endpoint of
query segments inside any polyhedron inP , we can detect whethers intersects any poly-
hedron inP using a data structure which requiresO(n2+ε/β2) storage and preprocessing
time and has query timeO((log n)/β2). Furthermore, for anym with n < m < n2, we
can construct a structure that usesO(m1+ε/β2) storage and preprocessing time and has
O((n/(β2

√
m)) log n) query time.

If P is a set of(α, β)-covered polyhedra, the dependence on the fatness constant, which
is O(1/β2) in the convex case, is replaced byO(1/(αβ)2).

Proof. There are three cases to consider, according to Lemma4.9. We will design a
different structure for each of them, and in each case we willneed a separate structure
for each of the|D| canonical tower directions. So we fix one of the canonical directions
~d, and letT = T (~d) be the set of all towers of that direction. Without loss of generality,
assume that the base of the towers inT is horizontal,i.e., parallel to thexy-plane.

Condition 2a: s intersectsbase(t) for some towert ∈ T : Sincebase(t) is an axis-
aligned rectangle, a segments intersectsbase(t) if and only if ℓ(s), the line through
s, intersectsbase(t) both in the projection onto theyz-plane and in the projection
onto thexz-plane, and the endpoints ofs lie on opposite sides of the plane through
base(t). Hence, we can test whether there is an intersected base using a five-level
tree: the first two levels are partition trees used to select the bases that intersect

2We assume without loss of generality that each cap facet is a triangle.

61

t

s~d

s

~d

t

s

~d

t

(a) (b) (c)

Figure 4.1 (a) Condition2a. (b) Condition2b. (c) Condition2c.

ℓ(s) in the projection onto thexz-plane, the next two levels are partition trees used
to select of these bases the ones that also intersectℓ(s) in the projection onto the
yz-plane, and the last level is a search tree onz-coordinate to test whethers has its
endpoints on opposite sides of any of the selected bases.

Condition2b: s passes above an edge ofbase(t) and below an edge ofcap(t), for some
t ∈ T : This happens if and only ifs intersects an edge ofbase(t) in the projection
onto thexy-plane, is above that edge in the orthogonal projection ontothe plane
orthogonal to that edge, and is below some edge ofcap(t). Therefore, we can also
check condition2bby using a multi-level structure based on partition trees: the first
levels are used to select all towers having a base with an edgethat intersectss in
the projection onto thexy-plane, the next level is to restrict the selection to towers
with base edges belows, the next levels are to select of those towers the cap edges
intersectings in the projection to thexy-plane. It remains to check whether any of
the selected cap edges is aboves. Since these edges all intersects in the projection,
we can treat them ands as full lines and use the structure from Theorem4.4.

Condition2c: s passes below an edge ofcap(t) and it has an endpoint abovebase(t),
for somet ∈ T : We first select all towers having a base below one of the endpoints
of s—this can be done using a two-level segment tree storing the projected bases
and a binary search tree on the heights of the bases—then we select the towers with
a cap edge that is intersected in the projection to thexy-plane, and finally we apply
the structure of Theorem4.4again.

In all cases, we have described a multi-level data structurewith a constant number of
levels, where each level is either a two-dimensional partition tree, a segment tree, a binary
tree, or (as the final level) the structure of Theorem4.4. The bounds for such multi-level
structure are determined by the worst level, which leads exactly to the bounds stated in
the lemma. (To speed up the query fromO(log4 n) time to O(log n), whenO(n1+ε)
storage is used, we employ the standard trick [28]: we choose the branching degree to
beO(nε), and we add a point-location structure to identify the correct child to which we
must descend inO(log n) time.)

It is easily checked that, in the worst case, the total complexity of the towers ofT (~d)

62

can beΘ(n), for each~d. Hence the above estimates for query time and preprocessing
time and space must be multiplied by1/β2 in the case of convex polyhedra or1/(αβ)2 in
the case of(α, β)-covered polyhedra to account for processing all canonicaldirections.2

Putting it all together. In order to apply the parametric-search technique described
in Theorem4.3, we must describe parallel algorithms for querying the datastructures
presented in the previous section. For the object BAR-tree and the Dobkin-Kirkpatrick
hierarchies for the polyhedra of non-constant complexity,the parallel query algorithm
coincides with the sequential one. In the other structures,we can obtainO(log n) parallel
query time usingO(n/

√
m) processors: basically, whenever a search path splits we add

another processor. Applying Theorem4.3now gives the final result.

Theorem 4.12 Let P be a set ofβ-fat convex polyhedra inR3 of total complexityn.
We can preprocessP usingO(n2+ε/β2) storage and preprocessing time, such that ray-
shooting queries can be answered inO((log2 n)/β2) time. Moreover, for anym with
n < m < n2, we can construct a structure that usesO(m1+ε/β2) preprocessing time and
storage such that queries takeO((n/β2

√
m) log2 n) time.

If P is a set of(α, β)-covered polyhedra inR3 with total complexityn, then the bounds
are the same except for the dependence on the fatness constant: in all cases,O(1/β2) is
replaced byO(1/(αβ)5).

Remark 4.13 This result is most likely optimal, up to anO(nε) factor. Indeed, the ray-
shooting problem for fat polyhedra in 3-space is at least as hard as the ray-shooting prob-
lem for squares in the plane. For the latter problem no betterbounds are known. More-
over, Hopcroft’s problem—deciding whether there is an incidence between given sets of
np points andnℓ lines in the plane—can be solved by performingnℓ ray-shooting queries
in the set of points (which can be considered degenerate squares). If we set the storage
parameterm of our structure tom = np +n

2/3
p n

2/3
ℓ , then our algorithm solves Hopcroft’s

problem inO((np + n
2/3
p n

2/3
ℓ + nℓ)

1+ε) time. In a restricted model of computation, the

lower bound for Hopcroft’s problem [49] is Ω(np log nℓ + n
2/3
p n

2/3
ℓ + nℓ log np). Thus

it is unlikely that better results than the trade-off boundsthat we obtain are possible for
ray shooting in a set of points in the plane. (This is not a formal statement, because of
the restricted model of computation.) Hence, such improvements are also unlikely for ray
shooting in a set of fat objects in 3-space.

4.5 Simplex Range Searching

The techniques described above can be adapted to the problemof simplex range searching.
The task is to preprocessP to facilitate queries of the form: report, given a query simplex

63

∆, all objects intersecting∆. Unlike the previous sections of this chapter, we must assume
thatP contains constant-complexity polyhedra.

Lemma 4.14 A tower t of polyhedronP ∈ P intersects a query simplex∆ if and only if
one of the following conditions holds:

(i) t ⊂ ∆, or

(ii) an edge of∆ intersectst, or

(iii) t properly intersects a facetf of ∆, that is, t intersects only the relative interior
int(f) of f and not its boundary.

Proof. If one of the conditions is met, thent clearly intersects∆. Suppose neither of the
first two conditions are met, butt intersects∆. Sincet intersects∆ but is not contained
in it, a facetf of ∆ must intersectt; ∆ ⊂ t is ruled out by condition (ii). Since none of
the edges of∆ meett, it must be the case thatt ∩ f = t ∩ int(f), so the last condition
holds, as claimed. 2

Let T = T (~d) be the collection of all towers for the canonical direction~d. For each of
the three conditions we will construct a data structure thatcan report all towerst ∈ T
satisfying that condition.

To handle condition (i), we take a vertex of each tower inT and preprocess the resulting
set of points for simplex range searching. Thus, for anym with n < m < n3, we can
obtainO((n/m1/3) log n+k) query time usingO(m1+ε) preprocessing time and storage,
wherek is the number of reported towers [2].

Condition (ii) is handled as follows. Recall that in Section4.4 we developed a structure
for segment-emptiness queries in a set of towers. Now we needto report all towers inter-
secting a segment, instead of only testing if there is such a tower. The structures presented
in Section4.4can also report all intersected towers, with one exception:in the multi-level
structures for conditions 2b and 2c we used the structure of Theorem4.4as the final level.
This structure was used to check whether any line from a givenset of lines was above a
query line. Now we need to report all such lines, which can be done using a structure
for half-space range reporting in 5-dimensional (Plücker) space [2]. Note that since the
objects inP are constant-complexity, each object is reported at most a constant number of
times. We get a structure withO(m1+ε) preprocessing time and storage such that queries
takeO((n/

√
m) log n + k) time.

To handle condition (iii) we proceed as follows. For each vertex v of the cap of a tower
t ∈ T we define a segmentsv, which we call astick, as follows. Letℓv be the line through
v in direction~d. Thensv := ℓv ∩ t. Thus the sticksv connectsv to the point onbase(t)
that is belowv.

64

Lemma 4.15 If a towert ∈ T properly intersects a facetf of the query simplex∆, then
f is intersected by an edge ofbase(t), or by the sticksv of a vertexv of cap(t).

Proof. Supposet properly intersectsf , butf does not intersect an edge ofbase(t). Then
base(t) must be completely below the plane containingf . On the other hand, at least one
cap vertex,v, must be above that plane, otherwiset would not intersectf . Hence, the
stick sv must intersect that plane. Sincet properly intersectsf , this implies thatsv must
intersectf . 2

This lemma gives us an easy way to handle condition (iii): we need a structure so that
we can find all sticks whose projection in direction~d (note that this is a point) is con-
tained in the projection of a facetf of the query simplex and whose endpoints are on
opposite sides of the plane throughf . This can again be done with a multi-level partition
tree that usesO(m1+ε/β2) preprocessing time and storage, and for which queries take
O((n/β2

√
m) log n + k) time. A similar structure can be used to find the base edges

intersectingf , since the base edges of the towers inT have only two distinct directions.

Since we haveO(1/β2) different canonical directions in the case of convex polyhedra
andO(1/(αβ)5) towers in the case of(α, β)-covered polyhedra, we get the following.

Theorem 4.16 LetP be a set ofn β-fat constant-complexity convex polyhedra inR
3. For

anym with n < m < n3, we can preprocessP usingO(m1+ε/β2) time and storage, such
that simplex range-searching queries can be answered inO((n/β2m1/3) log n + k/β2)
time, wherek is the number of polyhedra reported.

If P is a set ofn constant-complexity(α, β)-covered polyhedra inR3, then the bounds
are the same except for the dependence on the fatness constant: in all cases,O(1/β2) is
replaced byO(1/(αβ)5).

4.6 Conclusion

In this chapter, we looked at two related problems: ray shooting and range searching.
We studied ray shooting both for rays whose direction is fixedand for rays that can have
an arbitrary direction. In the first case, we gave improved results for objects that are fat
and convex, whereas in the second case we gave improved results for polyhedra that are
(α, β)-covered. These results extended fairly directly into simplex range searching as well.
The results on ray shooting in arbitrary directions and simplex range searching polyhedra
show the utility of the decomposition into towers that we introduced in Chapter3.

65

Appendix

This appendix contains a proof that was omitted.

Lemma 4.2. Let P be aβ-fat convex polygon withn vertices. There is a setT of α-
fat triangles that coverP where|T | = O(n) andα ≥ β/128.

Proof. Recall that for triangles, we use the definition that the fatness is given by the
smallest angle in the triangle.

Let S be the largest possible square contained inP . Any convex subset ofP that contains
all of S is at leastβ′-fat whereβ′ = Θ(β) by Lemma4.18below.

We extend the edges ofS until they intersectP and add vertices toP at the intersection
points. We letPa denote the part ofP above the (extended) top edge ofS, let Pb denote
the part below the bottom edge ofS, let Pc denote the part to the right of the right edge of
S, and letPd denote the part to the left of the left edge ofS. We will show how to cover
Pa. The three other parts ofP are covered similarly, andS is covered with two triangles
that each have a fatness of45◦.

Pa

Figure 4.2 One of the subpolygons ofP induced byS.

An ear of a polygonP consists of two consecutive edges ofP that have the property that
a straight edge connecting the first and last vertex of the edges stays completely inside the
polygon. In a convex polygon, any two consecutive edges are ears.

We coverPa by choosing an arbitrary ear from it (except any ear that alsocontains the
top edge ofS), covering it using Lemma4.17below, and then replacingP by P with that
ear removed. Since no part ofS is ever removed,P remains fat. Thus we keep removing
ears fromPa until it exactly coincides with the extended edge ofS.

Since we cover the ears that we remove using the procedure from Lemma4.17, we add a
constant number of triangles toT per vertex, implying that|T | = O(n). The exact bound

66

onα is given by combining Lemmas4.17and4.18. 2

Lemma 4.17 An ear of aβ-fat polygonP can be covered with at most fourα-fat triangles
that all stay insideP whereα := (βπ)/16.

Proof. In a convex polygon, an ear is a triangle formed by three consecutive vertices.
Consider the ear defined by verticesvi−1, vi, andvi+1. Let φi−1, φi, andφi+1 be the
angles at the respective vertices—see Figure4.3 (a). BecauseP is β-fat, we know that
the angle between any two adjacent edges ofP , and in particular the angleφi, is at least
β/(2π). There are three possibilities for the other two angles,φi−1 andφi+1: either they
are both at leastα, they are both less than2α, or one is larger than2α and one is smaller
thanα. Note that these cases overlap.

Case (i):φi−1 ≥ α andφi+1 ≥ α. In this case, the ear is trivial to cover: it is already an
α-fat triangle that can be covered by a copy of itself.

Case (ii): φi−1 < 2α andφi+1 < 2α. First, we add triangles to the edgesvi−1vi and
vivi+1 where the angles of the edges of the triangles with respect tothe boundary edges
are at least2α—these are the triangles with dotted edges in Figure4.3(a). These triangles
must stay insideP as long asα ≤ (βπ)/16 by Lemma5.6, proved in the next chapter.
However, it is clear that the non-boundary vertex of these triangles must be outside the
ear that we are covering. Therefore, we can place a triangle at the middle vertex of the
ear with two sides that correspond to the sides of the two triangles that we just added and
whose third side is the edge of the ear that goes between thesetwo edges. This triangle
completes the covering of the ear.

vi−1

vi

vi+1ϕ1

ϕ2

φi
ϕ3

ϕ4

φi+i

vj

(a) (b)vi

φi vi+1
vi−1 φi−1 φi+1

Figure 4.3 (a) Case (ii). (b) Case (iii).

Case (iii): φi−1 > 2α andφi+1 < α (or the symmetric case).See Figure4.3 (b). In
this case, we add an edge between the vertex that is at the large angle (vi−1, without
loss of generality) and the edge across from it, making vertex vj . This splitsφi into two
anglesϕ1 andϕ2. We placevj such thatϕ1 is exactlyα. Thus,ϕ3 = α + φi+1 > α
. By assumption,ϕ2 > α. Thus, we can cover the trianglevi−1vivj with a copy of
itself. Trianglevi−1vjvi+1 can be covered according to the procedure outlined for case
(ii) above.

Note that in all cases, we have covered the ear with at most four α-fat triangles. 2

67

Lemma 4.18 Let P be a convexβ-fat polygon inR
2 andS be the largest square con-

tained in P . Then any convex subsetP ′ such thatS ⊆ P ′ ⊆ P is β′-fat where
β′ ≥ β/(8π).

Proof. By the results of Section 3.2.1 of Van der Stappen’s thesis [96], the side length of
S is at leastβρ/(2

√
2), whereρ is the diameter ofP .

Let d = p1p2 be the diameter ofP ′. Let S′ ⊆ S be the largest square contained inS that
has an edge parallel tod. The side length ofS′ is at least

√
2/2 times the side length ofS.

Let p3 andp4 denote the midpoints of the sides ofS′ parallel tod—see Figure4.4.

dp1 p2

S

S
′

p3

p4

P
′

Figure 4.4 P ′ must be fat.

We will make two triangles:p1p3p4 andp2p3p4. By convexity, both of these triangles
must be completely insideP ′. The sum of the area of these triangles is not dependent on
the placement ofS′—it is alwaysd · s/2, wheres is the side length ofS′.

SinceP ′ is convex, the fatness ofP ′ is determined by a circle placed atp1 with radius
d [96]. The area of that circle isπd2. Thus the fatness ofP ′ is at least

β′ =
d·s
2

πd2
=

s

2dπ
≥ βρ

8dπ
≥ β

8π

sinced ≤ ρ. 2

68

CHAPTER 5

Depth orders

5.1 Introduction

In this chapter we study another problem arising in computergraphics in the context of
realistic input models; namely the depth-order problem forfat polytopes inR3.

Problem statement and previous results. Let P be a set ofn disjoint objects inR3.
The problem we study is thedepth-order problem: compute a depth order for the setP ,
that is, an orderingP1, . . . , Pn of the objects inP such that ifPi is belowPj theni < j.
Here we say thatPi is belowPj , denoted byPi ≺ Pj , if there are points(x, y, zi) ∈ Pi

and(x, y, zj) ∈ Pj with zi < zj . In other words, a depth order is a linear extension of
the≺-relation. Since there can be cycles in the≺-relation—we then say there iscyclic
overlapamong the objects—a depth order does not always exist. In that case the algorithm
should report that there is cyclic overlap. Depth orders areuseful in several applications.
For example, they can be used to render scenes with the Painter’s Algorithm [52] or to do
hidden-surface removal with the algorithm of Katzet al. [60]. Depth orders also play a
role in assembly planning [3].

The depth-order problem for arbitrary sets of triangles in 3-space does not seem to admit
a near-linear solution; the best known algorithm runs inO(n4/3+ε) time [39]. This has
led researchers to also study this problem for fat objects. Agarwalet al. [5] gave an
algorithm for computing the depth order of a set of triangleswhose projections onto the

69

xy-plane are fat; their algorithm runs inO(n log5 n) time. However, their algorithm
cannot detect cycles—when there are cycles it reports an incorrect order. A subsequent
result by Katz [58] produced an algorithm that runs inO(n log5 n) time and that can
detect cycles. In this case though, the constant of proportionality depends on the minimum
overlap of the projections of the objects that do overlap. Ifthere is a pair of objects whose
projections barely overlap, then the running time of the algorithm increases greatly. One
advantage that this algorithm has is that it can deal with convex curved objects.

Our results. We present an algorithm for computing a depth order on a collection ofn
convex constant-complexity fat polyhedra inR

3. Our algorithm runs inO((1/β3)n log3 n)
time, improving the result of Agarwalet al. [5] by two logarithmic factors. Like the al-
gorithm of Agarwalet al., our algorithm unfortunately does not detect cyclic overlap.
Hence, we also study the problem of verifying a given depth order. We give an algo-
rithm that checks inO((1/β2)n log3 n) time1 whether a given ordering for a set of fat
convex polyhedra is a valid depth order. This is the first result for this problem. Until
now, the only algorithm for verifying a given depth order wasan algorithm for arbitrary
triangles [39], which runs inO(n4/3+ε) time.

5.2 Preliminaries

In this section we introduce some basic definitions and terminology.

Define thesizeof an objecto, denoted bysize(o) to be the radius of its smallest enclos-
ing ball. Note that the size of a ball is simply its radius.

It is not hard to show that the projection of a fat object is also fat, as proved by De
Berg [31] and made precise in the following lemma.

Lemma 5.1 (De Berg [31]) If an objectP is a β-fat object in three dimensions, then
proj(P) has fatnessΩ(β) in two dimensions.

We will also need the following lemma.

Lemma 5.2 Let P1 andP2 be simple polygons. Lete1 be an edge ofP1 ande2 be an
edge ofP2. If P1 intersectsP2 so that there is no vertex ofP1 insideP2 and no vertex of
P2 insideP1, then there is an intersection of edgese3 of P1 ande4 of P2 such thate3 6= e1

ande4 6= e2.

Proof. Let e of P1 ande′ of P2 be edges that intersect. Ife 6= e1 ande′ 6= e2, then we are
done. Ife 6= e1 ande′ = e2, then there must be an intersection betweene and a different

1This is an improvement over theO(n log
4 n) bound that we had in the preliminary version of the paper [34],

which was published in SODA 2006.

70

edge ofP2 (since there are no vertices ofP1 insideP2) meaning that we have found an
intersection betweene and some edgee′′ 6= e2, and we are done. Similarly, we are done if
e = e1 ande′ 6= e2. Finally, supposee = e1 ande′ = e2. Sincee1 entersP2, it must exit
it, and that implies that there must be an intersection betweene1 and some edgee′′ 6= e2.
This puts us in the previous case, so we are done. 2

5.3 The size of the transitive reduction of depth-order
graphs

Let P = {P1, . . . , Pn} be a set of disjoint objects inR3. Recall that we say thatPi is
belowPj , denoted byPi ≺ Pj , if there are points(x, y, zi) ∈ Pi and(x, y, zj) ∈ Pj with
zi < zj . We define thedepth-order graph ofP to be the graphG(P) = (P , E) where
(Pi, Pj) ∈ E iff Pi ≺ Pj . Hence, a depth order forP corresponds to a topological order
onG(P).

In general it is too costly to computeG(P) explicitly, since it can haveΩ(n2) arcs. When
computing depth orders for segments in the plane, this can becircumvented by only look-
ing at pairs of segments that “see” each other, that is, that can be connected vertically
without crossing another segment. For objects in 3-space, however, the number of pairs
that see each other can be quadratic, even when the objects are fat. In this section we
therefore study the size of the transitive reduction of depth-order graphs, since the transi-
tive reduction is the smallest subgraph that is sufficient totopologically sort a graph. The
main result is that the number of arcs in the transitive reduction of the depth-order graph
of a set of fat objects is linear. Then in the next section we will compute a superset of the
arcs in the transitive reduction.

We define theseparationof two nodes in the depth-order graph, denotedsep(Pi, Pj) to
be the length of the longest path fromPi to Pj . Notice that if the graph contains cycles,
sep(Pi, Pj) can be infinite. We defineG(1)(P) = (P , E(1)) to be the subgraph of the
depth-order graphG(P) where(Pi, Pj) ∈ E(1) if and only if sep(Pi, Pj) = 1 in G(P).

Lemma 5.3 If G(P) is acyclic, the transitive closure ofG(1)(P) is the transitive closure
of G(P).

Proof. We have to prove that there is a pathPi ; Pj in G(P) if and only if there is a path
Pi ; Pj in G(1)(P). The “if” part is obvious sinceG(1)(P) is a subgraph ofG(P). We
prove the “only if” part by induction onsep(Pi, Pj).

If sep(Pi, Pj) = 1, the arc(Pi, Pj) exists inG(1)(P) by construction. Now assume
there is a path inG(1)(P) between all nodes with separationm. TakePi andPj in G(P)
which have separationm + 1. Then there is a nodex such thatsep(Pi, x) = 1 and

71

sep(x, Pj) = m. By the induction hypothesis, we then have a pathPi → x ; Pj in
G(1)(P). 2

For arbitrary triangles in 3-space, the number of arcs inG(1)(P) can still beΘ(n2). For
some special classes of objects, however, the number of arcsis linear. For example, one
can show that this number is linear for a set of disjoint polyhedra whose projections form
a set of polygonal pseudodisks [42]. Here we concentrate on the case where the objects in
the given setP project onto fat convex objects. We show that in this case thenumber of
arcs is also linear. Since fat convex objects project to fat objects, showing this also shows
that the number of arcs inG(1)(P) is small if the input is a set of fat objects. We start with
an auxiliary lemma

Lemma 5.4 Let Pi ∈ P be an object and letP+(i) be the subset of objectsPj ∈ P that
are abovePi and wheresep(Pi, Pj) = 1. Then the projectionsproj(Pj) of the objects
Pj ∈ P+(i) are pairwise disjoint.

Proof. Suppose not. Then there are objectsPj , Pk ∈ P+(i) such thatproj(Pj) ∩
proj(Pk) 6= ∅ andsep(Pi, Pj) = 1 andsep(Pi, Pk) = 1. Sinceproj(Pj) andproj(Pk)
intersect, they must share at least one point, so there must be an arc betweenPj andPk

in G(P). Therefore, eithersep(Pi, Pj) > 1 or sep(Pi, Pk) > 1, either case being a con-
tradiction. 2

Theorem 5.5 LetP be a collection ofn disjoint objects inR3 that project to convexβ-fat
objects. Then the number of edges inG(1)(P) is O(n/β).

Proof. We will charge each arc inG(1)(P) to an object, and then use a packing argument
to show that the number of arcs inG(1)(P) charged to each object isO(1/β).

We project all objects onto thexy-plane, making them convex fat objects. In this setting,
we say that one object is above another if the original objects satisfy this relationship.

Recall that for a planar objecto, its size is defined as the radius of its smallest enclosing
disk. Consider an arc(Pi, Pj) in G(1)(P). We charge the arc to the smaller of the two
objects. That is, we charge the arc toPi if size(proj(Pi)) < size(proj(Pj)) and toPj

otherwise, breaking ties arbitrarily. We claim that any object is chargedO(1/β) arcs.
To prove this, take an arbitrary objectPj such that(Pi, Pj) is charged toPi. Let ρ =
size(proj(Pi)). If there is an arc inG(1)(P) betweenPi andPj , thenproj(Pj) intersects
proj(Pi). Let p be a point in this intersection. Then a circle centered atp with radiusρ
is centered inproj(Pj) and does not fully encloseproj(Pj), or elseproj(Pj) would have
a smallest enclosing circle that is smaller or equal to that of proj(Pi). Thus, this circle
contains at leastβπρ2 units of area ofproj(Pj) by the definition of fatness. Also, this
circle is completely enclosed in a circle of radius2ρ centered at the center of the smallest
enclosing disk ofproj(Pi). This is illustrated in Figure5.1.

Since all objectsproj(Pj) wherePj is abovePi andsep(Pi, Pj) = 1 must be disjoint
by Lemma5.4, and because each must have at leastβπρ2 units of area inside a disk that

72

ρ
p

ρ
2ρ

proj(Pi)

Figure 5.1 Illustration of the packing argument.

has4πρ2 units of area, there can only be4/β edges ofG(1)(P) charged toPi. We must
double this number to account for objectsPj belowPi such that(Pj , Pi) is charged toPi.
Therefore, we get an upper bound on the number of arcs chargedto Pi of 8/β. Finally,
since there aren objects,G(1)(P) can have at most8n/β edges, which isO(n/β). 2

5.4 Computing depth orders

We now present the algorithm for finding the depth order of a set P = {P1, . . . , Pn} of
n disjointβ-fat convex polyhedra. In contrast to Theorem5.5, we require the complexity
of the projection of each object to be constant.

Witness edges. One of the basic steps that we need to perform repeatedly in our algo-
rithm will be to find polyhedra that are above a query polyhedron. To facilitate this, we
will add so-calledwitness edgesinside the projection of eachPi. They are defined as
follows.

Let β′ be defined so that each member of{proj(Pi) | Pi ∈ P} is β′-fat. By Lemma5.1
we know thatβ′ = Ω(β). Also let C = {0, α, 2α, . . . , cα} whereα = (β′π)/8 and
c = ⌊2π/α⌋. We call the directions inC canonical directionsas in Chapter1. We require
the witness edges to have the following properties. LetWi andWj be the sets of witness
edges constructed forPi andPj respectively.

(i) Each witness edge has one of the canonical directions.

73

(ii) For any pair of polyhedraPi andPj , we have thatproj(Pi) intersectsproj(Pj) if
and only if at least one of the following is true:

• A vertex of proj(Pi) is insideproj(Pj), or a vertex ofproj(Pj) is inside
proj(Pi).

• A witness edge inWi crosses a witness edge inWj .

The construction of the setWi of witness edges forPi is done as follows. For each
edgee = vw of proj(Pi) we add toWi two witness edgese′ ande′′ that are incident
to v andw, respectively, extend into the interior ofPi, and form a triangle withe. The
directions of the witnesses are chosen from the canonical directions, such that the interior
angles thate′ ande′′ make withe are minimal—see Figure5.2. We claim that if we add

Figure 5.2 A projection of a polyhedron with witness edges added

the witness edges in this manner, they have the required properties. The first property
holds by construction, so it remains to prove the second property. We first argue that
the witness edges lie completely insideproj(Pi), which implies that the “if”-part of the
second property holds.

Lemma 5.6 The witness edges inWi lie completely insideproj(Pi).

Proof. Let e be the edge for which we are adding witness edges. Letp be the midpoint of
e and consider the circleC with centerp and diameter equal to the length ofe. Suppose
an edge ofproj(Pi) intersects the triangle formed bye, e′, ande′′. Note that this region
must be inside the isosceles triangle with anglesα and basee—the lighter region in Fig-
ure5.3by the minimal-angle condition which implies that the angles thate makes withe′

ande′′ are at mostα. Then, by convexity ofproj(Pi), we know thatproj(Pi) ∩ C must
be completely inside the union of the triangular wedges in Figure5.3. These wedges have
area at mostβ′π|e|2/8 insideC. Hence,area(proj(Pi) ∩ C) < β′π|e|2/4, contradicting

74

e
α

|e|/2 sin 2α

p

C

e′ e′′

Figure 5.3 No edge of the polygon may enter the light gray region.

our assumption thatproj(Pi) is β′-fat. 2

The following lemma, which follows directly from Lemma5.2, finishes the proof that the
witness edges have the required properties.

Lemma 5.7 If proj(Pi) intersectsproj(Pj) andproj(Pi) does not contain a vertex of
proj(Pj) or vice versa, then a witness edge fromPi intersects a witness edge fromPj .

The algorithm. The general idea of our algorithm is as follows. By Lemma5.3 it is
sufficient to find all pairs of objectsPi, Pj of separation 1 in the depth-order graph. Such
a pair of objects must, of course, intersect in the projection. Thus ideally we would like
to find among all pairsPi, Pj whose projections intersect the ones of separation 1. Our
algorithm does not quite achieve this—it will find more pairs—but the number of extra
pairs we find will be small. Lemma5.7 suggests that the task of finding the intersecting
pairs of projections can be broken into two parts: finding pairs for which there is a vertex
of the projection of one polyhedron inside the projection ofanother, and finding crossing
pairs of witness edges.

Below we give a more detailed description of the algorithm. The algorithm will find
a setA of arcs—a superset of the arcs(Pi, Pj) for objects of separation 1—and then
topologically sort the graphG∗ = (P , A). Initially A is empty.

1. For every vertexv of each objectPi ∈ P , find the objectsP b(v) andP a(v) that
are directly below and abovev, respectively, and add the arcs(P b(v), Pi) and

75

(Pi, P
a(v)) to A.

2. Sort the objects by decreasing size so thatsize(proj(P1)) ≥ · · · ≥ size(proj(Pn)),
and defineSi = {P1, . . . , Pi}.

3. For every witness edgee associated with eachPi, find a setP(e) consisting of
objectsPj ∈ Si−1 with the following properties:

(P1) EachPj ∈ P(e) has a witness edge that intersectse.

(P2) EachPj ∈ P(e) is abovePi.

(P3) EachPj ∈ Si−1 with sep(Pi, Pj) = 1 that satisfies (P1) and (P2) is a member
of P(e).

For eachPi, add the set of arcs{(Pi, Pj) : Pj ∈ P(e) ande is a witness edge ofPi}
to A.

4. Repeat step3 with “below” substituted for “above” and the directions of the arcs
added reversed.

5. Topologically sort the graphG∗ = (P , A) and report the order.

Lemma 5.8 The order reported by the algorithm is a valid depth order forP , if a depth
order exists.

Proof. Assume a depth order exists forP . It follows directly from the construction that
every arc added to the setA is also an arc in the depth-order graphG(P). It remains to
argue thatA is a superset of the set of arcs in the graphG(1)(P).

Consider an arc(Pi, Pj) in G(1)(P). If there is a vertex ofproj(Pi) in proj(Pj) (or vice
versa) then, becausesep(Pi, Pj) = 1, that vertex is directly belowPj (resp. abovePi).
Hence, the arc is found in Step1. By Lemma5.7, the remaining case is that a witness
edge ofproj(Pi) intersects a witness edge fromproj(Pj). Without loss of generality,
assumePi is smaller thanPj . Hence,Pj ∈ Si−1. Since(Pi, Pj) is an arc inG(1)(P),
sep(Pi, Pj) = 1. By condition (P3), the arc will be found in Step3 or 4, depending on
whetherPj is above or belowPi. 2

Step1 can be carried out efficiently using the vertical ray-shooting data structure pre-
sented in Chapter4. Hence, it remains to describe Step3 in more detail. This step will be
performed as follows. We will treat eachP2, . . . , Pn in order. When we have to handlePi,
we will make sure we have a data structure available that we can query with each witness
edgee of Pi and that will then report the setP(e). After having queried with all witness
edges ofPi, we insertPi into the data structure and proceed withPi+1. Next we describe
this data structure.

76

The witness-edge-intersection data structure. Consider the set of all witness edges of
the objects inPi−1. These witness edges have canonical directions, so we can partition
them into |C| subsets depending on their directions. The query segmente has one of
the canonical directions as well. Hence, we construct for each subset|C| different data
structures, one for each query direction. We now describe the structure for one such
subset, let’s call itW , and a fixed query direction.

Assume without loss of generality that the witness edges inW are all horizontal, and
that the query edgee is vertical. The structure is a multi-level data structure defined as
follows.

• The top level of the data structure is a segment treeT on the projections of the
edges inW onto thex-axis. Note that each nodeν in T corresponds to a vertical
slab in the plane.

• Let W (ν) denote the edges inW whose projection is in the canonical subset of
ν. Such an edge crosses the slab ofν but not the slab of the parent ofν. We
store the edges inW (ν) in a balanced binary treeT (ν), ordered according to their
y-coordinates. We call this the “slab tree”. So far our structure is just a standard
two-level tree to perform intersection queries with vertical segments in a set of
horizontal segment in the plane [42].

• Let µ be a node inT (ν). LetP(µ) denote the subset of objects that have a witness
edge in the subtree rooted atµ. The nodeµ represents a rectangular2 regionR(µ)
that is bounded by two slab boundaries and the topmost and bottommost edge stored
in the subtree rooted atµ. We associate withµ a reduced subsetP(µ) ⊂ P(µ) of
the objects, in the following way:Pj ∈ P(µ) iff Pj ∈ P(µ) andsize(proj(Pj)) ≥
size(R(µ))/2

√
2.

By Lemma4.1we can find a setQ(µ) consisting ofO(1/β2) points such the pro-
jection of any objectPj ∈ P(µ) is stabbed. We arbitrarily assign eachPj ∈ P(µ)
to one of the pointsq it contains, and we associate a balanced binary search tree
T (q) with each pointq on the associated objects, where the sorting order is defined
by the height of the objects along the vertical line throughq.

This finishes the description of the data structure. Next we describe the algorithms to
query the structure and to insert an object.

Lemma 5.9 With the structure described above, we can find the setP(e) referred to in
Step3 of the depth-order algorithm inO((1/β3) log3 n) time. Furthermore, the setP(e)
containsO((1/β3) log2 n) objects.

Proof. Recall that we actually have to query|C| = O(1/β) different versions of the
structure. We focus on the time spent in one of these structures.

2This is only true because we assumed the edges inW are horizontal and the query edge is vertical. In
general,µ will represent a parallelogram, but this does not influence the arguments.

77

To perform a query with a witness edgee belonging to an objectPi, we search withe
in the first two levels of the tree in the standard way. This gives usO(log2 n) nodesµ
whose subtrees contain exactly those edges that intersecte. At each nodeµ, we use the
treesT (q) for q ∈ Q(µ) to find the lowest object that is abovePi. We can search inT (q)
sincePi is known to intersect all objects inP(q) in the projection. Hence, atµ, we find
|Q(µ)| objects inO(|Q(µ)| log n) time in total. The query time and the bound on the size
of P(e) follow.

It remains to argue that the reported set has the required properties. Properties (P1) and
(P2) follow immediately from the definition of the data structure and query algorithm.
Furthermore, when we query a treeT (q) we can indeed restrict our attention to the lowest
object that is abovePi, because the other objectsPj will either be belowPi or have
sep(Pi, Pj) > 1. Hence, to prove (P3) it is sufficient to argue that anyPj satisfying (P1)
and (P2) and withsep(Pi, Pj) = 1 will be a member of one of the setsP(µ). We know
that the object will be a member ofP(µ) for a visited nodeµ.

Suppose for a contradiction thatPj 6∈ P(µ). This means we must havesize(proj(Pj)) <
size(R(µ))/2

√
2. This can only happen whensize(proj(Pj)) is less thand/2, whered

is the distance between the top and bottom edge ofR(µ), becausePj crosses the slab
of which R(µ) is a part. On the other hand, when we reach a nodeµ in the slab tree
by querying with a witness edgee of Pi, we havesize(proj(Pi)) ≥ length(e)/2 ≥ d/2.
This contradicts that when we query with a witness edgee of Pi, all objectsPj in the data
structure havesize(proj(Pj)) ≥ size(proj(Pi)). 2

Lemma 5.10 An objectPi can be inserted into the structure inO((1/β) log2 n(log n +
1/β2)) time.

Proof. Each of theO(1) witness edges ofPi has to be inserted into|C| = O(1/β) struc-
tures. To insert a witness edge, we first find each nodeµ in a slab tree whose canonical
subset contains the witness edge. We test ifsize(Pj) ≥ size(R(µ))/2 and, if so, find a
point q ∈ Q(µ) that is contained inproj(Pi) and insertPi into the treeT (q). This takes
O(log2 n(log n + 1/β2)) time per structure, soO((1/β) log2 n(log n + 1/β2)) time in
total. 2

From the two lemmas above, we see that Steps3 and4 of the depth-order algorithm can
be performed inO((1/β3)n log3 n) time in total. We get the following theorem.

Theorem 5.11 LetP be a collection ofn disjoint constant-complexityβ-fat convex poly-
hedra inR

3. Then we can compute a depth order forP in time O((1/β3)n log3 n), if it
exists.

78

5.5 Verifying depth orders

In order for our algorithm to be complete, it should output the correct depth order if
one exists, but it should also not output an incorrect depth order if no depth order exists.
Unfortunately the algorithm of the previous section does not necessarily detect cycles in
the≺-relation. Hence, we present an algorithm for checking whether a given order is
correct.

We use the general approach by De Berget al. [39] for verifying depth orders. Let
L = P1, . . . , Pn be the given order. We defineL1 = {P1, . . . , P⌊n/2⌋} and L2 =
{P⌊n/2⌋+1, . . . , Pn}. We first check if any object inL2 is above any object inL1. Clearly,
if the answer is “yes” then the given ordering is not valid. Otherwise, we verify the
lists L1 andL2 recursively. IfT (β, n) is the amount of time to check the objects inL1

against those inL2, then the overall algorithm takesO(T (β, n) log n) time. We shall see
thatT (β, n) = O((1/β2)n log2 n), so the algorithm for verifying the depth order takes
O((1/β2)n log3 n) time. Next we describe how to check the objects inL1 against those
in L2.

First we introduce a new type of witness edge. The differencewith the witness edges in
Section5.4is that the new witness edges will have canonical directionsin 3D, rather than
in the projection. To achieve this we again use towers. Recall the following lemma from
Chapter3.

Lemma 3.11 Let σ := ⌈54
√

3/β⌉. For any convexβ-fat objecto in R
3, there exist

concentric axis-aligned cubesC−(o) andC+(o) with C−(o) ⊆ o ⊆ C+(o) such that

size(C+(o))

size(C−(o))
= σ .

Assume we are givenC−(o) andC+(o) for objecto. We partition each face ofC+(o)
into squares with side length equal to the side length ofC−(o). For each facetf of C−(o)
and each square on the corresponding facet ofC+(o), we sweepf so that it coincides
with the square—see Figure5.4(a). The sweeping directions form the set of canonical
directions. There are at mostσ2 different directions that a facet ofC−(o) can be swept
in, so we haveO(1/β2) canonical directions. We denote an arbitrary member of thisset
of directions by~d. Note that the set of canonical directions thus obtained does not depend
ono, only on the valueσ, which is specified by the fatness factorβ. This is precisely the
construction of towers for convex objects we gave in Chapter3.

For eachPi we construct a setWi of witness edges, as follows. First, we add the edges
of C−(Pi) to Wi. Second, for each silhouette vertexv of Pi—a silhouette vertex is a
vertex whose projection is a boundary vertex of the projection ofPi—we add an edgeev

that connectsv to one of the facets ofC−(Pi). This edge is allowed to be in any of the
canonical directions as long as it reaches a facet ofC−(Pi). We can be certain that at
least one direction works forv since there must be at least one pair consisting of a facetf

79

C−

f(e)
e

(a) (b)

C+

C−

Figure 5.4 (a) One of the canonical directions. (b) Projection of the new witness edges
and witness vertices.

of C−(Pi) and a square on a facet ofC+(Pi) such thatv is hit when sweepingf to that
square.

We also add some vertices toPi that we callwitness vertices, as follows—see Figure5.4(b).
For each witness edgee, we add the intersection point betweenproj(e) and∂ proj(C−(Pi)),
lifted back toe, to the set of witness vertices forPi. Moreover, if the projected witness
edges of two consecutive silhouette vertices intersect, then we lift the intersection points
to one of the two intersecting witness edges (choosing arbitrarily), and make the result-
ing point a witness vertex. Finally, we add the vertices ofC−(Pi) to the set of witness
vertices.

Lemma 5.12 The witness edges satisfy the properties that

(i) Each witness edge has one of the canonical directions.

(ii) For any pair of polyhedraPi andPj , proj(Pi) intersectsproj(Pj) if and only if at
least one of the following is true:

• A projected witness or silhouette vertex ofPi is insideproj(Pj), or a pro-
jected witness or silhouette vertex ofPj is insideproj(Pi).

• A projected witness edge inWi crosses a projected witness edge inWj .

Proof. Property (i) is satisfied by construction. Also, if one of thetwo conditions in
property (ii) is satisfied, then the projections ofPi andPj must intersect since they share
a point. Therefore, we will concentrate on proving that a projected witness edge inWi

crosses a projected witness edge inWj assuming thatproj(Pi) ∩ proj(Pj) 6= ∅, and that
no projected witness or silhouette vertex ofPi is contained inproj(Pj) (or vice versa).

80

Sinceproj(Pi) intersectsproj(Pj) and no projected silhouette vertex of one is inside the
projection of the other, there must be silhouette edges ofproj(Pi) andproj(Pj) that cross.
Take one such pair of edges and call themei andej . Consider the arrangement induced by
the projections of the silhouette edges and the witness edges of Pi, and letf(ei) denote
the (bounded) face in this arrangement withei on its boundary—see Figure5.4(b). Define
f(ej) similarly for the arrangement induced by the projections ofthe silhouette edges and
the witness edges ofPj . By Lemma5.2, there must be an intersection between a pair of
edges fromf(ei) andf(ej), neither of which isproj(ei) or proj(ej). Hence, there must
be an intersection between two projected witness edges. 2

It follows from Lemma5.12 that there is an object fromL1 below an object fromL2

when at least one of the following conditions holds for some pair Pi, Pj with Pi ∈ L1 and
Pj ∈ L2: a witness or silhouette vertex ofPi is belowPj , or a witness or silhouette vertex
of Pj is abovePi, or a witness edge ofPi is below a witness edge ofPj . To test for the
first condition, we construct a data structure for vertical ray shooting on the objects inL2

and query it with upward rays from the witness and silhouettevertices of the objects in
L1. The second condition can be tested similarly, namely by constructing a data structure
for vertical ray shooting on the objects inL1 and query it with downward rays from the
witness and silhouette vertices of the objects inL2. By Theorem4.8and the fact that the
total number of witness and silhouette vertices isO(n), this will takeO((1/β2) log2 n)
in total. To test the third condition we proceed as follows. LetW (L1) andW (L2) denote
the set of all witness edges defined for the objects inL1 andL2, respectively. We will
preprocessW (L2) into a data structure for querying with witness edges fromW (L1),
according to the following lemma.

Lemma 5.13 We can preprocess the setW (L2) in O((1/β2)n log n) time into a data
structure of sizeO((1/β2)n log n) such that, for any witness edgee ∈ W (L1), we can
determine inO((1/β2) log2 n) time whether any witness edge fromW (L2) is abovee.

Proof. Let W~d(L2) ⊂ W (L2) denote the subset of witness edges of canonical direction
~d. Note that ∑

~d

|W~d(L2)| = |W (L2)| = O(n).

DefineW~d(L1) similarly. For each pair of directions~d1, ~d2 we build a data structure on
W~d1

(L2) for querying with edges fromW~d2
(L1). (In fact, the structure can be queried

with any segment with direction~d2.) Assume without loss of generality that~d1 is parallel
to thex-axis and~d2 is parallel to they-axis. The structure is a multi-level data structure
similar to the structure of Section5.4. The first two levels are exactly the same as for the
structure in Section5.4: the first level is a segment tree on thex-ranges of the witness
edges, and the second level is a balanced binary search tree on their y-values (in Sec-
tion 5.4this was called the slab tree). For each canonical subset of anode in the slab tree,
we store the witness edge with the highesty-coordinate. Note that the witness edge with
the highesty-coordinate is a single edge since the witness edges in the canonical subset
all have the same direction and the query edge will have a fixeddirection as well.

81

A query with a witness edgee ∈ W~d2
(L1) can be answered inO(log2 n) time, as follows:

query with thex-coordinate ofe in the segment tree, for each nodeν on the path query
with the y-range ofe in the associated slab treeT (ν), and for each selected nodeµ in
T (ν) check if the witness stored there is abovee.

When we are querying with an edgee, we actually have to query in the setsW~d(L2) for

each canonical direction~d. Since there areO(1/β2) canonical directions this means that
the total query time isO((1/β2) log2 n).

If we let s := |W~d1
(L2)|, building the structure onW~d1

(L2) for a given query direction~d2

can be done inO(s log s) time. This is because the associated structures of the segment
tree (the slab trees) can be built in linear time if we pre-sort the witness edges ony-
cooordinate. After that we compute the highest edge for eachnode in a slab tree in a
bottom up fashion—the highest edge for a node is the higher ofthe highest edges of its
two children—in linear time. Hence, the overall preprocessing time is the same as the
amount of storage, which isO(s log s). Overall, the preprocessing is therefore

∑

~d1,~d2
O(|W~d1

(L2)| log |W~d1
(L2)|)

= O(1/β2) ·∑~d1
O(|W~d1

(L2)| log |W~d1
(L2)|)

= O((1/β2)n log n).

2

Putting everything together, we get the following theorem.

Theorem 5.14 We can verify whether a given order on a set ofn disjoint convex constant-
complexityβ-fat polyhedra inR3 is a valid depth order inO((1/β2)n log3 n) time.

5.6 Conclusion

We have presented new and improved solutions to two problemson fat convex polyhedra
in 3-space: computing depth orders, and verifying depth orders. One open problem is to
see if the results can be extended to fat non-convex polyhedra, or fat curved objects.

Our algorithm for verifying depth orders uses a collection of witness edges that have
canonical directions in 3D and allow us to capture (togetherwith a certain set of points
in the objects) the above-below relation between the objects. It would be interesting to
investigate if these witness edges can be useful for other problems on convex fat objects
as well.

82

CHAPTER 6

Visibility maps

6.1 Introduction

Hidden-surface removal is an important and well-studied computational-geometry prob-
lem with obvious applications in computer graphics. The problem is to find those por-
tions of objects in a scene that are visible from a given viewpoint. There are two main
approaches to the hidden-surface removal problem: theimage-space approachand the
object-space approach. In the former, one calculates the visible object for each pixel of
the image; the well known Z-buffer algorithm is the standardexample of this. In the latter,
one computes the so-calledvisibility mapof the scene, which gives an exact description
of the visible part of each object; this is the approach takenin computational geometry.

Formally, the visibility map of a setP of objects inR
3 with respect to a viewpointp is

defined as the subdivision of the viewing plane into maximal regions such that in each
region a single object inP is visible fromp, or no object is visible. We will assume in
this chapter, as is usual, that the objects are disjoint. Thevisibility map of a set ofn
constant-complexity objects can be computed inO(n2) time [67]. Since the (combina-
torial) complexity of the visibility map can beΩ(n2)—a set ofn long and thin triangles
that form a grid-like pattern when projected on the viewing plane is an example—this is
optimal in the worst case. In most cases, however, the complexity of the visibility map
is much smaller than quadratic. Therefore the main challenge in the design of algorithms
for computing visibility maps has been to obtainoutput-sensitivealgorithms: algorithms
whose running time depends not only on the complexity of the input,n, but also on the

83

(b)(a)

Figure 6.1 (a) The visibility map of a scene with cyclic overlap. (b) Thevisibility map
of fat boxes can have quadratic complexity. Left: the scene.Right: the visibility map for
p = (0, 0,∞).

complexity of the output (that is, the visibility map),k. Ideally the running time should
be near-linear inn andk.

The first output-sensitive algorithms for computing visibility maps only worked for poly-
gons parallel to the viewing plane or for the slightly more general case that a depth order
on the objects exists and is given [15, 53, 54, 80, 81, 88]. Unfortunately a depth order
need not exist since there can be cyclic overlap among the objects1—see Figure6.1 (a).
De Berg and Overmars [38] (see also [28]) developed a method to obtain an output-
sensitive algorithm that does not need a depth order. When applied to axis-parallel boxes
(or, more generally,c-oriented polyhedra) it runs inO((n + k) log n) time [38] and when
applied to arbitrary triangles it runs inO(n1+ε + n2/3+εk2/3) time [6]. Unfortunately,
the running time for the algorithm when applied to arbitrarytriangles is not near-linear in
n andk; for example, whenk = n the running time isO(n4/3+ε). For general curved
objects no output-sensitive algorithm is known,2 not even when a depth order exists and
is given.

In this chapter we study the hidden-surface removal problemfor so-calledfat objects—
see Chapter1 for a definition of fatness. As illustrated in Figure6.1(b), the complexity
of the visibility map of fat objects can still beΘ(n2), so also here the main challenge is
to obtain an output-sensitive algorithm. Since hidden-surface removal has been widely
studied in computational geometry, it is not surprising that it has also been studied for fat
objects: Katzet al.[60] gave an algorithm with running timeO((U(n)+k) log2 n), where
U(m) denotes the maximum complexity of the union of the projection onto the viewing
plane of any subset ofm objects. SinceU(m) = O(m log log m) for fat polyhedra [76]
andU(m) = O(λs+2(m) log2 m) for fat curved objects [30], their algorithm is near-

1One might be tempted to try to cut the input objects until theyhave a depth order. This is probably not such
a good idea becauseΩ(n3/2) cuts are required for some examples [21]. Also, it has recently been shown [10]
that minimizing the number of cuts that removes a depth orderis NP-complete.

2Some of the algorithms can be generalized to curved objects using standard techniques. The resulting
algorithms are not very efficient, however, and typically have running time close to quadratic even when the
visibility map has linear complexity.

84

linear in n andk. (Hereλs+2(n) is the maximum length of an(n, s + 2) Davenport-
Schinzel sequence;λs+2(n) is almost linear inn, for any constants.) However, the
algorithm only works if a depth order exists and is given. This leads to the main question
we wish to answer: is it possible to obtain an output-sensitive hidden-surface removal
algorithm for fat objects that is near-linear inn andk and does not need a depth order on
the objects? We answer this question affirmatively by givingan algorithm with running
timeO((n + k) polylog n) for fat convex objects of constant complexity. More precisely,
the running time isO((n log n(log log n)2 + k) log3 n) when the objects are polyhedra,
and it isO((n log5+ε n + k) log3 n) when the objects are curved.

The only previously known method for output-sensitive hidden-surface removal that can
handle objects without depth order [28, 38] needs an auxiliary data structure for ray shoot-
ing in so-calledcurtains—these are semi-infinite surfaces, extending downward fromthe
edges of the input objects—and it appears to be difficult to profit from the fact that the
objects are fat when implementing this data structure. Thisalso explains why there is cur-
rently no efficient output-sensitive algorithm for hidden-surface removal in curved objects:
there are no efficient data structures known for ray shooting(with curved rays, in this case)
in curved curtains. Although our algorithm borrows some ideas from this method—we
describe the necessary preliminaries in Section6.2—we therefore proceed differently. In-
stead of building a data structure for ray shooting in curtains in 3D, we project the rays
and the objects onto planes “in between” the objects and the rays. Then ray shooting boils
down to tracing the rays on these planes similar to the line-segment-intersection algorithm
of Bentley and Ottmann [14]. To make this work, we need a collection of planes such that
for every ray and object one of the planes separates them. Forthis we use a binary space
partition on the objects. Section6.3describes all of this in detail. We conclude the chapter
in Section6.4by mentioning some open problems.

6.2 Preliminaries

Visibility maps. Next we define some notation and terminology relating to visibility
maps. We assume from now on that we are looking at the scene from above with the
viewpoint atz = ∞; hence, we are dealing with a parallel view. As already mentioned,
the visibility mapM(P) of a setP of objects is the subdivision of the viewing plane into
maximal regions such that in each region a single object inP is visible from the viewpoint
p, or no object is visible. We assume without loss of generality that the viewing plane is
thexy-plane.

Consider an objecto ∈ P . We denote the (orthogonal) projection ofo onto the viewing
plane byproj(o). Sinceo is convex, the boundary ofproj(o) consists of the projection
of all points of vertical tangency ofo. Let σ(o) denote the curve3 on the boundary ofo
that projects onto the boundary ofproj(o). Note that ifo is polyhedral,σ(o) consists of

3For simplicity of presentation we assumeo does not have any vertical facets, so thatσ(o) is uniquely
defined. It is easy to adapt the definitions to the general case.

85

vertex vertex

silhouette curves

arc node

Figure 6.2 A scene consisting of two polyhedral objects, and their visibility map. For one
of the objects, its silhouette curves and vertices are indicated in bold. One arc and two
nodes of the visibility map are indicated explicitly, but intotal the visibility map has six
arcs and five nodes.

certain edges ofo. We cutσ(o) into two pieces at the points of minimum and maximum
x-coordinate; we can assume without loss of generality that these points are unique. We
call these piecessilhouette curves. Note that for polyhedral objects a silhouette curve
consists, in general, of multiple edges of the object—see Figure6.2. The endpoints of the
silhouette curves are calledvertices.

M(P) is a plane graph whosenodesare intersection points of projected silhouette curves
and whosearcsare portions of projected silhouette curves. Arcs of the visibility map will
be denoted bya, and silhouette curves bye. The curve whose projection contains the arc
a is denotede(a). Note that a single silhouette curve can induce more than onearc, so
for two arcsa, a′ we can havee(a) = e(a′). It will be convenient to also consider the
projections of visible endpoints of silhouette curves (that is, visible vertices) as nodes, as
indicated in Figure6.2. Since we cutσ(o) into two pieces when it changes direction with
respect to thex-axis, the arcs ofM(P) arex-monotone.

Curtains. For a curvee in R
3 define thecurtain of e, denotedcurt(e), as the ruled

surface constructed by taking a vertical ray pointing downward and moving its starting
point from one end ofe to the other. Thus, ife is a segment thencurt(e) is an infinite
polygon defined bye and two unbounded edges, each parallel to thez-axis. For a setE
of curves we letcurt(E) := {curt(e) | e ∈ E}.

Computing visibility maps. Our algorithm is based on the existing output-sensitive
hidden-surface removal algorithm from [28]. Hence, we give a brief overview of this
algorithm.

The algorithm is a plane-sweep algorithm. It sweeps over theviewing plane from left
to right, detecting the arcs of the visibility map along the way. There are two types of
event points: projections of object vertices (these are known in advance), and nodes of
the visibility map (these will be computed as the sweep progresses).

86

a

e(a)

e′

ρ(a)

Figure 6.3 The endpoint of arca is the intersection ofproj(e(a)) andproj(e′), and it
corresponds to the ray alonge(a) hitting curt(e′). (Note that the objects pictured here are
not fat, but could be the top surfaces of fat polyhedra. We draw the objects in this way to
ease visualization.)

When the projection of an object vertexv is reached by the sweep line, the algorithm
checks whetherv is visible. This is done by shooting a ray fromv vertically upward. The
vertexv is visible if and only if no object is hit by the ray. (Thus the algorithm needs a
supporting data structure that can answer vertical ray shooting queries such as the one in
Chapter4.) If v is visible, its projection is a node of the visibility map. This node will
then be treated as an event for the sweep, as described next.

When a node of the visibility map is reached by the sweep line,the algorithm proceeds as
follows. First the arcs ending at that node—this information can easily be maintained—
are reported. Next it is determined whether any new arcs start at the node, that is, whether
any arcs have the node as their left endpoint. This can be decided based on the two
silhouette curves defining the node. For each new arca, its right endpoint is computed
and inserted into the event queue.

It remains to explain how to compute the right endpoint of a given arca of the visibility
map. An arca can end for two reasons. One is that the silhouette curvee(a) defining
a ends. The other is thatproj(e(a)) intersects some other projected silhouette curve
proj(e′) such that eithere(a) becomes invisible ore′ becomes visible—see Figure6.3.
This can be detected by a ray shooting in a set of curtains, as described next. Whene(a)
becomes invisible because it disappears below some objecto, then the ray alonge(a) must
hit the curtain hanging from one ofo’s silhouette curves. When some other silhouette
curvee′ becomes visible, something similar holds. To this end, we define a ray4 ρ(a) for
an arca of the visibility map as follows. Letq be the point one(a) projecting onto the left
endpoint ofa. Project the portion ofe(a) to the right ofq onto the objecto(q) immediately
belowq. (If there is no such object, we project onto a plane below allobjects.) This gives
us a ray on the surface ofo(q) whose projection containsa. It can be argued [28] that
the point whereρ(a) hits curt(e′) corresponds to the point where the silhouette curvee′

becomes visible. Since any curtain hit by the ray alonge(a) is also hit byρ(a)—after

4Note that in case of curved objects, the ray will be curved.

87

all, ρ(a) is belowe(a)—we can detect events wheree(a) becomes invisible by shooting
alongρ(a) as well.

The next lemma summarizes the discussion above.

Lemma 6.1 (De Berg [28]) Let E be the set of silhouette curves of the objects inP . The
right endpoint of an arca of M(P) is the leftmost of the following event points:

• The projection of the right endpoint ofe(a).

• The projection of the first intersection ofρ(a) with a curtain incurt(E).

6.3 The algorithm

As mentioned in the introduction to this chapter, it seems hard to implement a structure
for ray shooting in curtains that profits from the fact that the objects are fat. Therefore we
use the following idea.

Consider a collection of curtains hanging from the silhouette curves of some set of objects
that are all above a planeh. Now suppose we want to do ray shooting in those curtains
with a query rayρ(a) that lies belowh. Then we can project all objects and the ray ontoh,
and shoot with the projected ray in the union of the projectedobjects; the point where the
ray first hits a curtain then corresponds to the point where the projected ray hits the union.
This is true because in our application the ray will always bevisible, so the projected
ray cannot start inside the union. Unfortunately two-dimensional ray shooting is still too
costly. If, however, we have to answer many queries, then we can project all of them
ontoh, and perform a sweep to detect when they intersect the union.Of course there will
not be a planeh that separates all objects from all rays. Therefore we construct a binary
space partition (aBSP, for short) on the objects. This will give us a collection ofO(log n)
planes that together separate any ray from all the objects. The ray will then be traced on
each of these planes. Below, we make this idea more precise.

We start by describing the BSP in Section6.3.1, then discuss in Section6.3.2the corre-
spondence between ray shooting in curtains and tracing rayson a suitable set of planes,
and finally we give the details of the algorithm in Section6.3.3.

6.3.1 The data structure

Recall that abalanced aspect ratio tree(or BAR-treefor short) is a special type of BSP for
storing points. The variant known as theobject BAR-tree[40] stores objects rather than
points and has proved especially useful in designing data structures for fat objects. It has
been used as a basis for vertical ray shooting in Chapter4 and [31] as well as approximate
range searching and nearest neighbor searching [40].

88

We denote the region associated with a nodeν in the object BAR-tree forP by region(ν),
and we letPν denote the set of all objectso ∈ P intersectingregion(ν), clipped to
region(ν). The following lemma states the properties of the object BAR-tree we will
need.

Lemma 6.2 (De Berg and Streppel [40]) Let P be a set ofn β-fat disjoint convex ob-
jects inR

d. An object BAR-tree onP is a BSP treeT for P with the following properties:
(i) the tree hasO(n) leaves and each leaf region intersectsO(1/β) objects fromP ;
(ii) the depth of the tree isO(log n);
(iii) for each nodeν, region(ν) has constant complexity and fatness.

De Berg [31] has shown how to augment an object BAR-treeT with secondary structures,
so that vertical ray shooting can be performed efficiently. The augmentation is as follows.

• For each leaf nodeµ of T , we store the setPµ in a listLµ.

• For an internal nodeν, let hν denote the splitting plane stored atν.

– If hν is vertical, then we store the set{hν ∩ o : o ∈ Pν}—that is, the cross-
sections of the polyhedra inPν with hv—in a structureTν , which is an opti-
mal point-location structure [62] on the trapezoidal map defined byhν ∩ Pν .

– If hν is not vertical, thenν has two associated data structures,T +
ν andT −

ν ,
defined as follows.
Let P+

ν denote the set of object parts fromPν lying abovehν . ThusP+
ν =

Pµ, whereµ is the child ofν corresponding to the region abovehν . Let
proj(P+

ν) denote the set of vertical projections of the objects inP+
ν ontohν .

ThenT +
ν is an optimal point-location structure forU(proj(P+

ν)), the union
of proj(P+

ν). In our application, we not only store the point-location structure
for U(proj(P+

ν)), but also an explicit list of all union edges.
The associated structureT −

ν is defined similarly, but this time for the object
parts belowhν .

Lemma 6.3 (De Berg [31]) The augmented object-BAR-tree data structure above re-
quiresO((1

β5 log2 1
β)n log3 n(log log n)2) storage andO((1

β5 log2 1
β)n log4 n(log log n)2)

preprocessing time for convexβ-fat polyhedral objects, andO(1
β14 n log7+ε n) storage

and O(1
β14 n log8+ε n) preprocessing time for convexβ-fat curved objects. With this

structure, we can answer vertical ray-shooting queries inO(log2 n + 1/β) time.

Recall that we want to use the structure not only to answer vertical ray-shooting queries
in the given set of objects, we also want to use it for ray shooting in the curtains hanging
from the objects’ silhouette curves. The idea is as follows.Suppose that the query rayρ is
located inside the region of some leafµ. Then any object aboveρ (except for theO(1/β)

89

objects stored atµ) will be separated fromρ by some of the splitting planes stored at
nodes on the path toµ. Hence, the ray shooting query can be answered by tracingρ in the
unions stored at these nodes.

There is one problem with this approach, however. The query rays are along the pro-
jections of (parts of) silhouette curves onto the object immediately below them. These
objects and, hence, the query rays can be cut into many piecesby the BSP.5 At the points
where a ray is cut into pieces, it moves to a different leaf region. Then we would have
to trace the ray on a different set of planes, because the pathfrom the root changes—
something we cannot afford.

To avoid this problem we proceed as follows. Let∂top(o) denote the top surface of
an objecto, that is, the part of the boundary ofo visible from above. For each object
o ∈ P we will store the union of the projection of a certain subsetP(o) ⊂ P onto
∂top(o). The subsetP(o) is defined as follows. Call an objecto large at a nodeν
of T if o intersectsregion(ν) and the following two conditions are met: (i)size(o) <
size(region(parent(ν))) and (ii) eithersize(o) ≥ size(region(ν)) or ν is a leaf. Now we
define

P(o) := { o′ ∈ P : there is a nodeν such thato is large atν,
o′ intersectsregion(ν), ando′ is aboveo }

Finally, we also store the union of the projections of all theobjects inP onto thexy-
plane. (Thexy-plane can be seen as a dummy object added below the whole scene, which
is large at the root ofT .)

Next we analyze the cost of the additional information. We need the following lemma.

Lemma 6.4 Any objecto ∈ P is large atO(log n) nodes, and at any nodeν there are
O(1/β) large objects.

Proof. By Lemma6.2(iii) we know that every cell ofT is O(1)-fat. Lemma1.5 then
implies that any collection of disjoint cells has densityO(1). Therefore, since the cells at
any level of the BAR-tree are disjoint, the number of nodesν in any level of the BAR-tree
intersecting someo ∈ P with size(region(ν)) ≥ size(o) is O(1). An objecto can only
be large at the nodeν if size(region(parent(ν))) ≥ size(o). Thus, the number of cells
per level at whicho can be large isO(1). Finally we know thatT hasO(log n) levels by
Lemma6.2, proving the first part of the lemma.

To prove the second part of the lemma, we note that a set of disjoint β-fat objects has
densityO(1/β) by Lemma1.5. This immediately proves that there are onlyO(1/β)
large objects at any internal node. For leaf nodes this follows from Lemma6.2(i). 2

Using Lemma6.4we can prove a bound on the total size of all setsP(o).

5The fact that the objects may be cut into many pieces also prevents us from applying the following simple
strategy: compute the object BAR-tree, use it to find a depth order on the resulting set of pieces, and apply the
algorithm of Katzet al. [60]. The problem is that the visibility map of the pieces may be much more complex
than the visibility map of the original objects.

90

Lemma 6.5
∑

o |P(o)| = O((1/β) · n log n).

Proof. We have
∑

o |P(o)| ≤ ∑

ν{(# large objects atν) · (# objects intersectingregion(ν))}
≤ O(1/β) ·∑ν |Pν | ≤ O((1/β) · n logn),

where the last inequality follows from [31]. 2

Together with the known bounds on the union of fat objects [30, 76] this is easily seen
to imply that the total amount of storage and preprocessing time needed to construct the
unions of the projections ofP(o) onto the top surfaces∂top(o) is upper bounded by the
bounds in Lemma6.3.

6.3.2 Tracing an arc

Recall that the right endpoint of an arca can be found by shooting withρ(a) in curt(E).
Next we explain how to find the right endpoint ofa using the unions stored inT and the
unions on the objects’ top surfaces. The key is to find a collection of O(log n) unions
such that the first point whereρ(a) hits a curtain corresponds to the first point where one
of the unions is hit.

To this end we first define for a nodeν a collectionS+(ν) of O(log n) splitting planes:

S+(ν) := { splitting planeshν′ : ν′ is an ancestor ofν andregion(ν) is belowhν′ }.

Let e(a) be the silhouette curve defining an arca, and letp ∈ e(a) be the point projecting
onto the left endpoint ofa. Recall thatρ(a) is a ray on the top surface of the objecto
directly belowp. We denote the projection ofp ontoo by p̃. The first curtain hit byρ(a)
can now be found using the following lemma.

Lemma 6.6 Let ρ(a) be a ray on∂top(o) and letp̃ be the starting point ofρ(a). Let ν
be the node inT such that̃p ∈ region(ν) ando is large atν. Then the first curtain from
curt(E) insideregion(ν) hit by ρ(a) corresponds to the first of the following events:

(i) ρ(a) hits the union of the projection of the objects inP(o) onto∂top(o);

(ii) the projection ofρ(a) ontohν′ hits the union stored onhν′ , for someν′ ∈ S+(ν).

Proof. Note that the nodeν referred to in the lemma is unique and must exist, since we
consider thexy-plane to be a dummy object below the whole scene.

Let q̃ be the first point whereρ(a) intersects a curtain incurt(E), let e be the silhouette
curve defining the curtain, and letq ∈ e be the point directly abovẽq. If q ∈ region(ν)
then the object containing the silhouette curvee is a member ofP(o) and we are in case (i).

91

e(a)

ρ(a)

h ∈ S+(ν)

q

q̃

e

p

p̃

Figure 6.4 ρ(a) hits a curtain incurt(E) at pointq when its projection intersects a silhou-
ette curve of a union stored atS+(ν).

Otherwise there is a splitting planehν′ stored at some ancestorν′ of ν with q abovehν′

and q̃ belowhν′ . Then the relevant portion ofe must be part of the union stored at the
first such nodeν′ (as seen from the root ofT). See Figure6.4.

Conversely, since all the unions considered are generated by (portions of) objects above
o, we know thatρ(a) cannot hit such a union before it hits a curtain. 2

6.3.3 Details of the algorithm

We now describe our algorithm for computing the visibility map of a setP = {o1, . . . , on}
of convex, disjoint, constant-complexity,β-fat objects. The algorithm is a space-sweep
algorithm that moves a sweep planeh parallel to theyz-plane from left to right through
space. The space sweep induces a plane sweep for each of the unions stored inT . Thus,
instead of thinking about the algorithm as a 3D sweep, one mayalso think about it as a
number of coordinated 2D sweeps. That is, while we sweepR

3 with h, we also sweep
each (non-vertical) splitting planehν with the lineh∩hν . Such a 2D sweep is performed
to detect intersections of the union onhν with certain rays (projected ontohν). The same
holds for the unions stored for each object: while we sweepR

3 with h, we sweep the
top surface∂top(o) of each objecto with the curveh ∩ ∂top(o). Finally, the sweep ofh
induces a sweep on the viewing plane. As in the algorithm from[28], the visibility map
will be computed as we go, so that at the end of the sweep the entire visibility map has
been computed.

The space-sweep algorithm is supported by the following data structures:

• There is a global event queueQ, where the priority of an event is itsx-coordinate.
Initially, all vertices of the objects (that is, all endpoints of silhouette curves) are
placed intoQ. In addition, all vertices of any of the unions stored inT are placed
into Q. During the sweep, new event points will be inserted intoQ, for example

92

endpoints of arcs of the visibility map. It is also possible that events will be removed
before they are handled.

• For every splitting planehν (and the top surface of every objecto) we maintain a
balanced binary tree, which we will call theintersection-detection data structure.
This tree will store the edges of the union on the splitting plane (resp.∂top(o)) that
intersect the sweep lineh∩hν (resp.h∩∂top(o)) as well as the rays traced on it that
intersect the sweep line; the edges and rays are stored in order of their intersection
with the sweep line. Thus we are essentially running the standard line-segment
intersection algorithm of Bentley and Ottmann [14] on the union edges and rays.

Next we discuss the events that can take place, and how they are handled. The first two
events are essentially subroutines that we use in the other events.

(i) The sweep reaches the left endpoint of an arca.
Let e(a) be the silhouette curve defininga, and letp ∈ e(a) be the point whose
projection is the left endpoint ofa. Let o be the first object that a vertical ray
downward fromp hits, and let̃p ∈ o be the point whereo is hit. Finally, letν be the
node whereo is large such that̃p ∈ region(ν). DetermineS+(ν), and insert the
portion ofe(a) starting atp into each of the intersection-detection data structures
associated with the splitting planes inS+(ν). (More precisely, the projection of the
silhouette curve onto the plane is added.) Also add the projection of the silhouette
curve onto∂top(o) to the intersection-detection structure foro. Determine any new
events using these data structures in the standard way (thatis, by checking new
pairs of adjacent elements); add any new events toQ. Finally, add the following
three events toQ: the right endpoint ofe(a), the (first) intersection ofρ(a) with the
boundary ofregion(ν), and the (first) intersection ofρ(a) with the silhouette ofo.

(ii) The sweep reaches the right endpoint of an arca.
Determineν ando as above. Removea from all intersection-detection data struc-
tures inS+(ν) and the intersection-detection data structure associatedwith o. Re-
move all events associated witha from Q. Check for new events in each of the
intersection-detection data structures; add any new events toQ. Outputa as an arc
of M. (Note that the right endpoint of an arc may be the left endpoint of one or two
other arcs; in this case the left endpoints will be separate events, which are handled
according to case(i).)

(iii) The sweep reaches the left vertexv of a silhouette curve.
(In other words, we reach the leftmost point of an objecto ∈ P .) Determine ifv is
visible by shooting a ray vertically up from it. Ifv is visible, two arcs start at the
projection ofv onto the viewing plane. Run the actions from case(i) for each of
these arcs.

(iv) The sweep reaches the right vertexv of a silhouette curve it is currently tracing
defining an arc currently intersected by the sweep line.
Run the actions from case(ii) for the arc ending at the projection ofv.

93

v
v

Figure 6.5 Cases(iii) and(iv)

a

p
a

Figure 6.6 Cases(v) and(vi)

(v) The sweep reaches the intersection point of the union boundary on some splitting
plane (or top surface of an object) and an arca traced on the plane (or top surface).
This case corresponds toa hitting a curtain incurt(E). Now the arca ends. Run the
actions from case(ii) for a. One or two new arcs may start at this point, at most one
along the silhouette curvee(a), and one along the silhouette curve corresponding
to the curtain that is hit. Run the action from case(i) for the new arc(s).

(vi) The sweep reaches a pointp where the projection of a currently visible silhouette
curve onto the objecto below hits the boundary of a cellν whereo is large.
Let a be the arc defined by the silhouette curve. Removea from all the intersection-
detection data structures inS+(ν) and all events associated witha from Q. Run
the action for case(i) for the continuation ofa. (The only thing that happens here is
that the setS+(·) changes, because the ray that we are tracing moves out of a cell
where the objecto on which the ray is traced is large.)

(vii) The sweep reaches the point where the objecto immediately below a currently visi-
ble silhouette curve changes.

94

pa

o new arcs

Figure 6.7 Cases(vii) and(viii)

This can be detected because the visible silhouette curve istraced on∂top(o), and
therefore we also know where it reaches the boundary of the top surface. Note that
the projection of the pointp where the curve reaches the boundary of the top sur-
face is the right endpoint of an arca. Run the actions from case(ii) for a. At most
two new arcs start atp, one that is the continuation ofa, and one that is along a
silhouette curve ofo (which became visible or stops being visible). Run the actions
for case(i) on these curve(s).

(viii) The sweep reaches a point on a splitting plane (or top surfaceof an object), where
a union edge starts or ends.
In this case we only have to update the relevant intersection-detection data structure,
check for new events in the intersection-detection data structures, and add any new
events toQ.

Lemma 6.7 The number of events of type(i)–(vii) is O(n+k log n), wherek is the com-
plexity ofM, and the number of events of type(viii) isO((1

β5 log2 1
β)n log3 n(log log n)2)

for fat polyhedra andO(1
β14 n log7+ε n) for fat curved objects.

Proof. Clearly, the number of events of types(i), (ii) , (iv), (v), and(vii) is O(k), since they
can be charged to a vertex ofM. The number of events of type(iii) is O(n). It remains to
bound the number of events of type(vi). Consider the portion of a silhouette curvee(a)
defining some arca. This portion has a unique objecto immediately below it. Sinceo is
large atO(log n) cells by Lemma6.4and the projection ofe(a) ontoo can leave any cell
only a constant number of times, we can conclude that there are onlyO(log n) type(vi)
events for any arca, this givingO(k log n) such events in total.

The bound on the number of events of type(viii) follows from Lemma6.3. 2

Lemma 6.8 The time taken for each event of type(i)–(vii) is O(log2 n), and the time
taken for each event of type(viii) is O(log n).

95

Proof. In all event types, we may need to perform several actions: vertical ray shooting,
updating intersection-detection data structures, determining a setS+(ν), and updatingQ.

By Lemma6.3, the time taken for the vertical ray shooting isO(log2 n). Each event needs
to do only a constant number of ray shooting queries, so this is O(log2 n) in total. The
intersection-detection data structures are balanced binary trees, so updates takeO(log n)
time. At each event we have to updateO(log n) intersection-detection data structures, so
the total time taken for updating isO(log2 n). Determining new events in the intersection-
detection data structures takesO(1) per data structure, so the total amount of time taken
for events of type(iii) is O(log2 n). Determining a setS+(ν) can be done inO(log n)
time by searching inT . At each event we may have to removeO(log n) event points from
Q, each removal takingO(log n) time. Hence, all events of type(i)–(vii) can be handled
in O(log2 n) time, as claimed.

The events of type(viii) require onlyO(log n) time, since they only involve a constant
number of operations on a single intersection-detection data structure. 2

The correctness of the algorithm follows from Lemmas6.1and6.6as well as the correct-
ness of the algorithm in [28]. We conclude with the following theorem.

Theorem 6.9 The visibility map of a set ofn disjoint constant-complexity convexβ-fat
polyhedra inR3 can be computed in timeO((1

β5 log2 1
β)(n log n(log log n)2 +k) log3 n),

wherek is the complexity of the visibility map. When the objects arecurved (and dis-
joint, constant-complexity, convex, andβ-fat) the visibility map can be computed in time
O(1

β14 (n log5+ε n + k) log3 n).

6.4 Conclusion

We presented the first algorithm to compute the visibility map of a set of fat convex objects
that does not need a depth order and that runs inO((n + k) polylogn) time.

One obvious open problem is to further reduce the running time, either by getting rid of
some logarithmic factors or by reducing the dependency on the fatness factorβ (which
is currently quite bad). A second open problem is to extend the results to non-convex
objects. Finally, it would be very interesting to come up with an approach that works for
low-density scenes, and not just for fat objects. The main problem here is that the union
complexity of the projection of a low density scene can beΩ(n2), so the approach would
need to use a different data structure than the one presentedin this chapter.

96

CHAPTER 7

Concluding remarks

In this thesis, we have looked at some computational-geometry problems in the context of
fat objects. We first studied decompositions in two and threedimensions. We then gave
algorithms and data structures related to three different problems inspired by computer
graphics: ray shooting, depth orders, and hidden-surface removal.

We introduced the technique of decomposing objects into towers in Chapter3. We showed
its utility in ray shooting, range searching, and in verifying depth orders. We believe
that this technique has potential for use in other situations as well. Also, given that any
(α, β)-covered polyhedron can have its boundary covered byO(1) towers, it seems likely
that any algorithm that operates on towers can be extended to(α, β)-covered polyhedra
without any extra asymptotic cost. This provides extra incentive to work with towers,
since most algorithms for fat objects only apply to objects that are also convex—often an
unreasonable extra restriction.

Other techniques that could potentially be useful in the future are the witness edges from
Chapter5 that give us an easy test of the above/below relation for fat polyhedra and the
simulation of a space sweep by plane sweeps that we employed in Chapter6. Moreover,
we believe that the technique of designing algorithms for polygons that have a small set
of guards, such as in Chapter2, could be interesting on its own.

We conclude by stating some problems that have arisen from this work that would be
exciting to see solved.

97

Vertical ray shooting. Our first open problem concerns vertical ray-shooting in non-
convex objects. We would like to have a data structure that has properties (in terms of
query time and space complexity) similar to those in Section4.3. This would greatly
improve the algorithms that we have for hidden-surface removal and depth-order compu-
tation in the context of non-convex objects. Our current solution relies on covering the
boundaries of the input by convex fat objects. At the moment we can only do this for
constant-complexity(α, β)-covered polyhedra. We think that it should be possible to per-
form these queries in a more general input model. There couldbe two ways of achieving
this. One possibility is that we could improve the results ofChapter3. Another possibility
is that a different algorithm could be devised that operatesdirectly on non-convex objects.

Kinetic data structures. All of the problems that we have studied in this thesis have
been for objects that are stationary. In many applications,such as in video games and
movies, the objects in the scene move. One way of dealing withsuch motion is known
as a kinetic data structure [13]. A strategy that is perhaps more commonly used, known
as time-slicing, is to recompute everything in regular increments (such as for every new
frame). In contrast, a kinetic data structure attempts to update only when a change is
required.

As an example, one popular application for kinetic data structures is collision detection.
A kinetic data structure for collision detection keeps a setof certificatesthat the objects
in the scene have not collided as well as a queue of times when the certificates could
potentially fail (the objects could change course, for example). When a time in the queue
is reached, the data structure is updated. Kinetic data structures have been studied in the
context of realistic input models before—a kinetic data structure for collision detection
amongst fat objects inR3 has recently been proposed [1].

We would like to know whether it is possible to create an efficient kinetic data structure for
realistic input in any of the problems we studied related to computer graphics. Clearly the
problems would need to be changed slightly in order to make sense in a kinetic context:
a kinetic data structure for the visibility-map problem, for example, would need to be
updated only when the visibility map changes combinatorially.

We feel the problem that has the most potential in this regardis that of finding the depth
order of a set of objects. This is because of the result in Section 5.3. Since, as we showed
in that section, the size of the transitive reduction of the depth-order graph is not too large,
it might be possible to compute the graph and only change it when the comparability (in
the above/below relation) of a pair of objects changes.

Dynamic data structures. Related to the question of whether a kinetic data structure
can be built, we also wonder whether dynamic data structurescan be built for any of the
computer-graphics problems that we studied. A dynamic datastructure would need to
support insertion and deletion operations. In some cases a dynamic data structure can be
easily turned into a kinetic data structure. The method for doing this is to update the data
structure as needed by deleting and reinserting affected objects.

98

Practicality. Finally, it remains to be seen which of the algorithms and data structures
presented here are of practical interest. With the possibleexception of the data structure
for performing ray-shooting queries in arbitrary directions from Chapter4 (which uses
parametric search), all the data structures that we presentare certainly implementable.
We would like to see experiments comparing these algorithmswith the current state of
the art.

Such experiments might give extra insight into how realistic our realistic input models
actually are. For example, some of the algorithms that we present in this thesis have time
complexities with rather high dependencies on the fatness constant—O(1/β14) in one
case. In some cases, the dependence on the fatness constant is inherent in the algorithm:
making a data structure for every pair of canonical directions in our depth-order algorithm,
for example, can not be helped. In other cases, the dependence on the fatness constant is
partially an artifact of a proof. Performing experiments isone way to evaluate whether
these proofs should be targeted for improvement.

99

Index

ε-good polygon,23
(α, β)-covered object,14

base,49
binary space partition,18

canonical directions,15, 75
cap,49
Chazelle’s polyhedron,37
convex hull,3
curtain,87, 88
cyclic overlap,71

density,14
depth order,71
depth-order graph,73

edge-visibility polygon,31
extended edge-visibility polygon,31

fat object,13

geodesic,31
gift-wrapping algorithm,3

kinetic data structure,100

locally-γ-fat object,13
low density,14

object BAR-tree,58, 63, 90

output-sensitive algorithm,85

pocket,23
pure subpolygon,23

ray shooting,53
realistic input model,6

separation,73
silhouette curve,88
size,14
star-shaped polygon,23
Steiner point,23
subpolygon,23

tower,48, 81

vertical decomposition,26
vertical extension,26
vertical projection,26
vertical ray shooting,53
visibility map,85
visibility polygon,23

weakly edge-visible polygon,23
window,23
witness edges,75
witness vertices,82

100

References

[1] Mohammad Ali Abam, Mark de Berg, Sheung-Hung Poon, and Bettina Speckmann.
Kinetic collision detection for convex fat objects. In Yossi Azar and Thomas Er-
lebach, editors,Algorithms - ESA 2006, 14th Annual European Symposium, Zurich,
Switzerland, September 11-13, 2006, Proceedings, volume 4168 ofLecture Notes in
Computer Science, pages 4–15. Springer, 2006.

[2] Pankaj K. Agarwal. Range searching. In Jacob E. Goodman and Joseph O’Rourke,
editors,Handbook of Discrete and Computational Geometry. CRC Press, 1997.

[3] Pankaj K. Agarwal, Mark de Berg, Dan Halperin, and Micha Sharir. Efficient genera-
tion of k-directional assembly sequences. InSODA ’96: Proceedings of the Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 122–131, Atlanta,
Georgia, 28–30 January 1996.

[4] Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its relatives.
In Bernard Chazelle, Jacob E. Goodman, and Richard Pollack,editors,Advances in
Discrete and Computational Geometry, volume 23, pages 1–56. American Mathe-
matical Society, 1998.

[5] Pankaj K. Agarwal, Matthew J. Katz, and Matthew Sharir. Computing depth or-
ders for fat objects and related problems.Computational Geometry: Theory and
Applications, 5:187–206, 1995.

[6] Pankaj K. Agarwal and Jiřı́ Matoušek. Ray shooting andparametric search.SIAM
Journal on Computing, 22(4):794–806, 1993.

[7] Pankaj K. Agarwal and Jiřı́ Matoušek. On range-searching with semi-algebraic sets.
Discrete and Computational Geometry, 11:393–418, 1993.

101

[8] Boris Aronov, Mark de Berg, and Chris Gray. Ray shooting and intersection search-
ing amidst fat convex polyhedra in 3-space. InSCG ’06: Proceedings of the Twenty-
Second Annual Symposium on Computational geometry, pages 88–94, New York,
NY, USA, 2006. ACM Press.

[9] Boris Aronov, Mark de Berg, and Chris Gray. Ray shooting and intersection search-
ing amidst fat convex polyhedra in 3-space.Computational Geometry: Theory and
Applications, 41:68–76, 2008.

[10] Boris Aronov, Mark de Berg, Chris Gray, and Elena Mumford. Cutting cycles of
rods in space: hardness and approximation. InSODA ’08: Proceedings of the Nine-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1241–1248,
Philadelphia, PA, USA, 2008. Society for Industrial and Applied Mathematics.

[11] Boris Aronov, Alon Efrat, Vladlen Koltun, and Micha Sharir. On the union ofκ-
round objects in three and four dimensions.Discrete and Computational Geometry,
36:511–526, 2006.

[12] Boris Aronov and Micha Sharir. On translational motionplanning of a convex poly-
hedron in 3-space.SIAM Journal on Computing, 26(6):1785–1803, 1997.

[13] Julien Basch, Leonidas J. Guibas, and John Hershberger. Data structures for mobile
data.Journal of Algorithms, 31(1):1–28, April 1999.

[14] Jon L. Bentley and Thomas A. Ottmann. Algorithms for reporting and counting
geometric intersections.IEEE Transactions on Computers, 28(9):643–647, 1979.

[15] Marshall Bern. Hidden surface removal for rectangles.Journal of Computer and
System Sciences, 40(1):49–69, February 1990.

[16] John F. Canny.The complexity of robot motion planning. PhD thesis, Massachussetts
Institute of Technology, 1988.

[17] Donald R. Chand and Sham S. Kapur. An algorithm for convex polytopes.Journal
of the ACM, 17(1):78–86, January 1970.

[18] Bernard Chazelle. Convex partitions of polyhedra: A lower bound and worst-case
optimal algorithm.SIAM Journal on Computing, 13(3):488–507, August 1984.

[19] Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete and
Computational Geometry, 6(5):485–524, 1991.

[20] Bernard Chazelle. Cutting hyperplanes for divide-and-conquer.Discrete and Com-
putational Geometry, 9:145–158, 1993.

[21] Bernard Chazelle, Herbert Edelsbrunner, Leonidas J. Guibas, Richard Pollack,
Raimund Seidel, Micha Sharir, and Jack Snoeyink. Counting and cutting cycles
of lines and rods in space.Computational Geometry: Theory and Applications,
1(6):305–323, 1992.

102

[22] Bernard Chazelle, Herbert Edelsbrunner, Leonidas J. Guibas, Micha Sharir, and
Jorge Stolfi. Lines in space: Combinatorics and algorithms.Algorithmica,
15(5):428–447, 1996.

[23] Bernard Chazelle and Joel Friedman. Point location among hyperplanes and unidi-
rectional ray-shooting.Computational Geometry: Theory and Applications, 4:53–
62, 1994.

[24] Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: I. A data structuring
technique.Algorithmica, 1(2):133–162, 1986.

[25] Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: II. Applications.
Algorithmica, 1(2):163–191, 1986.

[26] Bernard Chazelle, Leonidas J. Guibas, and Der-Tsai Lee. The power of geometric
duality. BIT, 25(1):76–90, 1985.

[27] Bernard Chazelle and Janet Incerpi. Triangulation andshape-complexity.ACM
Transactions on Graphics, 3(2):135–152, 1984.

[28] Mark de Berg.Ray Shooting, Depth Orders and Hidden Surface Removal. Springer-
Verlag New York, LNCS 703, 1993.

[29] Mark de Berg. Linear size binary space partitions for uncluttered scenes.Algorith-
mica, 28:353–366, 2000.

[30] Mark de Berg. Improved bounds on the union complexity offat objects. In Ra-
maswamy Ramanujam and Sandeep Sen, editors,FSTTCS 2005: Foundations of
Software Technology and Theoretical Computer Science, 25th International Con-
ference, Hyderabad, India, December 15-18, 2005, Proceedings, volume 3821 of
Lecture Notes in Computer Science, pages 116–127. Springer, 2005.

[31] Mark de Berg. Vertical ray shooting for fat objects. InSCG ’05: Proceedings of the
Twenty-First Annual Symposium on Computational geometry, pages 288–295, 2005.

[32] Mark de Berg, Otfried Cheong, Herman J. Haverkort, JungGun Lim, and Laura
Toma. I/O-efficient flow modeling on fat terrains. In Frank K.H. A. Dehne, Jörg-
Rüdiger Sack, and Norbert Zeh, editors,Algorithms and Data Structures, 10th In-
ternational Workshop, WADS 2007, Halifax, Canada, August 15-17, 2007, Proceed-
ings, volume 4619 ofLecture Notes in Computer Science, pages 239–250. Springer,
2007.

[33] Mark de Berg, Haggai David, Matthew J. Katz, Mark Overmars, A. Frank van der
Stappen, and Jules Vleugels. Guarding scenes against invasive hypercubes.Compu-
tational Geometry: Theory and Applications, 26:99–117, 2003.

[34] Mark de Berg and Chris Gray. Vertical ray shooting and computing depth orders
for fat objects. InSODA ’06: Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 494–503, 2006.

103

[35] Mark de Berg and Chris Gray. Computing the visibility map of fat objects. In Frank
K. H. A. Dehne, Jörg-Rüdiger Sack, and Norbert Zeh, editors,Algorithms and Data
Structures, 10th International Workshop, WADS 2007, Halifax, Canada, August 15-
17, 2007, Proceedings, volume 4619 ofLecture Notes in Computer Science, pages
251–262. Springer, 2007.

[36] Mark de Berg and Chris Gray. Vertical ray shooting and computing depth orders for
fat objects.SIAM Journal on Computing, 38(1):257–275, 2008.

[37] Mark de Berg, Herman J. Haverkort, Shripad Thite, and Laura Toma. I/O-efficient
map overlay and point location in low-density subdivisions. In Takeshi Tokuyama,
editor, Algorithms and Computation, 18th International Symposium, ISAAC 2007,
Sendai, Japan, December 17-19, 2007, Proceedings, volume 4835 ofLecture Notes
in Computer Science, pages 500–511. Springer, 2007.

[38] Mark de Berg and Marc H. Overmars. Hidden-surface removal for c-oriented poly-
hedra.Computational Geometry: Theory and Applications, 1:247–268, 1992.

[39] Mark de Berg, Mark Overmars, and Otfried Schwarzkopf. Computing and verifying
depth orders.SIAM Journal on Computing, 23(2):437–446, April 1994.

[40] Mark de Berg and Micha Streppel. Approximate range searching using binary space
partitions. InProc. 24th Conference on Foundations of Software Technology and
Theoretical Computer Science, pages 110–121, 2004.

[41] Mark de Berg, A. Frank van der Stappen, Jules Vleugels, and Matthew J. Katz.
Realistic input models for geometric algorithms.Algorithmica, 34(1):81–97, 2002.

[42] Mark de Berg, Mark van Kreveld, Mark Overmars, and Otfried Schwarzkopf.Com-
putational Geometry Algorithms and Applications. Springer-Verlag, Berlin Heidel-
berg, 3 edition, 2008.

[43] David P. Dobkin and David G. Kirkpatrick. Fast detection of polyhedral intersection.
Theoretical Computer Science, 27(3):241–253, 1983.

[44] Christian A. Duncan, Michael T. Goodrich, and Stephen G. Kobourov. Balanced
aspect ratio trees: Combining the advantages of k-d trees and octtrees. InSODA ’99:
Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 300–309, 1999.

[45] Rex A. Dwyer. On the convex hull of random points in a polytope. Journal of
Applied Probability, 25(4):688–699, 1988.

[46] Alon Efrat. The complexity of the union of (α, β)-covered objects.SIAM Journal
on Computing, 34(4):775–787, 2005.

[47] Alon Efrat, Matthew J. Katz, Franck Nielsen, and Micha Sharir. Dynamic data
structures for fat objects and their applications.Computational Geometry: Theory
and Applications, 15:215–227, 2000.

104

[48] Hossam A. El Gindy and David Avis. A linear algorithm forcomputing the visibility
polygon from a point.Journal of Algorithms, 2:186–197, 1981.

[49] Jeff Erickson. New lower bounds for Hopcroft’s problem. Discrete and Computa-
tional Geometry, 16:389–418, 1996.

[50] Jeff Erickson. Local polyhedra and geometric graphs.Computational Geometry:
Theory and Applications, 31:101–125, 2005.

[51] Esther Ezra and Micha Sharir. Almost tight bound for theunion of fat tetrahedra in
three dimensions. InFOCS ’07: Proceedings of the 48th Annual IEEE Symposium
on Foundations of Computer Science, pages 525–535, Washington, DC, USA, 2007.
IEEE Computer Society.

[52] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.Computer
Graphics, Principles and Practice, Second Edition. Addison-Wesley, Reading, Mas-
sachusetts, 1990.

[53] Michael T. Goodrich, Mikhail J. Atallah, and Mark H. Overmars. An input-
size/output-size trade-off in the time-complexity of rectilinear hidden surface re-
moval. In M. S. Paterson, editor,Proceedings of the 17th International Colloquium
on Automata, Languages and Programming, ICALP’90 (WarwickUniversity, Eng-
land, July 16-20, 1990), volume 443 ofLNCS, pages 689–702. Springer-Verlag,
Berlin-Heidelberg-New York-London-Paris-Tokyo-Hong Kong, 1990.

[54] Ralf Hartmut Güting and Thomas Ottmann. New algorithms for special cases of the
hidden line elimination problem.Computer Vision, Graphics, and Image Processing,
40(2):188–204, November 1987.

[55] Peter Hachenberger. Exact minkowksi sums of polyhedraand exact and efficient
decomposition of polyhedra in convex pieces. In Lars Arge, Michael Hoffmann,
and Emo Welzl, editors,Algorithms - ESA 2007, 15th Annual European Symposium,
Eilat, Israel, October 8-10, 2007, Proceedings, volume 4698 ofLecture Notes in
Computer Science, pages 669–680. Springer, 2007.

[56] Paul J. Heffernan and Joseph S. B. Mitchell. Structuredvisibility profiles with ap-
plications to problems in simple polygons (extended abstract). In SCG ’90: Pro-
ceedings of the Sixth Annual Symposium on Computational geometry, pages 53–62,
1990.

[57] Stefan Hertel and Kurt Mehlhorn. Fast triangulation ofsimple polygons. InProc. 4th
Conf. Foundations of Computation Theory, pages 207–218. Springer-Verlag, LNCS
158, 1983.

[58] Matthew J. Katz. 3-d vertical ray shooting and 2-d pointenclosure, range searching,
and arc shooting amidst convex fat objects.Computational Geometry: Theory and
Applications, 8:299–316, 1997.

105

[59] Matthew J. Katz. personal communication, 2005.

[60] Matthew J. Katz, Marc Overmars, and Micha Sharir. Efficient hidden surface re-
moval for objects with small union size.Computational Geometry: Theory and
Applications, 2:223–234, 1992.

[61] J. Mark Keil. Polygon decomposition. In J.-R. Sack and J. Urrutia, editors,Hand-
book of Computational Geometry, chapter 11, pages 491–518. Elsevier, 2000.

[62] David Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Com-
puting, 12:28–35, 1983.

[63] David Kirkpatrick. Guarding galleries with no nooks. In Proceedings of the 12th
Canadian Conference on Computational Geometry (CCCG’00), pages 43–46, 2000.

[64] David G. Kirkpatrick, Maria M. Klawe, and Robert Endre Tarjan. Polygon triangula-
tion in O(nloglogn) time with simple data structures.Discrete and Computational
Geometry, 7:329–346, 1992.

[65] Jiřı́ Matoušek, János Pach, Micha Sharir, Shmuel Sifrony, and Emo Welzl. Fat
triangles determine linearly many holes.SIAM Journal on Computing, 23(1):154–
169, February 1994.

[66] Jiřı́ Matoušek. Efficient partition trees. InSCG ’91: Proceedings of the Seventh
Annual Symposium on Computational geometry, pages 1–9, 1991.

[67] Michael McKenna. Worst-case optimal hidden surface removal.ACM Transactions
on Graphics, 6:19–28, 1987.

[68] Avraham A. Melkman. On-line construction of the convexhull of a simple polyline.
Information Processing Letters, 25(1):11–12, April 1987.

[69] Joseph S. B. Mitchell, David M. Mount, and Subhash Suri.Query-sensitive ray
shooting. International Journal of Computational Geometry and Applications,
7(4):317–347, 1997.

[70] Esther Moet.Computation and complexity of visibility in geometric environments.
PhD thesis, Department of Computer Science, Utrecht University, 2008.

[71] Esther Moet, Marc van Kreveld, and A. Frank van der Stappen. On realistic terrains.
In SCG ’06: Proceedings of the Twenty-Second Annual Symposiumon Computa-
tional geometry, pages 177–186, New York, NY, USA, 2006. ACM.

[72] Shai Mohaban and Micha Sharir. Ray shooting amidst spheres in three dimensions
and related problems.SIAM Journal on Computing, 26(3):654–674, 1997.

[73] Joseph O’Rourke.Art Gallery Theorems and Algorithms. Oxford University Press,
New York, NY, 1987.

106

[74] Joseph O’Rourke.Computational Geometry in C. Cambridge University Press,
1994.

[75] Marc H. Overmars and A. F. van der Stappen. Range searching and point location
among fat objects. InProc. 2nd European Symposium on Algorithms, pages 240–
253. Springer Verlag, LNCS 885, 1994.

[76] János Pach and Gábor Tardos. On the boundary complexity of the union of fat
triangles.SIAM Journal on Computing, 31(6):1745–1760, 2002.

[77] Mike Paterson and F. Frances Yao. Efficient binary spacepartitions for hidden-
surface removal and solid modeling.Discrete and Computational Geometry, 5:485–
503, 1990.

[78] Marco Pellegrini. Ray shooting on triangles in 3-space. Algorithmica, 9:471–494,
1993.

[79] Marco Pellegrini. Ray shooting and lines in space. In Jacob E. Goodman and Joseph
O’Rourke, editors,Handbook of Discrete and Computational Geometry, pages 599–
614. CRC Press, Boca Raton-New York, 1997.

[80] Franco P. Preparata, Jeffrey Scott Vitter, and Mariette Yvinec. Computation of the
axial view of a set of isothetic parallelepipeds.ACM Transactions on Graphics,
9(3):278–300, July 1990.

[81] John H. Reif and Sandeep Sen. An efficient output-sensitive hidden-surface removal
algorithm and its parallelization. InSCG ’88: Proceedings of the Fourth Annual
Symposium on Computational geometry, pages 193–200, June 1988.

[82] Jim Ruppert and Raimund Seidel. On the difficulty of triangulating three-
dimensional nonconvex polyhedra.Discrete and Computational Geometry, 7:227–
253, 1992.

[83] E. Schönhardt.̈Uber die Zerlegung von Dreieckspolyedern in Tetraeder.Mathema-
tische Annalen, 98:309–312, 1928.

[84] Anneke A. Schoone and Jan van Leeuwen. Triangulating a starshaped polygon.
Technical Report RUU-CS-80-03, Institute of Information and Computing Sciences,
Utrecht University, 1980.

[85] Ottfried Schwarzkopf and Jules Vleugels. Range searching in low-density environ-
ments.Information Processing Letters, 60:121–127, 1996.

[86] Raimund Seidel. A simple and fast incremental randomized algorithm for com-
puting trapezoidal decompositions and for triangulating polygons. Computational
Geometry: Theory and Applications, 1:51–64, 1991.

[87] Micha Sharir and Pankaj K. Agarwal.Davenport-Schinzel sequences and their geo-
metric applications. Cambridge University Press, New York, NY, USA, 1996.

107

[88] Micha Sharir and Marc H.Overmars. A simple method for output-sensitive hidden
surface removal.ACM Transactions on Graphics, 11:1–11, 1992.

[89] Micha Sharir and Hayim Shaul. Ray shooting and stone throwing. In Proc. 11th
European Symposium on Algorithms, pages 470–481. Springer-Verlag, LNCS 2832,
2003.

[90] Micha Sharir and Hayim Shaul. Ray shooting amid balls, farthest point from a line,
and range emptiness queries. InSODA ’05: Proceedings of the Sixteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 525–534, 2005.

[91] Csaba D. Tóth. A note on binary plane partitions. InSCG ’01: Proceedings of the
Seventeenth Annual Symposium on Computational geometry, pages 151–156, New
York, NY, USA, 2001. ACM.

[92] Godfried T. Toussaint. A new linear algorithm for triangulating monotone polygons.
Pattern Recognition Letters, 2:155–158, 1984.

[93] Godfried T. Toussaint and David Avis. On a convex hull algorithm for polygons and
its application to triangulation problems.Pattern Recognition, 15(1):23–29, 1982.

[94] Godfried T. Toussaint and Hossam El Gindy. A counterexample to an algorithm for
computing monotone hulls of simple polygons.Pattern Recognition Letters, 1:219–
222, 1983.

[95] Pavel Valtr. Guarding galleries where no point sees a small area. Israel Journal of
Mathematics, 104:1–16, 1998.

[96] A. Frank van der Stappen.Motion Planning Amidst Fat Obstacles. PhD thesis, Dept.
of Computer Science, Utrecht University, 1994.

[97] A. Frank van der Stappen, Dan Halperin, and Mark. H. Overmars. The complexity
of the free space for a robot moving amidst fat obstacles.Computational Geometry:
Theory and Applications, 3:353–373, 1993.

[98] Marc van Kreveld. On fat partitioning, fat covering andthe union size of polygons.
Computational Geometry: Theory and Applications, 9(4):197–210, 1998.

108

Summary

Algorithms for Fat Objects:
Decompositions and Applications

Computational geometry is the branch of theoretical computer science that deals with
algorithms and data structures for geometric objects. The most basic geometric objects
include points, lines, polygons, and polyhedra. Computational geometry has applications
in many areas of computer science, including computer graphics, robotics, and geographic
information systems.

In many computational-geometry problems, the theoreticalworst case is achieved by in-
put that is in some way “unrealistic”. This causes situations where the theoretical run-
ning time is not a good predictor of the running time in practice. In addition, algorithms
must also be designed with the worst-case examples in mind, which causes them to be
needlessly complicated. In recent years,realistic input modelshave been proposed in an
attempt to deal with this problem. The usual form such solutions take is to limit some
geometric property of the input to a constant.

We examine a specific realistic input model in this thesis: the model where objects are
restricted to befat. Intuitively, objects that are more like a ball are more fat,and objects
that are more like a long pole are less fat. We look at fat objects in the context of five
different problems—two related to decompositions of inputobjects and three problems
suggested by computer graphics.

Decompositions of geometric objects are important becausethey are often used as a pre-
liminary step in other algorithms, since many algorithms can only handle geometric ob-
jects that are convex and preferably of low complexity. The two main issues in developing
decomposition algorithms are to keep the number of pieces produced by the decomposi-
tion small and to compute the decomposition quickly. The main question we address is

109

the following: is it possible to obtain better decompositions for fat objects than for general
objects, and/or is it possible to obtain decompositions quickly? These questions are also
interesting because most research into fat objects has concerned objects that are convex.

We begin bytriangulating fat polygons. The problem of triangulating polygons—that
is, partitioning them into triangles without adding any vertices—has been solved already,
but the only linear-time algorithm is so complicated that ithas never been implemented.
We propose two algorithms for triangulating fat polygons inlinear time that are much
simpler. They make use of the observation that a small set of guards placed at points
inside a (certain type of) fat polygon is sufficient to see theboundary of such a polygon.

We then look at decompositions of fat polyhedra in three dimensions. We show that
polyhedra can be decomposed into a linear number of convex pieces if certain fatness
restrictions are met. We also show that if these restrictions are not met, a quadratic number
of pieces may be needed. We also show that if we wish the outputto be fat and convex,
the restrictions must be much tighter.

We then study three computational-geometry problems inspired by computer graphics.

First, we studyray-shootingamidst fat objects from two perspectives. This is the problem
of preprocessing data into a data structure that can answer which object is first hit by
a query ray in a given direction from a given point. We presenta new data structure
for answering vertical ray-shooting queries—that is, queries where the ray’s direction
is fixed—as well as a data structure for answering ray-shooting queries for rays with
arbitrary direction. Both structures improve the best known results on these problems.

Another problem that is studied in the field of computer graphics is thedepth-orderprob-
lem. We study it in the context of computational geometry. This is the problem of finding
an ordering of the objects in the scene from “top” to “bottom”, where one object is above
the other if they share a point in the projection to thexy-plane and the first object has a
higherz-value at that point. We give an algorithm for finding the depth order of a group
of fat objects and an algorithm for verifying if a depth orderof a group of fat objects is
correct. The latter algorithm is useful because the former can return an incorrect order if
the objects do not have a depth order (this can happen if the above/below relationship has
a cycle in it). The first algorithm improves on the results previously known for fat objects;
the second is the first algorithm for verifying depth orders of fat objects.

The final problem that we study is thehidden-surface removalproblem. In this problem,
we wish to find and report the visible portions of a scene from agiven viewpoint—this is
called thevisibility map. The main difficulty in this problem is to find an algorithm whose
running time depends in part on the complexity of the output.For example, if all but one
of the objects in the input scene are hidden behind one large object, then our algorithm
should have a faster running time than if all of the objects are visible and have borders
that overlap. We give such an algorithm that improves on the running time of previous
algorithms for fat objects. Furthermore, our algorithm is able to handle curved objects
and situations where the objects do not have a depth order—two features missing from
most other algorithms that perform hidden surface removal.

110

Curriculum Vitae

Chris Gray was born on the November 11, 1980 in Flint, Michigan, USA. He graduated
from Bishop Carroll High School in Calgary, Alberta, Canadain 1998. He received his
Bachelor of Science in Mathematics and Computer Science from McGill University in
Montréal in 2002. He completed his Master of Science degreein Computer Science at the
University of British Columbia in Vancouver in 2004. Since September 2004, he has been
a Ph.D. student within the Computer Science department of the Technische Universiteit
Eindhoven (TU/e).

111

Titles in the IPA Dissertation Series since 2002

M.C. van Wezel. Neural Networks for
Intelligent Data Analysis: theoretical and
experimental aspects. Faculty of Mathe-
matics and Natural Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Spec-
ification and Analysis of Industrial Sys-
tems. Faculty of Mathematics and Com-
puter Science and Faculty of Mechanical
Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Understand-
ing Legacy Software Systems. Faculty of
Natural Sciences, Mathematics and Com-
puter Science, UvA. 2002-03

S.P. Luttik . Choice Quantification in Pro-
cess Algebra. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence, UvA. 2002-04

R.J. Willemen. School Timetable Con-
struction: Algorithms and Complexity.
Faculty of Mathematics and Computer
Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Ver-
ification of Probabilistic, Real-time and
Parametric Systems. Faculty of Sci-
ence, Mathematics and Computer Science,
KUN. 2002-06

N. van Vugt. Models of Molecular Com-
puting. Faculty of Mathematics and Natu-
ral Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius: Guid-
ing and Cost-Optimality in Model Check-
ing of Timed and Hybrid Systems. Fac-
ulty of Science, Mathematics and Com-
puter Science, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin

Packing. Faculty of Mathematics and Nat-
ural Sciences, UL. 2002-09

D. Tauritz . Adaptive Information Filter-
ing: Concepts and Algorithms. Faculty
of Mathematics and Natural Sciences, UL.
2002-10

M.B. van der Zwaag. Models and Log-
ics for Process Algebra. Faculty of Natu-
ral Sciences, Mathematics, and Computer
Science, UvA. 2002-11

J.I. den Hartog. Probabilistic Extensions
of Semantical Models. Faculty of Sci-
ences, Division of Mathematics and Com-
puter Science, VUA. 2002-12

L. Moonen. Exploring Software Systems.
Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2002-13

J.I. van Hemert. Applying Evolution-
ary Computation to Constraint Satisfac-
tion and Data Mining. Faculty of Mathe-
matics and Natural Sciences, UL. 2002-14

S. Andova. Probabilistic Process Alge-
bra. Faculty of Mathematics and Com-
puter Science, TU/e. 2002-15

Y.S. Usenko. Linearization inµCRL. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2002-16

J.J.D. Aerts. Random Redundant Storage
for Video on Demand. Faculty of Math-
ematics and Computer Science, TU/e.
2003-01

M. de Jonge. To Reuse or To Be Reused:
Techniques for component composition

and construction. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence, UvA. 2003-02

J.M.W. Visser. Generic Traversal over
Typed Source Code Representations. Fac-
ulty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2003-03

S.M. Bohte. Spiking Neural Networks.
Faculty of Mathematics and Natural Sci-
ences, UL. 2003-04

T.A.C. Willemse. Semantics and Verifi-
cation in Process Algebras with Data and
Timing. Faculty of Mathematics and Com-
puter Science, TU/e. 2003-05

S.V. Nedea. Analysis and Simulations of
Catalytic Reactions. Faculty of Mathemat-
ics and Computer Science, TU/e. 2003-06

M.E.M. Lijding . Real-time Scheduling of
Tertiary Storage. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2003-07

H.P. Benz. Casual Multimedia Process
Annotation – CoMPAs. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2003-08

D. Distefano. On Modelchecking the Dy-
namics of Object-based Software: a Foun-
dational Approach. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2003-09

M.H. ter Beek. Team Automata – A For-
mal Approach to the Modeling of Collabo-
ration Between System Components. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2003-10

D.J.P. Leijen. The λ Abroad – A Func-
tional Approach to Software Components.

Faculty of Mathematics and Computer
Science, UU. 2003-11

W.P.A.J. Michiels. Performance Ratios
for the Differencing Method. Faculty
of Mathematics and Computer Science,
TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and Terms
and Their Use in Interactive Theorem
Proving. Faculty of Mathematics and
Computer Science, TU/e. 2004-02

P. Frisco. Theory of Molecular Com-
puting – Splicing and Membrane systems.
Faculty of Mathematics and Natural Sci-
ences, UL. 2004-03

S. Maneth. Models of Tree Translation.
Faculty of Mathematics and Natural Sci-
ences, UL. 2004-04

Y. Qian. Data Synchronization and
Browsing for Home Environments. Fac-
ulty of Mathematics and Computer Sci-
ence and Faculty of Industrial Design,
TU/e. 2004-05

F. Bartels. On Generalised Coinduction
and Probabilistic Specification Formats.
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2004-06

L. Cruz-Filipe . Constructive Real Analy-
sis: a Type-Theoretical Formalization and
Applications. Faculty of Science, Math-
ematics and Computer Science, KUN.
2004-07

E.H. Gerding. Autonomous Agents in
Bargaining Games: An Evolutionary In-
vestigation of Fundamentals, Strategies,
and Business Applications. Faculty of
Technology Management, TU/e. 2004-08

N. Goga. Control and Selection Tech-
niques for the Automated Testing of Reac-
tive Systems. Faculty of Mathematics and
Computer Science, TU/e. 2004-09

M. Niqui . Formalising Exact Arith-
metic: Representations, Algorithms and
Proofs. Faculty of Science, Mathematics
and Computer Science, RU. 2004-10

A. L öh. Exploring Generic Haskell. Fac-
ulty of Mathematics and Computer Sci-
ence, UU. 2004-11

I.C.M. Flinsenberg. Route Planning Al-
gorithms for Car Navigation. Faculty
of Mathematics and Computer Science,
TU/e. 2004-12

R.J. Bril . Real-time Scheduling for Me-
dia Processing Using Conditionally Guar-
anteed Budgets. Faculty of Mathematics
and Computer Science, TU/e. 2004-13

J. Pang. Formal Verification of Dis-
tributed Systems. Faculty of Sciences, Di-
vision of Mathematics and Computer Sci-
ence, VUA. 2004-14

F. Alkemade. Evolutionary Agent-Based
Economics. Faculty of Technology Man-
agement, TU/e. 2004-15

E.O. Dijk . Indoor Ultrasonic Position Es-
timation Using a Single Base Station. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2004-16

S.M. Orzan. On Distributed Verification
and Verified Distribution. Faculty of Sci-
ences, Division of Mathematics and Com-
puter Science, VUA. 2004-17

M.M. Schrage. Proxima - A Presentation-
oriented Editor for Structured Documents.

Faculty of Mathematics and Computer
Science, UU. 2004-18

E. Eskenazi and A. Fyukov. Quantita-
tive Prediction of Quality Attributes for
Component-Based Software Architectures.
Faculty of Mathematics and Computer
Science, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Alge-
bra. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-20

N.J.M. van den Nieuwelaar. Supervisory
Machine Control by Predictive-Reactive
Scheduling. Faculty of Mechanical Engi-
neering, TU/e. 2004-21

E. Ábrahám. An Assertional Proof Sys-
tem for Multithreaded Java -Theory and
Tool Support-. Faculty of Mathematics
and Natural Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remodel-
ing in Bone Tissue. Faculty of Biomedical
Engineering, TU/e. 2005-02

C.N. Chong. Experiments in Rights Con-
trol - Expression and Enforcement. Fac-
ulty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2005-03

H. Gao. Design and Verification of Lock-
free Parallel Algorithms. Faculty of Math-
ematics and Computing Sciences, RUG.
2005-04

H.M.A. van Beek. Specification and
Analysis of Internet Applications. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2005-05

M.T. Ionita . Scenario-Based System Ar-
chitecting - A Systematic Approach to

Developing Future-Proof System Architec-
tures. Faculty of Mathematics and Com-
puting Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analysis Tech-
niques in Security and Fault-Tolerance.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2005-07

I. Kurtev . Adaptability of Model Trans-
formations. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Network
Reliability. Faculty of Science, UU. 2005-
09

O. Tveretina. Decision Procedures for
Equality Logic with Uninterpreted Func-
tions. Faculty of Mathematics and Com-
puter Science, TU/e. 2005-10

A.M.L. Liekens. Evolution of Finite Pop-
ulations in Dynamic Environments. Fac-
ulty of Biomedical Engineering, TU/e.
2005-11

J. Eggermont. Data Mining using Ge-
netic Programming: Classification and
Symbolic Regression. Faculty of Mathe-
matics and Natural Sciences, UL. 2005-12

B.J. Heeren. Top Quality Type Error Mes-
sages. Faculty of Science, UU. 2005-13

G.F. Frehse. Compositional Verification
of Hybrid Systems using Simulation Rela-
tions. Faculty of Science, Mathematics
and Computer Science, RU. 2005-14

M.R. Mousavi. Structuring Structural
Operational Semantics. Faculty of Math-
ematics and Computer Science, TU/e.
2005-15

A. Sokolova. Coalgebraic Analysis of
Probabilistic Systems. Faculty of Math-
ematics and Computer Science, TU/e.
2005-16

T. Gelsema. Effective Models for the
Structure of pi-Calculus Processes with
Replication. Faculty of Mathematics and
Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju . Analysis and Transformation
of Source Code by Parsing and Rewriting.
Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2005-19

M.Valero Espada. Modal Abstraction
and Replication of Processes with Data.
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2005-20

A. Dijkstra . Stepping through Haskell.
Faculty of Science, UU. 2005-21

Y.W. Law . Key management and link-
layer security of wireless sensor networks:
energy-efficient attack and defense. Fac-
ulty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2005-22

E. Dolstra. The Purely Functional Soft-
ware Deployment Model. Faculty of Sci-
ence, UU. 2006-01

R.J. Corin. Analysis Models for Secu-
rity Protocols. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2006-02

P.R.A. Verbaan. The Computational
Complexity of Evolving Systems. Faculty
of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers. For-
mal Specification and Analysis of Hybrid
Systems. Faculty of Mathematics and
Computer Science and Faculty of Mechan-
ical Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifications of
UML Models: Tool Support and Composi-
tionality. Faculty of Mathematics and Nat-
ural Sciences, UL. 2006-05

M. Hendriks . Model Checking Timed
Automata - Techniques and Applications.
Faculty of Science, Mathematics and
Computer Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for Rewrit-
ing. Faculty of Sciences, VUA. 2006-07

C.-B. Breunesse. On JML: topics in tool-
assisted verification of JML programs.
Faculty of Science, Mathematics and
Computer Science, RU. 2006-08

B. Markvoort . Towards Hybrid Molec-
ular Simulations. Faculty of Biomedical
Engineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured Data.
Faculty of Mathematics and Natural Sci-
ences, UL. 2006-10

G. Russello. Separation and Adaptation
of Concerns in a Shared Data Space. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2006-11

L. Cheung. Reconciling Nondeterminis-
tic and Probabilistic Choices. Faculty of
Science, Mathematics and Computer Sci-
ence, RU. 2006-12

B. Badban. Verification techniques for
Extensions of Equality Logic. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2006-13

A.J. Mooij . Constructive formal meth-
ods and protocol standardization. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2006-14

T. Krilavicius . Hybrid Techniques for Hy-
brid Systems. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2006-15

M.E. Warnier . Language Based Secu-
rity for Java and JML. Faculty of Science,
Mathematics and Computer Science, RU.
2006-16

V. Sundramoorthy. At Home In Service
Discovery. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2006-17

B. Gebremichael. Expressivity of Timed
Automata Models. Faculty of Science,
Mathematics and Computer Science, RU.
2006-18

L.C.M. van Gool. Formalising Interface
Specifications. Faculty of Mathematics
and Computer Science, TU/e. 2006-19

C.J.F. Cremers. Scyther - Semantics and
Verification of Security Protocols. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Chan-
nels for Exogenous Coordination of Dis-
tributed Systems: Semantics, Implementa-
tion and Composition. Faculty of Mathe-
matics and Natural Sciences, UL. 2006-21

H.A. de Jong. Flexible Heterogeneous
Software Systems. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence, UvA. 2007-01

N.K. Kavaldjiev . A run-time recon-
figurable Network-on-Chip for streaming
DSP applications. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2007-02

M. van Veelen. Considerations on Model-
ing for Early Detection of Abnormalities
in Locally Autonomous Distributed Sys-
tems. Faculty of Mathematics and Com-
puting Sciences, RUG. 2007-03

T.D. Vu. Semantics and Applications of
Process and Program Algebra. Faculty of
Natural Sciences, Mathematics, and Com-
puter Science, UvA. 2007-04

L. Brand án Briones. Theories for Model-
based Testing: Real-time and Coverage.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2007-05

I. Loeb. Natural Deduction: Sharing by
Presentation. Faculty of Science, Mathe-
matics and Computer Science, RU. 2007-
06

M.W.A. Streppel. Multifunctional Geo-
metric Data Structures. Faculty of Math-
ematics and Computer Science, TU/e.
2007-07

N. Tr čka. Silent Steps in Transition
Systems and Markov Chains. Faculty
of Mathematics and Computer Science,
TU/e. 2007-08

R. Brinkman . Searching in encrypted
data. Faculty of Electrical Engineering,

Mathematics & Computer Science, UT.
2007-09

A. van Weelden. Putting types to good
use. Faculty of Science, Mathematics and
Computer Science, RU. 2007-10

J.A.R. Noppen. Imperfect Information in
Software Development Processes. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2007-11

R. Boumen. Integration and Test plans
for Complex Manufacturing Systems. Fac-
ulty of Mechanical Engineering, TU/e.
2007-12

A.J. Wijs . What to do Next?: Analysing
and Optimising System Behaviour in Time.
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2007-13

C.F.J. Lange. Assessing and Improving
the Quality of Modeling: A Series of Em-
pirical Studies about the UML. Faculty
of Mathematics and Computer Science,
TU/e. 2007-14

T. van der Storm. Component-based
Configuration, Integration and Delivery.
Faculty of Natural Sciences, Mathematics,
and Computer Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution of
Software Architectures. Faculty of Electri-
cal Engineering, Mathematics, and Com-
puter Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi for
Reasoning with Binding. Faculty of Math-
ematics and Computer Science, TU/e.
2007-17

D. Jarnikov . QoS framework for Video
Streaming in Home Networks. Faculty

of Mathematics and Computer Science,
TU/e. 2007-18

M. A. Abam . New Data Structures and
Algorithms for Mobile Data. Faculty
of Mathematics and Computer Science,
TU/e. 2007-19

W. Pieters. La Volont́e Machinale: Un-
derstanding the Electronic Voting Contro-
versy. Faculty of Science, Mathematics
and Computer Science, RU. 2008-01

A.L. de Groot. Practical Automaton
Proofs in PVS. Faculty of Science, Math-
ematics and Computer Science, RU. 2008-
02

M. Bruntink . Renovation of Idiomatic
Crosscutting Concerns in Embedded Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2008-03

A.M. Marin . An Integrated System to
Manage Crosscutting Concerns in Source
Code. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2008-04

N.C.W.M. Braspenning. Model-based
Integration and Testing of High-tech
Multi-disciplinary Systems. Faculty of
Mechanical Engineering, TU/e. 2008-05

M. Bravenboer. Exercises in Free Syntax:
Syntax Definition, Parsing, and Assimila-
tion of Language Conglomerates. Faculty
of Science, UU. 2008-06

M. Torabi Dashti . Keeping Fairness
Alive: Design and Formal Verification of
Optimistic Fair Exchange Protocols. Fac-
ulty of Sciences, Division of Mathematics
and Computer Science, VUA. 2008-07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing
Machines. Faculty of Mechanical Engi-
neering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with Coal-
gebras. Faculty of Science, Mathematics
and Computer Science, RU. 2008-09

L.G.W.A. Cleophas. Tree Algorithms:
Two Taxonomies and a Toolkit. Faculty
of Mathematics and Computer Science,
TU/e. 2008-10

I.S. Zapreev. Model Checking Markov
Chains: Techniques and Tools. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Experimen-
tal Study of Geometric Networks. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2008-12

G. Gulesir. Evolvable Behavior Specifica-
tions Using Context-Sensitive Wildcards.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2008-13

F.D. Garcia. Formal and Computational
Cryptography: Protocols, Hashes and
Commitments. Faculty of Science, Math-
ematics and Computer Science, RU. 2008-
14

P. E. A. Dürr . Resource-based Verifica-
tion for Robust Composition of Aspects.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2008-15

E.M. Bortnik . Formal Methods in Sup-
port of SMC Design. Faculty of Mechani-
cal Engineering, TU/e. 2008-16

R.H. Mak . Design and Performance

Analysis of Data-Independent Stream Pro-
cessing Systems. Faculty of Mathematics
and Computer Science, TU/e. 2008-17

M. van der Horst . Scalable Block Pro-
cessing Algorithms. Faculty of Mathemat-

ics and Computer Science, TU/e. 2008-18

C.M. Gray . Algorithms for Fat Objects:
Decompositions and Applications. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2008-19

	
	Introduction
	Triangulating fat polygons
	Decomposing non-convex fat polyhedra
	Ray shooting and range searching
	Depth orders
	Visibility maps
	Concluding remarks
	References

