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Laugh hard
Run fast
Be kind

Twelfth Doctor

We all change, when you think about
it.

We’re all different people all through
our lives.

And that’s OK, that’s good,
you gotta keep moving,

so long as you remember
all the people that you used to be.

I will not forget one line of this, not
one day, I swear.

Eleventh Doctor

Siamo come nani
sulle spalle di giganti

Bernardo di Chartres

Ik maak steeds wat ik nog niet kan
om het te leeren kunnen

Vincent van Gogh



This page was intentionally left blank.



Abstract

The Schrödinger problem is a statistical mechanics problem consisting in find-
ing the most likely evolution of a cloud of independent Brownian particles con-
ditionally on the observation of their initial and final configurations. Although
this problem had been already introduced back in 1932 by E. Schrödinger, in the
past decade it has become increasingly popular thanks to its connections with
(computational) optimal transport, statistical mechanics and stochastic optimal
control theory.

In this thesis, with the help of stochastic control theory, we show how solu-
tions to the Schrödinger problem provide good proxies for the optimal trans-
port map. Furthermore, we prove the exponential convergence of Sinkhorn’s
algorithm, which provides an efficient and fast way of explicitly computing
such solutions.

Lastly, we introduce an instance of the problem in a hypocoercive setting,
where the Brownian particles are replaced by independent particles following
the kinetic Fokker-Planck equation, and analyse the long-time behaviour of the
most likely evolution of the particle system.

Keywords. Schrödinger problem, entropic optimal transport, stochastic opti-
mal control, large deviations, Sinkhorn’s algorithm, hypocoercivity.

MSC2020: 49Q22, 60E15, 34K20, 93E20, 90C25, 47D07, 53C21, 49N05.
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Chapter 1

Introduction

Imagine finding yourself in front of a cloud of particles that evolves over time,
you may think of a cloud in the sky or smoke in an empty room. Maybe its
strange position and shape got your attention and you decide to take a photo.
Intrigued by what you have seen before, after some time, you decide to come
back and take another photo. You immediately notice that shape and posi-
tion do not meet your expectations at all, i.e., gas uniformly spread all over the
sky/room, based on your Statistical Mechanics 101 knowledge.

Then what you might have wondered, at least if you are a mathematician, is
“what happened to the cloud and how has it evolved over time so that it ended
up in this unexpected configuration?” or maybe you might also wonder “what
has lead to this unexpected final configuration?”. Since I am not a physicist, I
will not seek the cause of this unexpected behaviour. On the contrary, in this
thesis we are going to be interested in answering the first question, that is, in-
ferring the most likely behaviour of the random cloud system, conditionally on
its initial and final configuration.

This problem is not new at all and it dates back at least to the two sem-
inal papers Über die Umkehrung der Naturgesetze [Sch31] and Sur la théorie rela-
tiviste de l’électron et l’interprétation de la mécanique quantique [Sch32] where Erwin
Schrödinger writes

“Imaginez que vous observez un système de particules en diffusion, qui
soient en équilibre thermodynamique. Admettons qu’à un instant donné
t0 vous les ayez trouvées en répartition à peu près uniforme et qu’à t1 >
t0 vous ayez trouvé un écart spontané et considérable par rapport à cette
uniformité. On vous demande de quelle manière cet écart s’est produit.
Quelle en est la manière la plus probable?”1

In view of this description, this problem is commonly referred to as the
Schrödinger problem (hereafter SP). In the next section we will see that Large

1Differently to Schrödinger’s own words, in this thesis we will assume that the particles’ initial
distribution might be different from their thermodynamic equilibrium.

1



2 CHAPTER 1. INTRODUCTION

Deviations Theory provides the proper mathematical framework to address
Schrödinger’s original question. The connection between Large Deviations
Theory and SP dates back to [Föl88], where Föllmer rigorously proved that
solving SP boils down to solving an entropic minimisation problem on the path
space, subject to two marginal constraints.

Despite the problem itself being quite old, it has gained much more at-
tention in the past two decades because of its deep connection with Optimal
Transport (OT) theory. This link, first established by Mikami in [Mik04], shows
that solutions to SP provide good proxies for optimal plans in the Monge-
Kantorovich optimal transport problem. We are going to further investigate
this connection in Chapter 3 and prove that the gradient of SP’s solutions can
be used as proxy for the optimal transport map. Moreover, in the past decade
OT has proven to be a useful tool in Machine Learning applications [PC19] and
consequently computing solutions to SP in a rapid way has become of primal
interest. We are going to show in Chapters 5 and 6 that indeed they can be ef-
ficiently computed via an algorithm, known as Sinkhorn’s algorithm, which
stems at the core of many OT applications in the Machine Learning realm.
Lastly, in the last couple of years, SP has found a tremendous use in generative
modelling [DBTHD21, SDBCD23], namely creating data from noise, which has led
to an increasing interest in Schrödinger bridges (i.e., SP’s solutions) themselves
seen as an alternative to diffusion generative models and score matching [Hyv05].

Aside from its relation with OT theory and ML applications, SP admits a
stochastic optimal control formulation [CGP16b], which has led to different
practical uses of SP in control engineering [CGP16c, CGP16d]. For these rea-
sons, SP is nowadays a very popular problem at the crossroad of different dis-
ciplines. The objective of this thesis can then be summarised as finding new
results for SP and its applications to OT, while keeping in mind the stochastic
interpretation of the problem. In what follows firstly we are going to derive SP
mathematical formulation (cf. (1.1.4)) via Large Deviations Theory, then we are
going to show its connection with a regularised version of the Optimal Trans-
port problem and finally we will show that SP admits also a stochastic optimal
control formulation. In view of these equivalent formulations, the proof strate-
gies we are going to employ in this thesis will lie at the crossroad between Op-
timal Transport and Stochastic Optimal Control theories, where analysis meets
stochastics. Lastly, we conclude the Introduction with a thorough overview of
our main contributions.

1.1 From large deviations to the Schrödinger prob-
lem

Let us start our discussion by fixing a sequence of independent and identically
distributed (i.i.d.) Brownian motions (Bi)i∈N in the Euclidean space Rd. In this
thesis these random variables will represent the particles in our cloud, since
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in practice we are not able to distinguish each particle from the others. Then,
for any fixed t > 0 the random variable Bi

t is the position at time t of the ith

Brownian particle. Let us further fix a final time T > 0 and denote the space
of continuous trajectories as Ω := C([0, T], Rd), so that Bi is a random variable
taking values in the path space Ω. For later reference, we will denote with
(Xt)t∈[0,T] the canonical process on Ω, that is Xt(ω) = ω(t) for any ω ∈ Ω.

Since we are not able to distinguish particles from each other, any informa-
tion we can deduce by observing the behaviour of the cloud will be a macro-
scopic observation. Mathematically speaking this means that any information
we can deduce from observations is encoded via the empirical density measure

PN :=
1
N

N

∑
i=1

δBi (1.1.1)

which is a random variable taking values in the space of probability measures
over the path space, i.e., taking values in P(Ω). In the subsequent discussion,
let Prob denote the law of this random variable, or equivalently that PN ∼ Prob.

Then, if the two probability distributions µ, ν ∈ P(Rd) encode the unlikely
behaviour we have observed at the initial and final time, from a mathematical
point of view we would say that for N large (i.e., in the many-particles limit)

PN
0 =

1
N

N

∑
i=1

δBi
0
≈ µ and PN

T =
1
N

N

∑
i=1

δBi
T
≈ ν. (1.1.2)

This constraint can formally be translated as saying that the empirical density
measure PN , in the many-particles limit, does not take values on the whole
probability space P(Ω), but rather in its subset of constrained path-space mea-
sures

{P ∈ P(Ω) : P0 = µ and PT = ν} , (1.1.3)

where P0, PT are respectively the pushforward measures (X0)#P and (XT)#P.
Given the above premises, let us try now to infer the most likely behaviour

of the cloud of Brownian motions. Without imposing any marginal constraint,
the Law of Large Numbers guarantees the convergence of the sequence of ran-
dom variables PN to the random variable constantly equal to R ∈ M(Ω), that
is the Wiener measure on Ω (or equivalently the law of a stationary Brownian
motion Bi on Ω). This means that without marginal constraints Prob ≈ δR for N
large enough. Then, in order to take into account the fact that PN takes values
in the constrained set (1.1.3), we might rely on Sanov’s Theorem [DZ10, The-
orem 6.2.10], whose core message is that the likelihood of a given evolution P
is measured through the relative entropy with respect to the Wiener measure R
(i.e., the unconstrained limit, according to the Law of Large Numbers). More
precisely, for any nice subset A ⊆ P(Ω), for N large enough we have

Prob
[
PN ∈ A

]
≈ exp

(
−N inf

P∈A
H (P|R)

)
,
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where the H (·|R) denotes the relative entropy functional with respect to R. We
refer the reader to Section 1.A for its formal definition and its properties. In the
Large Deviations Theory own words, the above identity states that PN satisfies
a Large Deviation Principle with rate function H (·|R).

Then, the most likely evolution of our cloud particles system can be found by
minimising the rate function on the constrained set (1.1.3), that is solving the
minimisation problem

inf
{P∈P(Ω) : P0=µ, PT=ν}

H (P|R) . (1.1.4)

We will refer to the above problem as to the dynamical Schrödinger problem,
since the minimisation takes place on the set of probability measures on the
path space. Under mild assumptions on the marginals µ, ν, in Chapter 2 we
will see that the above problem admits a unique solution, which we will denote
as PT and we will refer to it as to the Schrödinger bridge from µ to ν (in time T).
In the rest of this introduction we tacitly assume the existence and uniqueness
of the Schrödinger bridge PT .

1.2 From the Schrödinger problem to Optimal Trans-
port

Remarkably, the previous dynamical problem (c.f. (1.1.4)), whose motivation
comes from statistical mechanics, is equivalent to a regularised version of the
classic optimal transportation problem. In this section we will explicit this
equivalence, by firstly considering a static formulation of SP.

Static Schrödinger problem. Consider the measurable map (X0, XT) : Ω →
Rd × Rd which associates to any trajectory ω ∈ Ω the joint vector of starting
and terminal positions, i.e., (X0, XT)(ω) = (ω0, ωT). Then the additive prop-
erty of the relative entropy (1.A.4) reads as

H (P|R) = H (P0,T |R0,T) +
∫

H (Pxy|Rxy)dP0,T(x, y) , (1.2.1)

where P0,T := (X0, XT)#P is the joint law of the random vector (X0, XT) under
the law P (and similarly for R0,T), whereas Pxy := P(·|(X0, XT) = (x, y)) ∈
P(Ω) is the conditional law of the random variable X conditioned to its initial
and final positions, also known as P-bridge from x to y, and similarly for Rxy

which is also known as the Brownian bridge from x to y.
Notice that the last integral term in the above identity does not depend

on the initial and final marginal law of P. Therefore, minimising the above
left hand side over the subset {P ∈ P(Ω) : P0 = µ, PT = ν} is equivalent to
minimising the integral term over all possible bridges Pxy (which is an uncon-
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strained problem) while independently solving the finite dimensional minimi-
sation problem

inf
π∈Π(µ, ν)

H (π|R0,T) . (1.2.2)

Here Π(µ, ν) is the set of couplings between µ and ν, i.e., the set of probability
measures on R2d satisfying π(A× Rd) = µ(A) and π(Rd × A) = ν(A), for any
measurable subset A ⊆ Rd. This problem is known as the static Schrödinger
problem and for now let us assume that this static problem admits a unique
solution, to which we will refer to as the Schrödinger plan and denote it as πT ∈
P(Rd × Rd).

We observe that the minimisation problem concerning the integral term in
(1.2.1) is unconstrained and the relative entropies in the integral are all non-
negative and vanish if and only if Pxy = Rxy (cf. Lemma 1.A.1, since Rxy ∈
P(Ω)). Therefore, the integral term achieves its minimum (i.e., it is null) when
Pxy = Rxy for πT-a.e. x, y ∈ Rd; henceforth we have shown that

inf
{P∈P(Ω) : P0=µ, PT=ν}

H (P|R) = inf
π∈Π(µ, ν)

H (π|R0,T) . (1.2.3)

Moreover, the solutions to the minimisation problems in (1.2.3) satisfy

(X0, XT)#PT = πT and PT(·|X0 = x, XT = y) = Rxy πT-a.s. ,

or equivalently, that for any Borel set A ⊆ Ω it holds

PT(A) =
∫

R2d
Rxy(A)dπT(x, y) .

The above relation can be interpreted as follows: sampling the most likely evo-
lution of the Brownian cloud (i.e., sampling from the Schrödinger bridge PT)
is equivalent to sampling a travel plan, i.e., jointly sampling the couple (x, y)
(initial and terminal point) according to the Schrödinger plan πT and then con-
necting the two extremes x and y via the standard Brownian bridge Rxy between
initial and final position.

Entropic Optimal Transport. We will now explain a connection of SP with a
certain regularisation of OT, known as Entropic Optimal Transport (EOT). This
is immediate once we recall that the density (w.r.t. Lebesgue measure) for R0,T
(i.e., the joint law at time 0 and T of a stationary Brownian motion) reads as

R0,T(dx, dy) = (2πT)−d/2 exp(−|x − y|2/2T)dxdy . (1.2.4)

Indeed, after some algebraic manipulations one can easily deduce that for any
π ∈ Π(µ, ν) we have

H (π|R0,T)− Ent(µ)− Ent(ν)− d
2

log(2πT) =
∫ |x − y|2

2T
dπ +H (π|µ ⊗ ν) ,

(1.2.5)
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with Ent(·) being the relative entropy w.r.t. the Lebesgue measure. Therefore,
solving (1.2.2) is equivalent to solving

inf
π∈Π(µ,ν)

∫ |x − y|2
2

dπ + T H (π|µ ⊗ ν) , (1.2.6)

which is known as Entropic Optimal Transport problem, since it is related to the
Kantorovich formulation of the optimal transportation problem (OT), namely

inf
π∈Π(µ,ν)

∫ |x − y|2
2

dπ , (1.2.7)

to which we have added the relative entropy term H (π|µ⊗ ν) as a regularising
term with the time-horizon T > 0 seen as a regularising parameter. Moreover,
the EOT formulation (1.2.6) clearly suggests its convergence as T ↓ 0 towards
the Kantorovich-OT problem (1.2.7) and hence that (up to a rescaling factor
T > 0) SP converges to OT. In light of this and in analogy with the notation
adopted for the SP plan πT , we will use the symbol π0 to denote a OT plan
(i.e., a optimiser in (1.2.7)).

Optimal Transport. The first formulation of OT dates back to the seminal work
of Gaspard Monge [Mon81], where a worker faces the problem of moving a pile
of sand to a prescribed location, shaping it into a different configuration while
at the same time trying to minimise the cost of his efforts. This cost could be
either the fuel consumed by the construction trucks, the time spent on the job,
or the distance between the two configurations. In this thesis we will be mostly
interested in the (squared) distance cost. Mathematically speaking Monge’s
problem can be stated as minimising

inf
T

∫ |x − T (x)|2
2

dµ , (1.2.8)

where the infimum runs over the set of all measurable functions T that trans-
port the distribution µ into the target distribution ν, i.e., such that T#µ = ν. If
the above infimum is attained at T we will refer to it as to the optimal transport
map, or as the Brenier map (for the specific case of the squared distance cost).

Clearly the Kantorovich formulation introduced in (1.2.7) is a relaxation of
Monge’s original problem (1.2.8) since for any transport map T one could con-
sider the induced coupling πT := (Id × T )#µ ∈ Π(µ, ν). Furthermore, a key
property of the Kantorovich problem (1.2.7) is that it admits a dual formulation,
often referred to as to Kantorovich duality, and it states that

inf
π∈Π(µ,ν)

∫ |x − y|2
2

dπ = sup
φ∈L1(µ), ψ∈L1(ν) : φ⊕ψ≤ 1

2d
2(·,·)

(∫
φ dµ +

∫
ψ dν

)
.

(1.2.9)
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Under mild assumptions, the optimisation problem on the right hand side of
(1.2.9) admits optimal solutions (φ0, ψ0). These two functions are known as
Kantorovich potentials. We will later see that also SP admits a similar dual for-
mulation with a corresponding pair of (Schrödinger) potentials.

Let us conclude this section by mentioning a cornerstone result in OT the-
ory due to Brenier [Bre91] which gives sufficient conditions for the equivalence
between (1.2.8) and its relaxation (1.2.7).

Theorem 1.2.1 (Informal). Under mild regularity assumptions on the marginals,
(1.2.7) and (1.2.8) are equivalent. Formulation (1.2.8) admits a unique solution, the
Brenier map T . Moreover, the OT plan π0 is supported on the graph of the Brenier
map T , i.e., π0 = (Id,T )#µ. Finally T = Id −∇φ0 where φ0 is a Kantorovich
potential, i.e., a optimiser in (1.2.9).

As the SP plans πT provide good proxies for the OT plan π0, we will in-
troduce at (2.2.14) measurable maps (the Schrödinger potentials) associated to
SP such that their gradients would eventually provide good proxies for the
gradients of Kantorovich potentials and hence for the Brenier map T (cf. The-
orem 3.2.3). We will further elaborate on and prove these claims in Chapter 3.

1.3 The Schrödinger problem and stochastic control

The dynamical formulation of SP given at (1.1.4) can be further translated into
a stochastic optimal control problem. More precisely, SP can be seen as the
control problem which aims at modifying the law of a diffusion process so as
to match specifications on marginal distributions at given times. This follows
from Girsanov’s Theorem [Léo12b, Theorems 2.1 and 2.3], which guarantees
that any probability measure P ∈ P(Ω) with finite relative entropy w.r.t. R
(i.e., such that H (P|R) < +∞) is the law of a semimartingale. Particularly,
if BR

· ∼ R is an R-Brownian motion and we consider its associated canonical
filtration (Ft)t∈[0,T], then there exists an Rd-valued adapted process u· such
that P is a weak solution of the controlled SDE

dXt = ut dt + dBP
t ,

where BP
· is a P-Brownian motion. Moreover, the Radon-Nikodym derivative

equals

dP
dR

= 1
{ dP0

dR0
>0}

dP0

dR0
(X0) exp

(∫ T

0
ut dBR

t − 1
2

∫ T

0
|ut|2dt

)
R-a.e.

and it holds

H (P|R) = H (P0|R0) +
1
2

EP

[∫ T

0
|ut|2dt

]
.
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As a direct consequence of the above stochastic representation, solving the
dynamic SP (1.1.4) is then equivalent to minimising

min
u·∈A

EP

[∫ T

0
|ut|2dt

]
(1.3.1)

where A denotes the set of admissible controls, i.e., the set of Rd-valued adapted
control processes u· such that if Pu denotes the law of the controlled process{

dXu
t = ut dt + dBt ,

Xu
0 ∼ µ ,

(1.3.2)

then it holds Pu
T = ν. Equivalently, we can say that a control process u· is

admissible if it steers the controlled diffusion process (1.3.2) from Xu
0 ∼ µ into

the target final measure Xu
T ∼ ν.

For exposition’s sake here let us assume that (1.3.1) admits a unique solu-
tion uT

· , then the Schrödinger bridge coincides with the diffusion process XuT

controlled via uT
· , that is PT = PuT

. Moreover we have

H (PT |R) = Ent(µ) +
1
2

EPT

[∫ T

0
|uT

t |2dt
]

. (1.3.3)

In Chapter 2 we will further characterise the optimal control process uT
· as

a feedback control and provide the reader with its explicit expression in (2.3.2)
(see also Lemma 2.3.2).

Throughout this thesis, we will often employ this stochastic control inter-
pretation either in our proof strategies or as a starting motivation for our dis-
cussion.

1.4 Overview of the main contributions

In this thesis we study a wide class of Schrödinger problems, where the ambi-
ent space considered is a (possibly unbounded) Riemannian manifold and the
reference particles’ dynamics R is a Langevin diffusion process. Under some
regularity assumptions on the state space and on the reference measure, namely
a curvature-dimension condition (cf. Section 2.1.1) SP still admits unique dynamic
and static solutions PT and πT respectively and moreover there exists a couple
of potentials known as Schrödinger potentials φT and ψT such that

dPT

dR
(X·) =

dπT

dR0,T
(X0, XT) = exp

(
−φT(X0)− ψT(XT)

)
. (1.4.1)

These two potentials play in SP a role analogous to the one of the Kantorovich
potentials for the Kantorovich-OT, since also the former can be seen as opti-
miser of a dual formulation (cf. Proposition 2.2.2).
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Convergence to the Brenier map. Our first contribution is showing in Chap-
ter 3 that the gradients of the Schrödinger potentials can be used when approx-
imating the Brenier optimal transport map T . More precisely, we show in The-
orem 3.2.3 that in the small-time limit these gradients converge to the gradients
of Kantorovich potentials:

−T∇φT
L2(µ)

−−−−→∇φ0 and − T∇ψT
L2(ν)

−−−−→∇ψ0 . (1.4.2)

Our proof strategy relies in proving gradient estimates for the Schrödinger po-
tentials and their (backward-in-time) evolution along Hamilton-Jacobi-Bellman
equations2, by showing in Proposition 3.1.2 that

∥T ∇u0∥2
L2(µ) ≤ T H (PT |R) where

{
∂tut +

1
2 ∆ut +

1
2 |∇ut|2 = 0

uT = ψT .

Such estimates are referred to as corrector estimates because they provide sharp
bounds for the L2-norm of the optimal control process uT

· in the stochastic op-
timal control formulation. These estimates were already known in literature in
the Euclidean setting and, under stronger regularity assumptions, were used
for studying the long-time behaviour of Schrödinger bridges [Con19]. Here we
firstly generalise their validity to Riemannian manifolds and most importantly
we show their sharpness in the small-time asymptotics as well. These qualita-
tive convergence results are proven in [CCGT23]. In Chapter 3 we are further
able to provide unpublished quantitative convergence rates for (1.4.2) in the
Euclidean setting, based on convexity and functional inequalities ideas.

The gradient estimates employed in the convergence towards the Brenier
map find a different application in Chapter 4. There we provide novel quanti-
tative stability estimates, published in [CCGT23], which allow to measure how
sensible Schrödinger bridges and plans are to perturbations of the two marginal
constraints. The bounds we provide are expressed in terms of (symmetric) rela-
tive entropies and negative order Sobolev norms ∥·∥Ḣ−1 . Particularly, if πµ→ν,T

and πµ→ν̄,T denote the Schrödinger plans between the couple of marginals µ, ν
and µ, ν̄ respectively, then we show in Theorem 4.2.2 that

H sym(πµ→ν,T , πµ→ν̄,T) ≲ H sym(ν, ν̄)+ T−1/2 (∥ν − ν̄∥Ḣ−1(ν)+ ∥ν̄ − ν∥Ḣ−1(ν̄))

where H sym is the symmetrised relative entropy (cf. (4.0.1)) and where a ≲ b
whenever there exists a positive constant C > 0 such that a ≤ C b.

2Here we have considered the Hamilton-Jacobi-Bellman equation associated to the classical SP;
see (5.1.2) for the Hamilton-Jacobi-Bellman equation for the general SP associated to a general
Langevin dynamics reference.
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Exponential convergence of Sinkhorn’s algorithm. In our second main con-
tribution we have analysed how Schrödinger bridges and potentials can be
efficiently (and rapidly) computed. The starting point is noting that, since
πT ∈ Π(µ, ν), by integrating out either the first or the second variable in (1.4.1),
we may deduce that the Schrödinger potentials satisfy{

φT = Uµ + log PT exp(−ψT)

ψT = Uν + log PT exp(−φT) ,

where Uµ, Uν are the negative log-densities of the two marginals µ, ν, while
PT is the heat semigroup at time t = T. This suggests that the above system,
also known as the Schrödinger system, can be solved via a fixed point iterative
algorithm, namely by considering the iterates{

φn+1 = Uµ + log PT exp(−ψn)

ψn+1 = Uν + log PT exp(−φn+1) ,

which are commonly referred to as Sinkhorn’s iterates. The exponential con-
vergence of Sinkhorn’s algorithm has been widely studied in discrete settings
[Sin64, SK67, PC19] and for compactly supported marginals [CGP16a, DdBD24,
Ber20]. When considering unbounded settings, i.e., non-compactly supported
marginals with unbounded densities, much less is known. Particularly, prior
to the results presented in this thesis, the most recent contribution [GN22] has
solely shown convergence rates that are polynomial in the number of iterates.3

In this thesis we provide the very first exponential convergence estimates in
the Euclidean unbounded setting. Moreover, the approach we present here
is quite novel since we mainly focus on the convergence of the gradients along
Sinkhorn’s algorithm and then deduce the convergence of the iterates as a corol-
lary. The main reason behind adopting this strategy stems from the fact that in
practice one would like to compute the gradients of the Schrödinger potentials,
since we have shown that those provide good proxies for the optimal transport
map, which is eventually the mathematical object one is interested in finding in
optimal transport applications.

More precisely, we provide two different approaches.

The first is a perturbative approach and we employ it in Chapter 5 where
we have adapted to the unbounded setting results coming from [GNCD23].
In Chapter 5, we consider as underlying particle system an ergodic Langevin
dynamics {

dXt = −∇U(Xt)dt +
√

2 dBt

X0 ∼ m(dx) ∝ exp(−U(x))dx ,

3We refer the reader to the Bibliographical Remarks section to Chapter 6 for a far more exhaus-
tive literature review on the convergence of Sinkhorn’s algorithm, where we also take into account
the most recent developments.
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with U strongly convex, and we ask the marginals’ densities to be log-Lipschitz
(i.e., the marginals are log-Lipschitz perturbations of the underlying equilib-
rium measure m). Then, if (Pt)t∈[0,T] denotes the semigroup associated to the
Langevin dynamics, by considering for any Lipschitz function h the function

UT,h
t := − log PT−t exp(−h) ,

we immediately notice that Sinkhorn’s algorithm equivalently reads as{
φn+1 = Uµ −UT,ψn

0

ψn+1 = Uν −UT,φn+1

0 .
(1.4.3)

This gives a dynamic interpretation of Sinkhorn’s algorithm since UT,h
t solves

the Hamilton-Jacobi-Bellman equation{
∂tut + ∆ut −∇U · ∇ut − |∇ut|2 = 0
uT = h ,

(1.4.4)

and therefore one step of Sinkhorn’s algorithm can be interpreted as consid-
ering the backward-in-time evolution of (1.4.4) combined with one of the two
marginal constraints. Then, by exploiting the link between Hamilton-Jacobi-
Bellman equations and value functions for stochastic optimal control problems
(cf. (5.1.3)), we show in Lemma 5.1.1 that Lipschitzianity backward propagates
along (1.4.4) and hence, in view of (1.4.3), that Lipschitzianity propagates along
Sinkhorn’s algorithm. By reasoning in a similar way, we are then able to show
that

Lip(φn − φT), Lip(ψn − ψT) ≲ γ2n ,

where γ < 1 is the convergence rate, explicitly given in Theorem 5.2.6. From the
above Lip-convergence we are then able to deduce the exponential convergence
of the algorithm in Theorems 5.2.6 and 5.2.7.

The second approach is non-perturbative and of a more geometric nature and
it works for the classical SP setting (when considering Brownian motions in
Rd). We employ this approach in Chapter 6 where we present results coming
from [CDG23]. There, we consider marginals with asymptotically log-concave4

densities and show how convexity and concavity propagate from the marginals
towards the limit potentials, along Sinkhorn’s algorithm. In view of the link be-
tween Sinkhorn’s algorithm and Hamilton-Jacobi-Bellman equations portrayed
in (1.4.3), this is accomplished by finding a good set of (almost) convex func-
tions which is invariant under the backward-in-time evolution along Hamilton-
Jacobi-Bellman equations. This result is proven in Theorem 6.1.4, which ex-
tends the existing [Con24, Theorem 2.1].

4See the definition at (6.0.11), it includes densities with log-densities that are strongly concave
outside a compact set or Lipschitz perturbations of strongly concave functions.
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Then, by relying on the link between the gradient of Sinkhorn’s iterates and
conditional probability measures (as portrayed in (6.0.3)), we notice that∫

|∇φn+1 −∇φ⋆|(x) µ(dx) ≤ T−1
∫

W1(π
x,ψn

T , π
x,ψ⋆

T ) µ(dx) ,

where π
x,ψ⋆

T , π
x,ψn

T are respectively the invariant law of the SDEs
dXt = −

(
Xt−x

2T + 1
2∇ψ⋆(Xt)

)
dt + dBt

dYt = −
(

Yt−x
2T + 1

2∇ψn(Yt)

)
dt + dBt .

(1.4.5)

We then employ synchronous and reflection coupling techniques for the above
diffusion processes in order to bound the Wasserstein distance W1(π

x,ψn

T , π
x,ψ⋆

T )
with the integrated difference between the drift appearing in (1.4.5) and deduce
contraction estimates such as∫

|∇φn+1 −∇φT |(x) µ(dx) ≲ T−1 γν
∫

|∇ψn −∇ψT |(y)ν(dy) ,∫
|∇ψn −∇ψT |(y) ν(dy) ≲ T−1 γµ

∫
|∇φn −∇φT |(x)µ(dx) .

(1.4.6)

Our coupling technique differs from its common use since we are not interested
here in showing ergodicity of (1.4.5), but rather interested in obtaining in a
finite-time window sharp bounds for W1(π

x,ψn

T , π
x,ψ⋆

T ) in terms of the difference
between the two drifts. Since this novel approach is of independent interest, we
show its validity in wide generality in Section 6.2.

Finally, from (1.4.6) we are able to bootstrap contraction estimates along
Sinkhorn’s algorithm and deduce in Theorem 6.3.2 the exponential integrated
convergence of the gradient of Sinkhorn’s iterates as well as the exponential
convergence in Wasserstein (W1) distance for the corresponding couplings (de-
fined at (2.2.19)). By slightly modifying our proof strategy we deduce also
pointwise exponential convergence for iterates and gradients (respectively in
Theorems 6.3.5 and 6.4.1), exponential convergence in symmetric relative en-
tropy (in Theorem 6.4.4) and convergence of the Hessian of Sinkhorn’s iterates
(in Theorem 6.5.2).

The kinetic Schrödinger problem. Our last contribution focuses on a dif-
ferent type of the Schrödinger problem and is based on [CCGR22]. Namely,
in Chapter 7 we introduce the kinetic Schrödinger problem as an instance of SP
where the underlying process is replaced with an underdamped Langevin dynam-
ics, that is {

dXt = Vtdt,
dVt = −∇U(Xt)dt − γVtdt +

√
2γ dBt .
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Here the particles are described both by their position and their momenta,
which satisfy the kinetic Fokker-Planck equation, and we are provided just
snapshots of the positions at initial and final time (therefore the marginals’ in-
formation is only partial). We fully characterise this problem and, inspired by
its stochastic control formulation, we study its long-time behaviour. To do so,
our main tools are corrector estimates similar to the ones we have obtained
in SP classical setting. Even though the problem is just a different instance
of SP, the hypoelliptic nature of the kinetic Fokker-Planck equation requires a
more careful analysis when studying the corrector estimates. Particularly, these
estimates are strictly related to the long-time behaviour of the kinetic Fokker-
Planck equation, which is strongly affected by its hypocoercivity [Vil09].

We then employ these estimates in establishing the validity of the turnpike
property, which can be loosely described as saying that in the long-time regime
Schrödinger bridges spend most of the time exponentially close to the equilib-
rium. More precisely, in the long-time regime, Schrödinger bridges converge
exponentially fast towards the equilibrium, spend most of the time exponen-
tially close to the equilibrium and then, just at the very end, leave the equilib-
rium and reach the final prescribed target distribution. Namely we show in
Theorem 7.5.1 that for any t ∈ (0, T) it holds

H (PT
t |m) ≲ exp

(
−2κ

[
t ∧ (T − t)

])[
H (µ|mX) +H (ν|mX)

]
,

with mX ∝ exp(−U(x)), while m ∝ exp(−U(x)− |v|2/2) being the equilibrium
measure associated to the (underdamped) Langevin dynamics and with κ > 0
being its ergodicity rate.

The turnpike property is a general principle, widely investigated in deter-
ministic control problems [TZ15, TZZ18, Zas05, Zas19]. In the field of stochastic
control the understanding of this phenomenon is much more limited. More-
over, as we have already mentioned the hypocoercive nature of the kinetic
Fokker-Planck equation makes the analysis even more delicate.

Organisation of the thesis Finally, we now discuss the organisation of the
thesis. The thesis is divided into seven chapters, each one followed by an ap-
pendix in which we have proved some technical and ancillary results useful
to the rest of the exposition. At the end of Chapters 3 to 7 we further provide
a Bibliographical Remarks section where we point out the main references those
chapters are based on and where we provide a literature review on the subject
analysed in each chapter.

We conclude the thesis with the chapter Looking forward, devoted to future
research directions that could possibly follow from the results presented here.
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Appendix 1

1.A On the notion of relative entropy

In this appendix we collect some useful properties of the relative entropy func-
tional H that will be employed later in the thesis and we extend the notion
of relative entropy to the case when the reference measure is not a probability
measure.

Let X be a Polish measurable space and consider P, Q ∈ P(X ) be two prob-
ability measures. Then the relative entropy of P with respect to Q is defined
as

H (P|Q) :=

{∫
log dP

dQ dP if P ≪ Q ,
+∞ otherwise.

(1.A.1)

Equivalently it can be defined for any P, Q ∈ P(X ) as

H (P|Q) =
∫

h
(

dP
dQ

)
dQ ∈ [0,+∞] ,

where h(a) := a log a − a + 1 ≥ 0 for all a ≥ 0 (with h(0) = 0). Since h is non-
negative and Q ∈ P(X ), it is immediate to notice that as soon as H (P|Q) <
+∞ it holds log dP/dQ ∈ L1(P).

Lemma 1.A.1 (Lemma 1.4.3 in [DE97]). Assume Q ∈ P(X ). Then the relative
entropy functional H (·|Q)

• is convex and lower-semicontinuous in P(X ) in the weak topology, and strictly
convex on the subset {P: H (P|Q) < +∞};

• has weakly-compact level-sets, i.e., for any finite L the subset {P: H (P|Q) ≤
L} is compact in the weak topology of P(X );

• for any P ∈ P(X ) we have H (P|Q) = 0 if and only if P ≡ Q;

• for any P ∈ P(X ) the Donsker-Varadhan variational formula holds, that is

H (P|Q) = sup
h∈Cb(X )

{∫
h dP − log

∫
ehdQ

}
= sup

h∈Mb(X )

{∫
h dP − log

∫
ehdQ

}
.

(1.A.2)

15
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In order to define the relative entropy when the reference measure Q is not a
probability measure but it is just σ-finite (as it is when R is the Wiener measure
associated to a Brownian motion), we follow [CT21, Section 2] and [Léo14, Ap-
pendix A]. As Q is σ-finite, there exists a measurable function W : X → [0,+∞)
such that

zW :=
∫

e−W dQ < +∞ .

Then, for any P ∈ P(X ) such that W ∈ L1(P) we can define its relative entropy
with respect to Q as

H (P|Q) := H (P|QW)−
∫

W dP − log zW ∈ (−∞,+∞] , (1.A.3)

where QW := z−1
W e−W Q ∈ P(X ) and H (P|QW) is defined via the standard

definition (1.A.1) of relative entropy between probabilities. Moreover, it is im-
mediate to see that the above definition is independent of the choice of the
measurable function W : M → [0,+∞) satisfying zW < +∞.

In the next result we collect some nice integrability properties linked with
the above definition of relative entropy with respect to σ-finite measures.

Lemma 1.A.2 (Lemma 4.1.1 in [Tam17]). Assume that Q is a σ-finite measure on
our Polish space X and fix a probability measure P ∈ P(X ).

1. If there exists a non-negative measurable function W ∈ L1(P) such that zW <
+∞, then either P ̸≪ Q or (log dP/Q)− ∈ L1(P).

2. In addition to that, if H (P|Q) (defined via (1.A.3)) is finite, then P ≪ Q and
log dP/dQ ∈ L1(P).

Proof. Firstly, assume that P ≪ Q. Then we can bound

∥(log dP/dQ)−∥L1(P) =∥(log dP/dQW − W − log zW)−∥L1(P)

≤
∫ dP

dQW

(
log

dP
dQW

)−
dQW + ∥W∥L1(P) + | log zW |

which is finite since for any a > 0 it holds a(log a)− ≤ e−1 and since QW is a
probability measure. This proves the first item of the lemma.

Next, notice that the same argument gives also that

∥(log dP/dQ)+∥L1(P) ≤ ∥(log dP/dQW)+∥L1(P) + ∥W∥L1(P) + | log zW | .

and the above right hand side is finite since H (P|Q) is finite and from the
definition (1.A.3) we may deduce that also H (P|QW) is finite as well or equiv-
alently that log dP/dQW ∈ L1(P) (since QW ∈ P(X )). By combining the above
with the first item of our lemma, we conclude our proof.
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Additive property.

Finally, let us conclude by stating the additive property of relative entropy
which guarantees the connection between the (dynamical) Schrödinger prob-
lem, its static formulation and therefore (entropic) optimal transport.

Let Y be a Polish space and let ϕ : X → Y be a measurable map. Then
for any non-negative measure Q on X we have the disintegration formula
(cf. [DM78, Chapter III - paragraph 70])

Q(A) =
∫
Y

Q(A|ϕ = y) ϕ#Q(dy)

which holds for any Borel set A ⊆ X and where the map y 7→ Q(·|ϕ = y) ∈
P(X ) is measurable. Then, for any P ∈ P(X ) and any non-negative σ-finite
measure Q we have

H (P|Q) = H (ϕ#P|ϕ#Q) +
∫

H (P(·|ϕ = y)|Q(·|ϕ = y)) ϕ#P(dy) . (1.A.4)

Moreover, since Q(·|ϕ = y) is a probability measure for any given y ∈ Y , the
relative entropy w.r.t. such probability is always non negative and hence we
deduce the data-processing inequality

H (P|Q) ≥ H (ϕ#P|ϕ#Q) . (1.A.5)

We refer the reader to [Léo14, Appendix A] and [DE97, Lemma 1.4.3-(f)] for
further discussion and for a proof of the above statements.
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Chapter 2

Preliminaries on the
Schrödinger problem

This chapter serves as a more in depth introduction to the Schrödinger prob-
lem (SP) in a more abstract setting, namely when considering as underlying
reference process a Langevin diffusion on a (possibly unbounded) Riemannian
manifold. This is accomplished in Section 2.1. In order to generalise SP to this
setting we will briefly introduce in Section 2.1.1 the curvature-dimension condi-
tion, a crucial tool that guarantees existence and uniqueness of solutions to SP
and at the same time guarantees gradient estimates on top of which we will
deduce the corrector estimates in Chapter 3. In Section 2.2 we introduce the
assumptions we impose on the marginals and completely characterise the solu-
tion of SP in Theorem 2.2.1. In Section 2.2.1 we then introduce Sinkhorn’s algo-
rithm, which provides an iterative method that computes Schrödinger bridges
and whose convergence will be studied in depth in Chapters 5 and 6. Lastly, in
Section 2.3 we link the Schrödinger potentials (as introduced in Theorem 2.2.1)
with the optimal control of the stochastic optimal control formulation.

2.1 Underlying setting

Unless otherwise stated, in this thesis we consider as ambient space a weighted
Riemannian manifold, i.e., a triplet (M, d,m) where M is a smooth, connected,
complete (possibly non-compact) Riemannian manifold without boundary and
with metric tensor g and corresponding geodesic distance d, whereas m denotes
the σ-finite measure dm(x) = e−U(x)vol(dx), where vol is the volume measure
of M and U is a C2 potential.

We denote by Pp(M), p ≥ 1, the set of probability measures on M with
finite p-moment, that is such that for a fixed z0 ∈ M it holds

Mp(p) :=
∫

dp(y, z0)dp(y) < +∞

19
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Let us also notice that P2(M) ⊆ P1(M) and in particular M2
1(p) ≤ M2(p)

for any p ∈ P2(M). When M is a vector space (e.g., M = Rd) in the above
definition we pick the origin z0 = 0 ∈ M.

Moreover, instead of considering just Brownian motions in Schrödinger’s
thought experiment, we are going to assume that the particles of the cloud fol-
low the Langevin SDE{

dXt = −∇U(Xt)dt +
√

2dBt

X0 ∼ m ,
(2.1.1)

i.e., the diffusion process associated to the generator L = ∆g −∇U · ∇1. Notice
that m is the invariant measure of the above dynamics. Then, given any two
probability measures µ, ν ∈ P(M), we may again deduce from Sanov’s The-
orem (as we already did in Section 1.1) that the most likely evolution of our
system can be computed by solving the dynamical minimisation problem

inf
{P∈P(Ω) : P0=µ, PT=ν}

H (P|R) (2.1.2)

this time with R being the law of the Langevin dynamics (2.1.1). As we already
did in the Introduction, we denote with PT the optimiser of the above problem,
to which we refer again as to the Schrödinger bridge. By arguing as in Section 1.2
we may again deduce a static formulation for SP (as in (1.2.2)) which reads
again as

inf
π∈Π(µ, ν)

H (π|R0,T) , with R0,T = L(X0, XT) . (2.1.3)

We denote the optimiser of the above problem with πT and refer to it as to
the Schrödinger (or entropic) plan. Clearly, as we have already explained in Sec-
tion 1.2, it is possible to recover PT from πT by connecting initial and final
position via Langevin-bridges, i.e., it holds

PT(·) =
∫

M×M
Rxy(·)dπT(x, y) .

For later reference, let us denote the density of R0,T as pT =
dR0,T

d(m⊗m)
. We will

refer to the optimal value in (2.1.3) as to the Schrödinger cost and we will denote
it by CT(µ, ν).

In the flat Euclidean setting when the Riemannian manifold (M, d) = Rd,
the volume measure vol corresponds to the the Lebesgue measure Leb and we
recover the standard Brownian SP considered in the Introduction by choosing
U ≡ 0 and hence m = vol = Leb whereas pT corresponds to the heat kernel (up
to the rescaling factor 2 in time, due to the presence of

√
2 in the SDE).

1We refer the reader to [BGL13, Appendix B] for the connection between the generator L and
diffusion processes on Riemannian manifolds. In this thesis we will rely on the SDE (2.1.1) repre-
sentation solely in the Euclidean standard setting.
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2.1.1 Curvature-dimension condition

We are going to assume (M, d,m) to satisfy a curvature-dimension condition,
which will bring enough structure and regularity to the ambient space such
that existence and uniqueness of solutions to SP hold. From a stochastic point of
view one could think of the curvature-dimension condition as a more abstract
generalisation of the Bakry-Émery criterion for the ergodicity of the Langevin
SDE (2.1.1).

Bakry-Émery and Γ-calculus

Bakry-Émery approach to hypercontractivity relies on establishing whether there
exists a positive κ ∈ R such that it holds

Γ2( f , f ) ≥ κ Γ( f , f ) (2.1.4)

for any (suitably regular) function f ∈ L2(m), where Γ and Γ2 are respectively
the carré du champ and the iterated carré du champ operators associated to the
generator L = ∆g −∇U · ∇, i.e., they correspond to the operators defined for
any f , g (in a suitable subalgebra of L2(m)) as

Γ( f , g) :=
1
2

[
L( f g)− f Lg − gL f

]
,

Γ2( f , g) :=
1
2

[
LΓ( f , g)− Γ( f , Lg)− Γ(L f , g)

]
.

Inequality (2.1.4) is referred to as the Bakry-Émery criterion after the seminal
work [BÉ85] and it is well known that this local differential condition guaran-
tees exponential ergodicity in W2-distance for the diffusion process (2.1.1), with
κ > 0 as exponential convergence rate [BGL13, Theorem 9.7.2].

A first example one could think of is the flat Euclidean space with the mea-
sure dm = e−UdLeb, where the two operators equal

Γ( f , f ) = |∇ f |2 and Γ2( f , f ) = |∇2 f |2 +∇2U(∇ f ,∇ f )

and therefore a sufficient condition for (2.1.4) to hold is the κ-convexity of the
potential U, i.e., that uniformly it holds

∇2U ≥ κ .

Lastly, let us further mention that (2.1.4) implies useful gradient estimates and
local log-Sobolev inequalities [BGL13, Theorem 5.5.2], as we will detail later.

Nevertheless, the class of log-concave measure is not rich enough for the
purposes of this thesis. For instance the very first example considered in the
Introduction (i.e., rescaled Brownian motion on Rd, where L = ∆) fails to satisfy
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the Bakry-Émery condition (2.1.4) though it is immediate to notice that Cauchy-
Schwartz inequality gives

Γ2( f , f ) = |∇2 f |2 ≥ 1
d
(∆ f )2 =

1
d
(L f )2 , (2.1.5)

which lower bounds the Γ2 operator with the generator L itself. Despite be-
ing different from (2.1.4), the above inequality carries other geometric and an-
alytical properties such as the validity of local dimensional log-Sobolev inequali-
ties [BGL13, Theorem 6.7.3] and the Li-Yau and Harnack inequalities [BGL13,
Corollaries 6.7.5 and 6.7.6]. Lastly, it provides a bound with explicit depen-
dence from the dimension of the ambient space (which does not appear on the
contrary in (2.1.4)).

Therefore, the above discussion suggests to consider a condition on the op-
erator Γ2 which combines both a lower bound on the curvature as in (2.1.4) and
an upper bound on the dimension as in (2.1.5), namely

Γ2( f , f ) ≥ κ Γ( f , f ) +
1
N
(L f )2 . (2.1.6)

If the above inequality holds for κ ∈ R and N ∈ N (or possibly N = +∞), we
will say that the curvature-dimension condition CD(κ, N) is satisfied.

CD in Riemannian formalism

Condition (2.1.6) can be immediately generalised to weighted Riemannian man-
ifolds. Indeed if L = ∆g −∇U · ∇, then for any (regular enough) f ∈ L2(m) it
holds

Γ( f , f ) = |∇ f |2 and Γ2( f , f ) = |∇2 f |2 + RicU(∇ f ,∇ f ),

where the Bakry-Émery Ricci tensor is defined as

RicU := Ricg + Hess(U) .

We refer the reader to [BGL13, Section C.5] where the connection between the
Γ2 operator and the tensor RicU is established as a consequence of the Bochner-
Lichnerowicz formula [BGL13, Theorem C.3.3]. Particularly, the splitting de-
composition of Γ2 allows to immediately deduce that inequality (2.1.6) holds
true for N ≥ dim(M) if and only if it holds

RicU(∇ f ,∇ f ) ≥ κ|∇ f |2 + 1
N
(L f )2 . (CD(κ, N))

For the readers more interested in the geometric aspects of CD(κ, N), let us
mention that the above condition is also equivalent [Vil08, Theorem 14.8] to the
more geometric condition

RicU − ∇U ⊗∇U
N − d

≥ κg, d := dim(M).
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Therefore one could consider κ as a lower bound on the Bakry-Émery Ricci cur-
vature tensor RicU := Ricg + Hess(U), whereas N has to be seen as an upper
bound on the effective dimension of the generator induced by (2.1.1). The term
effective employed here is to remark that this dimension N does not necessar-
ily coincide with the topological dimension of the underlying manifold. For
instance, Rd weighted with the standard Gaussian measure m ∝ exp(−|x|2/2)
satisfies CD(1, ∞) but no CD(κ, N) for κ ∈ R and finite N can be satisfied (be-
cause CD(κ, N) implies that m is locally doubling, which is not the case for the
standard Gaussian).

Consequences of CD

Thorough this thesis we are going to assume that our ambient space (M, d, m)
satisfies a curvature-dimension condition, i.e., that either one of the following
holds

• (M, d, m) satisfies CD(κ, N) for some κ ∈ R and N < +∞, or

• (M, d, m) satisfies CD(κ, ∞) for some κ ∈ R and m(M) = 1.
(CD)

Clearly, as we have already pointed out at (2.1.5), this condition (namely, the
condition CD(0, d)) is met in our landmark classical SP example where we con-
sidered Brownian particles in the Euclidean space Rd.

The above curvature assumption yields many important consequences.
Firstly, it implies Gaussian lower bounds for pt =

dR0,t
d(m⊗m)

. More precisely in
[JLZ16, Theorem 1.1 and Theorem 1.2] it is proven that CD(κ, N) with N < ∞,
implies that for every δ > 0 there exist constants C1, C2 depending only on
κ, N, δ such that it holds

pt(x, y) ≥ 1
C1m(B√

t(x))
exp

(
− d2(x, y)

(4 − δ)t
− C2t

)
(2.1.7)

for all x, y ∈ M and all t > 0. On the other hand, if (M, d,m) satisfies CD(κ, ∞)
with m(M) = 1, then from [Wan11, Corollary 1.3] one can deduce for all posi-
tive t > 0 the Gaussian lower bound

pt(x, y) ≥ exp
(
− κd2(x, y)

2(1 − e−κt)

)
(2.1.8)

for all x, y ∈ M.

Moreover, the curvature-dimension condition guarantees Lipschitz and gra-
dient estimates along the time evolution of the semigroup (Pt)t≥0 associated
to the generator L. Namely, CD(κ, ∞) implies the L∞-Lipschitz regularisation
[AGS14b, Theorem 6.8]√

2E2κ(t)Lip(Ptu) ≤ ∥u∥L∞(m), ∀t > 0, u ∈ L∞(m), (2.1.9)
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where the Lip-norm is defined for any continuous function h ∈ C(M) as

Lip(h) := sup
x ̸=y

|h(x)− h(y)|
d(x, y)

whereas the factor E2κ(t) is defined for any t ≥ 0 as

E2κ(t) :=
∫ t

0
e2κsds =

{
e2κt−1

2κ for κ ̸= 0 ,
t for κ = 0 .

(2.1.10)

Under CD(κ, ∞), Hamilton’s gradient estimate [Ham93, Kot07] (see also [JZ16])
holds true as well, i.e., for any positive u ∈ Lp ∩ L∞(m) for some p ∈ [1, ∞) it
holds

t|∇ log Ptu|2 ≤ (1 + 2κ−t) log
(∥u∥L∞(m)

Ptu

)
. (2.1.11)

On the other hand, when the effective dimension N is finite, the condition
CD(κ, N) is equivalent to the validity of the following gradient commutation
estimate

|∇Ptu|2 ≤e−2κtPt|∇u|2 − 2
N

∫ t

0
e−2κsPs(Pt−sLu)2ds

|∇Ptu|2 ≤e−2κtPt|∇u|2 − 1 − e−2κt

κN
(PtLu)2

(2.1.12)

for any compactly supported smooth function u and for any t ≥ 0, see [Wan11,
Theorem 1.1].

Finally, let us mention a more geometric consequence: CD(κ, N) condition
with N < ∞ entails the Bishop-Gromov inequality (see for instance [Stu06b,
Theorem 2.3]): for any x ∈ supp(m) = M and 0 < r ≤ R ≤ π

√
(N − 1)/κ+,

where (N − 1)/κ+ = +∞ if κ ≤ 0, it holds

m(Br(x))
m(BR(x))

≥



∫ r
0 sin(t

√
κ/(N − 1))N−1dt∫ R

0 sin(t
√

κ/(N − 1))N−1dt
, if κ > 0 ,

(
r
R

)N

, if κ = 0 ,

∫ r
0 sinh(t

√
−κ/(N − 1))N−1dt∫ R

0 sinh(t
√
−κ/(N − 1))N−1dt

, if κ < 0 .

(2.1.13)

The Bishop-Gromov inequality implies a first log-integrability result, which
will later be useful for the existence and uniqueness of solutions to SP.
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Lemma 2.1.1. Let (M, d,m) satisfies CD(κ, N) with N < +∞. Then for any r > 0
and for any measure p ∈ P1(M) with finite first moment, it holds

(logm (Br(·)))+ ∈ L1(p) .

Proof. Assume κ < 0. If we fix x̄ ∈ M and observe that for any x ∈ M we have
Br(x) ⊂ Bd(x,x̄)+r(x̄). Then, (2.1.13) implies

m(Br(x)) ≤ C1m(Br(x̄))
∫ d(x,x̄)+r

0
sinh(t

√
−κ/(N − 1))N−1dt ≤ C2 eC3d(x,x̄),

where C1, C3 only depend on κ, N, r and C2 also depends on x̄. As a conse-
quence,

logm(Br(x)) ≤ log C2 + C3d(x, x̄) (2.1.14)

and therefore (logm (Br(·)))+ ∈ L1(p) for any p ∈ P1(M). In the case κ ≥ 0,
the argument works verbatim, the only difference being in the application of
the Bishop-Gromov inequality.

Finally, let us conclude by stating an important consequence of CD condi-
tion.

Lemma 2.1.2. Assume that (M, d,m) satisfies (CD). The relative entropy functional
H (·|m) is lower semicontinuous with respect to W2-convergence.

Proof. This follows from [Stu06a, Theorem 4.24], which allows to choose W as
Cd2(·, x0) for any x0 ∈ M and C > 0 sufficiently large, in the definition of
relative entropy (1.A.3).

2.2 Structural properties of Schrödinger problem

In order to guarantee existence and uniqueness of solution to SP we are going
to further assume the validity of

A1. The marginals µ, ν ∈ P2(M) have finite second moments and finite relative en-
tropies with respect to the reference equilibrium measure m, i.e.,

H (µ|m), H (ν|m) < +∞ .

Notice that as soon as CD(κ, ∞) holds for some positive κ > 0 and m(M) = 1
and we further assume M2(m) < +∞, then the finite second moments’ assump-
tion can be dropped since Talagrand’s transportation inequality holds [BGL13,
Corollary 9.3.2] and hence for any probability measure p ∈ P(M) with finite
relative entropy H (p|m) it holds

M2(p) ≤ 2(M2(m) + W2
2(p,m)) ≤ 2M2(m) +

4
κ
H (p|m) .
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Let us further point out that in the standard Euclidean setting CD(κ, ∞) with
κ > 0 guarantees m to satisfy the Poincarè inequality with rate 1/κ, which
implies M2(m) < +∞. Henceforth Assumption A1 boils down to asking for
the marginals to have solely finite relative entropies, which is a strictly neces-
sary condition for SP to be well-defined. Indeed the data-processing inequality
(1.A.5) implies that for any coupling π ∈ Π(µ, ν)

H (µ|m), H (ν|m) ≤ H (π|R0,T) ,

where the right hand side ought to be finite for at least one coupling in order to
make SP a well-defined problem.

We are now ready to state the main result of this section. We postpone its
proof after a few remarks and important first consequences.

Theorem 2.2.1. Let (M, d,m) satisfy (CD) and suppose µ, ν satisfy A1. Then SP
admits a unique minimiser πT ∈ Π(µ, ν) and there are two non-negative measurable
functions f , g satisfying

dπT

dR0,T
(x, y) = f (x) g(y) R0,T-a.e. . (2.2.1)

They are m-a.e. unique up to the trivial transformation ( f , g) 7→ (c f , g/c) for some
c > 0 and moreover φ = − log f ∈ L1(µ), ψ = − log g ∈ L1(ν). Finally, f and g
satisfy the Schrödinger system {

µ = f PT gm ,
ν = PT f gm .

(2.2.2)

The splitting decomposition (2.2.1) is often referred to as the fg-decomposition.
For later reference, we will refer to the functions φ ∈ L1(µ), ψ ∈ L1(ν) as to the
Schrödinger potentials and from (2.2.1) we immediately have

dπT

dR0,T
= e−φ⊕ψ R0,T-a.e. . (2.2.3)

Furthermore, let us notice that the Schrödinger potentials (actually their oppo-
sites (−φ), (−ψ)) can be seen as the optimiser of a dual characterisation of SP,
similarly to what happens in the OT setting with the Kantorovich potentials in
(1.2.9). Namely, it holds

Proposition 2.2.2. Assume (M, d,m) satisfies (CD) and suppose the marginals µ, ν
satisfy A1. Then CT(µ, ν) < ∞ and

CT(µ, ν) = sup
α,β∈Mb(M)

{∫
M

α dµ +
∫

M
β dν − log

∫
M×M

eα⊕β dR0,T

}
.

Finally, the supremum is attained at the couple (−φ,−ψ).
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Proof. We have already seen in Theorem 2.2.1 that CT(µ, ν) is finite. Now, from
[Léo01, Proposition 6.1] it follows

CT(µ, ν) = sup
α,β∈Mb(M)

{∫
M

α dµ +
∫

M
β dν −

∫
M×M

(
eα⊕β − 1

)
dR0,T

}

≤ sup
α,β∈Mb(M)

{∫
M

α dµ +
∫

M
β dν − log

∫
M×M

eα⊕β dR0,T

}

= sup
α,β∈Mb(M)

{∫
M×M

(
α ⊕ β

)
dπT − log

∫
M×M

eα⊕β dR0,T

}

≤ sup
h∈Mb(M×M)

{∫
M×M

h dπT − log
∫

M×M
eh dR0,T

}
(1.A.2)
= H

(
πT |R0,T

)
.

Since CT(µ, ν) = H
(
πT |R0,T

)
the above chain of inequalities is a chain of

equivalences and this, combined with (2.2.3), concludes our proof.

Let us also immediately provide here a remarkable consequence of the de-
composition proven in Theorem 2.2.1, which is usually referred to as Pythagoras
Theorem for entropic projections:

Corollary 2.2.3. Let (M, d,m) satisfy (CD), suppose the marginals µ, ν satisfy A1 and
let πT ∈ Π(µ, ν) be the unique optimiser in SP. Then for any coupling π ∈ Π(µ, ν)
with H (π|R0,T) < +∞ it holds

H (π|πT) = H (π|R0,T)−H (πT |R0,T)

Proof. It is enough noticing that Theorem 2.2.1 implies

H (π|πT) =
∫

log
dπ

dπT dπ =
∫ (

log
dπ

dR0,T
− log

dπT

dR0,T

)
dπ

=
∫ (

log
dπ

dR0,T
(x, y) + φ(x) + ψ(y)

)
dπ(x, y) ,

where the last step holds since (2.2.3) holds R0,T-a.e. and hence also π-a.e. (since
H (π|R0,T) < +∞). Moreover, H (π|R0,T) < +∞ and Theorem 2.2.1 implies
that the above summands are all in L1(π) (since φ ∈ L1(µ) and ψ ∈ L1(ν)) and
therefore we have

H (π|πT) =
∫

log
dπ

dR0,T
dπ +

∫
φdµ +

∫
ψdν

=H (π|R0,T)−
∫

log
dπT

R0,T
dπT = H (π|R0,T)−H (πT |R0,T) .
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For sake of clarity we will split the proof of Theorem 2.2.1 in two parts:
firstly we are going to show the existence and uniqueness of the optimal cou-
pling πT and then we will characterise it with the f g-decomposition.

Proof of existence and uniqueness in Theorem 2.2.1. Firstly, let us note that we may
equivalently consider the minimisation problem

inf
Π(µ,ν)

H (·|Rµ
0,T) (2.2.4)

where Rµ
0,T ∈ P(R2d) is defined as Rµ

0,T(dx, dy) := pT(x, y)µ(dx)m(dy). Indeed
it is enough to note that on Π(µ, ν) it holds

H (·|R0,T) = H (µ|m) +H (·|Rµ
0,T) ,

identity which follows from the definition of relative entropy (consider W =
− log dµ/dm in the unbounded σ-finite case). This shows that (2.2.4) and SP
are equivalent and share the same solutions.

Given the above premises, we should prove that (2.2.4) (and hence SP) is
a well-posed problem, i.e., that there exists at least one coupling π ∈ Π(µ, ν)

such that H (π|Rµ
0,T) is finite. Particularly we are going to show that this is the

case for the independent coupling µ ⊗ ν.
In order to prove that, let us derive a lower bound for log pT . First, assume

that (M, d, m) satisfies CD(κ, ∞) for some κ ∈ R and m(M) = 1. From (2.1.8)
we get the lower bound

log pT(x, y) ≥ − κ d2(x, y)
2(eκ T − 1)

, (2.2.5)

which, combined with the trivial inequalities d(x, y)2 ≤ 2(d2(x, z) + d2(y, z))
valid for any z ∈ M and eκ T − 1 ≥ κ T, implies

log pT(x, y) ≥ −d2(x, z)
T

− d2(y, z)
T

. (2.2.6)

On the other hand, if CD(κ, N) holds with N < +∞, then from the heat kernel
lower bound (2.1.7) we obtain

log pT(x, y) ≥ − log
[
C1 m

(
B√

T(x)
)]

− C2 T − d2(x, z)
T

− d2(y, z)
T

. (2.2.7)

In both cases, thanks to Assumption A1 and Lemma 2.1.1 with r =
√

T we
conclude that −

∫
log pT d(µ ⊗ ν) ∈ [−∞,+∞). Therefore we may consider the

well-defined summation

H (µ ⊗ ν|Rµ
0,T) = H (ν|m)−

∫
log pT d(µ ⊗ ν) < +∞ . (2.2.8)
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Now, since Π(µ, ν) is a weakly-closed subset of P(M × M) and H (·|Rµ
0,T)

has weakly-compact level-sets (cf. Lemma 1.A.1), the subset

{π ∈ Π(µ, ν) : H (π|Rµ
0,T) ≤ H (µ ⊗ ν|Rµ

0,T)}

is weakly-compact. Therefore, from the lower-semicontinuity of H (·|Rµ
0,T) and

its strict convexity (cf. Lemma 1.A.1), we may finally deduce that there exists a
unique minimiser πT ∈ Π(µ, ν) such that

H (πT |Rµ
0,T) = inf

Π(µ,ν)
H (·|Rµ

0,T) .

By recalling that SP and (2.2.4) are equivalent, we may finally conclude that πT

is the unique minimiser for SP.

Before proceeding with the remaining part of the proof, let us spend some
lines on the marginals’ constraint π ∈ Π(µ, ν) and how we could already in-
fer the validity of the f g-decomposition from it. Let us start by noticing that
since (M, d) is separable we know that there exists a countable dense family of
bounded measurable functions {ϕi}i∈N and {ψi}i∈N such that

(projx1
)#π = µ ⇔

∫
ϕi(x)dπ(x, y) =

∫
ϕidµ ∀ i ∈ N

and similarly for (projx2
)#π = ν and {ψi}i∈N. Therefore one might approx-

imate SP (or equivalently (2.2.4)), for any finite K ∈ N, with the following
minimisation problem

inf
QK

H (·|Rµ
0,T) , (2.2.9)

where

QK :=
{

π ∈ P(M2) :
∫

ϕi dπ =
∫

ϕi dµ ,
∫

ψi dπ =
∫

ψi dν for all i ≤ K
}

.

Particularly, notice that QK is a convex set and it is defined via a finite num-
ber of linear constraints, in contrast to what happens for Π(µ, ν) where the
marginals’ constraint is an infinite-dimensional one. This allows to deduce,
via Lagrange multipliers, that indeed the density of the unique solution πK of
(2.2.9) can be decomposed as

dπK

dRµ
0,T

∝ exp
( K

∑
i=1

ai ϕi ⊕
K

∑
i=1

bi ψi

)
for some weights ai, bi ∈ R. If we introduce the measurable functions φK :=
−∑K

i=1 ai ϕi ∈ Cb(M) and ψK := −∑K
i=1 bi ψi ∈ Cb(M), then clearly the f g-

decomposition for πK holds with fK := exp(−φK) and gK := exp(−ψK). We
refer the reader to [Nut21, Example 1.18] (which is based on [FS11, Section 3])
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where a more general situation is discussed and where it is proven such de-
composition via Lagrange multipliers. Therefore one possible approach in the
proof of the f g-decomposition in Theorem 2.2.1 would be showing the conver-
gence of the approximated problem (2.2.9) towards SP as K ↑ +∞ and showing
that φK ⊕ ψK converges in L1(πT) to a limit element which belongs to the sum
space L1(µ)⊕ L1(ν). Clearly φK ⊕ ψK ∈ L1(µ)⊕ L1(ν) since it is a continuous
bounded function, therefore it would be enough showing that L1(µ)⊕ L1(ν) is
a closed subspace of L1(πT). This can be done for instance by arguing as in
[RT93, Proposition 1], under some additional regularity assumptions.

The above sketched approach is the one adopted in [Nut21, Section 3]. In
what follows, we are going to present a different approach, namely the one
presented in [Tam17, Proposition 4.1.5] (see also [GT21, Proposition 2.1]), com-
bined with some integrability results coming from [Nut21], which so far is the
most general approach presented in the literature. Let us just mention here
that the closure of L1(µ) ⊕ L1(ν) plays a crucial role for the existence of the
f g-decomposition and indeed also our approach requires an appropriate direct
sum space to be close in L1(πT) (cf. Step 1. in the proof of Lemma 2.B.1).

We may finally proceed with the proof of the f g-decomposition.

Proof of the f g-decomposition in Theorem 2.2.1. Let πT be the unique solution of
SP and let Aµ := {dµ/dm > 0} and Aν := {dν/dm > 0}. Consider the
function spaces

V+ :=
(

L0(M,m|Aµ
)⊕ L0(M,m|Aν

)

)
∩ L1(M2, πT) ,

V0 :={ℓ ∈ L∞(M2, πT) : (projx1
)#(ℓπT) = (projx2

)#(ℓπT) = 0} ,

V⊥
+ :={ℓ ∈ L∞(M2, πT) :

∫
uℓdπT = 0 ∀ u ∈ V+} ,

⊥V0 :={u ∈ L1(M2, πT) :
∫

uℓdπT = 0 ∀ ℓ ∈ V0} .

(2.2.10)

Claim 1. We claim that

dπT

dRµ
0,T

> 0 m⊗m-a.s. on the set Aµ × Aν . (2.2.11)

Assume by contradiction that the above is false and hence, since µ ⊗ ν ∼ m⊗m

on Aµ × Aν, it holds µ ⊗ ν(Z) > 0 where Z := (Aµ × Aν) ∩ {dπT/dRµ
0,T = 0}.

Now, for any δ ∈ (0, 1) consider the probability measure πT,δ ∈ Π(µ, ν) defined
as the convex combination between πT and the independent coupling µ ⊗ ν,
i.e., the probability measure

πT,δ := (1 − δ)πT + δ µ ⊗ ν .
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Then, if we consider the convex function h(a) := a log a, we may deduce that

h
(

dπT,δ

dRµ
0,T

)
≤


h
(

δ
d(µ⊗ν)

dRµ
0,T

)
= h(δ)d(µ⊗ν)

dRµ
0,T

+ δ h
(

d(µ⊗ν)

dRµ
0,T

)
on Z

δ h
(

d(µ⊗ν)

dRµ
0,T

)
+ (1 − δ) h

(
dπT

dRµ
0,T

)
on M2 \ Z

which, combined with the optimality of πT as unique solution of SP, implies
that

0 ≤ lim
δ↓0

H (πT,δ|Rµ
0,T)−H (πT |Rµ

0,T)

δ

= lim
δ↓0

δ−1
∫

h(dπT,δ/dRµ
0,T)− h(dπT/dRµ

0,T)dRµ
0,T

≤H (µ ⊗ ν|Rµ
0,T)−H (πT |Rµ

0,T) + lim
δ↓0

log(δ) µ ⊗ ν(Z) = −∞

which is clearly a contradiction.

Claim 2. We claim that ⊥V0 ⊆ V+. For exposition’s sake we postpone the proof
of this claim to Lemma 2.B.1 in the Appendix.

Claim 3. Next, we claim that log dπT/dR0,T ∈ ⊥V0, i.e., that for any ℓ ∈ V0 it
holds ∫

ℓ h
(

dπT

dR0,T

)
dRµ

0,T =
∫

ℓ log
dπT

dR0,T
dπT = 0 . (2.2.12)

Hence, pick ℓ ∈ L∞(M2, πT) with (projx1
)#(ℓπT) = (projx2

)#(ℓπT) = 0 and
for any δ ∈ (0, ∥ℓ∥−1

L∞(M2,πT)
) consider the variation along ℓ of πT , that is the

coupling probability measure (1 + δ ℓ)πT ∈ Π(µ, ν). Then from the optimality
of πT we may once again deduce that

0 ≤
H ((1 + δ ℓ)πT |Rµ

0,T)−H (πT |Rµ
0,T)

δ

=
1
δ

∫
h
(
(1 + δ ℓ)

dπT

dR0,T

)
− h
(

dπT

dR0,T

)
dRµ

0,T

=
∫ (

ℓh
(

dπT

dR0,T

)
+ δ−1 h(1 + δ ℓ)

dπT

dR0,T

)
dRµ

0,T

≤
∫ (

ℓh
(

dπT

dR0,T

)
+ ℓ (1 + δ ℓ)

dπT

dR0,T

)
dRµ

0,T

where the last step follows from 1+ δℓ > 0 and the standard inequality log(1+
a) ≤ a for any a ∈ (−1,+∞). Since ℓ ∈ L∞(M2, πT) and H (πT |Rµ

0,T) < +∞
the Dominated Convergence Theorem implies that as soon as δ ↓ 0 it holds

0 ≤
∫

ℓh
(

dπT

dR0,T

)
dRµ

0,T +
∫

ℓdπT =
∫

ℓh
(

dπT

dR0,T

)
dRµ

0,T ,
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where the last step follows from the definition of V0 and Fubini’s Theorem.
By considering −ℓ ∈ V0 in the above discussion, the last inequality reads as

an equality, which implies that (2.2.12) holds true for any ℓ ∈ V0. This proves
our third claim.

Conclusion. In order to conclude it is enough combining the second and third
claim which imply that log dπT/dRµ

0,T ∈ V+. Particularly, this guarantees the
existence of two measurable functions φ̄ ∈ L0(M,m|Aµ

) and ψ ∈ L0(M,m|Aν
)

such that log dπT/dRµ
0,T = −φ̄ ⊕ ψ and hence that R0,T-a.e. on Aµ × Aν

dπT

dR0,T
(x, y) =

dπT

dRµ
0,T

(x, y)
dµ

dm
(x) = f (x) g(y) ,

where g := exp(−ψ) and f := exp(−φ̄ + log dµ/dm). Outside Aµ and Aν is
enough extending f and respectively g trivially equal to zero. The uniqueness
part of the claim is also trivial.

Lastly, the (disjoint) integrability of φ and ψ can be discussed as follows.
Indeed the bound H (µ ⊗ ν|Rµ

0,T) < +∞, [Nut21, Corollary 1.13] guarantees
that

φ̄ ⊕ ψ = − log
dπT

dRµ
0,T

∈ L1(µ ⊗ ν)

which combined with Fubini’s Theorem implies φ̄ ∈ L1(µ) and ψ ∈ L1(ν) (see
also [Nut21, Remark 2.22] for a comprehensive discussion on this last step).
Since H (µ|m) < +∞ implies that log dµ/dm ∈ L1(µ) (cf. Lemma 1.A.2) we
can conclude that also φ = φ̄ − log dµ/dm ∈ L1(µ).

Notice that the above f g-decomposition is unique up to a scalar multiplica-
tive factor, or equivalently that the couple of potentials (φ, ψ) is unique up to
additive shift, i.e., (φ, ψ) 7→ (φ + a, ψ − a) for any a ∈ R. Therefore, unless
differently specified, in this thesis we are going to assume the following sym-
metric normalisation∫

φ dµ +H (µ|m) =
∫

ψ dν +H (ν|m) =
1
2
[H (µ|m) +H (ν|m)− CT(µ, ν)] .

(2.2.13)
In most of this thesis we will always deal with marginals that are defined on

unbounded supports. However, we will sometimes perform approximating ar-
guments in our proofs in order to consider bounded and compactly supported
marginals, since this property will be inherited in the f g-decomposition.

Lemma 2.2.4. Let (M, d,m) satisfy (CD), suppose that the two marginals µ, ν satisfy
A1 and that their densities (w.r.t. m) are bounded and compactly supported. Then f , g
considered in Theorem 2.2.1 are in L1(m) ∩ L∞(m).

Moreover, if we further assume that dµ/dm ∈ Ck(M) for some k ∈ N ∪ {∞}
(resp. dν/dm) then the measurable function f (resp. g) also belongs to Ck(M).
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Proof. The boundedness result follows straightforwardly from [GT21, Proposi-
tion 2.1-(ii)] since the Gaussian lower bounds (2.2.6) and (2.2.7), combined with
the bounded densities and bounded supports assumption, guarantee the valid-
ity of the assumptions considered there.

The proof of the Ck(M)-regularity inheritance is given in [GLRT20, Proposi-
tion 2.8-b-(iii)].

In the next chapter we are going to see how the Schrödinger potentials and
their gradients provide good proxies for the optimal transport problem. More
precisely we will show that the Schrödinger map2, which is defined as the mea-
surable map

T T := Id + 2∇φT (2.2.14)

will converge to the optimal transport map T in L2(µ). Therefore it would be
interesting understanding what properties the gradients of the Schrödinger po-
tentials inherit from the marginals (e.g., Lipschitzianity of potentials). The next
theorem gives a first partial result in this direction in the classical Euclidean set-
ting, i.e., when considering the Brownian motion SP (as introduced in (1.2.2))
with the Gaussian measure as reference measure R0,T ∝ exp(−|x − y|2/2T).
We will show that the Schrödinger potentials inherit some convexity from the
log-concavity/convexity of the two marginals. Therefore, let us consider the
following assumption:

A2. Let Uµ, Uν denote the (negative) log-densities of the marginals, i.e., such that

µ(dx) = exp(−Uµ(x))dx , ν(dx) = exp(−Uν(x))dx .

Assume that there exist αν ∈ (0,+∞) and βµ ∈ (0,+∞] such that

∇2Uν ≥ αν and ∇2Uµ ≤ βµ .

The result we are going to prove reads as follows

Theorem 2.2.5. Consider the classical SP in Rd introduced in (1.2.2), with Gaussian
reference R0,T ∝ exp(−|x − y|2/2T). Assume the validity of A1 and A2. Then it holds

∇2ψ ≥ αψ with αψ :=

 1
2

(
αν +

√
α2

ν + 4αν/(βµ T2)

)
− T−1 if βµ < +∞ ,

αν − T−1 for βµ = +∞ .
(2.2.15)

Moreover, if we consider for any t ∈ [0, T] the function UT,ψ
t := − log PT−t exp(−ψ)

then it further holds

∇2UT,ψ
t ≥

αψ

1 + (T − t)αψ
.

2We should point out that T T does not define a transport map between µ and ν since in general
T T

# µ ̸= ν
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We will not prove here this result now since in Chapter 6 we will prove
a more general result that implies this one as a direct consequence (cf. Theo-
rems 6.1.1 and 6.6.1). A direct proof of (2.2.15) can otherwise be found in [CP23],
where the authors provide an entropic proof of Caffarelli’s Theorem (i.e., that
under A2 the optimal transport map T from µ to ν is

√
βµ/αν-Lipschitz). The

approach we are going to employ later in the proof of Theorem 2.2.5 is based
on the study of convexity propagation along Sinkhorn’s algorithm, that is an
iterative algorithm that computes Schrödinger potentials.

2.2.1 Sinkhorn’s algorithm

If we suppose that the marginals admit densities of the form

µ(dx) = exp(−Uµ(x))m(dx) , ν(dx) = exp(−Uν(x))m(dx) , (2.2.16)

then, the Schrödinger system (2.2.2) equivalently reads as{
φ = Uµ + log PT exp(−ψ)

ψ = Uν + log PT exp(−φ) ,
(2.2.17)

where (Pt)t≥0 is the Markov semigroup generated by the SDE (2.1.1).
Then, starting from a given initialisation ψ0, φ0 : Rd → R (usually φ0 = 0

and ψ0 := Uν), one may consider an iterative algorithm that solves (2.2.17) as
a fixed point problem by generating two sequences of potentials {φn, ψn}n∈N,
called Sinkhorn potentials, according to the following recursive scheme:{

φn+1 = Uµ + log PT exp(−ψn)

ψn+1 = Uν + log PT exp(−φn+1) .
(2.2.18)

The above algorithm is known as Sinkhorn’s algorithm or as Iterative Propor-
tional Fitting Procedure (hereafter IPFP). Its convergence has been extensively
studied, specifically for compact spaces or for compactly supported marginals.
We postpone the literature review on the convergence of Sinkhorn’s algorithm
to the bibliographical remarks section in Chapter 6 where we prove its expo-
nential convergence for unbounded costs and unbounded marginals.

Below we are just going to interpret Sinkhorn’s algorithm from the primal
point of view, i.e., when considering the coupling probability measures defined
(by mimicking (2.2.3)) via

dπn+1,n ∝ exp(−φn+1 ⊕ ψn)dR0,T ,

dπn+1,n+1 ∝ exp(−φn+1 ⊕ ψn+1)dR0,T .
(2.2.19)

In the sequel, we will refer to the couplings (πn,n, πn+1,n)n∈N∗ as to Sinkhorn’s
plans. It has been pointed out in [BCC+15] (see also [Nut21, Section 6]) that
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Sinkhorn’s algorithm is a special case of the Bregman’s iterated projection al-
gorithm for the relative entropy functional. Indeed, the sequence of Sinkhorn’s
plans {πn,n, πn+1,n}n∈N∗ satisfies the following recursion:{

πn+1,n := arg minΠ(µ,⋆)H (·|πn,n) ,

πn+1,n+1 := arg minΠ(⋆,ν)H (·|πn+1,n) ,
(2.2.20)

where Π(µ, ⋆) (resp. Π(⋆, ν)) is the set of probability measures π on M × M
such that the first marginal is µ, i.e., (projx)♯π = µ (resp. the second marginal is
ν, i.e., (projy)♯π = ν). The primal formulation of Sinkhorn’s algorithm (2.2.20)
justifies the name Iterative Fitting Procedure, indeed each iterate is chosen by
fitting one marginal constraint in the best possible way i.e., by considering the
entropic projection on the subset P(M × M) that fits one of the two marginals
(cf. Figure 2.1).

Figure 2.1: More precisely, the se-
quence {πn,n}n∈N∗ ⊆ Π(⋆, ν)
is a sequence that always
fits the second marginal con-
straint, whereas the sequence
{πn+1,n}n∈N∗ ⊆ Π(µ, ⋆) always
fits the first marginal. Clearly,
when the algorithm converges
(problem which will be addressed
in Chapters 5 and 6) the limit point
of both sequences will be a cou-
pling between the two marginals,
i.e., an element of Π(µ, ν).

Clearly at each step, as soon as we fit one marginal constraint, we violate
the other one. For this reason we define the adjusted marginals produced along
Sinkhorn’s algorithm as the probability measures

µn := (projx)♯π
n,n and νn := (projy)♯π

n+1,n . (2.2.21)

Lastly, let us remark that Sinkhorn’s iterates may be considered as potentials of
appropriate Schrödinger problems. Indeed, the decomposition given in (2.2.19)
implies that

• the couple (φn+1, ψn) corresponds to a couple of Schrödinger potentials
(as defined in Theorem 2.2.1) associated to the Schrödinger problem with
reference measure R0,T and with marginals µ and νn := (projy)♯π

n+1,n;

• the couple (φn+1, ψn+1) corresponds to a couple of Schrödinger potentials
(as defined in Theorem 2.2.1) associated to the Schrödinger problem with
reference measure R0,T and with marginals µn+1 := (projx)♯π

n+1,n+1 and
ν.
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2.3 Dynamical formulation and optimal control

Under the additional assumption of bounded densities and supports, SP ad-
mits a dynamical formulation. What follows is taken from [GT19], however the
reader should pay attention to the different time-rescaling we have adopted
here in contrast to the choice made there, which eventually leads to different
numerical constants.

Lemma 2.3.1 (Proposition 4.1 in [GT19]). Let (M, d,m) satisfy (CD) and suppose
the marginals µ, ν satisfy A1 and that their densities (w.r.t. m) are bounded and com-
pactly supported. Then it holds

CT(µ, ν) =H (µ|m) +
∫ T

0

∫
|∇ log PT−tg|2 dPT

t dt

=H (ν|m) +
∫ T

0

∫
|∇ log Pt f |2 dPT

t dt ,
(2.3.1)

where f , g are the measurable functions defined at (2.2.1) whereas the probability mea-
sure PT

t = Pt f PT−tgm is the T-entropic interpolation from µ to ν at time t, i.e.,
PT

t = (Xt)#PT .

In [GT19, Proposition 4.1], the dynamical representation formula (2.3.1) for
the entropic cost is actually proven under a CD(κ, N) assumption with N < ∞.
However, the very same argument works also if (M, d,m) satisfies CD(κ, ∞)
and m(M) = 1. Indeed, the proof of [GT19, Proposition 4.1] essentially re-
lies on the regularity and integrability of t 7→ ρt := Pt f PT−tg, t 7→ log Pt f ,
t 7→ log PT−tg (and of their gradients) and these properties can be extended
to the case N = ∞ as follows. As concerns the regularity, given that µ, ν have
bounded densities and supports, the lower bound (2.2.5) on the heat kernel al-
lows to deduce that f , g ∈ L∞(m) with bounded supports too, exactly as in
Lemma 2.2.4. Then the smoothing property of PT entails C∞-regularity, see
[Gri09, Theorem 3.1]. As regards the integrability, what is needed is the exis-
tence of an L1(dt ⊗m)-function dominating, locally in t, t 7→ log(Pt f )ρt, t 7→
log(PT−tg)ρt and t 7→ |∇ log Pt f |2ρt, t 7→ |∇ log PT−tg|2ρt. By the maximum
principle, t 7→ log(Pt f )ρt, t 7→ log(PT−tg)ρt are dominated (up to multiplica-
tive constants) by t 7→ PT−tg and t 7→ Pt f , respectively. As for t 7→ |∇ log Pt f |2,
t 7→ |∇ log PT−tg|2, the desired domination follows from Hamilton’s gradient
estimate (2.1.11) and the bounds on t 7→ log(Pt f )ρt, t 7→ log(PT−tg)ρt.

From the dynamical formulation of Lemma 2.3.1 it is immediate the link
between the f g-decomposition (or equivalently the Schrödinger potentials φ, ψ)
and the stochastic optimal control formulation portrayed in Section 1.3. Indeed,
at least in the Euclidean setting, the first identity in (2.3.1) can be seen as (1.3.3)3

where the control considered is equal to the feedback control

uT
t = ∇ log PT−te−ψ(XuT

t ) . (2.3.2)
3Let us remark here that the missing scaling factor 1/2 in front of the integral in (1.3.3) is due to

the presence of the
√

2 factor in front of the Brownian motion in (2.1.1) considered in this chapter.
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This suggests we should study the function UT,ψ
t (x) := − log PT−te−ψ(x) and

its gradient. We will actually accomplish this in Chapters 5 and 6 in order to
prove the exponential convergence of Sinkhorn’s algorithm. Let us just point
out here that, under some additional regularity assumption on ψ, the function
(UT,ψ

t )t∈[0,T] solves the Hamilton-Jacobi-Bellman equation (HJB){
∂tut + ∆ut −∇U · ∇ut − |∇ut|2 = 0
uT = ψ .

(2.3.3)

Due to the role that ∇UT,ψ
t and ∇UT,φ

t play in Lemma 2.3.1 we call these two
object forward and respectively backward corrector. The study of the behaviour
of their L2-norms will be the starting point of our discussion in Chapter 3.

Finally, the above link with the stochastic optimal control formulation can
indeed be shown to hold, under some geometric regularity assumptions. More
precisely, for the classical SP (i.e., the one considered in Chapter 1 with Brown-
ian motions) it holds

Lemma 2.3.2 (Lemma 4.2 in [Con24]). Assume A1 and A2. Then the Schrödinger
bridge PT ∈ P(Ω) coincides with the law of the process{

dXT
t = −∇UT,ψ

t (XT
t )dt + dBt

XT
0 ∼ µ ,

(2.3.4)

and hence the Schrödinger plan is equal to πT = L(XT
0 , XT

T ).
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Appendix 2

2.A Equivalence with Entropic Optimal Transport
problems

Given any cost function c(·, ·) ∈ L1(µ)× L1(ν) one can always consider the OT
problem

inf
π∈Π(µ,ν)

∫
c(x, y)dπ

and its entropic regularisation

EOTε(µ, ν) := inf
π∈Π(µ,ν)

∫
c(x, y)dπ + ε H (π|µ ⊗ ν) , (2.A.1)

for some regularising positive parameter ε > 0. EOTε(µ, ν) is referred to as the
entropic cost and, when not clear from the context, we will stress its dependence
from the cost function by denoting it with EOTc

ε(µ, ν).
The above problem shares many common properties with SP. The most re-

markable one is that a result similar to our Theorem 2.2.1 holds true also in this
case, i.e., it admits a unique optimiser πε ∈ Π(µ, ν) and its density is of the
form

dπε

d(µ ⊗ ν)
= exp

(
φε ⊕ ψε − c

ε

)
µ ⊗ ν-a.s. (2.A.2)

for two measurable functions φε ∈ L1(µ) and ψε ∈ L1(ν), to whom we refer
as to the (entropic) potentials, and they are unique up to additive shift, i.e.,
(φε, ψε) 7→ (φε + a, ψε − a) for any a ∈ R. Henceforth from now on we tacitly
assume the validity of the symmetric normalisation (as in (2.2.13)) which in the
EOT setting reads as ∫

φε dµ =
∫

ψε dν . (2.A.3)

Similarly to what we have already explained in Section 1.2, the general SP
problem considered in (2.1.3) can also be considered as a generalised EOT prob-
lem. However, in general the dependence from T > 0 is not explicitly given
since pT is only implicitly given. Therefore if in (2.A.1) we consider ε = T and

39
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allow for an ε-dependent cost, namely c = −T log dR0,T
d(µ⊗ν)

, than indeed we have
EOTε(µ, ν) = T CT(µ, ν) and the two problems share the same optimiser πε ≡
πT . Lastly on the dual side we would have the identity T(φT ⊕ψT) = −φε ⊕ψε

between the Schrödinger potentials (φT , ψT), as defined in Theorem 2.2.1, and
the entropic potentials, as defined in (2.A.2). This connection allows to trans-
late results from EOT theory into results in SP theory and viceversa. For an
extensive introduction to EOT problems and their relation with SP, we refer the
reader to the lecture notes [Nut21].

2.B A technical lemma

The proof of the next lemma is taken from [Tam17, Proposition 4.1.5].

Lemma 2.B.1. Consider the assumption of Theorem 2.2.1, and let V and ⊥W be the
function spaces defined at (2.2.10). Then we have ⊥V0 ⊆ V+.

Proof. Let us firstly recall the definition of the function spaces

V+ :=
(

L0(M,m|Aµ
)⊕ L0(M,m|Aν

)

)
∩ L1(M2, πT) ,

V0 :={ℓ ∈ L∞(M2, πT) : (projx1
)#(ℓπT) = (projx2

)#(ℓπT) = 0} ,

V⊥
+ :={ℓ ∈ L∞(M2, πT) :

∫
uℓdπT = 0 ∀ u ∈ V+} ,

⊥V0 :={u ∈ L1(M2, πT) :
∫

uℓdπT = 0 ∀ ℓ ∈ V0} .

For sake of clarity we are going to proceed by steps.

Step 1. We are going to show that V+ is a closed subset of L1(M2, πT).
Firstly, let us argue that u ∈ V+ if and only if u ∈ L1(M2, πT) and for

m⊗4−a.e. (x, x′, y, y′) ∈ A2
µ × A2

ν it holds

u(x, y) + u(x′, y′) = u(x, y′) + u(x′, y) . (2.B.1)

Indeed the only if part is trivial; whereas if we assume the above holds true m⊗4-
a.e. on A2

µ × A2
ν, then Fubini’s Theorem guarantees that there exist (x′, y′) ∈

Aµ × Aν such that m⊗2-a.e. on Aµ × Aν it holds u = u(·, y′) ⊕ (u(x′, ·) −
u(x′, y′)) ∈ V+.

Now, since m|Aµ
⊗m|Aν

≪ πT (cf. (2.2.11)) we deduce that (2.B.1) is a closed

condition also in L1(M2, πT), which proves our claim.

Step 2. Next we show that V⊥
+ ⊆ V0 or equivalently that L∞(M2, πT) \ V0 ⊆

L∞(M2, πT) \V⊥
+ . Hence, let ℓ ∈ L∞(M2, πT) \V0, i.e., without loss of generali-

ties, we may assume that the first marginal measure (projx1
)#(ℓπT) is non-zero.
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If we consider u := d(projx1
)#(ℓπT)/dµ ⊕ 0 ∈ V+, it holds

∫
uℓdπT =

∫ d(projx1
)#(ℓπT)

dµ
d(ℓπT) =

∫ d(projx1
)#(ℓπT)

dµ
◦ projx1

d(ℓπT)

=
∫ d(projx1

)#(ℓπT)

dµ
d(projx1

)#(ℓπT) =
∫ (d(projx1

)#(ℓπT)

dµ

)2

dµ > 0 ,

which implies ℓ ̸∈ V⊥
+ .

Conclusion. Take u ∈ L1(M2, πT) \ V+. Then Hahn-Banach Theorem [Bre10,
Theorem 1.7] guarantees the existence of some ℓ ∈ L1(M2, πT)∗ = L∞(M2, πT)
such that for any ũ ∈ V+ it holds

∫
ũℓdπT = 0 whereas

∫
uℓdπT ̸= 0 (see also

the proof of [Bre10, Corollary 1.8]). This particularly implies ℓ ∈ V⊥
+ ⊆ V0.

Since
∫

uℓdπT ̸= 0 we can finally deduce that u ̸∈ ⊥V0 and therefore that
L1(M2, πT) \ V+ ⊆ L1(M2, πT) \ ⊥V0 or equivalently that ⊥V0 ⊆ V+.
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Chapter 3

Convergence to the Brenier
map

In this chapter we further develop the discussion initiated in Section 1.2 where
we have linked SP with optimal transport theory. Firstly, inspired by the link
with stochastic optimal control, portrayed in Section 1.3, we prove in Section 3.1
some gradient estimates to which we refer to as corrector estimates. Then in
Section 3.2 we analyse the small-time limit of SP (towards OT) and prove our
main result Theorem 3.2.3, i.e., the convergence of the gradients of Schrödinger
potentials towards the Brenier map. Lastly, in Section 3.2.3 we provide some
quantitative convergence rates estimates in the Euclidean setting under the ad-
ditional geometric assumption A2.

3.1 Corrector estimates

In this section we will show how the (CD) condition implies useful gradient
contraction estimates for the Schrödinger potentials. We will refer to them as
corrector estimates, in view of the link with stochastic optimal control problems
described in Section 2.3.

In order to do that we are going to consider, apart from the curvature-
dimension condition (CD) and from A1, that

A3. For p = µ, ν ∈ P(M) it holds either

•
dp
dm

∈ L∞(m) and is compactly supported, or

•
dp
dm

is locally bounded away from zero on int(supp(p)) and

p(∂supp(p)) = 0;

Our proof strategy reads as follows. Firstly, we will assume that the marginals
have compact support and bounded densities, then we will extend it to the case
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in which f , g ∈ L∞(m), and finally to the case when we assume that the second
condition in A3 is satisfied by relying on a finite-dimensional approximation ar-
gument where the second marginal is fixed while the first marginal constraint is
replaced by a finite-dimensional one, similarly to the discussion already given
for (2.2.9). More precisely, since (M, d) is separable, we know that there exists a
countable dense family of bounded measurable functions {ϕi}i∈N such that

(projx1
)#π = µ ⇔

∫
ϕi(x)dπ(x, y) =

∫
ϕidµ ∀ i ∈ N .

Therefore for any fixed K ∈ N we may define the convex and closed (in total
variation) set

Qν
K :=

{
π ∈ P(M2) : (projx2

)#π = ν ,
∫

ϕi(x)dπ(x, y) =
∫

ϕidµ for all i ≤ K
}

and then consider the associated minimisation problem

inf
π∈Qν

K

H (π|R0,T) . (3.1.1)

With the next lemma we show that the above problem is well posed and gives
an approximation of SP.

Lemma 3.1.1. Let (M, d,m) satisfy (CD) and suppose that the marginals µ, ν satisfy
A1. Then the above minimisation problem (3.1.1) admits a unique optimiser πK ∈ Qν

K,
whose density is given by

dπK

dR0,T
(x, y) = fK(x) gK(y) with fK = C exp

(
K

∑
i=1

λi ϕi

)
∈ L∞(m) (3.1.2)

for some constant C > 0 and multipliers λi ∈ R. Moreover, gK converges m-
a.e. to g and PT fK converges m-a.e. to PT f on supp(ν). Finally, the optimal value
H (πK|R0,T) converges to CT(µ, ν) as K ↑ +∞.

Proof. The existence and uniqueness of the minimizer πK ∈ Qν
K is guaran-

teed by [Nut21, Proposition 1.17]1 Moreover, from the same reference we have
πT ≪ πK and

πK → πT in total variation and H (πK|R0,T) → H (πT |R0,T) = CT(µ, ν) .
(3.1.3)

Let us now prove (3.1.2). Firstly, notice that if we introduce the marginal µK :=
(projx1

)#πK, then it immediately follows that πK ∈ Π(µK, ν) ⊆ Qν
K is the

unique optimiser of the Schrödinger problem with marginals µK, ν and clearly

1Let us just point out here that this result applies to settings where the reference R0,T is a proba-
bility measure. When this is not the case, one can consider the probability measure Rν

0,T(dx, dy) :=
pT(x, y)m(dx)ν(dy) and argue as we already did in the proof of Theorem 2.2.1.
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CT(µ
K, ν) = H (πK|R0,T). Owing to (3.1.3), H (µK|m) ≤ H (πK|R0,T) is even-

tually finite for K large enough and therefore Theorem 2.2.1 yields the exis-
tence of two positive measurable functions fK, gK such that R0,T-a.e. it holds
dπK

dR0,T
(x, y) = fK(x) gK(y) with log fK ∈ L1(µK) and log gK ∈ L1(ν). Then, in

view of the additive property of the relative entropy (1.A.4) we may write for
all π ∈ Qν

K

H (π|R0,T) = H (ν|m) +
∫

H
(

π(·|projx2
= y)|mPT(y)

)
dν(y) ,

where mPT(y) = R0,T(·|projx2
= y) ∈ P(M) is the probability measure whose

density is given by pT(x, y)dm(x). Henceforth, if y 7→ πK(dx|y) ∈ P(M) de-
notes the stochastic kernel associated to πK = πK(dx|y) ⊗ ν(dy) when con-
ditioning on the second variable, for any fixed y ∈ supp(ν) the probability
measure πK(dx|y) clearly minimises

inf
q∈QK(y)

H (q|mPT(y))

with QK(y) :=
{
q ∈ P(M) :

∫
ϕidq =

∫
ϕidπK(·|y) for all i ≤ K

}
.

The existence and uniqueness of solution in the above problem, for any fixed
y ∈ supp(ν), are once again ensured by [Nut21, Proposition 1.17]. Moreover,
by arguing as in [Nut21, Example 1.18] for any fixed y ∈ supp(ν) we can write

dπK(·|y)
d(mPT(y))

(x) = c(y) exp

(
K

∑
i=1

bi(y)ϕi(x)

)
for some constants c(y) > 0 and bi(y) ∈ R, possibly depending on y. By com-
bining the above expression, the fK, gK-decomposition and the Schrödinger sys-
tem associated to CT(µ

K, ν) (cf. (2.2.2) in Theorem 2.2.1) we deduce that

fK(x)gK(y) =
dπK

dR0,T
(x, y) =

d(πK(·|y)⊗ ν)

d(mPT ⊗m)
(x, y) =

dν

dm
(y)

dq∗(y)
d(mPT(y))

(x)

= gK(y)PT fK(y) c(y) exp

(
K

∑
i=1

bi(y)ϕi(x)

)
.

Henceforth, for any y ∈ supp(ν) it holds

fK(x) = PT fK(y) c(y) exp

(
K

∑
i=1

bi(y)ϕi(x)

)
and since the above left-hand side does not depend on the choice of y, we may
choose a fixed y∗ ∈ supp(ν) and write

fK(x) = PT fK(y∗) c(y∗) exp

(
K

∑
i=1

bi(y∗)ϕi(x)

)
∈ (0,+∞) .
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This proves (3.1.2) with C := PT fK(y∗) c(y∗) and λi := bi(y∗).
Finally, we claim that we can fix a renormalisation for the decomposition

fK, gK (which is unique up to a multiplicative constant) such that gK converges
m-a.e. to g. In order to do so, note that the convergence in total variation in
(3.1.3) implies that (along a non-relabelled subsequence)

fK(x)gK(y) =
dπK

dR0,T
(x, y) → dπT

dR0,T
(x, y) = f (x)g(y), R0,T-a.e.

and a fortiori m⊗m-a.e., thanks to the (CD) assumption and the Gaussian lower
bounds (2.2.5) and (2.2.7). If A ⊆ M × M denotes the subset where the latter
limit holds pointwise and Ac its complement, then m⊗m(Ac) = 0 and Fubini’s
Theorem implies that for m-a.e. x ∈ M it holds m(Ac

x) = 0, where the section is
defined as Ax := {y : (x, y) ∈ A}. Combining this with µ ≪ m we deduce that
there exists an element x∗ ∈ int(supp(µ)) such that f (x∗) ̸= 0 and m(Ac

x∗) = 0.
We have therefore proven that

fK(x∗)gK(y) → f (x∗)g(y) for m-a.e. y. (3.1.4)

By renormalising the fK, gK-decomposition such that fK(x∗) = f (x∗) ∈ (0,+∞),
(3.1.4) reads as

gK → g m-a.e.

As a direct consequence of this and (2.2.2) we get the m-a.e. convergence of
PT fK to PT f on supp(ν), since the marginal ν is always the same at each step
K ∈ N.

Thanks to the previous result, we are finally able to prove contraction gra-
dient estimates for the Scrhödinger potentials.

Proposition 3.1.2 (Corrector estimates). Let (M, d,m) satisfy (CD), suppose the
marginals µ, ν satisfy A1 and let f , g be as in Theorem 2.2.1 and satisfying the nor-
malisation (2.2.13). Then, if dν

dm is locally bounded away from 0 on int(supp(ν)) and
ν(∂supp(ν)) = 0 it holds

∥∇ log PT f ∥2
L2(ν) ≤

1
E2κ(T)

[
CT(µ, ν)−H (ν|m)

]
, (3.1.5)

where E2κ is defined as in (2.1.10). In particular, it is part of the statement the fact that
log PT f ∈ W1,2

loc (int(supp(ν))) with |∇ log PT f | ∈ L2(ν).
Similarly, if dµ

dm is locally bounded away from 0 on int(supp(µ)) and if it holds
µ(∂supp(µ)) = 0, then log PT g ∈ W1,2

loc (int(supp(µ))) with |∇ log PT g| ∈ L2(µ)
and it holds

∥∇ log PT g∥2
L2(µ) ≤

1
E2κ(T)

[
CT(µ, ν)−H (µ|m)

]
. (3.1.6)

In particular, both (3.1.5) and (3.1.6) hold true if the marginals satisfy A3.
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Proof. We will only prove inequality (3.1.5), as (3.1.6) follows by completely
analogous techniques.

As a preliminary step, let us assume that µ, ν have bounded supports and
bounded densities dµ

dm , dν
dm . Under this extra hypothesis, it holds∫

|∇ log PT f |2 dν ≤ e−2κ(T−t)
∫

|∇ log Pt f |2 dPT
t , (3.1.7)

where we recall that PT
t = Pt f PT−tgm is the T-entropic interpolation from µ to

ν at time t. If (M, d,m) satisfies CD(κ, N) with N < ∞, this is a consequence
of Grönwall lemma applied to the functions α(t) :=

∫
|∇ log Pt f |2 dPT

t and
β(t) := e2κ(T−t) ∫ |∇ log PT f |2 dν, as on the one hand by [Con19, Lemmas 3.6
and 3.7] together with [GT21, Proposition 4.8] (which justifies the computations
of [Con19, Lemmas 3.6 and 3.7] in the non-compact and possibly negatively
curved setting) we have

α ∈ C1((0, T]) and α′(t) ≤ −2κα(t), ∀t ∈ (0, T] (3.1.8)

while on the other hand it is readily verified that β′ = −2κβ; since α(T) = β(T),
it must hold α(t) ≥ β(t) for all t ∈ (0, T], namely (3.1.7).

If instead (M, d,m) satisfies CD(κ, ∞) and m(M) = 1, the reader should refer
to [CT21, Lemma 2.2]: this grants the validity of (3.1.8) for

αδ(t) := cδ

∫
|∇ log(Pt f + δ)|2 (Pt f + δ)(PT−tg + δ)dm,

where δ > 0 is any positive number and cδ is a normalisation constant, so that
cδ(Pt f + δ)(PT−tg + δ)m is a probability measure. By considering

βδ(t) := e2κ(T−t)
∫

|∇ log(PT f + δ)|2 (PT f + δ)g dm ,

by the same argument as before we obtain αδ(t) ≥ βδ(t) for all t ∈ (0, T] and
δ > 0, whence (3.1.7) by passing to the limit as δ ↓ 0 by the Dominated Conver-
gence Theorem. Indeed, note first that

|∇ log(Pt f + δ)|2(Pt f + δ)(PT−tg + δ) =
|∇Pt f |2
Pt f + δ

(PT−tg + δ)

≤ |∇ log Pt f |2Pt f (PT−tg + δ) ≤ C(κ, t)(Pt f )| log Pt f |(PT−tg + 1)

where the last inequality is due to Hamilton’s gradient estimate (2.1.11), C(κ, t)
being some constant that only depends on κ, t. Then, since from Lemma 2.2.4
we know that f , g ∈ L∞(m), by the maximum principle we deduce that the
previous right-hand side is bounded, hence integrable as m(M) = 1, and thus
provides an admissible dominating function.

Now, by multiplying by e2κ(T−t) and integrating over t ∈ [0, T] in (3.1.7) we
deduce that

E2κ(T)
∫

|∇ log PT f |2 dν ≤
∫ T

0

∫
|∇ log Pt f |2 dPT

t dt = CT(µ, ν)−H (ν|m) ,
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where the identity is justified by the dynamical formulation of SP in Lemma 2.3.1.
Inequality (3.1.5) is thus proved, as well as the last part of the statement.

Now let us remove the additional assumptions on µ, ν in a two-steps proce-
dure.

1st step. In addition to A1, assume that µ, ν are such that the associated f , g ∈
L∞(m). Then fix x̄ ∈ M and introduce fn := 1Bn(x̄) f , gn := 1Bn(x̄)g, so that
(3.1.5) holds true for

µn := cn fnPT gn m and νn := cngnPT fn m,

where cn is a normalisation constant (note that by self-adjointness of PT it is the
same for both measures µn and νn). Namely∫

|∇ log PT fn|2 dνn ≤ 1
E2κ(T)

[
CT(µn, νn)−H (νn|m)

]
.

Observing that |∇ log PT fn| ≥ |∇ log(PT fn + δ)| for any δ > 0, the inequality
above implies in particular that∫

|∇ log(PT fn + δ)|2 dνn ≤ 1
E2κ(T)

[
CT(µn, νn)−H (νn|m)

]
(3.1.9)

for all δ > 0. Let us now pass to the limit as n → ∞.
To this end, observe first that Pt fn → Pt f and PT gn → PT g pointwise as

n → ∞. Indeed

|PT fn(x)− PT f (x)| =
∣∣∣∣ ∫ (1Bn(x̄)(y)− 1

)
f (y)pT(x, y)dm(y)

∣∣∣∣
≤ ∥ f ∥L∞

∫
|1Bn(x̄)(y)− 1|pT(x, y)dm(y)

and the right-hand side vanishes as n → ∞ by dominated convergence. This
allows to handle the right-hand side of (3.1.9) in the following way. As concerns
the term CT(µn, νn), on the one hand,∫

log fn dµn ≤
∫

log f dµn =
∫
(log f )+ dµn −

∫
(log f )− dµn

≤ cn

∫
(log f )+ dµ −

∫
(log f )− dµn,

where we have used fn ≤ f and, as a consequence of the maximum principle,
also PT gn ≤ PT g. This implies that

lim sup
n→∞

∫
log fn dµn ≤

∫
(log f )+ dµ − lim inf

n→∞

∫
(log f )− dµn

≤
∫
(log f )+ dµ −

∫
(log f )− dµ =

∫
log f dµ,
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since cn → 1 and fn PT gn → f PT g pointwise (as already discussed before)
together with Fatou Lemma. On the other hand, one can show in an analogous
fashion that

lim sup
n→∞

∫
log gn dνn ≤

∫
log g dν.

Since
CT(µn, νn) =

∫
log fn dµn +

∫
log gn dνn + log cn,

we conclude that
lim sup

n→∞
CT(µn, νn) ≤ CT(µ, ν). (3.1.10)

Secondly, as regards H (νn|m), note that gnPT fn → gPT f m-a.e. together with
gnPT fn ≤ gPT f ∈ L1(m) entails gnPT fn → gPT f in L1(m) by dominated con-
vergence, whence νn ⇀ ν. Moreover, as n → ∞ it holds

|M2(νn)− M2(ν)| ≤
∣∣∣∣ ∫ d2(·, x̄)dνn −

∫
d2(·, x̄)gnPT fn dm

∣∣∣∣
+

∣∣∣∣ ∫ d2(·, x̄)gnPT fn dm−
∫

d2(·, x̄)dν

∣∣∣∣
≤ (cn − 1)M2(ν) +

∫
d2(·, x̄)

∣∣∣∣ gnPT fn

gPT f
− 1
∣∣∣∣dν → 0 ,

again by cn → 1 and dominated convergence (recall indeed that ν ∈ P2(M) by
A1 and gnPT fn ≤ gPT f , so that gnPT fn

gPT f ∈ [0, 1]). Therefore W2(νn, ν) → 0 and, by
lower semicontinuity of the entropy w.r.t. W2-convergence (cf. Lemma 2.1.2),

lim sup
n→∞

(
−H (νn|m)

)
≤ −H (ν|m). (3.1.11)

Passing to the left-hand side of (3.1.9), fix k ∈ N and note that for all n ≥ k we
have ∫

|∇ log(PT fn + δ)|2 dνn ≥ 1
ck

∫
|∇ log(PT fn + δ)|2 dνk

=
1
ck

∫
B̄k(x̄)

|∇ log(PT fn + δ)|2 dνk,

since cn ≥ 1. We now claim that |∇ log(PT fn + δ)| ⇀ G in L2(B̄k(x̄), νk) for
some G such that |∇ log(PT f + δ)| ≤ G. To this end, observe that by the L∞-
Lipschitz regularisation (2.1.9) it holds |∇PT fn| ≤ CT,κ∥ fn∥L∞(m), where CT,κ
only depends on T and κ given by (CD). Since fn ≤ f , this implies

∫
B̄k(x̄)

|∇ log(PT fn + δ)|2 dm ≤
C2

T,κ

δ2 m(Bk(x̄))∥ f ∥2
L∞(m).

The functions (|∇ log(PT fn + δ)|)n∈N are thus equi-bounded in L2(B̄k(x̄),m)
and this implies that, up to subsequences, they converge to some function
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G ∈ L2(B̄k(x̄),m) weakly in L2(B̄k(x̄),m). Since log(PT fn + δ) converges m-
a.e. to log(PT f + δ), by [AGS14a, Lemma 4.3(b)] |∇ log(PT f + δ)| ≤ G. As
for |∇ log(PT fn + δ)| ⇀ G in L2(B̄k(x̄), νk), this directly follows from the weak
convergence in L2(B̄k(x̄),m) and the fact that, under the current assumptions,
dν
dm ∈ L∞(m). Combining the claim with the lower semicontinuity of the L2(νk)-
norm w.r.t. weak convergence we obtain

lim inf
n→∞

∫
B̄k(x̄)

|∇ log(PT fn + δ)|2 dνk ≥
∫

B̄k(x̄)
G2dνk

≥
∫

B̄k(x̄)
|∇ log(PT f + δ)|2 dνk.

From this inequality, (3.1.10) and (3.1.11) we end up with

1
ck

∫
B̄k(x̄)

|∇ log(PT f + δ)|2 dνk ≤
1

E2κ(T)

[
CT(µ, ν)−H (ν|m)

]
and it is now sufficient to let first k → ∞ and then δ ↓ 0. In both cases, the
monotone convergence theorem (and the fact that ck → 1) allows to handle the
left-hand side and finally get the validity of (3.1.5) for µ, ν.

2nd step. Now let µ, ν be as in A1 and assume that dν
dm is locally bounded

away from 0 on int(supp(ν)) and ν(∂supp(ν)) = 0. Fix K ∈ N, let fK, gK be
defined as in Lemma 3.1.1 and let µK := (projx1

)#πK be the first marginal of the
optimizer πK associated to (3.1.1). Since this approximation guarantees us only
that fK ∈ L∞(m), let us fix n ∈ N and define gn

K := min{gK, n} ∈ L∞(m) so that
the previous step applies to the marginals

µK
n := cK,n fKPT gn

K m and νK
n := cK,ngn

KPT fK m,

where cK,n is a normalization constant (again, this is the same for both µK
n and

νK
n ). Henceforth, in this case (3.1.5) reads as∫

|∇ log PT fK|2 dνK
n ≤ 1

E2κ(T)

[
CT(µ

K
n , νK

n )−H (νK
n |m)

]
.

Owing to algebraic manipulations, the normalising constant cK,n can be ne-
glected and therefore it holds∫

|∇ log PT fK|2 gn
KPT fK dm

≤ 1
E2κ(T)

[∫
fK log fK PT gn

K dm−
∫

PT fK log(PT fK) gn
K dm

]
.

Since by Lemma 3.1.1 fK is bounded away from 0 and ∞, it follows that log fK ∈
L1(µK) and log(PT fK) ∈ L1(ν). From this, by applying Fatou Lemma to the left-
hand side and the Dominated Convergence Theorem to the right-hand one, in
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the limit as n → ∞ we have∫
|∇ log PT fK|2 gKPT fK dm

≤ 1
E2κ(T)

[∫
fK log fK PT gK dm−

∫
PT fK log(PT fK) gK dm

]
,

which is the corrector estimate (3.1.5) associated to CT(µ
K, ν):∫

|∇ log PT fK|2 dν ≤ 1
E2κ(T)

[
CT(µ

K, ν)−H (ν|m)

]
. (3.1.12)

We wish now to take the limit as K → ∞. However this point is more subtle,
since we are interested in proving that ∇ log PT f is well defined also in the
limit. At this stage, let us stress out that the extra-assumption on the density
dν
dm and on supp(ν) has never been used and it is just needed in the following
discussion. First, notice that the right-hand side above is uniformly bounded in
K ∈ N since Lemma 3.1.1 ensures that CT(µ

K, ν) = H (πK|R0,T) converges to
CT(µ, ν). As concerns the left-hand side, fix x̄ ∈ int(supp(ν)). By assumption
there exist r, α > 0 such that B̄r(x̄) ⊂ supp(ν) and dν

dm ≥ α m-a.e. in B̄r(x̄), so
that, for any fixed δ > 0 it holds∫

|∇ log PT fK|2 dν ≥
∫

|∇ log(PT fK + δ)|2 dν ≥ α
∫

B̄r(x̄)
|∇ log(PT fK + δ)|2 dm.

As a byproduct of these bounds we have

lim sup
K→∞

∫
B̄r(x̄)

|∇ log(PT fK + δ)|2 dm ≤ α−1 E2κ(T)−1
[
CT(µ, ν)−H (ν|m)

]
,

which is finite. The functions (|∇ log(PT fK + δ)|)K∈N are thus equi-bounded
in L2(B̄r(x̄),m) and this implies that, up to subsequences, they converge to
some function Gx̄ ∈ L2(B̄r(x̄),m) weakly in L2(B̄r(x̄),m). Moreover, from
Lemma 3.1.1 we also have that log(PT fK + δ) converges m-a.e. to log(PT f + δ)
in B̄r(x̄). Therefore, relying again on [AGS14a, Lemma 4.3(b)] we conclude
that |∇ log(PT f + δ)| ≤ Gx̄ on B̄r(x̄). In particular, it is worth stressing that in
this case [AGS14a, Lemma 4.3(b)] also ensures that log(PT f + δ) ∈ W1,2(B̄r(x̄)),
which does not follow from the regularising effect of PT , because of the possible
lack of integrability of f .

To replicate the proof given in the previous step we also need to show that
|∇ log(PT fK + δ)| ⇀ Gx̄ in L2(B̄r(x̄), ν), but this may fail, as dν

dm needs not
belong to L∞(m). For this reason, let us introduce [ν]N := min{gKPT fK, N}m
for N ∈ N, so that the left-hand side of (3.1.12) can be trivially estimated from
below as∫

|∇ log PT fK|2 d[ν]N ≤
∫

|∇ log PT fK|2 dν ≤ 1
E2κ(T)

[
CT(µ

K, ν)−H (ν|m)

]
.
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Since now d[ν]N
dm ∈ L∞(m) by construction, the weak convergence |∇ log(PT fK +

δ)| ⇀ Gx̄ in L2(B̄r(x̄),m) implies the weak convergence towards the same limit
in L2(B̄r(x̄), [ν]N). Combining these considerations with the lower semiconti-
nuity of the L2([ν]N)-norm, we obtain

lim inf
K→∞

∫
B̄r(x̄)

|∇ log(PT fK + δ)|2 d[ν]N ≥
∫

B̄r(x̄)
G2

x̄d[ν]N

≥
∫

B̄r(x̄)
|∇ log(PT f + δ)|2 d[ν]N

whence∫
B̄r(x̄)

|∇ log(PT f + δ)|2 d[ν]N ≤ 1
E2κ(T)

[
CT(µ, ν)−H (ν|m)

]
.

Choosing now (xk)k∈N ⊂ int(supp(ν)) dense and denoting by rk the radii asso-
ciated to each xk according to the previous construction, so that int(supp(ν)) =
∪k B̄rk (xk), by a diagonal argument there exists a measurable function G ∈
L2

loc(m) such that |∇ log(PT fK + δ)| ⇀ G in L2(B̄rk (xk),m) and L2(B̄rk (xk), [ν]N)
for every k ∈ N and, by [AGS14a, Lemma 4.3(b)], |∇ log(PT f + δ)| ≤ G
m-a.e since log(PT fK + δ) → log(PT f + δ) m-a.e. in supp(ν). Setting Bk :=
∪k

i=1B̄ri (xi), by the same reasoning as above (noting that the choice of N does
not depend on the point xk) we obtain for any k ∈ N that it holds∫

Bk

|∇ log(PT f + δ)|2 d[ν]N ≤ 1
E2κ(T)

[
CT(µ, ν)−H (ν|m)

]
.

Taking the limit as k → ∞, by ν(∂supp(ν)) = 0 we infer that |∇ log(PT f + δ)|
actually belongs to L2([ν]N). Passing then to the limit as N → ∞ and δ ↓ 0,
by monotonicity and again the fact that ν(∂supp(ν)) = 0 we precisely obtain
(3.1.5) for µ, ν as in the statement.

Notice that, when κ > 0 the above estimates state that as T ≫ 1 the corrector
norms decrease exponentially fast

∥∇ log PT g∥L2(µ) , ∥∇ log PT f ∥L2(ν) ≲ exp(−2κT) .

Combining this with the heuristic discussion of Section 2.3 suggests that the
L2-norm of the optimal control process in the control formulation of SP (as in
Section 1.3) is actually exponentially small as T increases, at least in the first
half of the time window, i.e., in [0, T/2]. This would mean that the optimal
control initially does not steer the controlled diffusion (2.3.4) to the final target
ν, but actually let the diffusion process reach on its own its ergodic limit (the
equilibrium measure m) and then, just at the end (let’s say after time t = T/2),
the optimal control starts drifting the diffusion process from the equilibrium
towards its final target ν. This suggests the name corrector estimates we have
adopted for Proposition 3.1.2.
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The behaviour we have just suggested is often referred to as turnpike property
in the (deterministic) control community. Historically, in the stochastic control
setting, the corrector estimates have been firstly studied in the long-time limit
of SP in order to establish entropic turnpike estimates for Schrödinger bridges
[Con19, Theorem 1.4]. In this chapter we have generalised such results and we
are going to show that such estimates prove to be a useful sharp tool also when
dealing with the small-time limit for SP.

Let us conclude this section, by showing that, at least under the CD(κ, ∞)
condition, the corrector estimates can be deduced as a corollary of the reverse
log-Sobolev inequality [BGL13, Theorem 5.5.2 (v)] which states that for any pos-
itive function h and any t ≥ 0 it holds

Pt(h log h)− (Pth) log(Pth) ≥ E2κ(t)
|∇Pth|2

Pth
. (3.1.13)

Indeed it is enough noticing that

∥∇ log PT f ∥2
L2(ν) =

∫ |∇PT f |2
(PT f )2 dν

(2.2.2)
=

∫ |∇PT f |2
PT f

g dm

(3.1.13)
≤ 1

E2κ(T)

∫
g
[

PT( f log f )− (PT f ) log(PT f )
]

dm

=
1

E2κ(T)

[∫
(PT g)( f log f )dm−

∫
g (PT f ) log(PT f )dm

]
(2.2.2)
=

1
E2κ(T)

[∫
log f dµ −

∫
log(PT f )dν

]
.

Since πT ∈ Π(µ, ν) and log g ∈ L1(ν), we end up with

∥∇ log PT f ∥2
L2(ν) ≤

1
E2κ(T)

[∫
M×M

log( f (x)g(y))dπT(x, y)−
∫

M
log(gPT f )dν

]
=

1
E2κ(T)

[
CT(µ, ν)−H (ν|m)

]
.

This proves (3.1.5). The estimate (3.1.6) can be proven in a similar fashion.

3.2 Small-time asymptotics of Schrödinger problem

In this section we are going to show that the gradients of Schrödinger potentials
provide good proxies for the gradients of Kantorovich potentials and Brenier’s
map for the Optimal Transport problem.

For notations’ clarity, we are going to stress out the dependence from the
time parameter T > 0 and denote with φT , ψT and f T , gT respectively the
Schrödinger potentials and the f g-decomposition associated to CT(µ, ν), i.e.,
when considering the time horizon T > 0.
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3.2.1 Primal and zero-th order dual convergence results

Firstly, let us collect here known convergence results on primal and zero-th or-
der dual formulations of SP. As we have already explained in Section 1.2 the
link between SP and OT, in the classical Brownian motion case, relies on the
key observation that T log pT(x, y) ∝ |x − y|2 (up to normalising additive con-
stant, cf. (1.2.4)). Remarkably the (CD) condition allows the validity of a similar
estimate, at least in the asymptotics T ↓ 0, even for general diffusion reference
processes such as (2.1.1). More precisely, [Nor97, Theorem 1.1] states that uni-
formly on compact subsets of M × M it holds

T log pT(x, y)
T↓0−→ − 1

4
d2(x, y) . (3.2.1)

This guarantees indeed the Γ-convergence of (rescaled) SP towards OT, and
particularly that it holds (cf. [GT21, Remark 5.11] for CD(κ, N), or Remark 3.2.2
below for CD(κ, ∞))

lim
T↓0

T CT(µ, ν) =
1
4

W2
2(µ, ν) . (3.2.2)

We refer the reader to the bibliographical remarks at the end of this chapter
for further references on the primal zero-th order convergence results. Inde-
pendently from those references, our discussion below will provide a proof of
(3.2.2) (cf. Remark 3.2.2).

Similarly, (3.2.1) implies the validity of convergence results also on the dual
zero-th order side, i.e., the convergence of the (rescaled) Schrödinger potentials
{−TφT}T∈(0,1] and {−TψT}T∈(0,1]. More precisely the (rescaled) potentials will
converge, up to subsequences, to some limit measurable functions known as
Kantorovich potentials, which are defined as the solution of the dual formula-
tion of OT2

1
4

W2
2(µ, ν) = sup

φ∈L1(µ), ψ∈L1(ν) : φ⊕ψ≤ 1
4d

2(·,·)

(∫
φ dµ +

∫
ψ dν

)
. (3.2.3)

We will denote the optimiser of the above problem, i.e., the Kantorovich poten-
tials, with φ0 and ψ0, in complete analogy with the notation adopted for the
Schrödinger potentials. Notice that any additive shift of couple of Kantorovich
potentials, i.e.(φ0, ψ0) 7→ (φ0 + a, ψ0 − a) for any a ∈ R, is again an optimiser
for (3.2.3). Hence it is wise to impose a symmetric normalisation (as done in
(2.2.13) for φT and ψT), which reads as∫

φ0 dµ =
∫

ψ0 dν =
1
8

W2
2(µ, ν) . (3.2.4)

2The presence of the unconventional factor 1/4 comes from the choice of considering
√

2 dBt
in the reference dynamics (2.1.1), which corresponds to the conventional choice of considering the
(CD) condition for the Laplace Beltrami operator ∆g in the generator L (instead of having ∆g/2 or
∆g/4).
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As concerns (φ0, ψ0), due to the lack of regularity of the OT problem (3.2.3),
even after the normalisation (3.2.4) uniqueness of the Kantorovich potentials
may fail, in contrast to what happens for the Schrödinger potentials. Some
results in this direction are known for some specific examples, for instance in
the Euclidean case if at least one marginal is absolutely continuous with respect
to the Lebesgue measure and if its support is connected then uniqueness holds
[BGN22, Appendix B]. Finally, let us mention that the Brenier map is tightly
linked to the Kantorovich potentials since under our assumptions it holds T =
Id− 2∇φ0 [Fig07, Proposition 3.1], [FG11, Theorem 1.1] (see also the discussion
therein).

The convergence proof that we present here relies on [NW22, Proposition
5.1], where the authors consider EOT problems with time-dependent costs.
Here we will consider either cT(x, y) := −T log pT(x, y) or c̃T := −T log dR0,T

d(µ⊗ν)

as in Section 2.A. While the latter choice would guarantee that (−T φT , −T ψT)
are exactly equal to the entropic potentials (associated to c̃T), it is in general
more convenient working with cT because of the dynamical interpretation of
the cost as transition kernel of the associated SDE (2.1.1). The reader must then
pay attention to the fact that the entropic potentials associated to cT , which
will be denoted as ΦT and ΨT (and satisfying the symmetric normalisation
(2.A.3)), differ from the previous ones. Similarly, the EOT optimal value will
differ, though the two problems share the same optimiser. Indeed

c̃T(x, y) = cT(x, y) + T log ρ(x) + T log σ(y),

and therefore it holds

EOTcT
T (µ, ν) = T CT(µ, ν)− T H (µ|m)− T H (ν|m) (3.2.5)

and
−TφT = ΦT + T log ρ and − TψT = ΨT + T log σ . (3.2.6)

After this premise, let us show the zero-th order convergence in the dual
formulation, i.e., the strong convergence of the Schrödinger potentials (possibly
along a subsequence) towards Kantorovich potentials.

Lemma 3.2.1 (L1-convergence of the potentials). Assume that (M, d,m) satisfies
(CD) and that µ, ν satisfy A1. Then it holds:

• {ΦT}T∈(0,1] and {ΨT}T∈(0,1] are strongly precompact in L1(µ) and L1(ν) re-
spectively and their accumulation points are Kantorovich potentials (φ0, ψ0) for
(3.2.3);

• or equivalently, {−TφT}T∈(0,1] and {−TψT}T∈(0,1] are strongly precompact
in L1(µ) and L1(ν) respectively and their accumulation points are Kantorovich
potentials (φ0, ψ0) for (3.2.3).
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If the Kantorovich potentials (φ0, ψ0) associated to (3.2.3) are unique, then it holds

ΦT → φ0 strongly in L1(µ) and ΨT → ψ0 strongly in L1(ν) ,

and equivalently

−TφT → φ0 strongly in L1(µ) and − TψT → ψ0 strongly in L1(ν) .

Proof. Firstly, notice that the equivalence between the statements follows from
(3.2.6) and the finite entropy condition in A1. By [NW22, Proposition 5.1], to
obtain the desired convergence for ΦT and ΨT it is sufficient to show that cT :=
−T log pT → d2/4 uniformly on compact subsets as T → 0 (which is (3.2.1))
and that there exists a function c(x, y) = c1(x) + c2(y) with c1 ∈ L1(µ) and
c2 ∈ L1(ν) such that cT ≤ c for all T sufficiently small, say T ≤ 1.

Under the CD(κ, N) condition with N < ∞, using the heat kernel lower
bound (2.1.7) and assuming without loss of generality that T ≤ 1, so that
logm(B√

T(x)) ≤ logm(B1(x)), we see that

cT(x, y) ≤ T log C1 + T logm(B√
T(x)) +

d2(x, y)
4 − δ

+ C2T2

≤ T log C1 + (T logm(B1(x)))+ +
d2(x, y)

4 − δ
+ C2T2.

By the trivial inequality d2(x, y) ≤ 2(d2(x, z) + d2(y, z)) valid for any z ∈ M we
conclude that cT(x, y) ≤ c′T(x) + c′′T(y) with

c′T(x) := (T logm(B1(x)))+ +
2

4 − δ
d2(x, z) ,

c′′T(y) := T log C1 +
2

4 − δ
d2(y, z) + C2T2 .

By the fact that ν ∈ P2(M), it is clear that c′′T can be dominated by a ν-integrable
function not depending on T. As regards c′T it follows from µ ∈ P2(M) and
Lemma 2.1.1 which gives the µ-integrability of the positive part of logm(B1(·)).

On the other hand, if we assume that (M, d,m) satisfies CD(κ, ∞) and that
m(M) = 1, then leveraging on the heat kernel lower bound (2.1.8) we see that

cT(x, y) ≤ κT
2(1 − e−κT)

d2(x, y)

and in this case the trivial inequality d2(x, y) ≤ 2(d2(x, z) + d2(y, z)), valid
for any z ∈ M, readily provides us with functions c′T , c′′T which are µ- and ν-
integrable respectively.

Therefore we can apply [NW22, Proposition 5.1], which concludes our proof.

Remark 3.2.2. Let us mention that the previous result gives as a direct consequence a
new proof of the small-time limit of the normalised Schrödinger cost, that is, under the
same assumptions of Lemma 3.2.1 we have proven the validity of (3.2.2).



3.2. SMALL-TIME ASYMPTOTICS OF SCHRÖDINGER PROBLEM 57

3.2.2 Convergence of the gradients to the Brenier map

Even though in general we may not assume the uniqueness of (normalised)
Kantorovich potentials, reason why in Lemma 3.2.1 we couldn’t straightfor-
wardly deduce L1-convergence for the full sequences, when working with the
gradients uniqueness of the limits holds. More precisely, we will show the
L2(µ)-convergence of the Schrödinger map T T = Id + 2T∇φT towards the
the Brenier map T = Id − 2∇φ0, whose uniqueness indeed holds under our
assumptions (cf. [Fig07, Proposition 3.1], [FG11, Theorem 1.1] and discussion
therein). We will prove this for marginals with finite Fisher information (w.r.t.
m), which is defined for any p ∈ P(M) as

I(p) :=
∥∥∥∥∇ log

dp
dm

∥∥∥∥2

L2(p)
=
∫ ∣∣∣∣∇ log

dp
dm

∣∣∣∣2 dp . (3.2.7)

Theorem 3.2.3. Suppose (M, d,m) satisfies (CD) and that A1 holds true. If dµ
dm is lo-

cally bounded away from 0 on int(supp(µ)), if µ(∂ supp(µ)) = 0 and if the Fisher in-
formation I(µ) is finite, then the Schrödinger map T T from µ to ν converges strongly
in L2(µ) to the Brenier map from µ to ν in the small-time limit. Equivalently, there are
(φ0, ψ0) Kantorovich potentials such that as T ↓ 0

−T∇φT → ∇φ0 strongly in L2(µ) .

A similar result holds for T∇ψT under the corresponding assumptions on ν.

Proof. For the readers’ convenience we divide our proof into four steps.

1st step: weak compactness of the gradients in L2(µ). From the identity µ =

f PT gm we deduce that log dµ/dm = −φT −UT,ψ
0 , where UT,ψ

0 := − log PTe−ψT

and hence∥∥∥T∇φT
∥∥∥

L2(TM,µ)
=
∥∥∥T∇ log ρ + T∇UT,ψ

0

∥∥∥
L2(TM,µ)

≤ T ∥∇ log ρ∥L2(TM,µ) + T
∥∥∥∇UT,ψ

0

∥∥∥
L2(TM,µ)

.

The correctors estimate (3.1.6) allows to control the last term as∥∥∥∇UT,ψ
0

∥∥∥2

L2(TM,µ)
≤ 1

E2κ(T)

[
CT(µ, ν)−H (µ|m)

]
whence

∥T∇φT∥L2(TM,µ) ≤ T
√
I(µ) +

√
T

E2κ(T)

√
T CT(µ, ν)− T H (µ|m).

This inequality together with the fact that limT↓0
E2κ(T)

T = 1, limT↓0 TCT(µ, ν) =
1
4 W2

2(µ, ν) (cf. Remark 3.2.2) and I(µ) < +∞ implies that

lim sup
T→0

∥∥∥T∇φT
∥∥∥

L2(TM,µ)
≤ W2(µ, ν)

2
. (3.2.8)
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Therefore, the sequence {T∇φT}T>0 is weakly compact in L2(µ).

2nd step: weak convergence of the gradients in L2(µk). Fix k ∈ N and define
ρk := min{dµ/dm , k}, µk := ρkm (note that µk needs not to be a probability
measure). We claim that for any k (large enough) and for any weakly conver-
gent subsequence of {T∇φT}T>0 there exist a Kantorovich potential φ0 and a
subsubsequence Tn ↓ 0 such that Tn∇φTn ⇀ −∇φ0 in L2(TM, µk).

Firstly, note that for any subsequence of {T∇φT}T>0, we can consider the
corresponding subsequence of {TφT}T>0 and deduce from Lemma 3.2.1 that
there exist a Kantorovich potential φ0 ∈ L1(µ) and a subsubsequence Tn ↓ 0
such that Tn φTn → −φ0 strongly in L1(µ), and a fortiori in L1(µk) because
µk ≤ µ trivially. Moreover, the family {T∇φT}T>0 is weakly compact also in
L2(TM, µk). Hence, given a subsequence of {T∇φT}T>0 weakly converging to
some ζk ∈ L2(TM, µk) there exists Tn ↓ 0 such that

−Tn φTn → φ0 in L1(µk) and Tn∇φTn ⇀ ζk in L2(TM, µk) . (3.2.9)

Our claim is proven once we show that the weak limit ζk actually does not
depend on k and coincides with the weak gradient −∇φ0 m-a.e.

To this end, fix x ∈ int(supp(µ)). By assumption there exists an open neigh-
bourhood B ⊂ supp(µ) of x and a constant c > 0 such that ρ = dµ/dm ≥ c
m-a.e. on B. Without loss of generality, we can assume that B = B(x, r) for
some radius r > 0. In this way compactness in L2(B, µ) implies compactness in
L2(B,m) and, a fortiori, in L2(B, vol), since m = e−Uvol and c′ ≤ e−U ≤ C′ on
B for some constants c′, C′ > 0. More explicitly,

c′T2
∫

B

∣∣∣∇φT
∣∣∣2 dvol ≤ T2

∫
B

∣∣∣∇φT
∣∣∣2 dm ≤ T2

c

∫
B

∣∣∣∇φT
∣∣∣2 dµ

≤ 1
c

∥∥∥T∇φT
∥∥∥2

L2(µ)

(3.2.10)

and the right-hand side is uniformly bounded in T by (3.2.8).
Now, inspired by the proof of [BK08, Proposition 2.14], we observe that the

Neumann Laplacian on the smooth compact Riemannian manifold with bound-
ary (B, g, vol|B) has a spectral gap (see e.g. [GHL04]). This is equivalent to the
fact that vol|B satisfies a Poincaré inequality, whence in particular

∫
B

∣∣∣TφT
∣∣∣2 dvol ≤

( ∫
B

TφT dvol
)2

+ CP

∫
B

∣∣∣T∇φT
∣∣∣2 dvol

for some constant CP > 0. Note that the first term on the right-hand side is
uniformly bounded in Tn, since by the fact that ρk ≥ c (provided k ≥ c) and
c′vol ≤ m ≤ C′vol m-a.e. in B, (3.2.9) implies Tn φTn → −φ0 in L1(B, vol), so
that (

∫
B Tn φTn dvol)2 converges to (

∫
B φ0 dvol)2 as Tn ↓ 0. The second one is

bounded as well by (3.2.10). Hence we obtain compactness in L2(B, vol) for the
subsequence {Tn φTn}n∈N.
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As a consequence, there exist a non-relabelled subsequence and a limit ele-
ment ξ ∈ L2(B, vol) such that Tn φTn ⇀ ξ in L2(B, vol). On the other hand, by
(3.2.9) we know that Tn φTn → −φ0 in L1(µk). This implies that ξ = −φ0 µk-a.s.
on B and, as a byproduct, that

Tn φTn ⇀ −φ0 in L2(B, vol) (3.2.11)

without passing to a subsequence. Indeed let us consider an arbitrary non-
negative ϕ ∈ C∞

c (B), so that ϕ ∈ L1 ∩ L∞(B, vol), and start observing that∣∣∣∣∫B
ϕ(φ0 + ξ)dvol

∣∣∣∣ ≤ ∣∣∣∣∫B
ϕ(φ0 + Tn φTn)dvol

∣∣∣∣+ ∣∣∣∣∫B
ϕ(ξ − Tn φTn)dvol

∣∣∣∣ .

The second term vanishes since Tn φTn ⇀ ξ in L2(B, vol). As for the first one,
note that ∣∣∣∣∫B

ϕ(φ0 + Tn φTn)dvol
∣∣∣∣ ≤ ∥ϕ∥∞

∫
B

∣∣∣φ0 + Tn φTn
∣∣∣ dvol

≤ 1
c′
∥ϕ∥∞

∫
B

∣∣∣φ0 + Tn φTn
∣∣∣ dm

≤ 1
cc′

∥ϕ∥∞

∫
B

∣∣∣φ0 + Tn φTn
∣∣∣ dµk

≤ 1
cc′

∥ϕ∥∞

∥∥∥φ0 + Tn φTn
∥∥∥

L1(µk)

where for the second and third inequality we have used once more that m ≥
c′vol and ρk ≥ c m-a.e. on B respectively. Hence, from Tn φTn → −φ0 in L1(µk)
it follows the weak convergence Tn φTn ⇀ −φ0 in L2(B, vol), without passing
to any subsubsequence.

Now we are ready to prove the claim of this second step. Let us take β ∈
C∞

c (B, TM) and observe that the assumption I(µ) < ∞ can be equivalently
restated as ∇√

ρ ∈ L2(TM,m). As a consequence, and by definition of ρk,
∇√

ρk ∈ L2(TM,m) too and this fact together with ρk ≤ k justifies the validity
of the chain rule ∇ρk = ∇((

√
ρk)

2) = 2
√

ρk∇
√

ρk and proves that |∇ρk| ∈
L2(B,m), whence the applicability of the integration by parts formula, so that

T
∫
⟨∇φT , β⟩dµk = −T

∫
φTdiv(β)dµk − T

∫
φT⟨β,∇ρk⟩dm .

On the one hand, for the left-hand side we know that

lim
Tn↓0

Tn

∫
⟨∇φTn , β⟩dµk =

∫
⟨ζk, β⟩dµk =

∫
⟨ρk ζk, β⟩dm .

As concerns the right-hand side, the fact that div(β) is bounded in B and the
strong convergence in (3.2.9) ensure that

lim
Tn↓0

Tn

∫
φTn div(β)dµk = −

∫
φ0div(β)dµk = −

∫
φ0ρk div(β)dm .
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For the limit of the second term, ⟨β,∇ρk⟩ ∈ L2(m) together with supp(β) ⊂ B,
e−U/2 ≤

√
C′ in B and TφT ⇀ −φ0 in L2(B, vol), proved in (3.2.11) above,

allow us to deduce that

lim
Tn↓0

Tn

∫
φTn⟨β,∇ρk⟩dm = −

∫
φ0⟨β,∇ρk⟩dm.

Hence, after rearrangement,∫
φ0ρk div(β)dm =

∫
⟨ρk ζk, β⟩dm−

∫
φ0⟨β,∇ρk⟩dm

=
∫
⟨β, ρk ζk − φ0 ∇ρk⟩dm,

which means that ∇(φ0ρk) = φ0∇ρk − ρk ζk on B by definition of weak gradi-
ent.

To conclude that ζk = −∇φ0 on B, recall that ρk ∈ W1,2(B). Using the lower
bound ρk ≥ c m-a.e. on B, by chain rule we get that also ρ−1

k ∈ W1,2(B) and
therefore, by Leibniz rule,

∇φ0 = ∇(φ0ρk · ρ−1
k ) =

∇(φ0ρk)

ρk
+ φ0ρk∇(ρ−1

k ) = −ζk m-a.e. on B.

Since B was obtained starting from an arbitrary x ∈ int(supp(µ)), we conclude
that ζk = −∇φ0 m-a.e. in int(supp(µ)) and therefore, up to changing the weak
limit on a µ-null set we have proven that

Tn∇φTn ⇀ −∇φ0 in L2(TM, µk) . (3.2.12)

3rd step: weak convergence of the gradients in L2(µ). We now claim that the
result above can be improved to

Tn∇φTn ⇀ −∇φ0 in L2(TM, µ) .

To this end, fix β ∈ L2 ∩ L∞(TM, µ) and start observing∣∣∣∣ ∫ ⟨Tn∇φTn +∇φ0, β⟩dµ

∣∣∣∣ ≤ ∣∣∣∣Tn

∫
⟨∇φTn , β⟩(ρ − ρk)dm

∣∣∣∣
+

∣∣∣∣ ∫ ⟨Tn∇φTn +∇φ0, β⟩dµk

∣∣∣∣+ ∣∣∣∣ ∫ ⟨∇φ0, β⟩(ρ − ρk)dm
∣∣∣∣ .

Recalling that W2(µ, ν) = 2
∥∥∇φ0

∥∥
L2(TM,µ) (see [AGS14a, Theorem 10.3], pay-

ing attention to the different rescaling), we see that the third term on the right-
hand side vanishes as k → ∞ by dominated convergence theorem. As concerns
the first one, let us first estimate it as follows∣∣∣∣Tn

∫
⟨∇φTn , β⟩(ρ − ρk)dm

∣∣∣∣ ≤ Tn

∫
|⟨∇φTn , β⟩|

(
1 − ρk

ρ

)
dµ

≤∥β∥∞

∫
Tn|∇φTn |

(
1 − ρk

ρ

)
dµ ≤ ∥β∥∞∥Tn∇φTn∥L2(TM,µ)

∥∥∥1 − ρk
ρ

∥∥∥
L2(µ)
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and then observe that ∥Tn∇φTn∥L2(TM,µ) is bounded as Tn ↓ 0 by (3.2.8), while∥∥∥1 − ρk
ρ

∥∥∥
L2(µ)

→ 0 as k → ∞ by dominated convergence. This allows to deduce

that, given ε > 0 there exists k′ independent of Tn so that∣∣∣∣ ∫ ⟨Tn∇φTn +∇φ0, β⟩dµ

∣∣∣∣ ≤ ∣∣∣∣ ∫ ⟨Tn∇φTn +∇φ0, β⟩dµk′

∣∣∣∣+ 2ε.

Taking now the limit as Tn ↓ 0, the right-hand side converges to 2ε by (3.2.12)
and the arbitrariness of ε together with the density of L2 ∩ L∞(TM, µ) as sub-
space of L2(TM, µ) allows to conclude that Tn∇φTn ⇀ −∇φ0 in L2(TM, µ) as
claimed.

4th step: strong convergence of the gradients in L2(µ). The previous step
and the uniqueness of the Brenier map T = Id − 2∇φ0 grant that the whole
sequence of gradients converges

T∇φT ⇀ −∇φ0 in L2(TM, µk) , ∀k ∈ N,

which automatically implies

lim inf
T→0

∥∥∥T∇φT
∥∥∥

L2(TM,µk)
≥
∥∥∥∇φ0

∥∥∥
L2(TM,µk)

.

Recalling again that W2(µ, ν) = 2
∥∥∇φ0

∥∥
L2(TM,µ), we deduce from (3.2.8) that

lim
T→0

∥∥∥T∇φT
∥∥∥

L2(TM,µ)
=
∥∥∥∇φ0

∥∥∥
L2(TM,µ)

.

Since in a Hilbert space such as L2(TM, µ) weak convergence plus convergence
of the norm implies strong convergence, we obtain the desired conclusion.

Remark 3.2.4. The previous proof runs exactly in the same way if we consider the en-
tropic potentials (ΦT , ΨT) instead of the rescaled Schrödinger potentials (TφT , TψT).
Moreover, the weak compactness in the first step can be proven without assuming finite
Fisher information I(µ), since

∥T∇ΦT∥L2(µ) =
∥∥∥T∇φT + T∇ log dµ/dm

∥∥∥
L2(µ)

= T
∥∥∥∇UT,ψ

0

∥∥∥
L2(µ)

.

However, even though we are considering the entropic potentials (ΦT , ΨT), the as-
sumption of finite Fisher information I(µ) < +∞ is needed in the second step where
we identify the weak limit of {∇ΦTn}n∈N with ∇φ0.

Corollary 3.2.5. Under the same assumptions of Theorem 3.2.3, if µ satisfies a Poincaré
inequality, then the convergence of the potentials in Lemma 3.2.1 holds true also in
L2(µ).
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3.2.3 Quantitative convergence of gradients

In this last section we are going to show how functional inequalities, combined
with Theorem 2.2.5 and Lemma 2.3.2, can be employed when proving quantita-
tive convergence rates for the gradients in the classical SP setting. Remarkably,
this problem is tightly linked with the suboptimality of the Schrödinger plan
πT for the OT problem (1.2.7).

Theorem 3.2.6 (Suboptimality of πT for W2). Assume A1, A2 and that µ ∈
P2+δ(R

d) for some δ > 0. Let πT ∈ Π(µ, ν) be the Schrödinger plan for the classical
SP (1.2.2). Then, there exists a constant Cµ > 0 (depending on µ and δ > 0) such that∫

|x − y|2 dπT − W2
2(µ, ν)

≤


T
[

2 Ent(ν) + d log
(

32π Cµ

d

√
1 + βµ

αν

)
+ d
]

if βµ ≤ αν,

T
[

2 Ent(ν) + d log
(

32π Cµ

d
βµ

αν

√
1 + βµ

αν

)
+ d
]

if αν < βµ < +∞,

2 d T log (1/T) + O(T) if βµ = +∞.

Before proving this result, let us briefly explain the role of the constant Cµ,
as well as the role of the finite 2 + δ-moment assumption for the marginal µ.

In our proof strategy we are going to rely on explicit convergence rates for
EOT towards OT as the parameter T vanishes (that is a quantitative version of
what we have shown in (3.2.2)). To this end, we will apply [EN22a, Theorem
3.8] that requires the OT plan π0 to satisfy a quantisation property, which can
be summarised as being well-approximated by probability measures supported
on a finite number of points. More precisely, we say that a measure p ∈ P(X )
satisfies the quantisation property with constant C ≥ 0 and rate α > 0 if for all
n ≥ 1 we have

∃ pn ∈ Pn(X ) : W2(p
n, p) ≤ C n−α , (quant2(C, α))

where Pn(X ) is the set of probability measures on X supported on at most n
points. A nice property of (quant2(C, α)) is that its validity is preserved along
Lipschitz transport maps, i.e., if p satisfies (quant2(C, α)) and T is a Lipschitz
transformation, then the pushforward T#p satisfies (quant2(C, α)) with the same
rate α > 0 and with constant C Lip(T ).

Notice that under A2, Caffarelli’s contraction Theorem guarantees that the
OT map T is

√
βµ/αν-Lipschitz (see also [CP23]). As a consequence of this,

since π0 = (Id,T )#µ, if the first marginal µ satisfies (quant2(C, α)), then π0

does as well with same rate and with constant C
√

1 + βµ/αν.
Therefore, in order to apply [EN22a, Theorem 3.8] we just need the first

marginal to satisfy (quant2(C, α)). If we further assume that µ has finite 2 + δ-
moment (for some positive δ > 0) than a proof of this can be found in [GL00,
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Theorem 6.2], where the authors prove (quant2(C, α)) for α = 1/d and (asymp-
totic) constant

Cµ := lim
n→∞

n1/d inf
µn∈Pn(Rd)

W2(µ
n, µ) . (3.2.13)

See also [GL00, Corollary 6.7] for non-asymptotic explicit bounds for Cµ (with
dependence from δ and from the 2 + δ-moment of µ).

In conclusion, A2 and µ ∈ P2+δ(R
d) guarantee that the OT plan π0 sat-

isfies (quant2(C, α)) with rate α = 1/d and constant C = Cµ
√

1 + βµ/αν and
therefore they further guarantee the validity of [EN22a, Theorem 3.8].

Proof of Theorem 3.2.6. Firstly, let us recall that according to Lemma 2.3.2 we can
consider the stochastic interpretation πT = L(XT

0 , XT
T ) where

{
dXT

t = −∇UT,ψT

t (XT
t )dt + dBt

XT
0 ∼ µ .

(3.2.14)

Therefore we can immediately deduce that

∫
|x − y|2 dπT = E[|XT

0 − XT
T |2] = E

[∣∣∣∣− ∫ T

0
∇UT,ψT

t (XT
t )dt + BT

∣∣∣∣2
]

= T + E

[∣∣∣∣∫ T

0
∇UT,ψT

t (XT
t )dt

∣∣∣∣2
]
− 2 E

[
BT ·

∫ T

0
∇UT,ψT

t (XT
t )dt

]
,

(3.2.15)

where the expectation is taken under the law PT of the process (3.2.14). Next,

since (UT,ψT

t )t∈[0,T] solves HJB (2.3.3)3, a straightforward application of Ito’s

formula shows that (∇UT,ψT

t (XT
t ))t∈[0,T] is a martingale (cf. [Con24, Proof of

Theorem 2.1]) and satisfies

d∇UT,ψT

t (XT
t ) = ∇2UT,ψT

t (XT
t )dBt .

As a consequence of this, and from the independence between XT
0 and the

3Pay attention that here we consider Brownian motions, therefore there is no drift, i.e., U = 0
and there is a factor 1/2 in front of the Laplacian.



64 CHAPTER 3. CONVERGENCE TO THE BRENIER MAP

Brownian motion, the last term in (3.2.15) can be rewritten as

E

[
BT ·

∫ T

0
∇UT,ψT

t (XT
t )dt

]
= T E

[
BT · ∇UT,ψT

0 (XT
0 )
]
+ E

[
BT ·

∫ T

0

∫ t

0
∇2UT,ψT

s (XT
s )dBs dt

]
=
∫ T

0
E

[
(BT − Bt) ·

∫ t

0
∇2UT,ψT

s (XT
s )dBs

]
dt

+
∫ T

0
E

[∫ t

0
dBs ·

∫ t

0
∇2UT,ψT

s (XT
s )dBs

]
dt

=
∫ T

0

∫ t

0
E

[
Tr(∇2UT,ψT

s (XT
s ))

]
ds dt

where the last step follows from the independence between the Brownian in-

crement BT − Bt and (∇2UT,ψT

s (XT
s ))s∈[0,t] and Ito Isometry. Therefore, so far

we have shown that∫
|x − y|2 dπT

= T + E

[∣∣∣∣∫ T

0
∇UT,ψT

t (XT
t )dt

∣∣∣∣2
]
− 2

∫ T

0

∫ t

0
E

[
Tr(∇2UT,ψT

s (XT
s ))

]
ds dt .

(3.2.16)

Now, observe that Jensen’s inequality implies that

E

[∣∣∣∣∫ T

0
∇UT,ψT

t (XT
t )dt

∣∣∣∣2
]
≤ T E

[∫ T

0
|∇UT,ψT

t (XT
t )|2 dt

]
= 2 T H (PT |RT

µ)

= 2 T H (πT |µ ⊗ pT)
(3.2.17)

with RT
µ ∈ P(Ω) being the law of a Brownian motion started with distri-

bution µ, pT(·, ·) being the corresponding heat kernel and hence µ ⊗ pT =
(X0, XT)#RT

µ ∈ P(Rd × Rd). Then we may rewrite the above right hand side as

2 T H (πT |µ ⊗ pT)

= 2 T H (πT |µ ⊗ ν) + 2 T H (µ ⊗ ν|µ ⊗ Leb)− 2 T
∫

log
d(µ ⊗ pT)

d(µ ⊗ ν)
dπT

= 2 T H (πT |µ ⊗ ν) + 2 T Ent(ν)− 2 T
∫

log pT(x, y)dπT(x, y)

= 2 T H (πT |µ ⊗ ν) + 2 T Ent(ν)− d T log
(

1
2πT

)
+
∫

|x − y|2 dπT

= θ EOTd2/θ
2T/θ(µ, ν) + 2 T Ent(ν)− d T log

(
1

2πT

)
,

(3.2.18)
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where θ > 0 is some fixed parameter (to be determined later) whereas the term
EOTd2/θ

2T/θ(µ, ν) is the entropic cost as defined in (2.A.1) when considering the
cost function c(x, y) = |x − y|2/θ. Then, the above algebraic manipulation
allows us to rely on [EN22a, Theorem 3.8] that guarantees that it holds

EOTd2/θ
2T/θ(µ, ν)− 1

θ
W2

2(µ, ν) ≤ d T
θ

log
(

θ

2T

)
+ T

32 Cµ

θ2

√
1 + βµ/αν , (3.2.19)

where Cµ > 0 is the quantisation constant as introduced in (3.2.13).
By combining (3.2.17) and (3.2.18) with (3.2.19) we get

E

[∣∣∣∣∫ T

0
∇UT,ψT

t (XT
t )dt

∣∣∣∣2
]

≤ W2
2(µ, ν) + T

[
2 Ent(ν) + d log(θπ) +

32 Cµ

θ

√
1 + βµ/αν

]
,

and from (3.2.16), by minimising over θ > 0 we conclude that

∫
|x − y|2 dπT − W2

2(µ, ν) ≤ T
[

2 Ent(ν) + d log
(

32π Cµ

d

√
1 +

βµ

αν

)
+ d
]

−2
∫ T

0

∫ t

0
E

[
Tr(∇2UT,ψT

s (XT
s ))

]
ds dt .

Now, recall that Theorem 2.2.5 states that for any t ∈ [0, T] the following
lower-bound holds

∇2UT,ψT

t ≥
αψT

1 + (T − t)αψT

with αψT =

 1
2

(
αν +

√
α2

ν + 4αν/(βµ T2)

)
− T−1 if βµ < +∞ ,

αν − T−1 for βµ = +∞ .

(3.2.20)

Therefore if αν ≥ βµ (which forces the OT map T to be 1-Lipschitz), then αψT

is non-negative and henceforth ∇2UT,ψT

t ≥ 0 for any t ∈ [0, T]. This is enough
to conclude the proof when αν ≥ βµ.

On the contrary when αν < βµ, then eventually for T small enough (i.e., for
T < α−1

ν − β−1
µ ) we have αψT < 0. In this case(3.2.20) gives uniformly in x ∈ Rd

Tr(∇2UT,ψT

t (x)) ≥
d αψT

1 + (T − t)αψT
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from which we may deduce that

−2
∫ T

0

∫ t

0
E

[
Tr(∇2UT,ψT

s (XT
s ))

]
ds dt ≤ −2 d

∫ T

0

∫ t

0

αψT

1 + (T − s)αψT
ds dt

= − 2 d T log(1 + T αψT ) + 2 d
∫ T

0
log(1 + (T − t)αψT )dt

≤ − 2 d T log(1 + T αψT ) = −2 d T log
(

T αν

2
+

√
T2 α2

ν

4
+

αν

βµ

)

≤
{

2 d T log
√

βµ

αν
= d T log(βµ/αν) if βµ < +∞ ,

2 d T log(1/(Tαν)) if βµ = +∞ .

This concludes the proof.

Remark 3.2.7. En passant, by combining (3.2.18), (3.2.19) and again minimising over
θ > 0 we have actually shown that

T CT(µ, ν)− 1
2

W2
2(µ, ν) = T H (PT |R0,T)−

1
2

W2
2(µ, ν)

= T Ent(µ) + T H (PT |RT
µ)−

1
2

W2
2(µ, ν)

≤ T
[

Ent(µ) + Ent(ν) +
d
2

log
(

32π Cµ

d

√
1 +

βµ

αν

)
+

d
2

]
,

which is a first quantitative version of the zero-th order convergence (3.2.2).
This shows that the mismatch between the Schrödinger cost and the (squared)

Wasserstein distance is of order T, unlike what happens for the EOT cost where the
convergence is slower (of order T log(1/T), cf. [EN22a]). Nevertheless, in the previ-
ous theorem we have shown that the suboptimality of the SP/EOT plan πT w.r.t. the
OT problem once again is of order T (at least when β < +∞).

We would like to stress that our proof strategy clearly explains this difference be-
tween orders of convergence. Indeed, the correct order of convergence is T, that is the
one that captures the suboptimality of πT . Then, when applying the quantisation esti-
mates [EN22a], we get an extra factor of the order T d log(1/T) which comes from the
fact that π0 satisfies (quant2(C, α)) with rate α = 1/d. This latter term is slower and
dominates the convergence rate of EOT towards OT.

Remarkably, when considering the Schrödinger cost the extra factor T d log(1/T)
coming from the quantisation perfectly matches the normalising constant coming from
the partition function of the Gaussian (cf. (1.2.5)), which is missing in the EOT for-
mulation.

This suggests that even for more general EOT problems the convergence rate ob-
tained in [EN22a] is affected from the normalising constant of the reference measure
R ∝ exp(−c/ε) and that therefore it might be more interesting analysing the subopti-
mality rate for the optimal entropic plan, instead of focusing solely on the costs.
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We are finally ready to prove the quantitative convergence of the gradients
of Schrödinger potentials. Our approach relies on an explicit expression avail-
able in the Brownian motion case that reads as

∇ log PTe−ψT
(x) = T−1

∫
(y − x)π

x,ψT

T (dy) (3.2.21)

where

π
x,ψT

T (dy) ∝ exp
(
−|x − y|2/2T − ψT(y)

)
dy

is the conditional law of the Schrödinger plan πT , i.e.

πT(dxdy) = µ(dx)⊗ π
x,ψT

T (dy) . (3.2.22)

We will provide a proof of (3.2.21) (under some additional regularity assump-
tions in Proposition 6.A.2 in Chapter 6). For now, we refer the reader to [Con24,
Proposition 5.2] where the above identity is proven by further assuming that

∃ γ, ε > 0 s.t.
∫

exp(γ|x|1+ε)dµ < +∞ ; (3.2.23)

assumption required there in order to justify the differentiation under integral
sign. Notice that (3.2.23) is met for a wide class of marginals (e.g., asymptot-
ically log-concave marginals, cf. Lemma 6.A.1) and that this further guaran-
tees µ ∈ P2+δ. Let us also mention here that µ ∈ P2(R

d) satisfying A2 with
βµ < +∞ guarantees the Fisher information I(µ) to be finite. Therefore the
assumptions of Theorem 3.2.3 are met in what follows.

Theorem 3.2.8. Assume A1, A2 with βµ < +∞ and further assume (3.2.23).∥∥∥(−T∇φT)−∇φ0
∥∥∥2

L2(µ)

≤


T
√

βµ

αν

[
2 Ent(ν) + d log

(
32π Cµ

d

√
1 + βµ

αν

)
+ d
]

if βµ ≤ αν,

T
√

βµ

αν

[
2 Ent(ν) + d log

(
32π Cµ

d
βµ

αν

√
1 + βµ

αν

)
+ d
]

if αν < βµ .

Proof. Fix S ∈ (0, T) and let φS, ψS be the Schrödinger potentials associated to
the SP problem with time horizon [0, S]. By combining (2.2.3) with (3.2.21) we
know that for any x ∈ supp(µ) it holds

|T∇φT − S∇φS|2(x) = |T ∇ log PT exp(−ψT)− S∇ log PS exp(−ψS)|2(x)

=

∣∣∣∣∫ y dπ
x,ψT

T −
∫

y dπ
x,ψS

S

∣∣∣∣2 ≤ W2
2(π

x,ψT

T , π
x,ψS

S )

≤ 4

αν +
√

α2
ν + 4αν/(βµ S2)

H (π
x,ψT

T |πx,ψS

S )
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where in the last step we have applied the Talagrand transportation cost in-
equality [BGL13, Corollary 9.3.2], which holds since Theorem 2.2.5 implies

∇2(− log π
x,ψS

S (y)) = ∇2
y(|x− y|2/2S +ψS(y)) ≥ 1

2

(
αν +

√
α2

ν + 4αν/(βµ S2)

)
.

By integrating over µ, recalling (3.2.22) and by applying the additive property
of relative entropy (1.A.4), we deduce that

∥T∇φT − S∇φS∥2
L2(µ)

≤ 4

αν +
√

α2
ν + 4αν/(βµ S2)

[
H (µ|µ) +

∫
H (π

x,ψε

ε |πx,ψS

S )dµ(x)
]

=
2
√

βµ/αν√
βµ αν S

2 +

√
αν βµ S2

4 + 1
S H (πT |πS) ≤ 2

√
βµ/αν S H (πT |πS) .

Then, from Corollary 2.2.3 (Pythagoras Theorem for entropic projections) we
deduce that

∥T∇φT − S∇φS∥2
L2(µ) ≤ 2

√
βµ/αν S H (πT |πS)

= 2
√

βµ/αν

(
S H (πT |R0,S)− S H (πS|R0,S)

)
(1.2.5)
= 2 S

√
βµ/αν

(
H (πT |µ ⊗ ν) + Ent(µ) + Ent(ν) +

d
2

log(2πS)
)

+
√

βµ/αν

(∫
|x − y|2 dπT − 2 S CS(µ, ν)

)
.

Letting S ↓ 0, thanks to Theorem 3.2.3, by recalling that the Schrödinger cost
converges to the Wasserstein distance (cf. (3.2.2) paying attention to the differ-
ent scaling, or also Remark 3.2.7) we finally deduce that

∥(−T∇φT)−∇φ0∥2
L2(µ) ≤

√
βµ/αν

(∫
|x − y|2 dπT − W2

2(µ, ν)

)
.

This conclude our proof since it is enough combining the above estimate with
the suboptimality estimate proven in Theorem 3.2.6.
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Bibliographical Remarks

For both SP and EOT the small-time and small-noise limits have been exten-
sively studied in the literature. For what concerns the convergence of the en-
tropic cost to the squared Wasserstein distance, the first result is that of [Mik04],
eventually generalised in [Léo12a]. As a further step in the analysis of this con-
vergence, in [ADPZ11] (in dimension one), in [EMR15] (in greater dimensions)
and most recently in [Pal19], the first-order Taylor expansion of the entropic
cost has been investigated showing that the first-order coefficient is given by
the sum of the relative entropies of the marginals. Under stronger assump-
tions on the marginals, [CT21] determined the second-order Taylor expansion
of the entropic cost showing that the second-order term is related to the average
of the Fisher information along the geodesic between the marginals (an analo-
gous result has also been obtained slightly later in [CRL+20]). Most recently,
in [CPT23] the authors have analysed the small-noise limit in the EOT setting
under very general assumptions on the cost function c (which allow for non-
uniqueness of the optimal transport coupling for instance). Particularly, in the
small-noise limit, they have compared the EOT cost with the OT cost, showing
that in general this error is of the order ε log(ε−1) and that this lower bound is
sharp. These results were obtained for compact marginals in [CPT23] and then
they have been further generalised in [EN22b] for unbounded settings.

Alongside this line of work, in [Mik04] and [BGN22] it is shown that in
the small-time and small-noise limits the optimal solutions to SP and EOT re-
spectively converge to the optimal coupling of the OT problem. Particularly,
[BGN22] show that EOT and SP plans satisfy a Large Deviation Principle, result
that has been recently generalised on the path space to Schrödinger bridges in
[Kat24] where the author further establishes exponential continuity for Brown-
ian bridges.

When it comes to the convergence of dual optimiser, in the EOT setting
it is proven in [NW22] that the entropic potentials (φε, ψε) converge to the
Kantorovich potentials (when the latter are unique) associated to the Monge-
Kantorovich problem with cost c

sup
φ∈L1(µ), ψ∈L1(ν) : φ⊕ψ≤c

(∫
φ dµ +

∫
ψ dν

)
.

More precisely, in [NW22] the authors prove in the small-noise limit ε ↓ 0 that
the sequences {φε}ε>0 and {ψε}ε>0 are (strongly) compact in L1(µ) and L1(ν)
respectively, and that their accumulation points are optimiser of the Monge-
Kantorovich problem. Adapting their proof strategy and relying on [Nor97],
we have shown under a curvature-dimension condition a similar convergence
statement for SP in Lemma 3.2.1. Heuristically speaking, this follows from the
connection between EOT and SP given by taking ε = T and c = −T log dR0,T

d(µ⊗ν)
.

Regarding the convergence of the gradients of the Schrödinger potentials,
to the best of our knowledge Theorem 3.2.3 is a novelty in the setting we are
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dealing with. Indeed, closely related results have been obtained in [PNW21],
but in a more restrictive setting (the quadratic Euclidean EOT problem) and
under strong regularity assumptions. Namely, uniform bounds on the Hessian
of the Kantorovich potential φ0 are required to prove a modified version of the
aforementioned convergence. Furthermore, the authors work in a very specific
setting where the marginals µ, ν are compactly supported and with densities
globally bounded away from 0 and ∞ on their supports. Moreover they show
the convergence of the gradients of the potentials associated to a modified EOT
where µ and ν are replaced by empirical measures associated to an n-sample;
therefore they take a regularisation parameter ε depending on the batch size
n and then consider the limit n → ∞. In the very recent work [MS23] finally
appeared a quantitative convergence result close to our Theorem 3.2.8, where
indeed the authors study the suboptimality of the Schrödinger plan πT w.r.t.
the classical OT quadratic problem as we did in Theorem 3.2.6.

Almost all the results presented in this chapter are based on the published
paper [CCGT23], with the exception of the suboptimality and quantitative con-
vergence theorems of Section 3.2.3. Indeed, these are results I got during my
third year of PhD, but that never got published since [MS23] got similar re-
sults concurrently. The two approaches are different (the one presented in Sec-
tion 3.2.3 being more stochastic in nature), however [MS23] got better conver-
gence results (in Theorem 3.2.6 we get a rate of the order T log(1/T) when
βµ = +∞, whereas they always manage to get a rate of order T).



Chapter 4

Quantitative stability for the
Schrödinger problem

In this chapter we are interested in explicitly quantifying how sensitive are the
optimal costs and optimal plans in SP to variations of the marginal constraints.
For notations’ clarity we will explicitly stress out the dependence of the optimal
Schrödinger coupling with respect to the couple of marginals and denote it
with πµ→ν,T . Similarly, ( f , g) will denote the f g-decomposition for CT(µ, ν)
(cf. Theorem 2.2.1) while ( f̄ , ḡ) will stand for the decomposition associated to
CT(µ̄, ν̄); we further implicitly assume that both are normalised according to
(2.2.13). Lastly, we will denote with ρ, σ the densities of µ, ν w.r.t. m, whereas
ρ̄, σ̄ will be the densities of µ̄, ν̄.

We are going to show (cf. Theorem 4.2.2) that the curvature-dimension con-
dition (CD) implies a rather general and explicit stability result in terms of the
symmetric relative entropy, i.e.

H sym(µ, µ̄) := H (µ|µ̄) +H (µ̄|µ) , (4.0.1)

and in terms of a negative-order weighted homogeneous Sobolev norm, which
is defined for any signed measure ν as follows:

∥ν∥Ḣ−1(µ) := sup
{
|⟨h, ν⟩| : ∥h∥Ḣ1(µ) ≤ 1

}
, where ∥h∥2

Ḣ1(µ) :=
∫

|∇h|2 dµ .

This dual norm on the space of signed measures encodes the linearised be-
haviour of the Wasserstein distance W2 for infinitesimal perturbations (see e.g.
[Pey18] and references therein). For instance, if µ ∈ P2(R

d), µ ≪ Leb and
µ̄ε = (1 + εh)µ for some h ∈ L∞(µ) with

∫
Rd hdµ = 0, then [Vil03, Theorem

7.26] implies

∥µ − µ̄ε∥Ḣ−1(µ) = ε ∥h µ∥Ḣ−1(µ) and ∥h µ∥Ḣ−1(µ) ≤ lim inf
ε→0

W2(µ, µ̄ε)

ε
.

71
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Moreover, [Pey18] provides non-asymptotic comparisons between this Sobolev
norm and the Wasserstein distance. In particular, it always holds W2(µ, µ̄) ≤
2 ∥µ − µ̄∥Ḣ−1(µ), and when (M, d, vol) has non-negative Ricci curvature and if

the densities dµ
dvol and dµ̄

dvol are bounded away from 0 and ∞, then the norm of
the difference ∥µ − µ̄∥Ḣ−1(µ) is equivalent to the Wasserstein distance W2(µ, µ̄).

Apart from the curvature-dimension condition (CD) and from A1 and A3, we
further assume the following integrability condition on the reference measure:

∃ r > 0 :
∫

m
(

B√
T(x)

)r T
er d2(x,z)dm(x) < +∞ ∀z ∈ M . (I)

The reason why we assume the above condition is that our computations will
heavily rely on integrating the Schrödinger potentials of one problem against
the marginal constraints of the other, which requires enough integrability for
the former.

Notice that if m is a probability measure (m(M) = 1), the previous assump-
tion is met as soon as

er d2(x,z0) ∈ L1(m) for some r > 0 and z0 ∈ M , (4.0.2)

which is true for instance under a positive curvature condition CD(κ, ∞) with
κ > 0. Indeed the latter implies a logarithmic Sobolev inequality with pa-
rameter κ−1 [BGL13, Corollary 5.7.1] and then by means of Herbst’s argument
[BGL13, Proposition 5.4.1] we get er d2(x,z0) ∈ L1(m) for any r < κ

2 . Moreover, as
soon as m is a probability measure the above condition (I) is time-independent
and therefore it allows to consider the small-time limit for SP.

Condition (4.0.2) should also be compared with Conditions (6.8) and (6.9) in
[Nut21] in the EOT setting, by considering the cost function c(x, y) = −T log pT ,
combined with a Gaussian heat kernel lower bound (cf. (2.2.6) and (2.2.7)).
There, the authors are interested in getting uniform bounds on the Schrödinger
potentials along Sinkhorn’s iterates. However let us stress out that [Nut21] re-
quires er d2(x,y) ∈ L1(µ ⊗ ν) for some r > 1

T , which in particular does not suit
the most interesting EOT regime, i.e. the small-noise (or equivalently small-
time) limit. On the contrary, our condition only requires r > 0 independently
from the time-window [0, T] and moreover we are able to pass the integrability
assumption on the equilibrium measure m. This suits more the stability setting
since we would like to keep the assumptions on the marginals as light as pos-
sible. We should further mention here that in the most recent work [NW23]
the authors manage to prove the uniform integrability of the potentials along
Sinkhorn’s algorithm by solely requiring er d2(x,y) ∈ L1(µ ⊗ ν) for some r > 0
overcoming the small-noise issue present in [Nut21]. In conclusion, it is not
surprising that our stability results require (I), since we need enough integra-
bility for the potentials, which is analogous to requiring er d2(x,y) ∈ L1(µ ⊗ ν) in
the EOT setting.
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4.1 A log-integrability Lemma

Let us start by recalling a few interesting facts about Orlicz spaces, from which
we will deduce integrability results for our potentials.

Let q be a probability measure on a measurable space (Ω, Σ) and consider
the Young functions

θ(t) := et − 1 , θ∗(s) =

{
s log s − s + 1 if s > 0,
1 if s = 0 .

where θ∗(s) := supt∈R

{
st − θ(t)

}
. The Orlicz space associated to the Young

function θ, denoted by Lθ(q), is defined as the space of measurable functions
f : Ω → R with finite Luxemburg norm

∥ f ∥θ := inf
{

b > 0 :
∫

θ

(
| f |
b

)
dq ≤ 1

}
.

To be precise we should make explicit reference to the underlying probability
q, when talking about Luxemburg norms; however we will omit such reference
when it is clear from the context.

When dealing with finite relative entropies, the Orlicz space associated to θ∗

(defined analogously as for θ) plays a natural role. Indeed, for any probability
p with H (p|q) < +∞ we have∥∥∥∥dp

dq

∥∥∥∥
θ∗

= inf
{

b > 0 :
∫

θ∗
(

1
b

dp
dq

)
dq ≤ 1

}
= inf

{
b > 0 :

1
b
H (p|q)− 1

b
(1 + log b) + 1 ≤ 1

}
= inf {b > 0 : H (p|q)− 1 ≤ log b} = eH (p|q)−1 .

Finally, let us recall that for any f ∈ Lθ(q) and g ∈ Lθ∗(q) we have∫
| f g|dq ≤ 2 ∥ f ∥θ ∥g∥θ∗ , (4.1.1)

which is a consequence of the trivial inequality

st ≤ θ(t) + θ∗(s) ∀s, t > 0 .

After this digression, let us prove the following lemma, which is pivotal
in our reasoning since it allows to deduce the log-integrability of any positive
measurable function under the only hypotheses of finite relative entropy and
some positive and negative integrability of the same function.

Lemma 4.1.1. Let h be a positive measurable function and p, q ∈ P(Ω) such that
H (p|q) < ∞. If there exist p, q > 0 such that h ∈ Lq(q) and h−1 ∈ Lp(q), then
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log h ∈ L1(p). More precisely, it holds

∫
|log h|dp ≤ 2 eH (p|q)−1

[
1

1 ∧ p ∧ q
∨ log2

(
q{h ≥ 1}1− 1

q ∥h∥Lq(q)

+ q{h < 1}1− 1
p
∥∥∥h−1

∥∥∥
Lp(q)

)]
,

(4.1.2)

and also

∫
|log h|dp ≤ 2 eH (p|q)−1

p ∧ q

[
1 ∨ log2

(
∥h∥p∧q

Lq(q)
+
∥∥∥h−1

∥∥∥p∧q

Lp(q)

)]
. (4.1.3)

Proof. By means of the Orlicz-Young inequality (4.1.1) we have

∫
|log h|dp =

∫ ∣∣∣∣dpdq
log h

∣∣∣∣dq ≤ 2 ∥log h∥θ

∥∥∥∥dp
dq

∥∥∥∥
θ∗

= 2 ∥log h∥θ eH (p|q)−1 .

(4.1.4)
Therefore it suffices to show that the above Luxemburg norm ∥log h∥θ is finite.
To this end, notice that for any b > 0 we have

∫
θ

(
|log h|

b

)
dq =

∫
θ
(∣∣∣log h

1
b

∣∣∣)dq =
∫
{h≥1}

h
1
b dq+

∫
{h<1}

h−
1
b dq− 1 .

(4.1.5)

Before proceeding, let us also point out that the above right-hand side is always
non-negative since it is greater or equal to q{h ≥ 1}+ q{h < 1} − 1 = 0.

Now consider any parameter δ ∈ (0, ∞) (to be fixed later) and fix b ≥ 1
δ∧p∧q .

For the sake of notation, let P := {h ≥ 1} and its complementary N := {h < 1}.
In what follows we are going to assume that both q(P) > 0 and q(N) > 0;
the case q(P) ∈ {0, 1} can be treated in the same fashion. Now, introduce the
probability measures on these sets induced by q, i.e.

dq|P(x) :=
dq(x)
q(P)

and dq|N (x) :=
dq(x)
q(N)

.

Since qb ≥ 1, from Jensen’s inequality we deduce that

∫
{h≥1}

h
1
b dq = q(P)

∫
P

h
1
b dq|P = q(P)

∫
P

hq 1
qb dq|P ≤ q(P)

(∫
P

hqdq|P

) 1
qb

= q(P)1− 1
qb

(∫
P

hqdq
) 1

qb
≤ q(P)1− 1

qb ∥h∥
1
b
Lq(q)

.
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Similarly, from pb ≥ 1 we deduce that

∫
{h<1}

(
1
h

) 1
b

dq = q(N)
∫

N
h−

1
b dq|N = q(N)

∫
N

h−p 1
pb dq|N

≤q(N)

(∫
N

h−pdq|N

) 1
pb

= q(N)
1− 1

pb

(∫
N

h−pdq
) 1

pb

≤q(N)
1− 1

pb
∥∥∥h−1

∥∥∥ 1
b

Lp(q)
.

For the sake of brevity let λ := q(P). Since also δb ≥ 1, from (4.1.5) and the
concavity of x

1
δb we deduce

∫
θ

(
|log h|

b

)
dq ≤ λ

1− 1
qb ∥h∥

1
b
Lq(q)

+ (1 − λ)
1− 1

pb
∥∥∥h−1

∥∥∥ 1
b

Lp(q)
− 1

= λ

(
∥h∥δ

Lq(q)

λ
δ
q

) 1
δb

+ (1 − λ)

∥∥h−1
∥∥δ

Lp(q)

(1 − λ)
δ
p


1
δb

− 1

≤
(

λ
1− δ

q ∥h∥δ
Lq(q) + (1 − λ)

1− δ
p
∥∥∥h−1

∥∥∥δ

Lp(q)

) 1
δb
− 1 ≤ 1 ,

where the last inequality holds as soon as

b ≥ 1
δ

log2

(
λ

1− δ
q ∥h∥δ

Lq(q) + (1 − λ)
1− δ

p
∥∥∥h−1

∥∥∥δ

Lp(q)

)
.

Therefore, if we take

b̄ :=
1

δ ∧ p ∧ q
∨ 1

δ
log2

(
λ

1− δ
q ∥h∥δ

Lq(q) + (1 − λ)
1− δ

p
∥∥∥h−1

∥∥∥δ

Lp(q)

)
,

we deduce that
∫

θ
(
|log h|

b̄

)
dq ≤ 1, and hence

∥log h∥θ ≤ b̄ =
1

δ ∧ p ∧ q
∨ 1

δ
log2

(
λ

1− δ
q ∥h∥δ

Lq(q) + (1 − λ)
1− δ

p
∥∥∥h−1

∥∥∥δ

Lp(q)

)
.

(4.1.6)
From this last result and (4.1.4) it follows that log h ∈ L1(q) and that

∫
|log h|dp ≤ 2 eH (p|q)−1

[
1

δ ∧ p ∧ q
∨ 1

δ
log2

(
λ

1− δ
q ∥h∥δ

Lq(q)

+ (1 − λ)
1− δ

p
∥∥∥h−1

∥∥∥δ

Lp(q)

)]
.
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By taking δ = 1 we immediately get (4.1.2). In order to get the second bound,
take δ := p ∧ q. Then (4.1.6) reads as

∥log h∥θ ≤ 1
p ∧ q

[
1 ∨ log2

(
λ

1− p∧q
q ∥h∥p∧q

Lq(q)
+ (1 − λ)

1− p∧q
p
∥∥∥h−1

∥∥∥p∧q

Lp(q)

)]
.

(4.1.7)

Since λ = q(P) ∈ [0, 1] we deduce that

log2

(
q(P)1− p∧q

q ∥h∥p∧q
Lq(q)

+ (1 − q(P))1− p∧q
p
∥∥∥h−1

∥∥∥p∧q

Lp(q)

)
≤ log2 sup

λ∈[0,1]

(
λ

1− p∧q
q ∥h∥p∧q

Lq(q)
+ (1 − λ)

1− p∧q
p
∥∥∥h−1

∥∥∥p∧q

Lp(q)

)

=

log2

(
∥h∥p

Lq(q)
+
∥∥h−1

∥∥p
Lp(q)

)
if p ≤ q

log2

(
∥h∥q

Lq(q)
+
∥∥h−1

∥∥q
Lp(q)

)
if q < p

= log2

(
∥h∥p∧q

Lq(q)
+
∥∥∥h−1

∥∥∥p∧q

Lp(q)

)
,

and hence

∥log h∥θ ≤ 1
p ∧ q

[
1 ∨ log2

(
∥h∥p∧q

Lq(q)
+
∥∥∥h−1

∥∥∥p∧q

Lp(q)

)]
.

As a byproduct of the above bound and (4.1.4) we get (4.1.3).

Remark 4.1.2. When q{h ≥ 1} ∈ {0, 1}, the bound (4.1.3) can be improved. Indeed
from (4.1.7) we straightforwardly deduce that

∫
|log h|dp ≤


2 eH (p|q)−1

(
1

p ∧ q
∨ log2 ∥h∥Lq(q)

)
if q{h ≥ 1} = 1 ,

2 eH (p|q)−1
(

1
p ∧ q

∨ log2

∥∥∥h−1
∥∥∥

Lp(q)

)
if q{h ≥ 1} = 0 .

Corollary 4.1.3. If p ∧ q ≤ 1 in the previous Lemma, then it holds

∫
|log h|dp ≤ 2 eH (p|q)−1

 1
p ∧ q

+

(
log2

∥h∥Lq(q) +
∥∥h−1

∥∥
Lp(q)

2

)+
 .

4.2 From corrector to quantitative stability estimates

In this section we show how from the corrector estimates (i.e., Proposition 3.1.2)
it is possible to derive novel quantitative stability estimates for SP.
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Before moving to the proof of our main result (Theorem 4.2.2 below) let us
give some Lp-bounds (with respect to the reference measure m) for (PT g)−1

and (PT f )−1, that combined with Lemma 4.1.1 will be pivotal for the validity
of all the computations performed hereafter. Moreover, since it will frequently
appear in the forthcoming technical bounds, let us recall here that the EOT
entropic cost defined at (3.2.5) associated to cT(x, y) := −T log pT(x, y) equals

EOTcT
T (µ, ν) = T CT(µ, ν)− T H (µ|m)− T H (ν|m) .

Lemma 4.2.1. Assume (CD), (I) and A1. Then (PT g)−1 ∈ Lp(m) and (PT f )−1 ∈
Lp(m) with p = r T. More precisely, it holds

∥∥∥(PT g)−1
∥∥∥

p
≤ C1 exp

[
M2(ν)

T
−

EOTcT
T (µ, ν)

2T
+ C2 T

]
,

∥∥∥(PT f )−1
∥∥∥

p
≤ C1 exp

[
M2(µ)

T
−

EOTcT
T (µ, ν)

2T
+ C2 T

]
,

where the constants C1 > 0 and C2 ≥ 0 do not depend on the marginals µ, ν and
neither on f or g. Moreover if κ ≥ 0 or if CD(κ, ∞) with m(M) = 1 holds, then
C2 = 0.

Proof. We will only prove the first inequality since the proof of the second runs
exactly in the same fashion. Firstly, notice that from Jensen’s inequality it fol-
lows

log PT g(x) = log
∫

g(y)pT(x, y)dm(y) = log
∫

g(y)pT(x, y)σ(y)−1dν(y)

≥
∫

log g dν −
∫

log σdν +
∫

log pT(x, y)dν(y)

=
1
2
[CT(µ, ν)−H (µ|m)−H (ν|m)] +

∫
log pT(x, y)dν(y)

=
EOTcT

T (µ, ν)

2T
+
∫

log pT(x, y)dν(y) ,

where the last step follows from (2.2.13). On the one hand, if (M, d, m) satisfies
CD(κ, ∞) for some κ ∈ R and if m(M) = 1, then from (2.2.6) we deduce the
lower bound

log PT g(x) ≥
EOTcT

T (µ, ν)

2T
− d2(x, z0)

T
− M2(ν)

T
.
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Therefore if we take p = r T we have, owing to (I),

∥∥∥(PT g)−1
∥∥∥p

p
=
∫
(PT g)−pdm =

∫
e−p log PT gdm

≤ exp

[
p

(
M2(ν)

T
−

EOTcT
T (µ, ν)

2T

)] ∫
e

p
T d

2(x,z0)dm(x)

≤Cp
1 exp

[
p

(
M2(ν)

T
−

EOTcT
T (µ, ν)

2T

)]
.

On the other hand if CD(κ, N) holds with N < +∞, the lower bound (2.2.7)
leads to

log PT g(x) ≥
EOTcT

T (µ, ν)

2T
− log

[
C1 m

(
B√

T(x)
)]

− C2 T − d2(x, z0) + M2(ν)

T
.

Therefore if we consider again p = r T, up to relabelling the positive constant
C1 at each step, we have

∥∥∥(PT g)−1
∥∥∥p

p
=
∫
(PT g)−pdm =

∫
e−p log PT gdm

≤ Cp
1 e

(
M2(ν)

T −
EOT

cT
T (µ,ν)
2T +C2 T

)
p ∫

m
(

B√
T(x)

)p
e

p
T d2(x,z0)dm(x)

≤ Cp
1 exp

[
p

(
M2(ν)

T
−

EOTcT
T (µ, ν)

2T
+ C2 T

)]
.

This concludes our proof.

We are now ready to state and prove the quantitative stability estimate for
the optimiser of SP. It is worth pointing out that Theorems 4.2.2 and 4.2.7 be-
low require A3 only because the latter is required for the corrector estimates.
Moreover, the integrability condition (I) does not play any role in the constants
appearing in the following stability bound. Indeed one could, at least formally,
perform the computations that lead to (4.2.1) and (4.2.2) without this integra-
bility condition.

Theorem 4.2.2. Let (M, d,m) satisfy (CD) and (I). For any (µ, ν) and (µ̄, ν̄) satisfy-
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ing A1 and A3 it holds√
E2κ(T)H sym(πµ→ν,T , πµ̄→ν̄,T) ≤

√
E2κ(T)

(
H sym(µ, µ̄) +H sym(ν, ν̄)

)
+
√
CT(µ, ν)−H (µ|m) ∥µ − µ̄∥Ḣ−1(µ)

+
√
CT(µ, ν)−H (ν|m) ∥ν − ν̄∥Ḣ−1(ν)

+
√
CT(µ̄, ν̄)−H (µ̄|m) ∥µ̄ − µ∥Ḣ−1(µ̄)

+
√
CT(µ̄, ν̄)−H (ν̄|m) ∥ν̄ − ν∥Ḣ−1(ν̄)

(4.2.1)

where E2κ is defined as in (2.1.10). Moreover, under the same assumptions it holds√
E2κ(T)H sym(πµ→ν,T , πµ̄→ν̄,T)

≤
[√

I(µ) +
√
CT(µ, ν)−H (µ|m)

]
∥µ − µ̄∥Ḣ−1(µ)

+

[√
I(µ̄) +

√
CT(µ̄, ν̄)−H (µ̄|m)

]
∥µ̄ − µ∥Ḣ−1(µ̄)

+

[√
I(ν) +

√
CT(µ, ν)−H (ν|m)

]
∥ν − ν̄∥Ḣ−1(ν)

+

[√
I(ν̄) +

√
CT(µ̄, ν̄)−H (ν̄|m)

]
∥ν̄ − ν∥Ḣ−1(ν̄) .

(4.2.2)

Proof. Let us start with proving the first estimate (4.2.1). We can assume that
H sym(µ, µ̄), H sym(ν, ν̄) are both finite, otherwise our claim is trivial. Firstly,
notice that we can write

H (πµ→ν,T |πµ̄→ν̄,T)−H (ν|ν̄)−H (µ|µ̄)

=
∫

log
f (x)g(y)
f̄ (x)ḡ(y)

dπµ→ν,T(x, y)−
∫

log
gPT f
ḡPT f̄

dν −
∫

log
f PT g
f̄ PT ḡ

dµ

=
∫

log
PT ḡ(x) PT f̄ (y)
PT g(x) PT f (y)

dπµ→ν,T(x, y)

=
∫ [

log PT ḡ(x) + log PT f̄ (y)− log PT g(x)− log PT f (y)
]

dπµ→ν,T(x, y) .

We claim that the above right-hand side is equal to∫
log PT ḡdµ +

∫
log PT f̄ dν −

∫
log PT gdµ −

∫
log PT f dν . (4.2.3)

Since H (µ|m), H (ν|m) are both finite, thanks to Theorem 2.2.1 we already
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know that log PT g ∈ L1(µ) and log PT f ∈ L1(ν) and that under our normalisa-
tion (2.2.13) they read as

−
∫

log PT gdµ = −
∫

log PT f dν =
EOTcT

T (µ, ν)

2T
∈ (−∞,+∞) .

Hence for the claim to be true it only remains to prove that

(log PT ḡ)− ∈ L1(µ) and
(
log PT f̄

)− ∈ L1(ν) , (4.2.4)

because this implies that
∫

log PT ḡdµ,
∫

log PT f̄ dν > −∞, whence the fact
that (4.2.3) is a well-defined summation. We will prove (4.2.4) by relying on
Lemma 4.2.1 and Lemma 4.1.1. We consider two different cases.

1st case: m ∈ P(M). Consider the positive measurable function

h = 1{PT ḡ<1} PT ḡ + 1{PT ḡ≥1}

and notice that (log PT ḡ)− = − log h. Since m(M) = 1 and h ≤ 1 we have
h ∈ L1(m); moreover h−1 ∈ LrT(m) since∥∥∥h−1

∥∥∥rT

rT
=
∫

h−rT dm =
∫ [

1{PT ḡ<1}(PT ḡ)−rT + 1{PT ḡ≥1}

]
dm

≤
∥∥∥(PT ḡ)−1

∥∥∥rT

rT
+m{PT ḡ ≥ 1}

and the right-hand side is finite because m {PT ḡ ≥ 1} ≤ 1 and (PT ḡ)−1 ∈
LrT(m) by Lemma 4.2.1. Therefore we may apply Lemma 4.1.1 with q = m
and p = µ and deduce

∫
|log h| dµ ≤ 2 eH (µ|m)−1

{
1

rT
∨ log2

[
1 +

(
1 +

∥∥∥(PT ḡ)−1
∥∥∥rT

rT

) 1
rT
]}

< +∞ .

Hence, we have proven that

0 ≤
∫
(log PT ḡ)− dµ =

∫
|log h| dµ < +∞ ,

which is equivalent to (log PT ḡ)− ∈ L1(µ).

2nd case: m ̸∈ P(M). The proof is similar to the previous case, however we
work with the probability measure mW (defined via (1.A.3)) instead of m. In-
deed, since we are assuming H (µ|m) < +∞, there exists a positive measurable
function W : M → [0,+∞) such that

zW =
∫

e−Wdm < +∞ , W ∈ L1(µ) and H (µ|mW) < +∞ ,
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where mW := z−1
W e−Wm ∈ P(M). By considering the same positive measurable

function
h = 1{PT ḡ<1} PT ḡ + 1{PT ḡ≥1}

we are guaranteed once again that ∥h∥L1(mW ) ≤ 1 and that∥∥∥h−1
∥∥∥rT

LrT(mW )
=
∫

h−rT dmW =
∫ [

1{PT ḡ<1} (PT ḡ)−rT + 1{PT ḡ≥1}

]
dmW

≤
∥∥∥(PT ḡ)−1

∥∥∥rT

LrT(mW )
+mW {PT ḡ ≥ 1} ≤

∥∥∥(PT ḡ)−1
∥∥∥rT

LrT(mW )
+ 1 ,

By arguing in the same way as in the second half of Lemma 4.2.1 (since m is not
a probability, recall that we are under the CD(κ, N) condition with N < +∞)
we see that∥∥∥(PT ḡ)−1

∥∥∥rT
LrT(mW ) =

∫
(PT ḡ)−rTdmW

≤ CrT
1 e

(
M2(ν̄)

T −
EOT

cT
T (µ̄,ν̄)
2T +C2 T

)
rT ∫

m
(

B√
T(x)

)rT
er d2(x,z0)dmW(x),

which is finite because of the integrability condition (I) and from the fact that
W ≥ 0. Therefore we have shown that

∥∥(PT ḡ)−1
∥∥rT

LrT(mW ) is finite and once
again from Lemma 4.1.1 (this time with q = mW and p = µ) we deduce that

∫
|log h| dµ ≤ 2 eH (µ|mW )−1

{
1

rT
∨ log2

[
1 +

(
1 +

∥∥∥(PT ḡ)−1
∥∥∥rT

LrT(mW )

) 1
rT
]}

is finite. Hence, we have proven that

0 ≤
∫
(log PT ḡ)− dµ =

∫
|log h| dµ < +∞,

which is equivalent to (log PT ḡ)− ∈ L1(µ).
By arguing in the same way we can also prove that

(
log PT f̄

)− ∈ L1(ν),
whence the validity of (4.2.4). This implies

∫
log PT ḡdµ,

∫
log PT f̄ dν > −∞

and that (4.2.3) is a well-defined summation. As a consequence it follows

H (πµ→ν,T |πµ̄→ν̄,T)−H (ν|ν̄)−H (µ|µ̄)

=
∫

log PT ḡ dµ +
∫

log PT f̄ dν −
∫

log PT g dµ −
∫

log PT f dν .

(4.2.5)
By exchanging the roles of µ, ν and µ̄, ν̄ we can also write

H (πµ̄→ν̄,T |πµ→ν,T)−H (ν̄|ν)−H (µ̄|µ)

=
∫

log PT g dµ̄ +
∫

log PT f dν̄ −
∫

log PT ḡ dµ̄ −
∫

log PT f̄ dν̄ ,

(4.2.6)
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which added to (4.2.5) gives

H sym(πµ→ν,T , πµ̄→ν̄,T) = H sym(µ, µ̄) +H sym(ν, ν̄)−
∫

log PT g d(µ − µ̄)

−
∫

log PT ḡ d(µ̄ − µ)−
∫

log PT f d(ν − ν̄)−
∫

log PT f̄ d(ν̄ − ν)

≤ H sym(µ, µ̄) +H sym(ν, ν̄) + ∥∇ log PT g∥L2(µ) ∥µ − µ̄∥Ḣ−1(µ)

+ ∥∇ log PT ḡ∥L2(µ̄) ∥µ̄ − µ∥Ḣ−1(µ̄) + ∥∇ log PT f ∥L2(ν) ∥ν − ν̄∥Ḣ−1(ν)

+
∥∥∇ log PT f̄

∥∥
L2(ν̄) ∥ν̄ − ν∥Ḣ−1(ν̄) .

Let us point out that so far we have not relied on the assumption A3, which is
needed now when applying the corrector estimates. Indeed, given the above
bound, inequality (4.2.1) follows from the corrector estimates from Proposi-
tion 3.1.2.

The proof of (4.2.2) under the assumption of finite Fisher information is
postponed after the next mixed integrability result, which complements what we
have proven so far and which is necessary for the integral computations that
will follow.

Corollary 4.2.3. Let (M, d,m) satisfy (CD) and (I). For any (µ, ν) and (µ̄, ν̄) sat-
isfying A1, A3 and such that ∥µ − µ̄∥Ḣ−1(µ) , ∥µ̄ − µ∥Ḣ−1(µ̄) , ∥ν − ν̄∥Ḣ−1(ν), and
∥ν̄ − ν∥Ḣ−1(ν̄) are all finite and with H sym(µ, µ̄), H sym(ν, ν̄) < ∞, we have

log PT g, log PT ḡ ∈ L1(µ) ∩ L1(µ̄) and log PT f , log PT f̄ ∈ L1(ν) ∩ L1(ν̄) .

As a consequence we deduce that also

log f , log f̄ ∈ L1(µ) ∩ L1(µ̄) and log g, log ḡ ∈ L1(ν) ∩ L1(ν̄) .

Proof. As mentioned in the previous proof we already know, thanks to Theo-
rem 2.2.1, that

log PT g ∈ L1(µ), log PT f ∈ L1(ν), log PT ḡ ∈ L1(µ̄), and log PT f̄ ∈ L1(ν̄) .

Now, given our assumptions, the left-hand side of (4.2.5) is finite (thanks to The-
orem 4.2.2) and since we have log PT g ∈ L1(µ), log PT f ∈ L1(ν) and we have
further shown that

∫
log PT ḡdµ,

∫
log PT f̄ dν ∈ (−∞,+∞] (cf. above proof of

Theorem 4.2.2), we deduce that

log PT ḡ ∈ L1(µ) and log PT f̄ ∈ L1(ν) .

Similarly, working with (4.2.6) we get log PT g ∈ L1(µ̄) and log PT f ∈ L1(ν̄).
Finally, from what we have just proven above and since H sym(µ, µ̄) and

H sym(ν, ν̄) are both finite, we deduce

log
f
f̄
∈ L1(µ) ∩ L1(µ̄) and log

g
ḡ
∈ L1(ν) ∩ L1(ν̄) ,
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which combined with log f ∈ L1(µ), log g ∈ L1(ν), log f̄ ∈ L1(µ̄) and log ḡ ∈
L1(ν̄) gives our final assertion.

Resuming the proof of Theorem 4.2.2. Let us now prove (4.2.2). Without loss of
generality we may assume that the Fisher information of the marginals and the
negative Sobolev norms are all finite, otherwise the claimed estimate is trivial.
Let us start by showing that this guarantees the finiteness of the symmetric
relative entropies H sym(µ, µ̄), H sym(ν, ν̄). Indeed, since I(µ) < +∞ we have
∇ log dµ

dm ∈ L2(µ) and therefore by the definition of ∥µ − µ̄∥Ḣ−1(µ) we deduce∣∣∣∣∫ log
dµ

dm
d(µ − µ̄)

∣∣∣∣ ≤ √I(µ) ∥µ − µ̄∥Ḣ−1(µ) < +∞ .

Thanks to the above bound and to the finiteness of H (µ|m) and H (µ̄|m) we
are allowed to write∫

log
dµ̄

dµ
dµ̄ =

∫ [ dµ̄

dm
log

dµ̄

dm
+

(
dµ

dm
− dµ̄

dm

)
log

dµ

dm
− dµ

dm
log

dµ

dm

]
dm

= H (µ̄|m)−H (µ|m) +
∫

log
dµ

dm
d(µ − µ̄) < +∞ ,

which reads as H (µ̄|µ) < +∞. Let us just mention that above the Radon-
Nikodym derivative is well defined since, under our assumption, µ̄ ∼ µ are
equivalent. Indeed, if there were a Borel subset A ⊂ M such that µ(A) = 0 and
µ̄(A) > 0, then by choosing as test function h (a mollified version of) 1A we
would get ∥µ − µ̄∥Ḣ−1(µ) = +∞ which we are assuming to be finite; therefore
µ̄ ≪ µ. Similarly one can prove µ ≪ µ̄, and hence µ̄ ∼ µ. We have thus
proven that H (µ̄|µ) is finite. By reasoning in the same fashion one can prove
that H (µ|µ̄), H (ν̄|ν) and H (ν|ν̄) are also finite, whence the finiteness of the
symmetric entropies.

At this stage, the proof is similar to the one already presented above. It is
indeed enough to notice that

H sym(πµ→ν,T , πµ̄→ν̄,T)

=
∫

log f d(µ − µ̄) +
∫

log f̄ d(µ̄ − µ) +
∫

log g d(ν − ν̄) +
∫

log ḡ d(ν̄ − ν)

≤ ∥∇ log f ∥L2(µ) ∥µ − µ̄∥Ḣ−1(µ) +
∥∥∇ log f̄

∥∥
L2(µ̄) ∥µ̄ − µ∥Ḣ−1(µ̄)

+ ∥∇ log g∥L2(ν) ∥ν − ν̄∥Ḣ−1(ν) + ∥∇ log ḡ∥L2(ν̄) ∥ν̄ − ν∥Ḣ−1(ν̄) ,

and that we can bound the L2-norm of the gradient of the potentials in terms of
the Fisher information, e.g.

∥∇ log f ∥L2(µ) ≤
∥∥∥∥∇ log

dµ

dm

∥∥∥∥
L2(µ)

+ ∥∇ log PT g∥L2(µ)

=
√
I(µ) + ∥∇ log PT g∥L2(µ)
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and analogously for the other three summands.

Remark 4.2.4. The cost CT(µ, ν) appearing on the right-hand sides of (4.2.1) and
(4.2.2) can be bounded by the independent coupling H (µ ⊗ ν|R0,T) and henceforth
(by combining (2.2.8), (2.2.7), and (2.1.14)) by the quantity

T CT(µ, ν) ≤ T H (µ|m) + T H (ν|m) + C(T + T2) + M2(µ) + M2(ν)

+C T
[

M1(µ) + M1(ν)

]
,

where M1(µ), M1(ν) and M2(µ), M2(ν) denote the first and second moments of µ
and ν and the constant C ≥ 0 is independent of the marginals (and it is equal to 0 if
(M, d,m) satisfies a CD(κ, ∞) condition with m(M) = 1). We have kept the explicit
dependence on the cost in (4.2.1) because this gives a bound which is sharper compared
to the one with the independent coupling H (µ ⊗ ν|R0,T), especially in the small-time
limit T ↓ 0.

Remark 4.2.5 (Sharpness in the long-time regime). Under a non-negative cur-
vature condition we know that in the long-time limit πµ→ν,T ⇀ µ ⊗ ν (cf. [CT21,
Lemma 3.1]) and hence we expect

H sym(πµ→ν,T , πµ̄→ν̄,T) → H sym(µ ⊗ ν, µ̄ ⊗ ν̄) = H sym(µ, µ̄) +H sym(ν, ν̄) .

This shows that the previous bound (4.2.1) under a non-negative curvature condition
is sharp. Indeed, if κ ≥ 0 (4.2.1) implies

lim sup
T→∞

H sym(πµ→ν,T , πµ̄→ν̄,T) ≤ H sym(µ, µ̄) +H sym(ν, ν̄)

and the above convergence is exponentially fast (of order ≈ e−κT/
√

T). This is another
confirmation that under the corrector estimates and a non-negative curvature condition
we are able to efficiently describe the exact behaviour of the Schrödinger problem, as it
has already been shown in the context of the entropic turnpike estimates (e.g., [Con19,
Theorem 1.4] in the classic setting)

A stability result can also be stated at the level of the optimal value of the
Schrödinger problem, after normalising it as follows

T CT(µ, ν)− T H (µ|m)− T H (ν|m) = EOTcT
T (µ, ν) ,

which corresponds to the EOT entropic cost defined at (3.2.5) associated to
cT(x, y) := −T log pT(x, y). Before moving to the proof of stability estimates
for EOTcT

T (µ, ν), we need another technical result given by the following

Lemma 4.2.6. Let (M, d,m) satisfy (CD) and (I). For any (µ, ν) and (µ̄, ν̄) sat-
isfying A1, A3 and such that ∥µ − µ̄∥Ḣ−1(µ) , ∥µ̄ − µ∥Ḣ−1(µ̄) , ∥ν − ν̄∥Ḣ−1(ν), and
∥ν̄ − ν∥Ḣ−1(ν̄) are all finite and with H sym(µ, µ̄), H sym(ν, ν̄) < ∞, it holds∫

log
PT f
PT f̄

dν ≤
∫

log
f
f̄

dµ and
∫

log
PT g
PT ḡ

dµ ≤
∫

log
g
ḡ

dν .
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Analogous bounds hold when we exchange the roles between (µ, ν, f , g) and (µ̄, ν̄, f̄ , ḡ).

Proof. Since H (ν|ν̄) ≤ H (πµ→ν,T |πµ→ν̄,T), by means of the f g-decomposition
the inequality reads as∫

log
PT f
PT f̄

dν +
∫

log
g
ḡ

dν ≤
∫

log
f
f̄

dµ +
∫

log
g
ḡ

dν ,

which yields the first inequality. The other bound can be proven in the same
way.

By following the same line of reasoning applied for the stability of the opti-
mal plans, we can finally deduce the following

Theorem 4.2.7. Let (M, d,m) satisfy (CD) and (I). For any (µ, ν) and (µ̄, ν̄) sat-
isfying A1, A3, and such that ∥µ − µ̄∥Ḣ−1(µ) , ∥µ̄ − µ∥Ḣ−1(µ̄) , ∥ν − ν̄∥Ḣ−1(ν), and
∥ν̄ − ν∥Ḣ−1(ν̄) are all finite and with H sym(µ, µ̄), H sym(ν, ν̄) < ∞, it holds

EOTcT
T (µ, ν)− EOTcT

T (µ̄, ν̄) ≤ T
[
H (µ̄|µ) ∧H (ν̄|ν)

]
+

T√
E2κ(T)

√
CT(µ, ν)−H (µ|m) ∥µ − µ̄∥Ḣ−1(µ)

+
T√

E2κ(T)

√
CT(µ, ν)−H (ν|m) ∥ν − ν̄∥Ḣ−1(ν) ,

where E2κ is defined as in (2.1.10), from which it follows√
E2κ(T)

T
∣∣EOTcT

T (µ̄, ν̄)− EOTcT
T (µ, ν)

∣∣ ≤ √E2κ(T)
[
H sym(µ, µ̄) ∧H sym(ν, ν̄)

]
+
√
CT(µ, ν)−H (µ|m) ∥µ − µ̄∥Ḣ−1(µ) +

√
CT(µ, ν)−H (ν|m) ∥ν − ν̄∥Ḣ−1(ν)

+
√
CT(µ̄, ν̄)−H (µ̄|m) ∥µ̄ − µ∥Ḣ−1(µ̄) +

√
CT(µ̄, ν̄)−H (ν̄|m) ∥ν̄ − ν∥Ḣ−1(ν̄) .

Proof. First of all, since the assumptions of Corollary 4.2.3 are met, the following
computations are all well defined. With this said, let us start by noticing that

EOTcT
T (µ, ν) = T CT(µ, ν)− T H (µ|m)− T H (ν|m)

= − T
∫

log PT g dµ − T
∫

log PT f dν ,

and therefore

EOTcT
T (µ̄, ν̄)− EOTcT

T (µ, ν) = T
∫

log PT g dµ + T
∫

log PT f dν

− T
∫

log PT ḡ dµ̄ − T
∫

log PT f̄ dν̄

= T
∫

log
PT g
PT ḡ

dµ + T
∫

log
PT f
PT f̄

dν

− T
∫

log PT ḡ d(µ̄ − µ)− T
∫

log PT f̄ d(ν̄ − ν) .
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Applying Lemma 4.2.6 we deduce that

EOTcT
T (µ̄, ν̄)− EOTcT

T (µ, ν) ≤ T
∫

log
PT g
PT ḡ

dµ + T
∫

log
f
f̄

dµ

−T
∫

log PT ḡ d(µ̄ − µ)− T
∫

log PT f̄ d(ν̄ − ν)

= T
∫

log
dµ

dµ̄
dµ − T

∫
log PT ḡ d(µ̄ − µ)− T

∫
log PT f̄ d(ν̄ − ν)

= TH (µ|µ̄)− T
∫

log PT ḡ d(µ̄ − µ)− T
∫

log PT f̄ d(ν̄ − ν) .

(4.2.7)

Notice that above we could have used Lemma 4.2.6 on the integral
∫

log PT g
PT ḡ dµ

and therefore we would have got H (ν|ν̄) instead of H (µ|µ̄). Therefore we can
state that

EOTcT
T (µ̄, ν̄)− EOTcT

T (µ, ν) ≤ T
[
H (µ|µ̄) ∧H (ν|ν̄)

]
− T

∫
log PT ḡ d(µ̄ − µ)

−T
∫

log PT f̄ d(ν̄ − ν)

≤ T
[
H (µ|µ̄) ∧H (ν|ν̄)

]
+ T ∥∇ log PT ḡ∥L2(µ̄) ∥µ̄ − µ∥Ḣ−1(µ̄)

+T
∥∥∇ log PT f̄

∥∥
L2(ν̄) ∥ν̄ − ν∥Ḣ−1(ν̄) .

By exchanging the roles between (µ, ν) and (µ̄, ν̄) and by arguing in the same
way we also get

EOTcT
T (µ, ν)− EOTcT

T (µ̄, ν̄) ≤ T
[
H (µ̄|µ) ∧H (ν̄|ν)

]
+ T ∥∇ log PT g∥L2(µ) ∥µ − µ̄∥Ḣ−1(µ) + T ∥∇ log PT f ∥L2(ν) ∥ν − ν̄∥Ḣ−1(ν) ,

and therefore we deduce∣∣EOTcT
T (µ̄, ν̄)− EOTcT

T (µ, ν)
∣∣ ≤ T

[
H sym(µ, µ̄) ∧H sym(ν, ν̄)

]
+T ∥∇ log PT g∥L2(µ) ∥µ − µ̄∥Ḣ−1(µ) + T ∥∇ log PT f ∥L2(ν) ∥ν − ν̄∥Ḣ−1(ν)

+T ∥∇ log PT ḡ∥L2(µ̄) ∥µ̄ − µ∥Ḣ−1(µ̄) + T
∥∥∇ log PT f̄

∥∥
L2(ν̄) ∥ν̄ − ν∥Ḣ−1(ν̄) .

Given the above, the thesis follows from the corrector estimates (cf. Proposi-
tion 3.1.2).

Remark 4.2.8. Notice that in the cases where we change just one marginal (e.g. µ =
µ̄), we can get rid of the relative entropy between the marginals in the above result.
Therefore in order to get a bound without the symmetric relative entropy of the marginals
it is enough to consider the case where one of the marginals is frozen by means of the
trivial inequality∣∣EOTcT

T (µ̄, ν̄)− EOTcT
T (µ, ν)

∣∣ ≤ ∣∣EOTcT
T (µ̄, ν̄)− EOTcT

T (µ, ν̄)
∣∣

+
∣∣EOTcT

T (µ, ν̄)− EOTcT
T (µ, ν)

∣∣ .
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Let us conclude by showing that, under the finite Fisher information as-
sumption, we may write a stability estimate for the Schrödinger costs without
involving the symmetric relative entropies in the right-hand side.

Proposition 4.2.9. Let (M, d,m) satisfy (CD) and (I). For any (µ, ν) and (µ̄, ν̄)
satisfying A1 and A3 we have

|CT(µ̄, ν̄)− CT(µ, ν)|

≤ 1√
E2κ(T)

[√
I(µ) +

√
CT(µ, ν)−H (µ|m)

]
∥µ − µ̄∥Ḣ−1(µ)

+
1√

E2κ(T)

[√
I(µ̄) +

√
CT(µ̄, ν̄)−H (µ̄|m)

]
∥µ̄ − µ∥Ḣ−1(µ̄)

+
1√

E2κ(T)

[√
I(ν) +

√
CT(µ, ν)−H (ν|m)

]
∥ν − ν̄∥Ḣ−1(ν)

+
1√

E2κ(T)

[√
I(ν̄) +

√
CT(µ̄, ν̄)−H (ν̄|m)

]
∥ν̄ − ν∥Ḣ−1(ν̄) ,

where E2κ is defined as in (2.1.10).

Proof. The proof runs like the one given in Theorem 4.2.7 observing that, simi-
larly to (4.2.7), we can write

CT(µ̄, ν̄)−CT(µ, ν) ≤
∫

log f̄ d(µ̄−µ)+
∫

log ḡ d(ν̄− ν)−
[
H (µ|µ̄)∨H (ν|ν̄)

]
and therefore it holds

|CT(µ̄, ν̄)− CT(µ, ν)|
≤ ∥∇ log f ∥L2(µ) ∥µ − µ̄∥Ḣ−1(µ) +

∥∥∇ log f̄
∥∥

L2(µ̄) ∥µ̄ − µ∥Ḣ−1(µ̄)

+ ∥∇ log g∥L2(ν) ∥ν − ν̄∥Ḣ−1(ν) + ∥∇ log ḡ∥L2(ν̄) ∥ν̄ − ν∥Ḣ−1(ν̄) .

Notice that in the above result we are able to consider the stability directly
between the Schrödinger costs CT(µ, ν) and CT(µ̄, ν̄). This is indeed due to the
fact that we are working in a finite Fisher information setting.

Let us further mention that the Lipschitz bounds proven in Theorem 4.2.2
and Proposition 4.2.9 are well behaved in the small-time limit T ↓ 0. Indeed,
since we have 4TCT(µ, ν) → W2

2(µ, ν) (cf. (3.2.2)), if (CD), A1, A3 and (I) (for
some fixed time window T0 > 0) hold true and if H sym(µ, µ̄), H sym(ν, ν̄) are
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both finite, then after rescaling it holds

lim sup
T→0

2T H sym(πµ→ν,T ,πµ̄→ν̄,T)

≤W2(µ, ν)

[
∥µ − µ̄∥Ḣ−1(µ) + ∥ν − ν̄∥Ḣ−1(ν)

]
+ W2(µ̄, ν̄)

[
∥µ̄ − µ∥Ḣ−1(µ̄) + ∥ν̄ − ν∥Ḣ−1(ν̄)

]
,

lim sup
T→0

2 |EOTcT
T (µ̄, ν̄)− EOTcT

T (µ, ν)|

≤W2(µ, ν)

[
∥µ − µ̄∥Ḣ−1(µ) + ∥ν − ν̄∥Ḣ−1(ν)

]
+ W2(µ̄, ν̄)

[
∥µ̄ − µ∥Ḣ−1(µ̄) + ∥ν̄ − ν∥Ḣ−1(ν̄)

]
.

(4.2.8)
The prefactor T on the left-hand side of the first displacement should not be
surprising. For instance, it also appears in the quantitative stability bounds for
the optimisers of EOT (cf. [EN22b, Theorem 3.11]), for which there is a vast liter-
ature nowadays. The most general and recent result we are aware of is the one
in [EN22b], where the authors manage to prove Lipschitzianity with respect
to the p-Wasserstein distance provided that the cost function satisfies a certain
abstract condition introduced therein. Our estimates (cf. Theorem 4.2.7 and
Proposition 4.2.9) are less tight than theirs, however our setting does not satisfy
their abstract condition in general. In fact, we cannot expect in general to bound
the symmetric entropy of two optimal couplings since, even assuming the weak
convergence of the Schrödinger optimizer πµ→ν,T to the optimal W2-coupling
π

µ,ν
0 , it may happen that H sym(π

µ,ν
0 , π

µ̄,ν̄
0 ) = +∞ while the right-hand side

stays finite. For instance, consider M = (0, 1) with the marginals µ, ν, µ̄ equal
to the Lebesgue measure on (0, 1) and dν̄(x) = (log 2)2x dx. Then H sym(ν, ν̄)

and the left-hand sides of our bounds are finite but H sym(π
µ,ν
0 , π

µ,ν̄
0 ) = +∞

since the two optimal couplings π
µ,ν
0 and π

µ,ν̄
0 have disjoint supports (the first

is supported on the diagonal while the latter is supported on the graph of
L(x) = log2 x). For sake of completeness, the finiteness of ∥ν − ν̄∥Ḣ−1(ν) is
due to [Pey18, Theorem 5], while the finiteness of ∥ν̄ − ν∥Ḣ−1(ν̄) follows from
the former and [Pey18, Lemma 2].

Finally, since the negative Sobolev norm is intimately related to the W2-
distance, our bounds may lead to a W2-Lipschitz estimate.
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4.2.1 Application to the Entropic Optimal Transport problem
with quadratic cost

In this section we translate the stability results stated in Theorem 4.2.2 and The-
orem 4.2.7 to the Euclidean EOT setting with quadratic cost

EOTd2

ε (µ, ν) := inf
π∈Π(µ,ν)

∫
|x − y|2 dπ + ε H (π|µ ⊗ ν) , ε > 0 . (4.2.9)

We will manage to do that under sufficiently general conditions, so that our
results will apply to any couple of marginals µ, ν ∈ P2(R

d) with finite relative
entropy w.r.t. the Lebesgue measure Leb on Rd and with densities w.r.t. Leb
locally bounded away from 0 on their support and such that µ(∂supp(µ)) =
ν(∂supp(ν)) = 0; or with bounded and compactly supported densities. For
later reference, let π

µ,ν
ε denote the minimizer (which exists and is unique since

µ, ν ∈ P2(R
d), cf. [Nut21, Theorem 4.2]).

In what follows we are going to consider a Schrödinger problem equivalent
to the above (4.2.9), where the underlying stochastic dynamics is given by the
law of the Ornstein–Uhlenbeck process

dXt = −κXtdt +
√

2 dBt , (4.2.10)

(Bt)t being a d-dimensional Brownian motion and κ > 0 a curvature param-
eter (whose value will be specified later). The above SDE admits as unique
invariant measure the Gaussian distribution m ∼ N

(
0, κ−1Id

)
, i.e. dm(x) ∼

e−
κ
2 |x|

2
dx, which satisfies the curvature condition CD(κ, ∞) and hence a loga-

rithmic Sobolev inequality with parameter κ−1 [BGL13, Corollary 5.7.1]. Then,
Herbst’s argument [BGL13, Proposition 5.4.1] implies that m satisfies the inte-
grability condition (I) for any r < κ/2. Notice that for any choice of κ > 0 we
have

H (µ|m) = Ent(µ) +
κ

2
M2(µ) +

d
2

log
2π

κ
< +∞ (4.2.11)

and similarly H (ν|m) < +∞.
Now, let us consider a final time in SP such that εκ

4 = sinh(κT), i.e.

T :=
1
κ

log

(
εκ

4
+

√
ε2κ2

16
+ 1

)
(4.2.12)

and let R0,T = L(X0, XT) denote the joint law at times 0 and T of the Orn-
stein–Uhlenbeck process solving (4.2.10) started at the invariant measure m,
whose density is given by the transition kernel

pT(x, y) =
dR0,T

d(m⊗m)
(x, y) =

1

(1 − e−2κT)
d
2

exp

{
−|x|2 − 2eκT x · y + |y|2

2
κ (e

2κT − 1)

}
.

(4.2.13)
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Then, thanks to our choice of T, for any coupling π ∈ Π(µ, ν) it holds

∫
R2d

|x − y|2 dπ + ε H (π|µ ⊗ ν)

= M2(µ) + M2(ν)− 2
∫

R2d
x · y dπ + ε H (π|µ ⊗ ν)

= −dε

2
log(1 − e−2κT) + (1 − e−κT)

(
M2(µ) + M2(ν)

)
− ε

∫
R2d

log pT(x, y)dπ + ε H (π|µ ⊗ ν)

= −dε

2
log(1 − e−2κT) + (1 − e−κT)

(
M2(µ) + M2(ν)

)
− ε

∫
R2d

log
dR

d(m⊗m)
dπ + εH (π|µ ⊗ ν)

= −dε

2
log(1 − e−2κT) + (1 − e−κT)

(
M2(µ) + M2(ν)

)
+ ε H (π|R0,T)

− ε H (µ|m)− ε H (ν|m) .
(4.2.14)

Therefore the above EOT problem (4.2.9) has the same minimizer of SP with
reference given by the above-chosen R0,T and their values are linked according
to the following identity

EOTd2

ε (µ, ν) = ε CT(µ, ν)− ε H (µ|m)− ε H (ν|m)− dε

2
log(1 − e−2κT)

+ (1 − e−κT)
(

M2(µ) + M2(ν)
)

=
ε

T
EOTcT

T (µ, ν)− dε

2
log(1 − e−2κT) + (1 − e−κT)

(
M2(µ) + M2(ν)

)
.

(4.2.15)
Since we are interested in stability results, take also µ̄, ν̄ ∈ P2(R

d) such that

Ent(µ̄), Ent(ν̄) < +∞ and H sym(µ, µ̄), H sym(ν, ν̄) < +∞ .
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We are now ready to apply Theorem 4.2.7 and get

|EOTd2

ε (µ̄, ν̄)− EOTd2

ε (µ,ν)| ≤ ε

T
∣∣EOTcT

T (µ̄, ν̄)− EOTcT
T (µ, ν)

∣∣
+
(

1 − e−κT
) (

|M2(µ̄)− M2(µ)|+ |M2(ν̄)− M2(ν)|
)

≤ ε
[
H sym(µ, µ̄) ∧H sym(ν, ν̄)

]
+
(

1 − e−κT
) (

|M2(µ̄)− M2(µ)|+ |M2(ν̄)− M2(ν)|
)

+
ε√

E2κ(T)

√
CT(µ, ν)−H (µ|m) ∥µ − µ̄∥Ḣ−1(µ)

+
ε√

E2κ(T)

√
CT(µ, ν)−H (ν|m) ∥ν − ν̄∥Ḣ−1(ν)

+
ε√

E2κ(T)

√
CT(µ̄, ν̄)−H (µ̄|m) ∥µ̄ − µ∥Ḣ−1(µ̄)

+
ε√

E2κ(T)

√
CT(µ̄, ν̄)−H (ν̄|m) ∥ν̄ − ν∥Ḣ−1(ν̄) .

(4.2.16)
Since for any coupling π ∈ Π(µ̄, µ) we can write

|M2(µ̄)− M2(µ)| =
∣∣∣∣∫ |x|2 − |y|2 dπ

∣∣∣∣
≤
∫

|x(x − y)|dπ +
∫

|y(x − y)|dπ

≤
(√

M2(µ̄) +
√

M2(µ)

)(∫
|x − y|2 dπ

) 1
2

,

by minimising the right-hand side over π ∈ Π(µ, ν) we end up with

|M2(µ̄)− M2(µ)| ≤
(√

M2(µ̄) +
√

M2(µ)

)
W2(µ̄, µ)
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and (4.2.16) reads as

|EOTd2

ε (µ̄, ν̄)− EOTd2

ε (µ, ν)| ≤ε
[
H sym(µ, µ̄) ∧H sym(ν, ν̄)

]
+
(

1 − e−κT
)(√

M2(µ̄) +
√

M2(µ)

)
W2(µ̄, µ)

+
(

1 − e−κT
)(√

M2(ν̄) +
√

M2(ν)

)
W2(ν̄, ν)

+
ε√

E2κ(T)

√
CT(µ, ν)−H (µ|m) ∥µ − µ̄∥Ḣ−1(µ)

+
ε√

E2κ(T)

√
CT(µ, ν)−H (ν|m) ∥ν − ν̄∥Ḣ−1(ν)

+
ε√

E2κ(T)

√
CT(µ̄, ν̄)−H (µ̄|m) ∥µ̄ − µ∥Ḣ−1(µ̄)

+
ε√

E2κ(T)

√
CT(µ̄, ν̄)−H (ν̄|m) ∥ν̄ − ν∥Ḣ−1(ν̄) .

(4.2.17)
Similarly, since πµ→ν,T is also the optimizer of the EOT problem (4.2.9), we
can translate Theorem 4.2.2 into a stability result between the optimal plans for
(4.2.9), that is, between π

µ,ν
ε and π

µ̄,ν̄
ε :

ε H sym(π
µ,ν
ε , π

µ̄,ν̄
ε ) =

ε

T
T H sym(πµ→ν,T , πµ̄→ν̄,T)

≤ ε H sym(µ, µ̄) + ε H sym(ν, ν̄)

+
ε√

E2κ(T)

√
CT(µ, ν)−H (µ|m) ∥µ − µ̄∥Ḣ−1(µ)

+
ε√

E2κ(T)

√
CT(µ, ν)−H (ν|m) ∥ν − ν̄∥Ḣ−1(ν)

+
ε√

E2κ(T)

√
CT(µ̄, ν̄)−H (µ̄|m) ∥µ̄ − µ∥Ḣ−1(µ̄)

+
ε√

E2κ(T)

√
CT(µ̄, ν̄)−H (ν̄|m) ∥ν̄ − ν∥Ḣ−1(ν̄) .

(4.2.18)

Given the above bounds one can now get explicit estimates by choosing the
curvature parameter κ > 0.

Remark 4.2.10 (Small-noise limit). Let us point out that the above bounds are sta-
ble when ε → 0. Indeed (4.2.12) guarantees us that the small-noise limit ε → 0 is
equivalent to the small-time limit T → 0 and moreover the ratio ε

T stays finite since

ε

T
=

εκ

κT
=

4 sinh(κT)
κT

= 2
eκT − e−κT

κT
→ 4 , as T → 0.

Therefore in the small-noise limit, from (3.2.2) we deduce for (4.2.9) the following sta-
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bility results

lim sup
ε→0

|EOTd2

ε (µ̄, ν̄)− EOTd2

ε (µ, ν)|

≤2W2(µ, ν)

[
∥µ − µ̄∥Ḣ−1(µ) + ∥ν − ν̄∥Ḣ−1(ν)

]
+2W2(µ̄, ν̄)

[
∥µ̄ − µ∥Ḣ−1(µ̄) + ∥ν̄ − ν∥Ḣ−1(ν̄)

]
lim sup

ε→0
ε H sym(π

µ,ν
ε , π

µ̄,ν̄
ε ) ≤2W2(µ, ν)

[
∥µ − µ̄∥Ḣ−1(µ) + ∥ν − ν̄∥Ḣ−1(ν)

]
+2W2(µ̄, ν̄)

[
∥µ̄ − µ∥Ḣ−1(µ̄) + ∥ν̄ − ν∥Ḣ−1(ν̄)

]
(4.2.19)

which agree, up to a scaling constant, with the estimates obtained in (4.2.8) for the
Schrödinger setting.

Notice that the above small-noise limit is independent from the choice of
κ > 0. This suggests us to take the limit κ ↓ 0 directly in (4.2.17) and (4.2.18).
Indeed from (4.2.12) it follows T → ε/4 as κ ↓ 0. Furthermore, by rearranging
(4.2.15) we notice that

T CT(µ, ν)− T H (µ|m) =
T
ε

EOTd2

ε (µ, ν)− T
ε
(1 − e−κT)

(
M2(µ) + M2(ν)

)
+T H (ν|m) +

d T
2

log
(

1 − e−2κT
)

=
T
ε

EOTd2

ε (µ, ν)− T
ε
(1 − e−κT)

(
M2(µ) + M2(ν)

)
+ T Ent(ν)

+
κT
2

M2(ν) +
d T
2

log
(

4πT
1 − e−2κT

2κT

)

and therefore we have

lim
κ→0

T CT(µ, ν)− T H (µ|m) =
1
4

EOTd2

ε (µ, ν) +
ε

4
Ent(µ) +

1
4

Cε ,

where Cε =
dε
2 log(4πε). As a consequence, by taking the limit in the right-hand
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sides of (4.2.17) and (4.2.18), we deduce that∣∣∣EOTd2

ε (µ̄, ν̄)− EOTd2

ε (µ, ν)
∣∣∣ ≤ ε

[
H sym(µ, µ̄) ∧H sym(ν, ν̄)

]
+ 2
√

EOTd2
ε (µ, ν) + ε Ent(ν) + Cε ∥µ − µ̄∥Ḣ−1(µ)

+ 2
√

EOTd2
ε (µ, ν) + ε Ent(µ) + Cε ∥ν − ν̄∥Ḣ−1(ν)

+ 2
√

EOTd2
ε (µ̄, ν̄) + ε Ent(ν̄) + Cε ∥µ̄ − µ∥Ḣ−1(µ̄)

+ 2
√

EOTd2
ε (µ̄, ν̄) + ε Ent(µ̄) + Cε ∥ν̄ − ν∥Ḣ−1(ν̄)

and

ε H sym(π
µ,ν
ε , π

µ̄,ν̄
ε ) ≤ ε

[
H sym(µ, µ̄) +H sym(ν, ν̄)

]
+ 2
√

EOTd2
ε (µ, ν) + ε Ent(ν) + Cε ∥µ − µ̄∥Ḣ−1(µ)

+ 2
√

EOTd2
ε (µ, ν) + ε Ent(µ) + Cε ∥ν − ν̄∥Ḣ−1(ν)

+ 2
√

EOTd2
ε (µ̄, ν̄) + ε Ent(ν̄) + Cε ∥µ̄ − µ∥Ḣ−1(µ̄)

+ 2
√

EOTd2
ε (µ̄, ν̄) + ε Ent(µ̄) + Cε ∥ν̄ − ν∥Ḣ−1(ν̄) .

Notice that from the above bounds, we get the validity of (4.2.19) in the small-
noise limit ε ↓ 0,.
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Bibliographical Remarks

Recently, there has been an increasing interest in the quantitative stability for
the EOT problem, which is strongly linked to SP. A first stability estimate for
EOT in a general setting has been established in [GNB22]. There, the authors,
without any integrability assumption, manage to prove a qualitative stability
result by relying on a geometric notion inspired by the cyclical monotonic-
ity property in Optimal Transport. To the best of our knowledge, the first
quantitative stability result is due to Carlier and Laborde in [CL20] in the con-
text of multi-marginal EOT. By considering bounded marginals equivalent to
a common reference probability measure and a bounded cost, they show that
the potentials are Lipschitz-continuous in L2 and L∞ w.r.t. the densities of the
marginals. As far as concerns quantitative stability for the primal optimiser,
the first result appeared in the work [DdBD24]. There the authors prove on
compact metric spaces a quantitative uniform stability along Sinkhorn’s al-
gorithm which implies stability for EOT and more precisely an explicit W1-
Lipschitzianity of the optimiser w.r.t. the marginals. More recently, in [EN22b]
a quantitative stability result that holds on general metric spaces is shown, thus
removing the compactness assumption at the cost of requiring some exponen-
tial integrability with respect to the marginals (condition met for instance when
the marginals are sub-Gaussian). More precisely the authors prove a 1

2p -Hölder
continuity for Wp provided that the cost function satisfies an abstract condition,
introduced there in order to bound the optimal values of EOT by means of the
Wasserstein distance between the corresponding optimiser. Such condition is
met for a wide enough class of cost functions such as c(x, y) = |x − y|p on the
Euclidean space, with p ∈ (1, ∞). Nevertheless, it is not easily verifiable in gen-
eral, and in particular when considering the case c = −T log pT (which allows
to translate results from EOT into results for SP). Lastly, it is worth mention-
ing that in the most recent [NW23] the authors study the qualitative stability
of the Schrödinger potentials associated to EOT in a general setting assuming
the cost function c satisfies eβc ∈ L1(µ ⊗ ν) for some β > 0, which leads to the
convergence of Sinkhorn’s algorithm. The (CD) condition does not have a nat-
ural counterpart in the EOT setting, where the results we have just discussed
have been established; for this reason the stability results Theorem 4.2.2 and
Theorem 4.2.7 are not implied by any of the stability bounds mentioned above.

The results presented in this chapter are based on [CCGT23].
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Chapter 5

Exponential convergence of
Sinkhorn’s algorithm:
perturbative approach

In this chapter we are going to study how Lipschitzianity propagates along
Sinkhorn’s algorithm and from that deduce a first exponential convergence re-
sult. The approach we employ here is based on Stochastic Optimal Control
theory and Hamilton-Jacobi-Bellman equations (HJBs).

Hereafter we are going to consider a Schrödinger problem on Rd with ref-
erence measure induced by the Langevin SDE{

dXt = −∇U(Xt)dt +
√

2 dBt

X0 ∼ m ,
(5.0.1)

with m(dx) ∝ exp(−U(x))dx. We will further assume that the potential U ∈
C2(Rd) is strongly convex, i.e., that (Rd,m) satisfies CD(κ, ∞) for some positive
κ > 0. This condition can be further relaxed by considering potentials U that
are asymptotically convex (i.e., satisfying (6.0.10) in the next chapter), however
for clarity purposes we stick here with the strong convexity assumption. We
refer the reader to Remark 5.2.4.

Let us further mention that CD(κ, ∞) with κ > 0 guarantees that m ∈
Pp(Rd) for any finite p ≥ 1, since m satisfies the Poincaré inequality with
parameter κ−1 [BGL13, Proposition 4.8.1], and therefore it enjoys exponential
integrability properties (namely exp(s|x|) ∈ L1(m) for all s < 2

√
κ, see [BGL13,

Proposition 4.4.2]).
The standing marginals’ assumption in this chapter will be the following:

A4. The two marginals µ, ν ∈ P1(R
d) admit continuously differentiable Lipschitz

log-densities w.r.t. m, i.e., there exist two Lipschitz potentials Uµ, Uν ∈ C1(Rd) such

97
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that

µ(dx) = exp(−Uµ(x))m(dx) , ν(dx) = exp(−Uν(x))m(dx) .

Clearly A4 implies A1 since for p ∈ {µ, ν} we have

H (p|m) = −
∫

Up dp ≤ −Up(0) + Lip(Up) M1(p) < +∞ .

From this we may also deduce that µ, ν ∈ P2(R
d). Indeed, the probability mea-

sure m under CD(κ, ∞) satisfies the Talagrand transportation inequality with
parameter κ−1 [BGL13, Corollary 9.3.2] and therefore we can conclude that

M2(p) ≤ 2 M2(m) + 2 W2
2(p,m) ≤ 2 M2(m) +

4
κ

H (p|m) < +∞ .

Finally, let us point out that in this chapter and in the following one we will
denote with φ⋆ and ψ⋆ the Schrödinger potentials defined in Theorem 2.2.1.
The only purpose of this slightly different notation boils down to avoiding any
possible confusion between Sinkhorn’s iterates and potentials.

5.1 Lipschitz propagation along Sinkhorn’s algorithm

The starting point of our discussion is considering the function

UT,h
t := − log PT−t exp(−h) , (5.1.1)

where (Pt)t∈[0,T] is the semigroup associated to (5.0.1) while h is a given Lips-
chitz function. In order to do that let us fix an underlying filtered probability
space (Ω, (Fs)s∈[0,T],F , P) satisfying the usual conditions and endowed with
the Brownian motion (Bt)t∈[0,T]. Under some additional regularity assumption

(namely, h ∈ C3
Lip(R

d)) it is known that UT,h
t is a classical solution of the HJB

equation {
∂tut + ∆ut −∇U · ∇ut − |∇ut|2 = 0
uT = h ,

(5.1.2)

and it coincides also with the the value function of the stochastic optimal con-
trol problem

J T,h
t (x) = inf

q·∈A[t,T]
E

[∫ T

t
|qs|2ds + h(Xq

T)

]

where P-a.s. it holds

{
dXq

s = (−∇U(Xq
s ) + 2 qs)ds +

√
2 dBs

Xq
t = x

(5.1.3)
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where A[t,T] denotes the set of admissible controls, i.e., progressively measur-
able processes with finite moments on (Ω, (Fs)s∈[0,T],F , P). Moreover, the op-

timal control is a feedback-control process equal to −∇UT,h
s (Xq

s ). These are
classic results in Stochastic Control theory and we refer the reader to [Con23,
Proposition 3.1] for their validity.

Given the above, we can now show how Lipschitzianity backward propa-
gates along HJB equations.

Lemma 5.1.1. Let h ∈ Lip(Rd) be a Lipschitz function and assume CD(κ, ∞) for
κ > 0. Then for any t ∈ [0, T] it holds

Lip(UT,h
t ) ≤ exp(−κ (T − t))Lip(h) . (5.1.4)

Proof. We will firstly prove this result under the additional smoothness as-
sumption that h ∈ C3

Lip(R
d), so that the above stochastic optimal control (here-

after SOC) representation holds true.
Fix t ∈ [0, T), x, y ∈ Rd and consider qs := −∇UT,h

s (Xq
s ) the optimal control

process associated to the value function UT,h
s (x) evaluated in x, via (5.1.3) and

its corresponding controlled process{
dXq

s = (−∇U(Xq
s ) + 2 qs)ds +

√
2 dBs

Xq
t = x .

(5.1.5)

Let us further consider the diffusion process{
dYs = (−∇U(Ys) + 2 qs)ds +

√
2 dBs

Yt = y

with (Bs)s∈[0,T] being the same Brownian motion as in (5.1.5), so that we con-
sider a synchronous coupling between the diffusion processes (Xq

s )s∈[t T] and
(Ys)s∈[t,T].

Then, from the suboptimality of (qs)s∈[t,T] for the value function evaluated
in y (that is when considering the diffusion (5.1.3) started at Xq

t = y) we know
that

UT,h
t (y)−UT,h

t (x) ≤ E

[∫ T

t
|qs|

2ds + h(YT)

]
− E

[∫ T

t
|qs|

2ds + h(Xq
T)

]
= E[h(YT)− h(Xq

T)] ≤ Lip(h)E[|YT − Xq
T |] .

(5.1.6)

Therefore it is enough bounding the distance between Xq
T and YT which are two

processes started respectively in Xq
t = x and Yt = y and that follow the same

controlled SDE. Clearly their difference satisfies

d(Xq
s − Ys) = −(∇U(Xq

s )−∇U(Ys))ds ,



100 CHAPTER 5. SINKHORN: PERTURBATIVE APPROACH

from which it follows

d|Xq
s − Ys|2 = −2⟨Xq

s − Ys, ∇U(Xq
s )−∇U(Ys)⟩ds ≤ −2κ |Xq

s − Ys|2 ds ,

where the last step follows from the κ-convexity of U. Gronwall Lemma finally
yields to

|YT − Xq
T | ≤ exp(−κ(T − t))|y − x| .

By taking the expectation in the above estimate and combining it with (5.1.6),
we conclude that for any x, y ∈ Rd it holds

|UT,h
t (y)−UT,h

t (x)| ≤ exp(−κ(T − t))Lip(h) |y − x| ,

which is equivalent to our thesis.
Finally, this result can be relaxed to the general case h ∈ Lip(Rd) by follow-

ing a standard approximation technique, which is detailed in [Con23, Lemma
3.1].

The above estimate immediately allow to propagate Lipschitzianity along
Sinkhorn’s algorithm (cf. (2.2.18)) which we recall here to be defined as{

φn+1 = Uµ −UT,ψn

0

ψn+1 = Uν −UT,φn+1

0 ,
(5.1.7)

with UT,h
t as defined in (5.1.1). We further initialise the algorithm at ψ0, be-

ing Lipschitz. Notice that the standard initialisation ψ0 = Uν is indeed Lips-
chitz under A4. In order to be consistent with the normalisation imposed on
the Schrödinger potentials at (2.2.13), when dealing with the convergence of
Sinkhorn’s iterates we will actually refer to their normalised versions, namely
the iterates

φ⋄n = φn −
(∫

φndµ −
∫

φ⋆dµ

)
, ψ⋄n = ψn −

(∫
ψndν −

∫
ψ⋆dν

)
,

(5.1.8)
so that ∫

φ⋄ndµ =
∫

φ⋆dµ and
∫

ψ⋄ndν =
∫

ψ⋆dν . (5.1.9)

Lemma 5.1.2. Assume CD(κ, ∞) for some κ > 0, that the two marginals satisfy A
4 and further assume the initialisation of Sinkhorn’s algorithm ψ0 to be a Lipschitz
function. Then, for all n ≥ 0 we have

Lip(φn+1) ≤Lip(Uµ) + e−κ TLip(ψn)

Lip(ψn+1) ≤Lip(Uν) + e−κ TLip(φn+1) .
(5.1.10)

Moreover, for all n ≥ 1 we have

Lip(ψn) ≤
Lip(Uν) + exp(−κ T)Lip(Uµ)

1 − exp(−2κ T)

Lip(φn) ≤
Lip(Uµ) + exp(−κ T)Lip(Uν)

1 − exp(−2κ T)
,

(5.1.11)
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and the same holds for the normalised φ⋄n, ψ⋄n.

Proof. As shown in Proposition Lemma 5.1.1, the Lipschitz-regularity back-
ward propagates with rate κ > 0 along solutions of HJB equations (cf. (5.1.4)).
The first claim (5.1.10) then follows from the triangular inequality of the Lip(·)
operator.

Concatenating the bounds in (5.1.10) yields to

Lip(ψn+1) ≤ Lip(Uν) + e−κ TLip(Uµ) + e−2κ TLip(ψn),

from which the first relation in (5.1.11) follows by induction. The second rela-
tion follows by symmetry. Finally the same statement holds true for φ⋄n, ψ⋄n

since they differ from the original iterates just by an additive constant.

From the pointwise convergence of Sinkhorn’s iterates φn, ψn towards the
Schrödinger potentials [GN22, Corollary 4.8]1, the previous regularity result
propagates to the potentials.

Corollary 5.1.3. Assume CD(κ, ∞) for some κ > 0, that the two marginals satisfy
A4 and further assume the initialisation of Sinkhorn’s algorithm ψ0 to be a Lipschitz
function. Then it holds

Lip(ψ⋆) ≤
Lip(Uν) + exp(−κ T)Lip(Uµ)

1 − exp(−2κ T)

Lip(φ⋆) ≤
Lip(Uµ) + exp(−κ T)Lip(Uν)

1 − exp(−2κ T)
,

5.2 A first exponential convergence result

We are now ready to prove the key contraction estimates that will imply the ex-
ponential convergence of Sinkhorn’s algorithm. Once again the main idea be-
hind our proof is relying on a stochastic control problem where the Schrödinger
potential contributes in the final cost while its gradient drives the controlled
SDE. This allows to back-propagate along an HJB equation the Lipschitz regu-
larity of the difference between the Sinkhorn iterates and the target Schrödinger
potential. Indeed, if we denote with Dn

t := UT,ψn

t − UT,ψ⋆

t (the difference be-
tween the evolution along HJB of ψn and respectively the evolution of ψ⋆) from
(5.1.2) we deduce that Dn

t solves{
∂tut + ∆ut + (−∇U − 2∇UT,ψ⋆

t ) · ∇ut − |∇ut|2 = 0
uT = ψn − ψ⋆ ,

(5.2.1)

1More precisely, [GN22, Corollary 4.8] implies µ-a.s. convergence of φ⋄n towards φ⋆. Since the
potentials are defined solely almost surely, we may tacitly assume this convergence to be pointwise.
Similarly it holds for the convergence of ψ⋄n towards ψ⋆. We also refer the interested reader to
[Nut21, Theorem 6.15] for a similar result under stronger assumptions.
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which can as well be represented as the value function of the stochastic control
problem

Dn
t (x) = inf

q·∈A[t,T]
E

[∫ T

t
|qs|2ds + ψn(Xq

T)− ψ⋆(Xp
T)

]

where

{
dXq

s = (−∇U(Xq
s )− 2∇UT,ψ⋆

s (Xq
s ) + 2 qs)ds +

√
2 dBs

Xq
t = x .

(5.2.2)

The connection between (5.2.1) and (5.2.2) is analogous to the one presented
in the previous section and can be established as in [Con23, Proposition 3.1]
(thanks to the uniform bound we provide below in Corollary 5.2.1).

Once the connection with the stochastic optimal control formulation is es-
tablished, the proof boils down once again in studying how Lipschitz-regularity
backward propagates along solutions of HJB equations. However here we may
encounter two difficulties: the drift of the underlying control problem is time
dependent and most importantly the drift is not strongly convex anymore (due
to the presence of −2∇UT,ψ⋆

s ). Nevertheless we will see that the Lipschitz esti-
mates provided in Corollary 5.1.3 imply the asymptotic weak convexity of this
new drift, which is enough in order to get Lipschitz backward propagation as
in Lemma 5.1.1.

For this reason let us introduce the integrated convexity profile associated
to a drift (bs)s∈[0,T] as the function

κb(r) := inf
s∈[0,T]

inf
{
−⟨bs(x)− bs(y), x − y⟩

|x − y|2 : |x − y| = r
}

. (5.2.3)

The function κb is often employed to quantify ergodicity of stochastic differ-
ential equations whose drift field is b, see [Ebe16] and our proof of Proposi-
tion 5.2.3 below. The term integrated convexity profile is motivated by the ob-
servation that if we consider a time-homogeneous drift induced by a potential
(i.e., b = −∇U), then κU(r) ≥ α if and only if for any x, v ∈ Rd, |v| = 1,∫ r

0 ⟨∇
2U(x + hv)v, v⟩dh ≥ αr, which can be seen as an averaged convexity con-

dition.
In this chapter we are going to consider the reference drift associated to the

SOC problem (5.2.2), that is bs := −∇U − 2∇UT,ψ⋆

s . Then, as a corollary of the
discussion of the previous section we know that

Corollary 5.2.1. Assume CD(κ, ∞) for some κ > 0, that the two marginals satisfy
A4 and further assume the initialisation of Sinkhorn’s algorithm ψ0 to be a Lipschitz
function. Then for any r > 0 it holds

κb(r) ≥ κ − 8
r

Lip(Uν) ∨ Lip(Uµ)

1 − exp(−2κ T)
(5.2.4)
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Proof. From CD(κ, ∞) we immediately deduce that for any r > 0 it holds

κb(r) ≥ κ + 2 inf
s∈[0,T]

inf
{
⟨∇UT,ψ⋆

s (x)−∇UT,ψ⋆

s (y), x − y⟩
|x − y|2 : |x − y| = r

}
.

(5.2.5)
Then, Corollary 5.1.3 combined with Lemma 5.1.1 guarantees that uniformly in
x ∈ Rd it holds

∥∇UT,ψ⋆

s (x)∥2 ≤ Lip(UT,ψ⋆

s ) ≤ exp(−κ(T − s))
Lip(Uν) + exp(−κ T)Lip(Uµ)

1 − exp(−2κ T)
,

which combined with (5.2.5) implies the thesis.

For notation’s sake from now on we let

L := 8
Lip(Uν) ∨ Lip(Uµ)

1 − exp(−2κ T)
and κ̄(r) := κ − L/r . (5.2.6)

As we have already mentioned the integrated convexity profile, more precisely
its lower-bound κ̄, plays a crucial role when proving the ergodicity of the (un-
controlled) SDE (5.2.2). Its core properties are that

lim inf
r→∞

κ̄(r) > 0 and
∫ 1

0
r κ̄(r)− dr < +∞ , (5.2.7)

where κ̄(r)− := max{−κ̄(r), 0}. Indeed these guarantee the validity of the
construction of a concave function ρ, which defines a distorted metric (yet
equivalent to the standard Euclidean one) in which is possible obtaining Lips-
chitz estimates similar to Lemma 5.1.1 via the coupling by reflection technique
[Wan94, Ebe16]. More precisely we have the following result.

Proposition 5.2.2 (Proposition 2.1 in [Con23]). There exist a strictly increasing
concave function ρ : [0,+∞) → [0,+∞), a positive rate λ and a positive constant C
such that

1. it holds

C r ≤ ρ(r) ≤ r and C ≤ ρ′(r) ≤ 1 ∀ r ∈ [0,+∞)

2. for any r > 0 the following differential inequality holds

4 ρ′′(r)− r ρ′(r) κ̄(r) ≤ −λ ρ(r) . (5.2.8)

We postpone the proof of this result to Section 5.A, where we also provide
explicit estimates for the rate λ and the constant C. Proposition 5.2.2 holds
for any integrated convexity profile κ̄ satisfying (5.2.7), but in the following
discussion we are just interested in the choice κ̄ as in (5.2.6). Particularly, under
this choice it holds

C := exp(−L2/8κ)/2 (5.2.9)
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and we show in Section 5.A.1 that we can always bound the rate λ with

λ ≥ 2 κ2

L2 + L
√

8 κ + 4 κ
e−L2/8κ . (5.2.10)

The above proposition allows us to consider a distorted metrics induced
by the concave function ρ. For this reason in the following result instead of
considering the Lip-norm, we are going to consider Lipschitzianity according
to this distorted metrics, namely the ρ-Lipschitz norm ∥ · ∥ρ defined as

∥ϕ∥ρ := sup
x ̸=y∈Rd

|ϕ(x)− ϕ(y)|
ρ(|x − y|) .

Let us further mention that the previous norm is equivalent to the usual Lips-
chitz norm Lip (i.e., with ρ being the identity) since the function ρ built in the
appendix is equivalent to the identity (cf. Proposition 5.2.2 and (5.2.9)):

∥ϕ∥Lip ≤ ∥ϕ∥ρ ≤ 2 eL2/8κ ∥ϕ∥Lip . (5.2.11)

We are now ready to show how Lipschitzianity backward propagates along
the HJB equation{

∂tut + ∆ut + (−∇U − 2∇UT,ψ⋆

t ) · ∇ut − |∇ut|2 = 0
uT = h ,

associated to the stochastic control problem

inf
q·∈A[t,T]

E

[∫ T

t
|qs|2ds + h(Xp

T)

]

where

{
dXq

s = (bs(Xq
s ) + 2 qs)ds +

√
2 dBs

Xq
t = x ,

(5.2.12)

with bs := −∇U − 2∇UT,ψ⋆

s . The following result is similar to Lemma 5.1.1
with the main difference being the use of coupling by reflection techniques in-
stead of the synchronous coupling.

Proposition 5.2.3. Let h ∈ Lip(Rd) be a Lipschitz function and take (ρ, λ, C) as in
Proposition 5.2.2. Then, if DT,h

· denotes the solution of (5.2.12), for any t ∈ [0, T] it
holds

∥DT,h
t ∥ρ ≤ exp(−λ (T − t)) ∥h∥ρ .

Proof. As we did for Lemma 5.1.1, we may further assume that h ∈ C3
Lip(R

d)

as the general case follows by approximation. Under this extra assumption
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[Con23, Proposition 3.1] guarantees that DT,h
t (x) coincides with the value func-

tion of (5.2.12) and that the optimal control is the feedback control process
qs := −∇DT,h

s (Xq
s ) with Xq

· strong solution of{
dXq

s = (bs(Xq
s ) + 2 qs)ds +

√
2 dBs

Xq
t = x .

Next consider the same control for the diffusion process{
dYs = (bs(Ys) + 2 qs)ds +

√
2 dB̂s ∀ s ∈ [t, τ) and Ys = Xq

s ∀ s ∈ [τ, T]
Yt = y ,

where τ := inf{s ≥ t : Ys = Xq
s } ∧ T, and (B̂s)s≥t is the reflected Brownian

motion, defined as

dB̂s := (I−2 es eTs 1{s<τ})dBs where es :=

{
Zs
|Zs | when rs > 0 ,

u when rs = 0 .

where Zs := Xq
s − Ys, rs := |Zs| and u ∈ Rd is a fixed (arbitrary) unit-vector.

By Lévy’s characterisation, (B̂s)s≥t is a d-dimensional Brownian motion. As a
result of that and from the suboptimality of q· as control process for DT,h

t (y) we
deduce that

DT,h
t (y)−DT,h

t (x) ≤ E[h(YT)− h(Xq
T)] ≤ ∥h∥ρ E[ρ(rT)] . (5.2.13)

In addition to that, let us notice that dWs := eTs dBs is a one-dimensional
Brownian motion and that for any s < τ it holds

dZs = (bs(Xq
s )− bs(Ys))ds + 2

√
2 es dWs .

An application of Ito’s formula proves then that for any s < τ it holds

dr2
s = 2 ⟨bs(Xq

s )− bs(Ys), Zs⟩ds + 8 ds + 4
√

2 rs dWs

drs = ⟨bs(Xq
s )− bs(Ys), es⟩ds + 2

√
2 dWs .

Therefore Ito’s formula applied to the strictly increasing concave function ρ
yields to

dρ(rs) = ρ′(rs)drs + 4 ρ′′(rs)ds

= (4 ρ′′(rs) + ρ′(rs) ⟨bs(Xq
s )− bs(Ys), es⟩)ds + 2

√
2 ρ′(rs)dWs

(5.2.3)
≤ (4 ρ′′(rs)− ρ′(rs) κb(rs) rs)ds + 2

√
2 ρ′(rs)dWs

(5.2.4)
≤ (4 ρ′′(rs)− rs ρ′(rs) κ̄(rs))ds + 2

√
2 ρ′(rs)dWs

(5.2.8)
≤ − λ ρ(rs)ds + 2

√
2 ρ′(rs)dWs .
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Since ρ(rs) = 0 as soon as s ≥ τ, by taking expectation, integrating over s ∈
[t, T], recalling that rt = |x − y|, and applying Gronwall Lemma we finally
deduce that

E[ρ(rT)] ≤ exp(−λ(T − t))ρ(|x − y|) ,

which combined with (5.2.13) yields to

|DT,h
t (y)−DT,h

t (x)| ≤ exp(−λ(T − t))ρ(|x − y|)∥h∥ρ .

Since x ̸= y ∈ Rd were arbitrary, this concludes our proof.

Remark 5.2.4. In the previous proof we have shown that it is enough considering an
asymptotically convex potential in the underlying SDE in order to backward propagate
the Lipschitzianity. This means that the same coupling by reflection technique can by
employed in the proof of Lemma 5.1.1, allowing us to consider there just an asymptot-
ically convex potential U, instead of a potential satisfying CD(κ, ∞) with κ > 0. In
order to rely on Proposition 5.2.2, we then need

κU(r) := inf
{
⟨∇U(x)−∇U(y), x − y⟩

|x − y|2 : |x − y| = r
}

,

to satisfy (5.2.7). This is the case if U is strongly convex outside a compact set, or also
if U is a Lipschitz perturbation of a strongly convex potential (cf. Remark 6.0.1).

Lemma 5.2.5. Assume CD(κ, ∞) for some κ > 0, that the two marginals satisfy A
4 and further assume the initialisation of Sinkhorn’s algorithm ψ0 to be a Lipschitz
function. Take κ̄ as in (5.2.6) and (ρ, λ, C) as in Proposition 5.2.2. Then it holds

∥ψn+1 − ψ⋆∥ρ ≤ exp(−λ T)∥φn+1 − φ⋆∥ρ

∥φn+1 − φ⋆∥ρ ≤ exp(−λ T)∥ψn − ψ⋆∥ρ .
(5.2.14)

As a result

∥ψn+1 − ψ⋆∥ρ ≤ exp(−2λ T)∥ψn − ψ⋆∥ρ

∥φn+1 − φ⋆∥ρ ≤ exp(−2λ T)∥φn − φ⋆∥ρ .
(5.2.15)

Proof. A first consequence of Proposition 5.2.3 is that Dn
t := UT,ψn

t −UT,ψ⋆

t , that
is the solution of (5.2.12) with h = ψn − ψ⋆, satisfies

∥Dn
0∥ρ ≤ exp(−λT)∥ψn − ψ⋆∥ρ .

By recalling Sinkhorn’s iterates definition (5.1.7) and the Schrödinger system
(2.2.17), we may then write that

∥φn+1 − φ⋆∥ρ = ∥Dn
0∥ρ ≤ exp(−λT)∥ψn − ψ⋆∥ρ ,

which is the latter bound in (5.2.14). The first bound appearing in (5.2.14) can be
proven in the same way, by exchanging the role between iterates and potentials.

Finally, the estimates in (5.2.15) are just the two-step bounds given via the
former ones.
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From the previous key propagation estimate we may finally deduce our first
exponential convergence result.

Theorem 5.2.6. Assume CD(κ, ∞) for some κ > 0, that the two marginals satisfy
A4 and further assume the initialisation of Sinkhorn’s algorithm ψ0 to be a Lipschitz
function. Let (ρ, λ, C) as in Proposition 5.2.2, associated to κ̄ defined at (5.2.6). Then
for any n ∈ N it holds

Lip(φn − φ⋆) ≤ γ2n−1 2 eL2/8κ Lip(ψ0 − ψ⋆)

Lip(ψn − ψ⋆) ≤ γ2n 2 eL2/8κ Lip(ψ0 − ψ⋆)
(5.2.16)

where γ = exp(−λT). As a consequence, uniformly in x ∈ Rd it holds

|φ⋄n − φ⋆|(x) ≤ γ2n−1 (|x|+ M1(µ)) 2 eL2/8κ Lip(ψ0 − ψ⋆)

|ψ⋄n − ψ⋆|(x) ≤ γ2n (|x|+ M1(ν)) 2 eL2/8κ Lip(ψ0 − ψ⋆)
(5.2.17)

which integrated further implies for p ∈ {1, 2}

∥φ⋄n − φ⋆∥Lp(µ) ≤ γ2n−1 4 eL2/8κ Mp(µ)
1/p Lip(ψ0 − ψ⋆)

∥ψ⋄n − ψ⋆∥Lp(ν) ≤ γ2n 4 eL2/8κ Mp(ν)
1/p Lip(ψ0 − ψ⋆) .

(5.2.18)

Finally, if we start Sinkhorn’s algorithm at ψ0 = Uν, then the last constant factor
appearing in the above right hand sides can be further bounded as

Lip(ψ0 − ψ⋆) ≤ e−κT Lip(Uµ) + exp(−κ T)Lip(Uν)

1 − exp(−2κ T)
.

Proof. The convergence estimates in (5.2.16) follow from Lemma 5.2.5 and (5.2.11).
Since

∫
φ⋄ndµ =

∫
φ⋆dν (see (5.1.9)), uniformly on x ∈ Rd, it holds

|φ⋄n − φ⋆|(x) =
∣∣∣∣φ⋄n(x)−

∫
φ⋄n dµ − φ⋆(x) +

∫
φ⋆ dµ

∣∣∣∣
=

∣∣∣∣∫ [(φn − φ⋆)(x)− (φn − φ⋆)(y)
]

dµ(y)
∣∣∣∣

≤
∫ ∣∣∣∣(φn − φ⋆)(x)− (φn − φ⋆)(y)

∣∣∣∣dµ(y)

≤ Lip(φn − φ⋆)
∫

|x − y|dµ(y)

(5.2.16)
≤ γ2n−1 (|x|+ M1(µ)) 2e

L2
8κ Lip(ψ0 − ψ⋆) .

The second bound appearing in (5.2.17) can be obtained by reasoning in the
same fashion, since

∫
ψ⋄ndν =

∫
ψ⋆dν.
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The integrated bounds appearing in (5.2.18) are a direct consequence of
(5.2.17).

Finally, if ψ0 = Uν, then ψ0 − ψ⋆ = UT,φ⋆

0 and from Lemma 5.1.1 and Corol-
lary 5.1.3 we may prove the last statement.

From the previous result we may also deduce the exponential convergence
rates for the primal Sinkhorn’s iterates, i.e., for Sinkhorn’s plans (πn,n)n∈N and
(πn+1,n)n∈N.

Theorem 5.2.7. Assume CD(κ, ∞) for some κ > 0, that the two marginals satisfy
A4 and further assume the initialisation of Sinkhorn’s algorithm ψ0 to be a Lipschitz
function. Let (ρ, λ, C) as in Proposition 5.2.2, associated to κ̄ defined at (5.2.6), and let
γ = exp(−λT). Then for any n ∈ N it holds

H sym(πn,n, πT) ≤ γ2n−1 (4 M1(µ) + C1(µ)
√
H(µ1|µ) ) 2 eL2/8κ Lip(ψ0 − ψ⋆),

H sym(πn+1,n, πT) ≤ γ2n (4 M1(ν) + C1(ν)
√
H(ν0|ν) ) 2 eL2/8κ Lip(ψ0 − ψ⋆).

for some non-negative constants C1(µ), C1(ν). Finally, the the same bounds hold for

H sym(πn+1,n, πn,n) = H sym(µn, µ), H sym(πn+1,n+1, πn+1,n) = H sym(νn, ν).

Proof. The proof is similar to the one we will give for Theorem 6.4.4 in the next
chapter.

Firstly, by reasoning as in Corollary 6.4.2, relying on the weighted Csiszár-
Kullback-Pinsker inequalities ([BV05, Theorem 2.1], see also Lemma 6.4.32, from
(5.2.17) we deduce that it holds

∥φ⋄n − φ⋆∥L1(µn) ≤ γ2n−1 (M1(µ
n) + M1(µ)) 2 eL2/8κ Lip(ψ0 − ψ⋆)

≤ γ2n−1 (2 M1(µ) + C1(µ)
√
H(µn|µ)) 2 eL2/8κ Lip(ψ0 − ψ⋆)

∥ψ⋄n − ψ⋆∥L1(νn) ≤ γ2n (M1(ν
n) + M1(ν)) 2 eL2/8κ Lip(ψ0 − ψ⋆)

≤ γ2n (2 M1(ν) + C1(ν)
√
H(νn|ν)) 2 eL2/8κ Lip(ψ0 − ψ⋆) ,

for two positive constants C1(µ), C1(ν), independent from n ∈ N. Since the
sequences (H (µn|µ))n∈N and (H (νn|ν))n∈N are monotone decreasing along
Sinkhorn’s algorithm [Nut21, Proposition 6.10], we finally get

∥φ⋄n − φ⋆∥L1(µn) ≤ γ2n−1 (2 M1(µ) + C1(µ)
√
H(µ1|µ)) 2 eL2/8κ Lip(ψ0 − ψ⋆)

∥ψ⋄n − ψ⋆∥L1(νn) ≤ γ2n (2 M1(ν) + C1(ν)
√
H(ν0|ν)) 2 eL2/8κ Lip(ψ0 − ψ⋆) .

(5.2.19)
2Our standing assumption A4 states that our marginals are Lipschitz perturbations of a log-

concave reference measure which satisfy A6, cf. Remark 6.0.1.
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As a first consequence of the above bounds and (5.2.18), for any n ≥ 1 it
holds

φ⋄n − φ⋆ ∈ L1(µ) ∩ L1(µn) and ψ⋄n − ψ⋆ ∈ L1(ν) ∩ L1(νn) ,

which will guarantee that the following integrals (and corresponding summa-
tions) are all well-defined.

Now, (2.2.3) and (2.2.19) imply that

log
dπT

dπn,n (x, y) = φn(x)− φ⋆(x) + ψn(y)− ψ⋆(y) ,

and hence the symmetric relative entropies can be rewritten as

H (πn,n|πT) +H (πT |πn,n)

=
∫
(φn − φ⋆)⊕ (ψn − ψ⋆) dπT −

∫
(φn − φ⋆)⊕ (ψn − ψ⋆) dπn,n

=
∫
(φ⋄n − φ⋆)⊕ (ψ⋄n − ψ⋆) dπT −

∫
(φ⋄n − φ⋆)⊕ (ψ⋄n − ψ⋆) dπn,n

=
∫
(φ⋄n − φ⋆) dµn −

∫
(φ⋄n − φ⋆) dµ .

By combining the above with (5.2.18) and (5.2.19) we conclude the proof of the
first bound in our thesis. The second bound can be proven similarly.

Finally let us notice that from (2.2.19) we may also deduce that

H (πn+1,n|πn,n) = H (µ|µn) and H (πn,n|πn+1,n) = H (µn|µ) ,

H (πn+1,n+1|πn+1,n) = H (ν|νn) and H (πn+1,n|πn+1,n+1) = H (νn|ν) .

and hence the bound for the adjusted marginals is a consequence of the previ-
ous ones, and the trivial inequalities

H (πn,n|πn+1,n) = H (µn|µ) ≤ H (πn,n|πT),

H (πn+1,n|πn,n) = H (µ|µn) ≤ H (πT |πn,n),

H (πn+1,n|πn+1,n+1) = H (νn|ν) ≤ H (πn+1,n|πT),

H (πn+1,n+1|πn+1,n) = H (ν|νn) ≤ H (πT |πn+1,n).

5.2.1 Application to the Entropic Optimal Transport problem
with quadratic cost

Similarly to what we have done in Section 4.2.1, here we translate previous
convergence result for Sinkhorn’s algorithm to to the Euclidean EOT setting
with quadratic cost

EOTd2

ε (µ, ν) := inf
π∈Π(µ,ν)

∫
|x − y|2 dπ + ε H (π|µ ⊗ ν) , ε > 0 .
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We will manage to do that under sufficiently general conditions, so that our
results will apply to any couple of marginals µ, ν ∈ P2(R

d) whose densities are
log-Lipschitz perturbation of an underlying log-concave measure. Namely we
are going to assume that

A5. There exists κ > 0 and Lipschitz potentials Uµ, Uν ∈ C1(Rd) such that

µ(dx) = exp
(
−Uµ(x)− κ

2
|x|2

)
dx and ν(dx) = exp

(
−Uν(x)− κ

2
|x|2

)
dx .

Clearly A5 implies A4 when considering as reference equilibrium measure
dm ∼ e−

κ
2 |x|

2
(cf. (4.2.11)). Moreover by taking T as in (4.2.12), that is T such

that εκ
4 = sinh(κT) we know that (cf. (4.2.14))∫

R2d
|x − y|2 dπ + ε H (π|µ ⊗ ν) = ε H (π|R0,T) + A ,

where R0,T is the joint law at time 0 and T of the Ornstein-Uhlenbeck diffusion
reference process

dXt = −κXtdt +
√

2 dBt ,

whereas the additive constant reads as

A := −dε

2
log(1 − e−2κT) + (1 − e−κT)

(
M2(µ) + M2(ν)

)
−ε H (µ|m)− ε H (ν|m) .

Therefore the unique minimiser for EOTd2

ε (µ, ν) coincides with the Schrödinger
plan πT , and if φ⋆, ψ⋆ denote the corresponding Schrödinger potentials clearly
it holds

πT(dxdy) = exp(−φ⋆(x)− ψ⋆(y))R0,T(dxdy)

(4.2.13)
=

exp(−φ⋆
κ(x)− ψ⋆

κ (y))

(1 − e−2κT)
d
2

exp

{
−|x|2 − 2eκT x · y + |y|2

2
κ (e

2κT − 1)

}
,

with
φ⋆

κ(x) := φ⋆(x) +
κ

2
|x|2 and ψ⋆

κ (y) = ψ⋆(y) +
κ

2
|y|2 .

Then, Theorem 5.2.6 guarantees the exponential convergence of Sinkhorn’s iter-
ates (5.1.7), towards φ⋆ and ψ⋆ from which we can explicitly recover EOTd2

ε (µ, ν).
Similarly, Theorem 5.2.7 provides explicit exponential convergence rates for
Sinkhorn’s plans (πn,n)n∈N and (πn+1,n)n∈N towards the entropic optimal trans-
port plan πT .



BIBLIOGRAPHICAL REMARKS TO CHAPTER 5 111

Bibliographical Remarks

The results presented in this chapter are based on ideas developed in [GNCD23].
There we have developed our ideas on the compact torus, and we have adapted
to that periodic setting the coupling by reflection technique. Here we have
decided to work on the whole Rd, and we have showed that the Stochastic
Optimal Control approach based on Lipschitz propagation along HJB equa-
tions allows to treat the exponential convergence of Sinkhorn’s algorithm, when
considering log-Lipschitz perturbations of a fixed strongly (or weakly, cf. Re-
mark 5.2.4) log-concave potential reference. The setback of this approach is
that both marginals should be Lipschitz perturbation of the same underlying
log-concave measure. In the next chapter we will find a different approach that
circumvents this problem, allowing also for marginals being perturbations of
two different log-concave measures.

We postpone the literature review on Sinkhorn’s algorithm to the biblio-
graphical remarks section in Chapter 6.
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Appendix 5

5.A Explicit rates and construction of the concave
function

Below we provide the explicit construction of the concave function ρ, for the
specific choice of κ̄ as in (5.2.6) and we prove Proposition 5.2.2. We follow the
construction given in [Con23, Section 2]. In view of that, let us consider

R0 := inf{R : κ̄(r) ≥ 0 , ∀ r ≥ R} = L/κ

R1 := inf{R ≥ R0 : κ̄(r)R(R − R0) ≥ 8 , ∀ r ≥ R} = L/κ +
√

8/κ .
(5.A.1)

Next, define the auxiliary functions

ϕ(r) := exp
(
−1

4

∫ r

0
s κ̄(s)− ds

)
=

exp
(
− 2 L r−κr2

8

)
∀ r ≤ L/κ

exp(−L2/8κ) ∀ r ≥ L/κ

Φ(r) :=
∫ r

0
ϕ(s)ds =

∫ r∧R0

0
exp

(
−2 L r − κr2

8

)
ds + (r − R0)

+ exp(−L2/8κ)

h(r) := 1 −
∫ r∧R1

0 (Φ/ϕ)(s)ds

2
∫ R1

0 (Φ/ϕ)(s)ds
,

(5.A.2)
where a+ := max{a, 0}. Finally let us consider the concave function

ρ(r) :=
∫ r

0
ϕ(s) h(s)ds ,

let us define the convergence rate

λ := 2
(∫ R1

0
Φ(r)/ϕ(r)dr

)−1

and consider the constant C := ϕ(R0)/2 = exp(−L2/8κ)/2.

113
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Proof of Proposition 5.2.2. Let (ρ, λ, C) be defined as above and let us start by
simply noticing that

ϕ(R0) ≤ ϕ(s) ≤ 1 , ϕ(R0) r ≤ Φ(r) ≤ r and
1
2
≤ h(r) ≤ 1 , (5.A.3)

which immediately proves the bounds for ρ′(r) = ϕ(r)h(r) with C = ϕ(R0)/2.
From the previous bound on h we immediately deduce also

Φ(r)/2 ≤ ρ(r) ≤ Φ(r) , (5.A.4)

which combined with the above bound for Φ concludes the proof of the first
item.

In order to prove the second item it is enough to compute ρ′(r) = ϕ(r)h(r)
and

ρ′′(r) = ϕ′(r)h(r) + ϕ(r)h′(r) = − r
4

κ̄(r)− ϕ(r)h(r) + ϕ(r)h′(r)

= − κ̄(r)
4

−
r ρ′(r) + ϕ(r)h′(r) ≤ κ̄(r)

4
r ρ′(r) + ϕ(r)h′(r) .

Indeed as a byproduct we get

ρ′′(r)− κ̄(r)
4

r ρ′(r) ≤ ϕ(r)h′(r) ,

and since for any r < R1 it holds h′(r) = − λ
4 Φ(r)/ϕ(r), we deduce

ρ′′(r)− κ̄(r)
4

r ρ′(r) ≤ −λ

4
Φ(r)

(5.A.4)
≤ −λ

4
ρ(r) ∀ r < R1 .

At the same time, for any r ≥ R0 we have ϕ(r) = ϕ(R0) which implies

Φ(r) = Φ(R0) + (r − R0)ϕ(R0) ∀r ≥ R0 . (5.A.5)

Now if we introduce Φ̃(r) := Φ(r)/r, the above expression gives us

Φ̃′(r) = −Φ(R0)

r2 +
R0

r2 ϕ(R0) =
1
r2

∫ R0

0
(ϕ(R0)− ϕ(s))ds ≤ 0

which is non-positive since ϕ is a decreasing function. From this we may de-
duce that for any r ≥ R1 the ratio function Φ̃ is decreasing and therefore that

Φ(r)
r

≤ Φ(R1)

R1
∀ r ≥ R1 . (5.A.6)

Given this premise, for any r ≥ R1 it holds

ϕ(r) = ϕ(R0) , h(r) =
1
2

and κ̄(r) R1(R1 − R0) ≥ 8
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(cf. Definition (5.A.1)), which implies that ρ′(r) is constantly equal to ϕ(R0)
2 for

any r ≥ R1. Therefore, for any r ≥ R1 we have

ρ′′(r)− κ̄(r)
4

r ρ′(r) = − κ̄(r)
4

r
ϕ(R0)

2
= − κ̄(r)

8
r ϕ(R0)

(5.A.1)
≤ − r ϕ(R0)

R1(R1 − R0)

(5.A.6)
≤ − Φ(r)

Φ(R1)

ϕ(R0)

R1 − R0

(†)
≤ −λ

4
Φ(r)

(5.A.4)
≤ −λ

4
f (r)

where inequality (†) follows from the observation that ϕ(s) = ϕ(R0) for any
r ≥ R0 and that

2 λ−1 =
∫ R1

0
Φ(s)/ϕ(s)ds ≥

∫ R1

R0

Φ(s)/ϕ(s)ds

(5.A.5)
=

∫ R1

R0

Φ(R0) + (s − R0)ϕ(R0)

ϕ(R0)
ds =

Φ(R0)

ϕ(R0)
(R1 − R0) +

(R1 − R0)
2

2

=
(R1 − R0)

2 ϕ(R0)
(2Φ(R0) + (R1 − R0)ϕ(R0))

(5.A.5)
=

(R1 − R0)

2 ϕ(R0)
(Φ(R0) + Φ(R1)) ≥

(R1 − R0)

2 ϕ(R0)
Φ(R1) .

5.A.1 Explicit lower-bound for the rate of convergence

In this section we provide a lower-bound for the rate λ built in Proposition 5.2.2.

Proof of the lower-bound (5.2.10). By the definition of λ, from (5.A.5) we may im-
mediately deduce that

2λ−1 =
∫ R1

0
Φ(r)/ϕ(r)dr

=
∫ R0

0
Φ(r)/ϕ(r)dr +

∫ R1

R0

Φ(R0) + (r − R0)ϕ(R0)

ϕ(R0)
dr

=
∫ R0

0
Φ(r)/ϕ(r)dr + (R1 − R0)

Φ(R0)

ϕ(R0)
+

(R1 − R0)
2

2

≤ R1
Φ(R0)

ϕ(R0)
+

(R1 − R0)
2

2
,

where the last inequality follows from the monotonicity of Φ(r)/ϕ(r) since a
direct computation, combined with (5.A.2), shows that for any r ≤ R0

d
dr

(
Φ(r)
ϕ(r)

)
= 1 +

L − κr
4

Φ(r)
ϕ(r)

≥ 0 .
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Therefore from (5.A.3) and (5.A.1) we conclude that

2λ−1 ≤ eL2/8κ

(
L2

κ2 +
L
√

8
κ3/2

)
+

4
κ

or equivalently that

λ ≥ 2κ
L2

κ + L
√

8/κ + 4 e−L2/8κ
e−L2/8κ .



Chapter 6

Exponential convergence of
Sinkhorn’s algorithm:
non-perturbative approach

In this chapter we are going to focus our attention on the classical Schrödinger
problem (1.2.2), i.e., when considering as a reference measure the Gaussian

R0,T(dx, dy) = (2πT)−d/2 exp(−|x − y|2/2T)dxdy ,

which can be equivalently stated as the quadratic EOT problem

inf
π∈Π(µ,ν)

∫ |x − y|2
2

dπ + T H (π|µ ⊗ ν) .

For notations’ purposes and to avoid confusion with Sinkhorn’s iterates, we
will again denote with φ⋆ and ψ⋆ the Schrödinger potentials defined in Theo-
rem 2.2.1, so that it holds

πT(dxdy) = (2πT)−d/2 exp
(
−|x − y|2

2T
− φ⋆(x)− ψ⋆(y)

)
dx dy ∈ Π(µ, ν) .

(6.0.1)

The starting point of our discussion is the following well known result, see
[PNW21, Proposition 2] or [CP23] for instance. Define (x, A) 7→ πx,h

T (A) as
the Markov kernel on Rd × B(Rd) whose transition density w.r.t. Lebesgue
measure is proportional to (x, y) 7→ exp(−h(y) − |x − y|2/(2T)), i.e., for any
x ∈ Rd, πx,h

T is defined through

πx,h
T (dy) ∝ exp

(
−|y − x|2

2T
− h(y)

)
dy . (6.0.2)

117
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Then, as we already pointed out in (3.2.21), for any n ∈ N∗, h ∈ {ψ⋆, ψn, φ⋆, φn}
it holds

∇ log PTe−h(x) = T−1
∫
(y − x)πx,h

T (dy) ,

∇2 log PTe−h(x) = − T−1 Id+T−2 Cov(πx,h
T ) .

(6.0.3)

The proof of this technical result is given for completeness in Proposition 6.A.2
in Section 6.A.

Let us record here two observations on this conditional probability measure.
The first is that for any x ∈ Rd the conditional distribution, πx,h

T defined in
(6.0.2) is the invariant probability measure for the SDE

dYt = −
(

Yt − x
2T

+
1
2
∇h(Yt)

)
dt + dBt . (6.0.4)

The second one is that, defining the adjusted marginals produced along
Sinkhorn as in (2.2.21), that is as the probability measures

µn := (projx)♯π
n,n and νn := (projy)♯π

n+1,n ,

using (6.0.1)-(2.2.19), πT ∈ Π(µ, ν) and πn,n ∈ Π(⋆, ν), the Schrödinger and
Sinkhorn’s plans can be written as

πT(dxdy) = µ(dx)⊗ π
x,ψ⋆

T (dy) and πn,n(dxdy) = µn(dx)⊗ π
x,ψn

T (dy) ,
(6.0.5)

and a direct computation shows that∫
π

x,ψ⋆

T (dy) µ(dx) = ν(dy) ,
∫

π
x,ψn

T (dy) µn(dx) = ν(dy) ,∫
π

y,φ⋆

T (dx) ν(dy) = µ(dx) ,
∫

π
y,φn

T (dx) νn(dy) = µ(dx) .
(6.0.6)

The identities in (6.0.3) show that the convergence of the gradient and Hes-
sian along Sinkhorn’s iterates is tightly linked to the conditional measures and
their ergodicity, or equivalently to their concavity profile. Indeed, from the
definition of Sinkhorn’s algorithm (2.2.18) and from these formulas (with h =
ψn, ψ⋆) we deduce the upper bound∫

|∇φn+1 −∇φ⋆|(x) µ(dx) ≤ T−1
∫

W1(π
x,ψn

T , π
x,ψ⋆

T ) µ(dx) ,

where W1(·, ·) denotes the Wasserstein distance of order one. Combining to-
gether the lower bounds on the integrated convexity profiles κψn (obtained

in Section 6.1), the representation of π
x,ψn

T , π
x,ψ⋆

T as invariant measures for (6.0.4)
and coupling techniques (see Section 6.2), we obtain in Corollary 6.2.3 that the
key estimate

W1(π
x,ψn

T , π
x,ψ⋆

T ) ≤ γν
n

∫
|∇ψn −∇ψ⋆|(y) π

x,ψ⋆

T (dy) (6.0.7)
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holds uniformly in x ∈ Rd for some γν
n > 0. Integrating the key estimate (6.0.7)

w.r.t. µ and invoking (6.0.6) yields∫
|∇φn+1 −∇φ⋆|(x) µ(dx) ≤ γν

n
T

∫
|∇ψn −∇ψ⋆|(y)ν(dy) . (6.0.8)

Repeating the same argument but exchanging the roles of ψn, ψ⋆ and φn, φ⋆ we
obtain

∫
|∇ψn −∇ψ⋆|(y) ν(dy) ≤

γ
µ
n−1
T

∫
|∇φn −∇φ⋆|(x)µ(dx) (6.0.9)

for some γ
µ
n−1 > 0. Combining (6.0.9) with (6.0.8) allows to establish exponen-

tial convergence provided T−2γν
nγ

µ
n−1 < 1 for n large enough.

In the rest of this chapter we are going to properly justify the proof strategy
explained above.

Assumptions

In this section we provide a rigorous statement of the main assumptions we
impose on the marginals µ, ν. In view of this, it is convenient to introduce some
notation and terminology. A crucial role in this chapter is played by the inte-
grated convexity profile κU : R∗

+ → R , which for any differentiable function
U : Rd → R is defined as the function

κU(r) := inf
{
⟨∇U(x)−∇U(y), x − y⟩

|x − y|2 : |x − y| = r
}

.

Likewise, for a distribution ζ(dx) ∝ exp(−U)dx, we simply write κζ for κU
and referred to this function as to the integrated log-concavity profile of ζ. The
function κU is often employed to quantify ergodicity of stochastic differential
equations whose drift field is −∇U, see [Ebe16] and the discussion concerning
(5.2.3) in the previous chapter. The integrated concavity profile of U is defined
in a similar way as ℓU = −κ−U , and for ζ of the form ζ(dx) ∝ exp(−U)dx
we set ℓζ = ℓU . Our main results apply when the marginals µ, ν satisfy the
following property for ζ ∈ {µ, ν},

lim inf
r→+∞

κζ(r) > 0 , lim inf
r→0

rκζ(r) = 0 .

Below we are going to give a more precise and detailed assumption on
marginals. In view of that, let us consider two sets of functions that will ap-
pear in our conditions: G := {g ∈ C2((0,+∞), R+) : g satisfies (HG )} with

(r 7→ r1/2 g(r1/2)) is non-decreasing and concave, lim
r↓0

r g(r) = 0 (HG )
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and its subset

G̃ :=
{

g ∈ G bounded and s.t. lim
r↓0

g(r) = 0 , g′ ≥ 0 and 2g′′ + g g′ ≤ 0
}

.

The above classes of functions are non-empty and in particular G̃ contains r 7→
2 tanh(r/2). Though it may not appear as the most natural at first sight, these
choices will become clear in light of our proofs. Indeed, the sets G and G̃ enjoy
special invariance properties (see Theorem 6.1.1 and Lemma 6.1.8) under the
mapping

g 7→ − log PT exp(−g) ,

upon which the proof of the lower bounds on the integrated convexity profiles
of potentials (see Section 6.1) are built.

Note that the properties prescribed in the definition of G̃ in particular imply
that its elements are sublinear (i.e., supr>0 g(r)/r < +∞) concave functions on
(0,+∞). Indeed, any g ∈ G̃ is clearly non-negative and non-decreasing, which
combined with the differential inequality, implies its concavity. Finally, since
g(0+) = 0, the sublinearity of any g ∈ G̃ follows. We say that a potential
U : Rd → R is asymptotically strongly convex if there exist αU ∈ R∗

+ and
g̃U ∈ G̃ such that

κU(r) ≥ αU − r−1 g̃U(r) (6.0.10)

holds for all r ≥ 0. We consider the set of asymptotically strongly log-concave
probability measures

Palc(R
d) = {ζ(dx) = e−Udx : U ∈ C2(Rd), U asymptotically strongly convex}

(6.0.11)
Note that as soon as ζ(dx) = exp(−U(x))dx there exist βU ∈ (0,+∞] and
g ∈ G such that

ℓU(r) ≤ βU + r−1 gU(r) (6.0.12)

holds for all r ≥ 0. This is trivially true as we can choose βU = +∞. However,
if the above holds for some βU < +∞, we obtain better lower bounds on the
integrated convexity profile of Sinkhorn’s potentials and all contraction rates
appearing in our main results are better than those obtained for βU = +∞.

Remark 6.0.1. Let us remark that the class of probability measures Palc(R
d) contains

in particular probability measures ζ associated with potentials U satisfying

κU(r) ≥
{

α if r > R
α − CU if r ≤ R ,

(6.0.13)

for α, CU , R > 0. Indeed, [Con24, Proposition 5.1] implies that κζ(r) ≥ α− r−1 g̃L(r)
where g̃L ∈ G̃ is given by

g̃L(r) := 2 (L)1/2 tanh(r L1/2/2) with L := inf{L̄ : R−1 g̃L̄(R) ≥ CU} .
(6.0.14)
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Finally, it is worth mentioning that (6.0.13) holds if U can be expressed as the sum
of a strongly convex function and a Lipschitz function with second derivative bounded
from below.

We have now all the concepts and notations to introduce our assumptions.

A6. The marginals µ, ν ∈ P(Rd) with log-densities Uµ, Uν, that is

µ(dx) = exp(−Uµ(x))dx , ν(dx) = exp(−Uν(x))dx ,

belong to the set Palc(R
d) defined at (6.0.11) and have finite relative entropy with

respect to the Lebesgue measure Leb, Ent(µ), Ent(ν) < +∞.

Under A6, we denote by αµ, βµ, g̃µ and gµ (resp. αν, βν, g̃ν and gν) the
constants and functions associated with µ (resp. ν) such that (6.0.10) and (6.0.12)
hold for Uµ (resp. Uν).

A special case of A6 corresponds to the strongly log-concave case, that is
when assuming the marginals µ, ν satisfying

A7. There exist αµ, αν ∈ (0,+∞) and βµ, βν ∈ (0,+∞] such that

αµ ≤ ∇2Uµ ≤ βµ and αν ≤ ∇2Uν ≤ βν .

Indeed this clearly implies the validity of A6 with g̃µ, gµ, g̃ν and gν all null.
We will specify our results to the strongly log-concave case as in A7 in Sec-
tion 6.6 where the rate of convergence get a simple and explicit expression.

6.1 Integrated convexity profile propagation along
Sinkhorn’s algorithm

In this section we establish lower bounds on the integrated convexity profile of
Sinkhorn’s potentials. Before proceeding further, let us point out here that the
results of this section hold under a weaker assumption than A6. Namely, let us
consider the followings

A’1. The two distributions µ, ν ∈ P(Rd) specified by (2.2.16) have finite relative
entropy with respect to the Lebesgue measure Leb, Ent(µ), Ent(ν) < +∞;

A’2.

(i) There exist αν ∈ (0,+∞) and βµ ∈ (0,+∞] such that

κUν(r) ≥ αν − r−1 ĝν(r) and ℓUµ(r) ≤ βµ + r−1 gµ(r) ,

with gµ ∈ G and ĝν ∈ Ĝ;
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(ii) There exist αµ ∈ (0,+∞) and βν ∈ (0,+∞] such that

κUµ(r) ≥ αµ − r−1 ĝµ(r) and ℓUν(r) ≤ βν + r−1 gν(r) ,

with gν ∈ G and ĝµ ∈ Ĝ,

where

Ĝ :=
{

g ∈ G bounded and s.t. 2g′′ + g g′ ≤ 0
}

⊆ G .

Notice that the above assumption allows for concave functions having non-
null limit value in the origin (whereas the elements of G̃ are sublinear in a neigh-
borhood of the origin), that G̃ ⊆ Ĝ and hence that A6 implies A’1 and A’2.

Let us introduce for any fixed β > 0 and any g ∈ G and ĝ ∈ Ĝ, the following
functions for α, s, u ≥ 0

Fg,ĝ
β (α, s) = β s +

s
T(1 + Tα)

+ s1/2 g(s1/2) +
s1/2 ĝ(s1/2)

(1 + Tα)2 ,

Gg,ĝ
β (α, u) = inf{s ≥ 0 : Fg,ĝ

β (α, s) ≥ u} ,
(6.1.1)

with the convention Gg,ĝ
β (α, u) ≡ 0 whenever β = +∞.

Then, the main result of this section can be stated as follows.

Theorem 6.1.1. Assume A’1. If A’2-(i) holds and if

κψ0(r) ≥ αν − T−1 − r−1 ĝν(r) , (6.1.2)

then there exists a monotone increasing sequence (αν,n)n∈N ⊆ (αν −T−1, αν −T−1 +
(βµ T2)−1] such that for any n ≥ 1 and r > 0 it holds

ℓφn(r) ≤ r−2 F
gµ ,ĝν

βµ
(αν,n, r2)− T−1 and κψn(r) ≥ αν,n − r−1 ĝν(r) , (6.1.3)

with F
gµ ,ĝν

βµ
defined as in (6.1.1). Moreover, the sequence can be explicitly built by

setting αν,0 := αν − T−1 ,

αν,n+1 := αν − T−1 +
G

gµ ,ĝν
βµ

(αν,n ,2)

2 T2 , n ∈ N ,
(6.1.4)

G
gµ ,ĝν

βµ
given in (6.1.1). Finally, (αν,n)n∈N converges to αψ⋆ ∈ (αν − T−1, αν − T−1 +

(βµ T2)−1], fixed point solutions of (6.1.4) and for any r > 0,

ℓφ⋆(r) ≤ r−2 F
gµ ,ĝν

βµ
(αψ⋆ , r2)− T−1 and κψ⋆(r) > αψ⋆ − r−1 ĝν(r) , (6.1.5)

where φ⋆ and ψ⋆ are the Schrödinger potentials introduced in (6.0.1).
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Similarly, under A’2-(ii) there exists a monotone increasing sequence (αµ,n)n∈N ⊆
(αµ − T−1, αµ − T−1 + (βν T2)−1] such that for any n ≥ 1 and r > 0 it holds

ℓψn(r) ≤ r−2 F
gν ,ĝµ

βν
(αµ,n, r2)− T−1 and κφn(r) ≥ αµ,n − r−1 ĝµ(r) , (6.1.6)

with F
gν ,ĝµ

βν
defined as in (6.1.1) andαµ,1 := αµ − T−1 ,

αµ,n+1 := αµ − T−1 +
G

gν ,ĝµ
βν

(αµ,n ,2)

2 T2 , n ∈ N ,
(6.1.7)

with G
gν ,ĝµ

βν
defined as in (6.1.1). Finally, (αµ,n)n∈N converges to αφ⋆ ∈ (αµ −

T−1, αµ − T−1 + (βν T2)−1], fixed point solutions of (6.1.7) and for any r > 0,

ℓψ⋆(r) ≤ r−2 F
gν ,ĝµ

βν
(αφ⋆ , r2)− T−1 and κφ⋆(r) > αφ⋆ − r−1 ĝµ(r) . (6.1.8)

Remark 6.1.2. The above result is an extension of [Con24, Theorem 1.2] where the
author just provides the limit-bounds (6.1.5) and (6.1.8) in the case when gµ = gν ≡ 0
and ĝµ, ĝν take the form (6.0.14). In the above result we show that the iterative proof
given there can be actually employed when proving the estimates (6.1.3) and (6.1.6)
along Sinkhorn’s algorithm.

Let us also mention that our result encompasses [CP23, Theorem 4] when consid-
ering ĝν ≡ 0 and gµ ≡ 0 in A’2-(i).

We provide a proof of the above theorem at the end of this section. Let us
mention here that we will show in Remark 6.1.9 that Assumption (6.1.2) on ψ0

can be essentially dropped; here we simply observe that it is met for a regular
enough initial condition, e.g., for ψ0 = Uν.

Let us also point out that the above theorem guarantees the existence and
uniqueness for the strong solution of the SDE

dYt = −
(

Yt − x
2T

+
1
2
∇h(Yt)

)
dt + dBt . (6.1.9)

for any choice of h = ψ⋆, ψn, φ⋆, φn. Indeed from Theorem 6.1.1 we immedi-
ately deduce

Corollary 6.1.3. Under the assumptions of Theorem 6.1.1 it holds for any y ∈ Rd〈
∇ψ⋆(y),

y
|y|

〉
≥ αψ⋆ |y| − ĝν(|y|)− |∇ψ⋆(0)| ,〈

∇ψn(y),
y
|y|

〉
≥ αν,n |y| − ĝν(|y|)− |∇ψn(0)| ,〈

∇φ⋆(y),
y
|y|

〉
≥ αφ⋆ |y| − ĝµ(|y|)− |∇φ⋆(0)| ,〈

∇φn(y),
y
|y|

〉
≥ αµ,n |y| − ĝµ(|y|)− |∇φn(0)| .
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As a consequence for any even p ≥ 2 the potential Vp(y) = 1+ |y|p is a Lyapunov
function for (6.1.9) with h ∈ {ψ⋆, ψn, φ⋆, φn}. As a consequence, existence and
uniqueness of strong solutions hold for these SDEs.

Proof. The lower-bounds displayed above are a direct consequence of Theo-
rem 6.1.1. Let x ∈ Rd be fixed. We will only consider now the case h = ψ⋆.
The other cases follow the same lines. Since ĝν ∈ Ĝ is bounded, it holds for any
y ∈ Rd

−1
2

〈
T−1(y − x) +∇ψ⋆(y), y

〉
≤ −

αψ⋆ + T−1

2
|y|2 + ∥ĝν∥∞ + |∇h(0)|+ T−1|x|

2
|y| ,

and hence there exist γ > 0 and R > 0 such that

−1
2

〈
T−1(y − x) +∇ψ⋆(y), y

〉
≤ −γ |y|2 ∀ |y| ≥ R .

At this stage, [MSH02, Lemma 4.2] guarantees that for any even p ≥ 2 the
potential Vp(y) = 1 + |y|p is a Lyapunov function for the diffusion (6.1.9).

More precisely it holds a geometric drift condition, i.e., for any Aψ⋆ ∈ (0, pγ)

there exists a finite constant Bψ⋆ = Bψ⋆(Aψ⋆ , p) such that for any y ∈ Rd

Lψ⋆Vp(y) ≤ −Aψ⋆Vp(y) + Bψ⋆ , (6.1.10)

where above Lψ⋆ := ∆/2 − 1
2 ⟨T−1(y − x) +∇ψ⋆(y), ∇⟩ denotes the genera-

tor associated to the SDE (6.1.9). Finally, existence and uniqueness of strong
solutions of (6.1.9) follows from [RT96, Theorem 2.1] (see also [MT93, Section
2]).

The proof of Theorem 6.1.1 will be based on a propagation of integrated-
convexity along Hamilton-Jacobi-Bellman (HJB) equations observed in [Con24],
based on coupling by reflection techniques, which reads as follows

Theorem 6.1.4 (Theorem 2.1 in [Con24]). For any fixed function ĝ ∈ Ĝ, consider
the class of functions

Fĝ := {h ∈ C1(Rd) : κh(r) ≥ −r−1 ĝ(r) ∀ r > 0} .

Then, the class Fĝ is stable under the action of the HJB flow, i.e.,

h ∈ Fĝ ⇒ − log PT−t exp(−h) ∈ Fĝ ∀ 0 ≤ t ≤ T .

We omit the proof of the above result since it runs exactly as stated in [Con24].
There it is proven when ĝ is of the form (6.0.14). However the same proof al-
lows to reach the conclusion for any function ĝ ∈ Ĝ since it only requires ĝ to
satisfy the differential inequality

2(ĝ)′′ + ĝ (ĝ)′ ≤ 0 ,
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which is an equality in the special case considered there ĝ(r) = tanh(r).
As a first consequence of the previous theorem we may immediately deduce

the following integrated propagation convexity-to-concavity result.

Lemma 6.1.5. Assume A’1. If A’2-(i) holds true, αν,n > −T−1 and if for any r > 0

κψn(r) ≥ αν,n − r−1 ĝν(r) , (6.1.11)

then

ℓφn+1(r) ≤ βµ + gµ(r)−
αν,n

1 + Tαν,n
+

r−1 ĝν(r)
(1 + Tαν,n)2 = −T−1 + r−2 F

gµ ,ĝν

βµ
(αν,n, r2).

Similarly if A’2-(ii) holds, αµ,n > −T−1 and if for any r > 0

κφn(r) ≥ αµ,n − r−1 ĝµ(r) ,

then

ℓψn(r) ≤ βν + r−1 gν(r)−
αµ,n

1 + Tαµ,n
+

r−1 ĝµ(r)
(1 + Tαµ,n)2 = −T−1 + r−2 F

gν ,ĝµ

βν
(αµ,n, r2).

Proof. Let us firstly notice that our assumption (6.1.11) is equivalent to stating
that

ψ̄n := ψn − αν,n

2
| · |2 ∈ Fĝν ,

and therefore Theorem 6.1.4 implies that

− log PT exp(−ψ̄n) ∈ Fĝν . (6.1.12)

By recalling that φn+1 is defined via (2.2.18), in order to conclude it is enough
noticing now that

− log PT exp(−ψn)(x)− d
2

log(2πT)

=− log
∫

exp
(
−|x − y|2

2T
− αν,n

2
|y|2 − ψ̄n(y)

)
dy

=
αν,n |x|2

2(1 + Tαν,n)
− log

∫
exp

(
−1 + Tαν,n

2T
|y − (1 + Tαν,n)

−1x|2 − ψ̄n(y)
)

dy

=
αν,n |x|2

2(1 + Tαν,n)
− log PT/(1+Tαν,n) exp(−ψ̄n)((1 + Tαν,n)

−1x)− d
2

log
2πT

1 + Tαν,n

and combining it with (6.1.12) and A’2-(i).
The second part of the statement follows the same lines.

Lemma 6.1.6. Fix β ∈ (0,+∞] and two functions g ∈ G and ĝ ∈ Ĝ. Then the
following properties hold true.
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1. For any α > −T−1 the function s 7→ Fg,ĝ
β (α, s) is concave and increasing on

[0,+∞).

2. The function α 7→ Gg,ĝ
β (α, 2) is positive and non-decreasing over (−T−1,+∞).

3. For any given a0 > 0, the fixed-point problem

α = a0 − T−1 +
Gg,ĝ

β (α, 2)

2 T2 (6.1.13)

admits at least one solution on (a0 − T−1, a0 − T−1 + (β T2)−1] and, as soon
as β < +∞, a0 − T−1 does not belong to the closure of the set of solutions of
(6.1.13).

Proof.

1. Since r 7→ r ĝ(r) and r 7→ r g(r) are non-decreasing and α > −T−1, an
explicit computation shows that s 7→ Fg,ĝ

β (α, s) is an increasing function.
The concavity of the latter function follows from the properties of g, ĝ ∈
G, since for h = g, ĝ it holds

d2

du2

(
u1/2 h(u1/2)

)∣∣∣∣
u=s

=
s−1/2

4

[
h′′(s1/2) + s−1/2 h′(s1/2)− s−1 h(s1/2)

]
≤ 0 .

2. The proof is by contradiction. Notice that Gg,ĝ
β (·, 2) is a continuous func-

tion on (−T−1,+∞) and assume that is not a positive function, which
implies that there exists some α > −T−1 such that Gg,ĝ

β (α, 2) = 0 and
hence by definition that there exists a sequence (sn)n∈N converging to
zero and such that Fg,ĝ

β (α, s) ≥ 2, which is clearly impossible since we

have lims↓0 Fg,ĝ
β (α, s) = 0. Hence Gg,ĝ

β (·, 2) is a positive function. The

monotonicity of G
gµ ,ĝν

βµ
(·, 2) follows from the fact that Fg,ĝ

β (α, s) is increas-

ing in s and decreasing in α ∈ (−T−1,+∞), which implies for any α′ ≥ α
and u ≥ 0

{s : Fg,ĝ
β (α′, s) ≥ u} ⊆ {s : Fg,ĝ

β (α, s) ≥ u} .

3. Consider the map associated to the fixed-point problem (6.1.4), i.e., the
continuous function H : [a0 −T−1,+∞) → R defined for α ∈ (−T−1,+∞)
as

H(α) := α − a0 + T−1 −
Gg,ĝ

β (α, 2)

2 T2 .
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Let us now prove that

H(a0 − T−1) < 0 and lim
α→+∞

H(α) = +∞ . (6.1.14)

The first inequality follows from a direct computation, showing that it
holds Gg,ĝ

β (a0 − T−1, 2) > 0. In order to prove the second statement it

is enough noticing that Gg,ĝ
β (·, 2) is bounded, which is immediate since

g, ĝ ≥ 0 implies for any α > −T−1 and s > 0 that Fg,ĝ
β (α, s) ≥ β s and

hence that
Gg,ĝ

β (α, 2) ≤ 2/β . (6.1.15)

From (6.1.14) and the continuity of Gg,ĝ
β (·, 2) we finally deduce the exis-

tence of some ᾱ ∈ (a0 − T−1,+∞) such that H(ᾱ) = 0, i.e., a fixed point
for (6.1.13). As a consequence (6.1.15) further implies ᾱ ≤ a0 − T−1 +
(β T2)−1. Finally a0 − T−1 does not belong to the closure of the set of
fixed-points solutions, because if this was the case then the continuity of
Gg,ĝ

β (·, 2) would have implied H(a0 − T−1) = 0, clearly in contrast with
(6.1.14).

As a corollary of the previous lemma we have already proven the following

Corollary 6.1.7. Assume A’1. If A’2-(i) holds true, then there exists at least one solu-
tion α⋆ν on (αν − T−1, αν − T−1 + (βµ T2)−1] to the fixed point associated to (6.1.4).
Moreover, if βµ is finite then αν − T−1 is not an accumulation point for the set of
solutions.

Similarly if A’2-(ii) holds true, there exists at least one solution α⋆µ on (αµ −
T−1, αµ − T−1 + (βν T2)−1] to the fixed point associated to (6.1.7). Moreover, if βν is
finite then αµ − T−1 is not an accumulation point for the set of solutions.

The next result is the counterpart to Lemma 6.1.5 and it shows that we do
also have an integrated propagation concavity-to-convexity.

Lemma 6.1.8. Assume A’1. If A’2-(i) holds, αν,n > −T−1 and if

ℓφn+1(r) ≤ −T−1 + r−2 F
gµ ,ĝν

βµ
(αν,n, r2) , (6.1.16)

then αν,n+1 > −T−1 and for any r > 0

κψn+1(r) ≥ αν,n+1 − r−1 ĝν(r) .

Similarly if A’2-(ii) holds, αµ,n > −T−1 and if

ℓψn(r) ≤ −T−1 + r−2 F
gν ,ĝµ

βν
(αµ,n, r2) ,
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then αµ,n+1 > −T−1 and for any r > 0

κφn+1(r) ≥ αµ,n+1 − r−1 ĝµ(r) .

Proof. We are going to prove only the first part of the lemma since the second
can be proven by an analogous reasoning. Firstly, let us consider the function

ψ̂n+1(y) := Tψn+1(y)− TUν(y) +
|y|2

2
. (6.1.17)

Then (6.0.3) implies that its Hessian is given for any y ∈ Rd by

∇2ψ̂n+1(y) =
1
T

Cov(πy,φn+1

T ) , (6.1.18)

where we recall from the definition of π
y,φn+1

T (6.0.2) that

π
y,φn+1

T (dx) ∝ exp
(
−|x − y|2

2T
− φn+1(x)

)
dx .

Moreover, if we set for notations’ sake Vy,n+1 := − log(dπ
y,φn+1

T /dLeb), then
our assumption implies

ℓVy,n+1(r) ≤ r−2 F
gµ ,ĝν

βµ
(αν,n, r2) ∀ r > 0 . (6.1.19)

In order to prove the desired bound for κψn+1 , we will first establish a lower
bound for the Hessian ∇2ψ̂n+1, i.e., a lower bound for the covariance matrix
(6.1.18). In view of that, let us consider for any fixed y ∈ Rd, the variance

Var
X∼π

y,φn+1
T

(X1)

where Xi denotes the ith scalar component of the random vector X ∼ π
y,φn+1

T .
Next, observe that

Var
X∼π

y,φn+1
T

(X1) ≥ E
X∼π

y,φn+1
T

[Var
X∼π

y,φn+1
T

(X1|X2, . . . , Xd)] , (6.1.20)

and notice that for any given z = (z2, . . . , zd) ∈ Rd−1 it holds

Var
X∼π

y,φn+1
T

(X1|X2 = z2, . . . , Xd = zd)

=
1
2

∫
R2

|x − x̂|2 π
y,φn+1

T (dx|z)π
y,φn+1

T (dx̂|z)

where (y, z, A) 7→ π
y,h
T (A|z) is the Markov kernel on Rd × Rd−1 ×B(R) whose

transition density w.r.t. Lebesgue measure is proportional to exp(−Vy,n+1(x, z)).
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If we set Vy,z(x) := Vy,n+1(x, z) we then have, uniformly in z ∈ Rd−1,

1 =
1
2

∫
(∂xVy,z(x)− ∂xVy,z(x̂))(x − x̂) π

y,φn+1

T (dx|z)π
y,φn+1

T (dx̂|z)

=
1
2

∫
⟨∇Vy,n+1(x, z)−∇Vy,n+1(x̂), (x, z)− (x̂, z)⟩ π

y,φn+1

T (dx|z)π
y,φn+1

T (dx̂|z)

(6.1.19)
≤ 1

2

∫
F

gµ ,ĝν

βµ
(αν,n, |x − x̂|2) π

y,φn+1

T (dx|z)π
y,φn+1

T (dx̂|z)

≤ F
gµ ,ĝν

βµ

(
αν,n, 2 Var

X∼π
y,φn+1
T

(X1|X2 = zd, . . . , Xd = zd)

)
,

where the last step follows from the concavity of s 7→ F
gµ ,ĝν

βµ
(αν,n, s) (point (i)

in Lemma 6.1.6) and Jensen’s inequality. By combining the above with (6.1.20),
since αν,n > −T−1 and F

gµ ,ĝν

βµ
(αν,n, ·) is increasing (cf. Lemma 6.1.6), we deduce

by definition of G
gµ ,ĝν

βµ
that

Var
X∼π

y,φn+1
T

(X1) ≥
1
2

G
gµ ,ĝν

βµ
(αν,n, 2) .

Since the definition ℓU is invariant under orthonormal transformation, for
any orthonormal matrix O the functions φn+1(O ·) satisfy the condition (6.1.16)
too. The previous bound and this observation leads to

Var
X∼π

y,φn+1
T

(⟨v, X⟩) ≥ 1
2

G
gµ ,ĝν

βµ
(αν,n, 2) ∀ y, v ∈ Rd s.t. |v| = 1 ,

and hence from (6.1.18) we finally deduce

⟨v, ∇2ψ̂n+1(y) v⟩ ≥ G
gµ ,ĝν

βµ
(αν,n, 2)

|v|2
2T

∀ y, v ∈ Rd .

By recalling (6.1.17) and (6.1.4), the above bound concludes our proof.

Remark 6.1.9 (A first trivial lower bound). Under A’1 and A’2, the above discussion
already provides a first trivial lower bound for κψn . Indeed (6.1.18) tells us that ψ̂n+1

is a convex function for any n ≥ 0, which combined with (6.1.17) yields to for n ≥ 0

κψn+1(r) ≥ αν − T−1 − r−1 ĝν(r) .

Therefore in Theorem 6.1.1 we could consider any initialisation ψ0 without prescrip-
tions on its behaviour and run an iteration of Sinkhorn in order to get αν,1 ≥ αν − T−1.
At this point once can proceed again with the proof of Theorem 6.1.1 with the same (but
shifted by −1) sequence of parameters (αν,n)n∈N.

Let us notice that the same discussion holds for the sequence of φn, which yields to
for n ≥ 0

κφn+1 ≥ αµ − T−1 − r−1 ĝµ(r) ,
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which for n = 0 gives for free the base step of the iteration (6.1.7).
Finally, let us remark here that since the potentials couple (φ⋆, ψ⋆) can be thought

as a constant sequence of Sinkhorn’s iterates, the above discussion proves also that

κψ⋆(r) ≥ αν − T−1 − r−1 ĝν(r) and κφ⋆ ≥ αµ − T−1 − r−1 ĝµ(r) .

Given the above lemmata, we are finally able to prove how lower-bounds
for integrated convexity profiles propagate along Sinkhorn’s algorithm.

Proof of Theorem 6.1.1. Let us start showing the first statement. Consider the se-
quence (αν,n)n∈N defined in (6.1.4). We will prove our statement by induction.
The case n = 0 is met under the assumption κψ0(r) ≥ αν − T1 − r−1 ĝν(r) The in-
ductive step follows by applying consecutively Lemma 6.1.8 and Lemma 6.1.5.
As a direct consequence of item (ii) in Lemma 6.1.6 we deduce that the se-
quence (αν,n)n∈N is non-decreasing and hence αν,n ≥ αν,0 = αν − T−1. Since

G
gµ ,ĝν

βµ
is continuous and αν − T−1 is not an accumulation point for the set of

solutions of (6.1.13) (cf. item (iii) in Lemma 6.1.6), we deduce that αν,n > αν,0 =
αν − T−1 for n ≥ 1 and that the same holds for its limit αψ⋆ . The upper bound
on αν,n comes for free from (6.1.4) and the upper bound (6.1.15). The proof of
(6.1.5) is obtained in the same way by considering the (constant) Sinkhorn’s
iterates (φ⋆, ψ⋆) with the same sequence of (αν,n)n∈N.

The proof of the second statement is completely analogous and for this rea-
son we omit it. The only difference here relies in proving that the base case
n = 1 holds true, but this has been already proven in the discussion of Re-
mark 6.1.9.

6.2 Wasserstein distance w.r.t a measure with asymp-
totically log-concave profile

In this section we consider two probability measures p, q ∈ P(Rd) that can be
again written with log-densities as

p(dx) = exp(−Up(x))dx , q(dx) = exp(−Uq(x))dx .

AO1. Assume that Up, Uq ∈ C1(Rd) and that

1. Uq is coercive, i.e., there exist γq > 0 and Rq ≥ 0 such that

−1
2
⟨∇Uq(x), x⟩ ≤ −γq |x|2 ∀ |x| ≥ Rq .

2. Up has an integrated convex profile, i.e., there exist some αp > 0 and g̃p ∈ G̃
such that

κUp(r) ≥ αp − r−1 g̃p(r) ∀r > 0 .
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Let us also emphasize here that the convexity of integrated profile assump-
tion is stronger than the coercivity, since the former implies

−1
2
⟨∇Up(x), x⟩ ≤ −αp

2
|x|2 + |∇Up(0)|+ ∥g̃p∥∞

2
|x| ,

and hence that the coercive condition holds

−1
2
⟨∇Up(x), x⟩ ≤ −γp|x|2 ∀ |x| ≥ Rp

for some γp > 0 and Rp > 0. Notice that p and q can be seen as invariant
measures of the corresponding SDEs{

dXt = − 1
2∇Up(Xt)dt + dBt ,

dYt = − 1
2∇Uq(Yt)dt + dBt ,

(6.2.1)

which admit unique strong solutions, in view of the coercivity of the corre-
sponding drifts and owing to [RT96, Theorem 2.1]. Finally let (Pp

t )t≥0 and
(Pq

t )t≥0 denote the corresponding Markov semigroups associated to the above
SDEs. Since p and q are invariant measures we clearly have pPp

t = p and
qPq

t = q for any t ≥ 0.

The main result of this section is showing how the Wasserstein distance be-
tween p and q can be bounded w.r.t. the integrated difference of the drifts ap-
pearing in (6.2.1).

Theorem 6.2.1. Assume AO1. Then it holds

W1(p, q) ≤
(

g̃p′(0)
g̃p′(R)

)2 1
αp + g̃p′(0)

∫
|∇Up −∇Uq|dq

=

(
g̃p′(0)
g̃p′(R)

)2 1
αp + g̃p′(0)

∫ ∣∣∣∣∇ log
dp
dq

∣∣∣∣dq ,

with R := ∥g̃p∥∞ ((g̃p′(0))−1 + 2/αp).

Proof. Firstly, let us consider the function

fp(r) :=

{
g̃p(r) if r ≤ R ,
g̃p(R) + g̃p′(R) (r − R) otherwise.

Notice that f (0) = 0 and that fp ∈ C1((0,+∞), R+)∩ C2((0, R)∪ (R,+∞), R+)
with fp′′ having a jump discontinuity in r = R. Moreover, fp is non-decreasing
and concave and equivalent to the identity i.e., for any r > 0 it holds

g̃p′(R) r ≤ fp(r) ≤ g̃p′(0) r , since g̃p′(R) ≤ fp′(r) ≤ g̃p′(0) . (6.2.2)
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Notice that, since g̃p ∈ G̃, for any r ∈ (0, R) it holds

2 f
′′
p (r)−

rt f
′
p(r)
2

κUp(r) ≤ 2 g̃
′′
p(r)−

αp

2
g̃p′(r) r +

1
2

g̃p(r)g̃p′(r)

≤ − g̃p′(r)
2

(αp r + g̃p(r))

≤ − g̃p′(R)
2

(
αp

g̃p′(0)
+ 1
)

g̃p(r)

= − g̃p′(R)
2

(
αp

g̃p′(0)
+ 1
)

fp(r) ;

whereas for any r > R it holds

2 f
′′
p (r)−

rt f
′
p(r)
2

κUp(r) = − g̃p′(R)
2

r κUp(r) ≤ − g̃p′(R)
2

(αp r − g̃p(r))

≤ − g̃p′(R)
2

αp
R

g̃p(R)
fp(r) +

g̃p′(R)
2

fp(r) ,

where the last step follows from the concavity of g̃p, which implies for any
r ≥ R that g̃p(r) ≤ fp(r) and the monotonicity of F(r) := r/ f (r), since for any
r ≥ R it holds

F′(r) =
fp(r)− r fp′(r)

fp(r)2 =
g̃p(R)− R g̃p′(R)

fp(r)2 ≥ 0 .

Therefore, by recalling the definition of R, for any r ∈ (0, R)∪ (R,+∞) we have
shown that

2 f
′′
p (r)−

rt f
′
p(r)
2

κUp(r) ≤ −λp fp(r) with λp :=
g̃p′(R)

2

(
αp

g̃p′(0)
+ 1
)

.

(6.2.3)
By relying on the above construction, we will prove our thesis considering

the Wasserstein distance

W fp(p, q) := inf
π∈Π(p,q)

E(X,Y)∼π

[
fp(|X − Y|)

]
induced by the concave function fp. The above is indeed a distance since
fp(0) = 0, fp is strictly increasing, concave and hence also subadditive (which
implies the triangular inequality). Moreover, from (6.2.2) it follows the equiva-
lence between W fp and the usual W1, namely

g̃p′(R) W1(p, q) ≤ W fp(p, q) ≤ g̃p′(0) W1(p, q) , (6.2.4)

For any t ≥ 0 notice that

W fp(p, q) ≤ W fp(p, q Pp
t ) + W fp(q Pp

t , q) = W fp(p Pp
t , q Pp

t ) + W fp(q Pp
t , q) .
(6.2.5)
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In order to bound the first Wasserstein distance appearing in the upper
bound (6.2.5), namely W fp(p Pp

t , q Pp
t ), fix an initial coupling (X0, Xq

0 ) ∼ π⋆

distributed according to the optimal coupling for W fp(p, q) and consider the
reflection coupling diffusion processes

dXt = − 1
2∇Up(Xt)dt + dBt

dXq
t = − 1

2∇Up(Xq
t )dt + dB̂t ∀ t ∈ [0, τ) and Xt = Xq

t ∀ t ≥ τ

(X0, Xq
0 ) ∼ π⋆ ,

where τ := inf{s ≥ 0 : Xq
s = Xs}, and (B̂t)t≥0 is defined as

dB̂t := (Id−2 et eTt 1{t<τ})dBt where et :=

{
Zt
|Zt | when rt > 0 ,

u when rt = 0 .

where Zt := Xt − Xq
t , rt := |Zt| and u ∈ Rd is a fixed (arbitrary) unit-vector.

By Lévy’s characterisation, (B̂t)t≥0 is a d-dimensional Brownian motion. As a
result, Xt ∼ p and Xq

t ∼ qPp
t for any t ≥ 0. In addition dWt := eTt dBt is a

one-dimensional Brownian motion. Let us notice that for any t < τ it holds

dZt = − 2−1 (∇Up(Xt)−∇Up(Xq
t ))dt + 2 et dWt ,

dr2
t = − ⟨Zt, ∇Up(Xt)−∇Up(Xq

t )⟩ dt + 4 dt + 4 ⟨Zt, et⟩ dWt ,

drt = − 2−1 ⟨et, ∇Up(Xt)−∇Up(Xq
t )⟩ dt + 2 dWt .

Now, an application of Ito-Tanaka formula [RY99, Chapter VI, Theorem 1.5]
to the concave function fp ∈ C1((0,+∞), R+)∩C2((0, R)∪ (R,+∞), R+), gives
for any t < τ

fp(rt) = fp(r0) +
∫ t

0
fp′(rs)drs +

1
2

∫
R

La
t µ fp(da) , (6.2.6)

where (La
t )t denotes the right-continuous local time of the semimartingale (rt)t,

whereas µ fp is the non-positive measure representing fp′′ in the sense of distri-
butions, i.e., µ fp([a, b]) = fp′(b) − fp′(a) for any a ≤ b. Let us further notice
that the Meyer Wang occupation times formula [Kal21, Theorem 29.5], which
for any measurable function H : R → [0,+∞) reads as∫ t

0
H(rs)d[r]s =

∫
R

H(a)La
t da ,

implies that the random set {s ∈ [0, τ] : rs = R} has almost surely zero Lebesgue
measure. Particularly, since µ fp is non-positive, this combined with the above
formula implies

1
2

∫
R

La
t µ fp(da) ≤ 1

2

∫
R

1{a ̸=R}La
t fp′′(a)da = 2

∫ t

0
1{rs ̸=R} fp′′(rs)ds

= 2
∫ t

0
fp′′(rs)ds.

(6.2.7)
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As a byproduct of (6.2.6) and (6.2.7) we may finally state that for any t < τ
it almost surely holds

d fp(rt) ≤−
f
′
p(rt)

2
⟨et, ∇Up(Xt)−∇Up(Xq

t )⟩ dt + 2 f
′′
p (rt) dt + 2 f

′
p(rt) dWt

≤
(

2 f
′′
p (rt)−

rt f
′
p(rt)

2
κUp(rt)

)
dt + 2 f

′
p(rt) dWt

(6.2.3)
≤ − λp fp(rt) dt + 2 f

′
p(rt) dWt .

By recalling that fp(rt) = fp(0) = 0 as soon as t ≥ τ, by taking expectation,
integrating over time and by applying Gronwall Lemma we have finally proven
that for any t ≥ 0 it holds

W fp(p Pp
t , q Pp

t ) ≤ E[ fp(|Xt − Xq
t |)] ≤ e−λp t E[ fp(|X0 − Xq

0 |)]

= e−λp t W fp(p, q) .
(6.2.8)

Let us now provide a bound for the second Wasserstein distance appear-
ing in the upper bound (6.2.5), namely W fp(q Pp

t , q), by relying on the syn-
chronous coupling technique. Therefore fix an initial random variable Y0 ∼ q
and a d-dimensional Brownian motion (Bt)t≥0, and consider now the diffusion
processes 

dXq
t = − 1

2∇Up(Xq
t )dt + dBt

dYt = − 1
2∇Uq(Yt)dt + dBt

Xq
0 = Y0 = Y0 ∼ q .

Notice that for any t ≥ 0, Yt ∼ q whereas Xq
t ∼ qPp

t . If we set now r̄t :=
|Xq

t − Yt| we then have

d(Xq
t − Yt) = − 2−1(∇Up(Xq

t )−∇Uq(Yt)) dt ,

dr̄2
t = − ⟨Xq

t − Yt, ∇Up(Xq
t )−∇Uq(Yt)⟩ dt .

At this point we would like to apply the square-root function, however the
latter fails to be C2 in the origin whereas r̄t may be equal to zero (e.g., we already
start with r̄0 = 0). For this reason we are going to perform an approximation
argument. Fix δ > 0 and consider the function ρδ(r) :=

√
r + δ. Then it holds

dρδ(r̄2
t ) = − (2 ρδ(r̄2

t ))
−1⟨Xq

t − Yt, ∇Up(Xq
t )−∇Uq(Yt)⟩ dt

= − (2 ρδ(r̄2
t ))

−1⟨Xq
t − Yt, ∇Up(Xq

t )−∇Up(Yt)⟩ dt

− (2 ρδ(r̄2
t ))

−1⟨Xq
t − Yt, ∇Up(Yt)−∇Uq(Yt)⟩ dt

≤ − 2−1 r̄2
t

ρδ(r̄2
t )

κp(r̄t) dt + 2−1 r̄t

ρδ(r̄2
t )

|∇Up −∇Uq|(Yt)dt

≤ − 2−1 r̄2
t

ρδ(r̄2
t )

(αp − G̃p) dt + 2−1 r̄t

ρδ(r̄2
t )

|∇Up −∇Uq|(Yt)dt ,
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where in the last step we have relied on the sublinearity of g̃p ∈ G̃ (namely that
g̃p(r) ≤ G̃p r for some positive constant G̃p > 0). Therefore it holds

dρδ(r̄2
t ) ≤

(αp − G̃p)+

2
ρδ(r̄2

t )dt + 2−1|∇Up −∇Uq|(Yt)dt .

By taking expectation and integrating over time the above bound gives

E[ρδ(r̄2
t )] ≤E[ρδ(r̄2

0)] +
(αp − G̃p)+

2

∫ t

0
E[ρδ(r̄2

s )] ds

+ 2−1
∫ t

0
E[|∇Up −∇Uq|(Ys)] ds

=
√

δ +
(αp − G̃p)+

2

∫ t

0
E[ρδ(r̄2

s )] ds +
t
2

∫
|∇Up −∇Uq| dq ,

where in the last step we have relied on the fact that Yt ∼ q for any t ≥ 0 and
that r̄0 = 0. Therefore Gronwall Lemma yields to

E[r̄t] ≤ E[ρδ(r̄2
t )] ≤ exp

(
t
2
(αp − G̃p)

+

) [
t
2

∫
|∇Up −∇Uq|dq+

√
δ

]
.

By letting δ to zero in the above right-hand-side, we obtain the desired upper
bound

W fp(q Pp
t , q)

(6.2.4)
≤ g̃p′(0) W1(q Pp

t , q) ≤ g̃p′(0) E[|Xq
t − Yt|] = g̃p′(0) E[r̄t]

≤ g̃p′(0)
t
2

exp
(

t
2
(αp − G̃p)

+

) ∫
|∇Up −∇Uq| dq .

By putting together the last estimate with (6.2.5) and (6.2.8) we have proven
that

W fp(p, q) ≤ e−λp t W fp(p, q)

+ g̃p′(0)
t
2

exp
(

t
2
(αp − G̃p)

+

) ∫
|∇Up −∇Uq| dq ,

or equivalently that

W fp(p, q) ≤ t/2
1 − e−λp t g̃p′(0) exp

(
t
2
(αp − G̃p)

+

) ∫
|∇Up −∇Uq| dq ,

which in the t vanishing limit reads as

W fp(p, q) ≤ g̃p′(0)
2 λp

∫
|∇Up −∇Uq| dq .

Combining the above bound with the equivalence (6.2.4) concludes the proof.
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Remark 6.2.2 (Explicit constants for g̃p as in (6.0.14)). Particularly, when g̃p is as
in (6.0.14) in Remark 6.0.1, i.e.

g̃p(r) = 2 (L)1/2 tanh(r L1/2/2)

for some L, then in the previous proof we have R = 2(L)1/2(L−1 + 2/αp) and therefore

W1(p, q) ≤ cosh4(2(L)1/2(L−1 + 2/αp))

αp + L

∫
|∇Up −∇Uq|dq .

Let us conclude this section by showing how the previous result and the
propagation of lower-bounds for integrated convexity profiles (studied in the
previous section) yield to the key estimates that will be employed in the proof
of the main results.

Corollary 6.2.3. Assume A6. Then, for any x ∈ Rd, it holds

W1(π
x,ψn

T , π
x,ψ⋆

T ) ≤ γν
n

∫
|∇ψn −∇ψ⋆|dπ

x,ψ⋆

T , (6.2.9)

and similarly

W1(π
x,φn+1

T , π
x,φ⋆

T ) ≤ γ
µ
n

∫ ∣∣∣∇φn+1 −∇φ⋆
∣∣∣dπ

x,φ⋆

T , (6.2.10)

where for any p ∈ {µ, ν}, and for any n ∈ N it holds

γp
n :=

g̃p′(0)2

g̃p′
(
∥g̃p∥∞

(
1

g̃p ′(0)
+ 2

αp,n+T−1

))2
1

αp,n + T−1 + g̃p′(0)
(6.2.11)

where (αµ,n)n∈N ⊆ (αµ − T−1, αµ − T−1 + (βν T2)−1] and (αν,n)n∈N ⊆ (αν −
T−1, αν − T−1 + (βµ T2)−1] are the monotone increasing sequences built in Theo-
rem 6.1.1.

Proof. Inequality (6.2.9) follows from the previous theorem when considering
p = π

x,ψn

T and q = π
x,ψ⋆

T . Indeed these two probabilities are the invariant mea-
sures associated to (6.2.1) with Up(y) = (2T)−1 |y − x|2 + ψn(y) and Uq(y) =
(2T)−1 |y − x|2 + ψ⋆(y) respectively. Theorem 6.1.1 guarantees that there exist
αν,n, αψ⋆ > −T−1 such that

κUp(r) ≥ T−1 + αν,n − r−1 g̃ν(r) and κUq(r) ≥ T−1 + αψ⋆ − r−1 g̃ν(r) .

Therefore p and q satisfy Assumption AO1 and Theorem 6.2.1 gives (6.2.9).
We omit the details for the proof of (6.2.10) since it can be obtained in the

same way, this time considering p = π
x,φn+1

T and q = π
x,φ⋆

T .
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6.3 Exponential convergence of the gradients and in
W1 along Sinkhorn’s algorithm

The convergence of the gradients will follow by iterating the following result.

Proposition 6.3.1. Assume A6 holds. Then for any n ≥ 0 it holds∫
|∇φn+1 −∇φ⋆|dµ ≤ T−1 γν

n

∫
|∇ψn −∇ψ⋆|dν , (6.3.1)

and similarly ∫
|∇ψn+1 −∇ψ⋆|dν ≤ T−1 γ

µ
n

∫
|∇φn+1 −∇φ⋆|dµ , (6.3.2)

where γ
µ
n and γν

n are given in (6.2.11).

Proof. Let us start by showing (6.3.1). From (6.0.1) we immediatly have{
φn+1 − φ⋆ = log PT exp(−ψn)− log PT exp(−ψ⋆)

ψn+1 − ψ⋆ = log PT exp(−φn+1)− log PT exp(−φ⋆)

and since for h = φn+1, φ⋆ the gradient along the semigroup has the explicit
formulation (cf. Proposition 6.A.2)

∇ log PT exp(−h)(x) =
1
T

∫
(y − x)πx,h

T (dy) ,

and we may deduce that

|∇φn+1 −∇φ⋆|(x) = T−1
∣∣∣∣∫ y π

x,ψn

T (dy)−
∫

y π
x,ψ⋆

T (dy)
∣∣∣∣

≤ T−1W1(π
x,ψn

T , π
x,ψ⋆

T ) .

(6.3.3)

Combining the above observation with Corollary 6.2.3 we end up with

|∇φn+1 −∇φ⋆|(x) ≤ T−1 γν
n

∫
|∇ψn −∇ψ⋆|dπ

x,ψ⋆

T , (6.3.4)

with γν
n as introduced in (6.2.11). Combining (6.0.6) with (6.3.4) gives (6.3.1).

The contractive estimate (6.3.2) can be proven in the same manner by relying
on (6.2.10) by noticing that

|∇ψn+1 −∇ψ⋆|(x) ≤ T−1W1(π
x,φn+1

T , π
x,φ⋆

T ) and
∫

π
x,φ⋆

T (dy) ν(dx) = µ(dy).

As a corollary we immediately deduce our first exponential convergence
result.
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Theorem 6.3.2. Assume that A6 holds. Then for any n ≥ 1

∫
|∇φn −∇φ⋆|dµ ≤ T

γ
µ
n−1

n−1

∏
k=0

γ
µ
k γν

k
T2

∫
|∇ψ0 −∇ψ⋆|dν ,

∫
|∇ψn −∇ψ⋆|dν ≤

n−1

∏
k=0

γ
µ
k γν

k
T2

∫
|∇ψ0 −∇ψ⋆|dν ,

(6.3.5)

and

W1(π
n,n, πT) ≤ T

n−1

∏
k=0

γ
µ
k γν

k
T2

∫
|∇ψ0 −∇ψ⋆|dν ,

W1(π
n+1,n, πT) ≤ γν

n

n−1

∏
k=0

γ
µ
k γν

k
T2

∫
|∇ψ0 −∇ψ⋆|dν ,

(6.3.6)

where (γ
µ
k )k∈N and (γν

k )k∈N are non-negative non-increasing sequences defined at
(6.2.11), depending on αµ, βν, g̃µ, gν, T and on αν, βµ, g̃ν, gµ, T respectively. De-
noting γ

ζ
∞ := limk→+∞ γ

ζ
k for ζ ∈ {µ, ν}, as a corollary, as soon as T2 > γ

µ
∞ γν

∞, the
asymptotic rate is strictly less than one, and for any T−2γ

µ
∞ γν

∞ < λ < 1, there exists
C ≥ 0 such that for any n ∈ N∗,∫

|∇φn −∇φ⋆|dµ +
∫

|∇ψn −∇ψ⋆|dν ≤Cλn
∫

|∇ψ0 −∇ψ⋆|dν ,

W1(π
n,n, πT) + W1(π

n+1,n, πT) ≤Cλn
∫

|∇ψ0 −∇ψ⋆|dν ,

Remark 6.3.3 (Explicit rates). Let us simply remark here that the sequences (γµ
n)n∈N

and (γν
n)n∈N given in (6.2.11) are non-increasing, i.e., they provide faster convergence

as the index n increases. Indeed this follows from the fact that (αµ,n)n∈N ⊆ (αµ −
T−1, αµ − T−1 + (βν T2)−1] and (αν,n)n∈N ⊆ (αν − T−1, αν − T−1 + (βµ T2)−1]
are monotone increasing sequences, built in Theorem 6.1.1. If α⋆φ and α⋆ψ denote their
respective limits, then the asymptotic rates of convergence read as

γ
µ
∞ :=

g̃µ
′(0)2

g̃µ
′
(∥∥g̃µ

∥∥
∞

(
1

g̃µ
′(0) +

2
αφ⋆+T−1

))2
1

αφ⋆ + T−1 + g̃µ
′(0)

,

γν
∞ :=

g̃ν
′(0)2

g̃ν
′
(
∥g̃ν∥∞

(
1

g̃ν
′(0) +

2
αψ⋆+T−1

))2
1

αψ⋆ + T−1 + g̃ν
′(0)

.

From the above expressions it can be deduced that the condition for exponential con-
vergence T−2γ

µ
∞γν

∞ < 1 is always satisfied for large enough values of T. To be more
precise, a sufficient condition for the exponential convergence of Sinkhorn algorithm is



6.3. EXPONENTIAL CONVERGENCE OF GRADIENTS AND IN W1 139

the following

T2 >
g̃µ

′(0) (αµ + g̃µ
′(0))−1

g̃µ
′
(∥∥g̃µ

∥∥
∞

(
1

g̃µ
′(0) +

2
αµ

))2
g̃ν

′(0) (αν + g̃ν
′(0))−1

g̃ν
′
(
∥g̃ν∥∞

(
1

g̃ν
′(0) +

2
αν

))2 . (6.3.7)

Expressions simplify when considering g̃p as in (6.0.14) in Remark 6.0.1, i.e.

g̃p(r) = 2 (Lp)
1/2 tanh(r L1/2

p /2)

for some Lp ≥ 0, since the previous asymptotic rates would read as

γ
µ
∞ =

1
αφ⋆ + T−1 + Lµ

cosh4
(

2(Lµ)
1/2
(

1
Lµ

+
2

αφ⋆ + T−1

))
,

γν
∞ =

1
αψ⋆ + T−1 + Lν

cosh4
(

2(Lν)
1/2
(

1
Lν

+
2

αψ⋆ + T−1

))
,

whereas (6.3.7) would read as

T2 >

cosh4
(

2
L1/2

µ
+

4 L1/2
µ

αµ

)
αµ + Lµ

cosh4
(

2
L1/2

ν
+ 4 L1/2

ν
αν

)
αν + Lν

.

Finally, explicit expressions for (γµ
k )k∈N, (γν

k )k∈N and their limits fully simplify
under A7, i.e., when µ and ν are strongly log-concave. We focus on this particular sce-
nario in Section 6.6 where we give simple expression for (γµ

k )k∈N, (γν
k )k∈N, γ

µ
∞, γν

∞.
In particular we show that Sinkhorn’s algorithm converges as soon as

T >
βµβν − αµαν√

αµ βµ αν βν (αµ + βµ)(αν + βν)
.

As βµ = βν = +∞, this expression simply reads as T > (αµ αν)−1/2. Lastly, notice
that in the Gaussian quadratic case, that is when βµ = αµ and βν = αν, then the expo-
nential convergence condition reads as T > 0 which means that Sinkhorn’s algorithm
converges exponentially fast for any fixed T > 0.

Proof of Theorem 6.3.2. As concerns (6.3.5), it is enough concatenating the bounds
proven in Proposition 6.3.1, as already sketched at (6.0.8) and (6.0.9).

The W1-convergence bound (6.3.6) can be deduce from (6.3.5) and Corol-
lary 6.2.3 since πn,n ∈ Π(⋆, ν), πn+1,n ∈ Π(µ, ⋆) and hence

W1(π
n,n, πT) ≤

∫
W1(π

x,φn

T , π
x,φ⋆

T ) dν ,

W1(π
n+1,n, πT) ≤

∫
W1(π

x,ψn

T , π
x,ψ⋆

T ) dµ .
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Remark 6.3.4 (Convergence along adjusted marginals). By relying on the previ-
ous result, we are also able to prove exponential convergence of the L1(µn)-norms and
L1(νn)-norms of the difference of the gradients, along the adjusted marginals µn, νn.
This follows from the fact that Sinkhorn’s iterates may be considered as potentials of
appropriate Schrödinger problems. Indeed, the decomposition given in (2.2.19) implies
that

• the couple (φn+1, ψn) corresponds to a couple of Schrödinger potentials (as de-
fined in (6.0.1)) associated to the Schrödinger problem with reference measure
R0,T and with marginals µ and νn := (projy)♯π

n+1,n;

• the couple (φn+1, ψn+1) corresponds to a couple of Schrödinger potentials (as
defined in (6.0.1)) associated to the Schrödinger problem with reference measure
R0,T and with marginals µn+1 := (projx)♯π

n+1,n+1 and ν.

This simple observation, the bound (6.3.3), the conditional property of π
x,ψn

T
1, and

arguing as in Corollary 6.2.3 (this time with p = π
x,ψ⋆

T and q = π
x,ψn

T ) prove that

∫
|∇φn −∇φ⋆|dµn ≤ γν

∞
T

n−2

∏
k=0

γ
µ
k γν

k
T2

∫
|∇ψ0 −∇ψ⋆|dν ,

∫
|∇ψn −∇ψ⋆|dνn ≤ γ

µ
∞

γ
µ
n−1

n−1

∏
k=0

γ
µ
k γν

k
T2

∫
|∇ψ0 −∇ψ⋆|dν .

Our coupling approach can also be employed in order to prove pointwise
convergence result. In order to establish such a result the assumptions we im-
pose on the regularization parameter T are more stringent than the ones we
need for Theorem 6.3.2. In addition we must impose an additional assumption
(6.3.8) on ψ0. As we explain below there is a natural choice for ψ0 that guaran-
tees that (6.3.8) holds.

Theorem 6.3.5. Assume A6 holds, ψ0 ∈ C1(Rd) and that there exist two positive
constants A, B > 0 such that for any x ∈ Rd

|∇ψ0 −∇ψ⋆|(x) ≤ A |x|+ B . (6.3.8)

Then for any n ∈ N∗ and x ∈ Rd

|∇φn −∇φ⋆|(x) ≤ T
γ̂

µ
n−1

n−1

∏
k=0

γ̂
µ
k γ̂ν

k
T2 (A|x|+ B)

|∇ψn −∇ψ⋆|(x) ≤
n−1

∏
k=0

γ̂
µ
k γ̂ν

k
T2 (A|x|+ B) ,

(6.3.9)

1Let us recall that πn,n is the optimal coupling for the Schrödinger problem with marginals µn

and ν, that the corresponding potentials are given by φn, ψn and therefore π
x,ψn

T (dy)µn(dx) =
πn,n(dx dy).
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where

γ̂
µ
k := γ

µ
k max

{
(T αφ⋆ + 1)−1 ,

(
1 +

A
B

1 +
∥∥g̃µ

∥∥
∞ + |∇φ⋆(0)|

αφ⋆ + T−1

)}
,

and

γ̂ν
k := γν

k max
{
(T αψ⋆ + 1)−1 ,

(
1 +

A
B

1 + ∥g̃ν∥∞ + |∇ψ⋆(0)|
αψ⋆ + T−1

)}
,

where (γ
µ
k )k∈N, (γν

k )k∈N are the non-decreasing non-negative sequences defined in
Remark 6.3.3, αφ⋆ ∈ (αµ − T−1, αµ − T−1 + (βν T2)−1] and αψ⋆ ∈ (αν − T−1, αν −
T−1 + (βµ T2)−1] are given in Theorem 6.1.1. In particular, denoting the correspond-
ing limit rates as γ

ζ
∞ := limk→+∞ γ

ζ
k and γ̂

ζ
∞ := limk→+∞ γ̂

ζ
k for ζ ∈ {µ, ν}, if T is

large enough, e.g., if

T > max
{

α−1
µ , α−1

ν , γ
µ
∞ +

γ
µ
∞ A

αµB
(1 + ∥g̃µ∥∞ + |∇φ⋆(0)|),

γν
∞ +

γν
∞ A

ανB
(1 + ∥g̃ν∥∞ + |∇ψ⋆(0)|)

}
,

(6.3.10)

then T2 > γ̂
µ
∞ γ̂ν

∞ and as a result for any λ ∈ (T−2 γ̂
µ
∞γ̂ν

∞, 1), there exists C ≥ 0
such that for any x ∈ Rd and n ∈ N∗,

|∇φn −∇φ⋆|(x) + |∇ψn −∇ψ⋆|(x) ≤ C λn (A|x|+ B) .

As for Theorem 6.3.2, expressions of (γ̂µ
k )k∈N, (γ̂ν

k )k∈N simplify as Uµ and
Uν are strongly convex. These expressions are given in Section 6.6.

We stress that the previous theorem holds for any smooth initialisation ψ0 ∈
C1(Rd) satisfying (6.3.8). A common choice would be starting at ψ0 = Uν,
which corresponds to φ0 = 0. This choice agrees with the usual normalisation
imposed to Sinkhorn’s iterates when studying its convergence [DMG20, CL20,
DdBD24, Car22]. Let us also point out that if one starts Sinkhorn’s algorithm
one step before with the null initialisation φ0 := 0, then at the first iteration we
immediately get ψ0 = Uν. Under this choice, from (2.2.17) we deduce that

ψ0 − ψ⋆ = − log PT exp(−φ⋆)

hence

|∇ψ0 −∇ψ⋆|(x) =
1
T

∣∣∣∣∫ (y − x)π
x,φ⋆

T (dy)
∣∣∣∣ ≤ |x|

T
+

1
T

∫
|y|dπ

x,φ⋆

T (y) .

(6.3.11)
The latter combined with the bound we are going to give later in (6.3.16) shows
that the initialisation ψ0 = Uν automatically satisfies the linear growth condi-
tion of Theorem 6.3.5. At the same time, integrating (6.3.11) w.r.t. ν and using
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(6.0.5) (exchanging the roles between first and second marginal) yields to∫
|∇ψ0 −∇ψ⋆| dν ≤ T−1

∫
|x − y| π

x,φ⋆

T (dy) ν(dx) = T−1
∫

|x − y| dπT

(6.3.12)
which allows us to state (6.3.5) in terms of the first moments of the marginals µ
and ν.

Summarising the above discussion, if we start from ψ0 = Uν, the previous
results read as

Corollary 6.3.6. Assume A6. If we set the initial Sinkhorn’s iterate equal to ψ0 = Uν

(or equivalently if we start with φ0 = 0), then the linear-growth condition (6.3.8) is
satisfied with

A = T−1 T αφ⋆ + 2
T αφ⋆ + 1

and B =
1 +

∥∥g̃µ

∥∥
∞ + |∇φ⋆(0)|

T αφ⋆ + 1
, (6.3.13)

where αφ⋆ ∈ (αµ − T−1, αµ − T−1 + (βνT2)−1] is given in Theorem 6.1.1.
Moreover, the integrated bounds (6.3.5) read as

∫
|∇φn −∇φ⋆|(x)µ(dx) ≤ 1

γ
µ
n−1

n−1

∏
k=0

γ
µ
k γν

k
T2 (M1(µ) + M1(ν)) ,

∫
|∇ψn −∇ψ⋆|(y)ν(dy) ≤

n−1

∏
k=0

γ
µ
k γν

k
T2 (M1(µ) + M1(ν)) .

As a consequence of the previous corollary, starting from ψ0 = Uν, we
have exponential pointwise convergence of the gradients as soon as T is large
enough, as mentioned in Theorem 6.3.5.

The proof of Theorem 6.3.5 relies on a contractive technique which is based
on the linear growth condition and reads as follows.

Lemma 6.3.7. Assume that A6 holds true. If there are positive constants A, B > 0
such that for any x ∈ Rd, |∇ψn −∇ψ⋆|(x) ≤ A|x|+ B, then it holds for any x ∈ Rd,

|∇φn+1 −∇φ⋆|(x) ≤ T−1γ̂ν
n (A|x|+ B) ,

with

γ̂ν
n := γν

n max
{
(T αψ⋆ + 1)−1 ,

(
1 +

A
B

1 + ∥g̃ν∥∞ + |∇ψ⋆(0)|
αψ⋆ + T−1

)}
,

and γν
n is given in (6.2.11).

Similarly if for any x ∈ Rd, |∇φn+1 −∇φ⋆|(x) ≤ A|x| + B, then it holds for
any x ∈ Rd,

|∇ψn+1 −∇ψ⋆|(x) ≤ T−1γ̂
µ
n (A|x|+ B) ,
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with

γ̂
µ
n := γ

µ
n max

{
(T αφ⋆ + 1)−1 ,

(
1 +

A
B

1 + ∥g̃µ∥∞ + |∇φ⋆(0)|
αφ⋆ + T−1

)}
,

and γ
µ
n is given in (6.2.11).

Proof. We will prove only the first inequality since the proof of the second one
can be achieved by following the same argument. Owing to the computations
performed in Proposition 6.3.1 and Corollary 6.2.3, let us consider (6.3.4) as
starting point of our proof here. Therefore we have

|∇φn+1 −∇φ⋆|(x) ≤ T−1 γν
n

∫
|∇ψn −∇ψ⋆|dπ

x,ψ⋆

T ,

which combined with our assumption yields to

|∇φn+1 −∇φ⋆|(x) ≤ T−1 γν
n

(
A E

π
x,ψ⋆
T

[|Y|] + B
)

. (6.3.14)

Therefore our proof follows once we provide a bound on the above right-hand-
side. In order to do that, let us denote by Y⋆ the strong solution ofdY⋆

t = −
(

Y⋆
t −x
2T + 1

2 ∇ψ⋆(Y⋆
t )

)
dt + dBt

Y⋆
0 ∼ π

x,ψ⋆

T .

Then Ito formula, Corollary 6.1.3 and the boundedness of g̃ν ∈ G̃ imply that

d|Y⋆
t |2 = −T−1|Y⋆

t |2 dt + T−1⟨Y⋆
t , x⟩dt − ⟨Y⋆

t , ∇ψ⋆(Y⋆
t )⟩dt + 1 dt
+2 Y⋆

t · dBt

≤ −(αψ⋆ + T−1)|Y⋆
t |2 dt + (1 + T−1|x|+ ∥g̃ν∥∞ + |∇ψ⋆(0)|)|Y⋆

t |dt

+2 Y⋆
t · dBt ,

and therefore for any ε ∈ (0, αψ⋆ + T−1) we have

d|Y⋆
t |2 ≤ − (αψ⋆ + T−1 − ε)|Y⋆

t |2 dt

+ (4ε)−1(1 + T−1|x|+ ∥g̃ν∥∞ + |∇ψ⋆(0)|)2dt + 2 Y⋆
t · dBt .

If we consider the stopping time τM := inf{t ≥ 0 : |Y⋆
t | > M}, where we set

inf(∅) := +∞, by integrating over time on [0, t ∧ τM], taking expectation and
owing to the Optional Stopping Theorem we deduce that

E[|Y⋆
t∧τM

|2] ≤ E[|Y⋆
0 |2]− (αψ⋆ + T−1 − ε)

∫ t

0
E[1s≤τM |Y⋆

s |2]ds

+
t

4ε
(1 + T−1|x|+ ∥g̃ν∥∞ + |∇ψ⋆(0)|)2 .
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Since τM ↑ +∞ almost surely as M ↑ +∞ (as a consequence of Corollary 6.1.3),
in the asymptotic regime Fatou Lemma implies for any t ≥ 0 that

E[|Y⋆
t |2] + (αψ⋆ + T−1 − ε)

∫ t

0
E[|Y⋆

s |2]ds

≤ E[|Y⋆
0 |2] +

t
4ε
(1 + T−1|x|+ ∥g̃ν∥∞ + |∇ψ⋆(0)|)2,

which combined with the stationarity of the process Y⋆
s ∼ π

x,ψ⋆

T , gives

E
π

x,ψ⋆
T

[|Y|] ≤ E
π

x,ψ⋆
T

[|Y|2]1/2 ≤ 1 + T−1|x|+ ∥g̃ν∥∞ + |∇ψ⋆(0)|√
4ε(αψ⋆ + T−1 − ε)

.

By minimising over ε ∈ (0, αψ⋆ + T−1) we finally get the desired upper-bound

E
π

x,ψ⋆
T

[|Y|] ≤ 1 + T−1|x|+ ∥g̃ν∥∞ + |∇ψ⋆(0)|
αψ⋆ + T−1

=
|x|

T αψ⋆ + 1
+

1 + ∥g̃ν∥∞ + |∇ψ⋆(0)|
αψ⋆ + T−1 .

(6.3.15)

By combining the above bound with (6.3.14) we finally conclude that

|∇φn+1 −∇φ⋆|(x) ≤T−1 γν
n

(
A

T αψ⋆ + 1
|x|+ A

1 + ∥g̃ν∥∞ + |∇ψ⋆(0)|
αψ⋆ + T−1 + B

)
≤T−1γ̂ν

n(A |x|+ B)

where the last step holds true because of the choice of γ̂ν
n. This concludes the

proof of the first part of the statement. The proof of the second one is similar
and for this reason we omit it. Let us just mention here that the same reasoning
yields to the moment bound

E
π

x,φ⋆
T

[|Y|] < |x|
T αφ⋆ + 1

+
1 + ∥g̃µ∥∞ + |∇φ⋆(0)|

αφ⋆ + T−1 . (6.3.16)

Proof of Theorem 6.3.5. It is enough concatenating the bounds we have deduced
in Lemma 6.3.7 and observing that at each step ψk and φk satisfy (6.3.8) with
constants Ak, Bk such that the ratio Ak/Bk ≡ A/B.

6.4 Exponential pointwise and entropic convergence
of Sinkhorn’s algorithm

It is possible to infer the convergence of Sinkhorn’s iterates (φn)n∈N, (ψn)n∈N

from the convergence of their gradients. Since Schrödinger potentials are unique
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up to a trivial additive shift, let us recall that we impose the symmetric normal-
isation (2.2.13), that is we suppose it holds

∫
φ⋆ dµ + Ent(µ) =

∫
ψ⋆ dν + Ent(ν) =

1
2

(
Ent(µ) + Ent(ν)−H (πT |R0,T)

)
.

This normalisation has already been used while showing convergence of the
(rescaled) Schrödinger potentials and their gradients to Kantorovich potentials
and the Brenier map respectively, see Chapter 3. In what concerns Sinkhorn’s
iterates, we work with the normalisation already considered in (5.1.8), i.e., we
consider the shifted iterates

φ⋄n = φn −
(∫

φndµ −
∫

φ⋆dµ

)
, ψ⋄n = ψn −

(∫
ψndν −

∫
ψ⋆dν

)
,

(6.4.1)
This choice guarantees that

∫
φ⋄ndµ+Ent(µ) =

∫
φ⋆dµ+Ent(µ) =

∫
ψ⋆dν+Ent(ν) =

∫
ψ⋄ndν+Ent(ν).

Theorem 6.4.1. Assume that A6 and (6.3.8) hold. Then for any n ≥ 1 and x ∈ Rd it
holds

|φ⋄n − φ⋆|(x) ≤ T
γ̂

µ
n−1

n−1

∏
k=0

γ̂
µ
k γ̂ν

k
T2

[
A |x|2 + (A M1(µ) + B) |x|+ B M1(µ)

+ 2 A M2(µ)

]
,

|ψ⋄n − ψ⋆|(x) ≤
n−1

∏
k=0

γ̂
µ
k γ̂ν

k
T2

[
A |x|2 + (A M1(ν) + B) |x|+ B M1(ν)

+ 2 A M2(ν)

]
.

Hence, for T large enough (e.g., (6.3.10)), the pointwise exponential convergence of
Sinkhorn’s iterates holds. Finally, if the initial iteration is set equal to ψ0 = Uν (i.e.,
φ0 = 0), then the above bounds hold true with A and B given at (6.3.13).

Let us mention here that a straightforward adaptation of the proof of The-
orem 6.4.1 implies that this result also holds true under a pointwise normali-
sation (e.g., ψ⋆(0) = ψ⋄n(0) = Uν(0)) or for the symmetric zero-mean option
considered in [DMG20, CL20, DdBD24, Car22].

Proof of Theorem 6.4.1. Owing to the normalisations (2.2.13), (6.4.1) and to The-
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orem 6.3.5, we immediately deduce that

|φ⋄n − φ⋆|(x) =
∣∣∣∣φ⋄n(x)−

∫
φ⋄ndµ − φ⋆(x) +

∫
φ⋆dµ

∣∣∣∣
=

∣∣∣∣∫ (φn − φ⋆)(x)− (φn − φ⋆)(y) dµ(y)
∣∣∣∣

≤
∫ ∣∣∣∣(φn − φ⋆)(x)− (φn − φ⋆)(y)

∣∣∣∣ dµ(y)

≤
∫ ∫ 1

0
|∇(φn − φ⋆)|(y + t(x − y)) |x − y| dt dµ(y)

(6.3.9)
≤ T

γ̂
µ
n−1

n−1

∏
k=0

γ̂
µ
k γ̂ν

k
T2

∫ ∫ 1

0
(A|y + t(x − y)|+ B)|x − y| dt dµ(y)

≤ T
γ̂

µ
n−1

n−1

∏
k=0

γ̂
µ
k γ̂ν

k
T2

[
A |x|2 + (A M1(µ) + B) |x|+ B M1(µ)

+ 2 A M2(µ)

]
.

The second pointwise bound can be proven in the same manner.

As a consequence of Theorem 6.4.1 we may also deduce the convergence of
the L1-norms along the adjusted marginals and along the real marginals.

Corollary 6.4.2. Assume A6 and (6.3.8) for some positive constants A, B > 0. Then
for any n ≥ 1 it holds

∥φ⋄n − φ⋆∥L1(µ) ≤
T

γ̂
µ
n−1

n−1

∏
k=0

γ̂
µ
k γ̂ν

k
T2

[
3 A M2(µ) + (A M1(µ) + B) M1(µ)

+ B M1(µ)

]
,

∥ψ⋄n − ψ⋆∥L1(ν) ≤
n−1

∏
k=0

γ̂
µ
k γ̂ν

k
T2

[
3 A M2(ν) + (A M1(ν) + B) M1(ν)

+ B M1(ν)

]
,

(6.4.2)

and

∥φ⋄n − φ⋆∥L1(µn) ≤ C(A, B, µ)
T

γ̂
µ
n−1

n−1

∏
k=0

γ̂
µ
k γ̂ν

k
T2 ,

∥ψ⋄n − ψ⋆∥L1(νn) ≤ C(A, B, ν)
n−1

∏
k=0

γ̂
µ
k γ̂ν

k
T2 ,

(6.4.3)
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where

C(A, B,µ) :=
[

3 A M2(µ) + (A M1(µ) + B) M1(µ) + B M1(µ)

]
+A C2(µ)

(√
H(µ1|µ) + H(µ1|µ)

2

)
+ (A M1(µ) + B)C1(µ)

√
H(µ1|µ)

(6.4.4)

and

C(A, B,ν) :=
[

3 A M2(ν) + (A M1(ν) + B) M1(ν) + B M1(ν)

]
+A C2(ν)

(√
H(ν0|ν) + H(ν0|ν)

2

)
+ (A M1(ν) + B)C1(ν)

√
H(ν0|ν) ,

with C1(ζ) and C2(ζ) are positive constants defined below in Lemma 6.4.3 for ζ ∈
{µ, ν}.

Proof. The proof of the integrated bounds along the marginals (6.4.2) is a straight-
forward consequence of the pointwise convergence, whereas the bounds along
the adjusted marginals follow from the weighted Csiszár-Kullback-Pinsker in-
equalities [BV05, Theorem 2.1] which imply for any ζ ∈ {µ, ν} that

M1(ζ
n) ≤ M1(ζ) + C1(ζ)

√
H(ζn|ζ) ,

M2(ζ
n) ≤ M2(ζ) + C2(ζ)

(√
H(ζn|ζ) + H(ζn|ζ)

2

)
where C1(ζ), C2(ζ) are positive constants (independent from n ∈ N). For sake
of clarity we postponed the proof of the above moment bounds to Lemma 6.4.3,
below. The proof of (6.4.3) then follows from the fact that the two sequences
(H (µn|µ))n∈N and (H (νn|ν))n∈N are monotone decreasing along Sinkhorn’s
algorithm [Nut21, Proposition 6.10].

In the next lemma we show how the weighted Csiszár-Kullback-Pinsker in-
equalities imply the above moments inequalities along the adjusted marginals.

Lemma 6.4.3. Assume A6 and let ζ ∈ {µ, ν}. Then for any probability measure
p ∈ P(Rd) such that H(p|ζ) < +∞ it holds

M1(p) ≤ M1(ζ) + C1(ζ)
√
H(p|ζ) ,

M2(p) ≤ M2(ζ) + C2(ζ)

(√
H(p|ζ) + H(p|ζ)

2

)
,
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where C1(ζ), C2(ζ) are positive constants (independent of p) defined as

C1(ζ) := inf
σζ∈(0,αζ /2)

(
2
σζ

+
2
σζ

log
∫

eσζ |x|2 dζ

)1/2

,

C2(ζ) := inf
σζ∈(0,αζ /2)

(
3
σζ

+
2
σζ

∫
eσζ |x|2dζ

)
.

Proof. For any σν ∈ (0, αν/2), from the weighted Csiszár-Kullback-Pinsker in-
equalities [BV05, Theorem 2.1] applied to the measurable functions F1(x) =

σ1/2
ν |x| and F2(x) = σν|x|2/2 we immediately deduce

M1(p) = M1(ν) + σ−1/2
ν

∫
σ1/2

ν |x|d(p− ν)

≤ M1(ν) +
√
H(p|ν)

(
2
σν

+
2
σν

log
∫

eσν |x|2 dν

)1/2

M2(p) = M2(ν) +
2
σν

∫
σν

2
|x|2 d(p− ν)

≤ M2(ν) +

(√
H(p|ν) + H(p|ν)

2

)(
3
σν

+
2
σν

∫
eσν |x|2dν

)
which are finite by Lemma 6.A.1 and A6. Minimising over σν ∈ (0, αν/2) con-
cludes the proof of the first claim.

Lastly, the moment bounds corresponding to the choice of reference µ, can
be proven in the same way.

6.4.1 Exponential entropic convergence of Sinkhorn’s plans

Finally, let us conclude the section with the exponential entropic convergence
of Sinkhorn’s algorithm on the primal side, i.e., for Sinkhorn’s plans (πn,n)n∈N

and (πn+1,n)n∈N defined in (2.2.19) and for the adjusted marginals (µn)n∈N and
(νn)n∈N, using the symmetrised version of the relative entropy H sym (as de-
fined at (4.0.1)). As observed in [CCGT23, GN22], measuring distances between
plans with this divergence leads to tractable expressions.

Theorem 6.4.4 (Exponential convergence of Sinkhorn on the primal side). As-
sume that A6 and (6.3.8) hold. Then, for any n ≥ 1 it holds

H sym(πn,n, πT) ≤ D(A, B, µ)
T

γ̂
µ
n−1

n−1

∏
k=0

γ̂
µ
k γ̂ν

k
T2 ,

H sym(πn+1,n, πT) ≤ D(A, B, ν)
n−1

∏
k=0

γ̂
µ
k γ̂ν

k
T2 ,
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and

H sym(πn+1,n, πn,n) = H sym(µn, µ) ≤ D(A, B, µ)
T

γ̂
µ
n−1

n−1

∏
k=0

γ̂
µ
k γ̂ν

k
T2 ,

H sym(πn+1,n+1, πn+1,n) = H sym(νn, µ) ≤ D(A, B, ν)
n−1

∏
k=0

γ̂
µ
k γ̂ν

k
T2 ,

where the multiplicative constants expressions D(A, B, µ), D(A, B, ν) are explicitly
given in (6.4.5) and (6.4.6).

As a consequence, for T large enough (e.g. (6.3.10)), entropic exponential conver-
gence of Sinkhorn’s plans and adjusted marginals holds. Finally, if the initial iteration
is set equal to ψ0 = Uν (i.e., φ0 = 0), then the above bounds hold true with A and B
given at (6.3.13).

In Remark 6.4.5 we show how the multiplicative constant D(A, B, ·) can be
further improved. The benefit of considering symmetric relative entropies in
Theorem 6.4.4 is twofold: not only it allows us to bound these relative entropies
in terms of φn − φ⋆ and ψn − ψ⋆, but also allows us to translate it in terms of
φ⋄n − φ⋆ and ψ⋄n − ψ⋆ and therefore apply the results of Theorem 6.4.1.

Proof of Theorem 6.4.4. Let us preliminary point out that as a first consequence
of Corollary 6.4.2, for any n ≥ 1 it holds

φ⋄n − φ⋆ ∈ L1(µ) ∩ L1(µn) and ψ⋄n − ψ⋆ ∈ L1(ν) ∩ L1(νn) ,

which will guarantee that the following integrals (and corresponding summa-
tions) are all well-defined.

Now, (6.0.1) and (2.2.19) imply that

log
dπT

dπn,n (x, y) = φn(x)− φ⋆(x) + ψn(y)− ψ⋆(y) ,

and hence the symmetric relative entropies can be rewritten as

H sym(πn,n, πT) = H (πn,n|πT) +H (πT |πn,n)

=
∫
(φn − φ⋆)⊕ (ψn − ψ⋆) dπT −

∫
(φn − φ⋆)⊕ (ψn − ψ⋆) dπn,n

=
∫
(φ⋄n − φ⋆)⊕ (ψ⋄n − ψ⋆) dπT −

∫
(φ⋄n − φ⋆)⊕ (ψ⋄n − ψ⋆) dπn,n

=
∫
(φ⋄n − φ⋆) dµn −

∫
(φ⋄n − φ⋆) dµ .

By combining the above with Corollary 6.4.2, we then deduce that

H (πn,n, πT) ≤ D(A, B, µ)

T−1γ̂
µ
n−1

n−1

∏
k=0

γ̂
µ
k γ̂ν

k
T2 ,
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with

D(A, B, µ) := C(A, B, µ) + 3 A M2(µ) + (A M1(µ) + B) M1(µ) + B M1(µ)

= 2
[

3 A M2(µ) + (A M1(µ) + B) M1(µ) + B M1(µ)

]
+A C2(µ)

(√
H(µ1|µ) + H(µ1|µ)

2

)
+(A M1(µ) + B)C1(µ)

√
H(µ1|µ),

(6.4.5)

with C1(µ), C2(µ) being the constants introduced in Lemma 6.4.3.
Similarly (6.0.1) and (2.2.19) imply

log
dπT

dπn+1,n (x, y) = φn+1(x)− φ⋆(x) + ψn(y)− ψ⋆(y) ,

hence

H (πn+1,n|πT) +H (πT |πn+1,n) =
∫
(ψ⋄n − ψ⋆) dνn −

∫
(ψ⋄n − ψ⋆) dν .

The latter combined with Corollary 6.4.2 yields to

H sym(πn+1,n, πT) =H (πn+1,n|πT) +H (πT |πn+1,n)

≤ D(A, B, ν)
n−1

∏
k=0

γ̂
µ
k γ̂ν

k
T2 ,

with

D(A, B, ν) := C(A, B, ν) + 3 A M2(ν) + (A M1(ν) + B) M1(ν) + B M1(ν)

= 2
[

3 A M2(ν) + (A M1(ν) + B) M1(ν) + B M1(ν)

]
+A C2(ν)

(√
H(ν0|ν) + H(ν0|ν)

2

)
+(A M1(ν) + B)C1(ν)

√
H(ν0|ν).

(6.4.6)

Finally, the proof of the last claims runs exactly as in the last part of the proof
of Theorem 5.2.7 and for this reason we omit it here.

Remark 6.4.5. Let us remark here that from Theorem 6.4.4 we can consider a sharper
multiplicative constant CS(A, B, µ) in Corollary 6.4.2. Indeed, instead of relying on
the monotonicity of relative entropies along Sinkhorn’s algorithm, in (6.4.4) we could
define CS(A, B, µ) as

CS(A, B, µ) :=
[

3 A M2(µ) + (A M1(µ) + B) M1(µ) + B M1(µ)

]
+ εµ(n) ,
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where

εµ(n) := A C2(µ)

(√
H(µn|µ) + H(µn|µ)

2

)
+ (A M1(µ) + B)C1(µ)

√
H(µn|µ)

is a positive constant exponentially small as n ↑ +∞ thanks to Theorem 6.4.4. Then, in
Theorem 6.4.4 instead of (6.4.5), we can consider the sharper multiplicative constant

DS(A, B, µ) := 2
[

3 A M2(µ) + (A M1(µ) + B) M1(µ) + B M1(µ)

]
+ εµ(n) .

The same reasoning applies for CS(A, B, ν) and DS(A, B, ν).

6.5 Exponential convergence of the Hessians along
Sinkhorn’s algorithm

In this section we show that the pointwise convergence of the iterates’ gradi-
ents (∇φn)n∈N and (∇ψn)n∈N implies the pointwise convergence of the corre-
sponding Hessian matrices (∇2 φn)n∈N and (∇2ψn)n∈N , with the exact same
exponential convergence rate. We will measure this convergence through the
Frobenius norm, that is defined for any matrix A ∈ Rd×d

∥A∥F :=
√

Tr(AAT) .

The proof of the convergence for the Hessians follows a scheme similar to
the one for the gradients, replacing the representation formula for the deriva-
tive of Sinkhorn’s potentials with its second order counterpart, that is

∇2 log PT exp(−h)(x) = −T−1 Id+T−2 Cov(πx,h
T ) , (6.5.1)

which is proven as a part of Proposition 6.A.2.
For notations sake for any couple of vectors v, w ∈ Rd we will denote by

v ⊗ w = v wT the matrix given by their tensor product. Then, for any v, w ∈ Rd

the Frobenius norm of their product reads as

∥v ⊗ w∥F = |v| |w| . (6.5.2)

Through this section we will always assume the validity of the hypothesis
of Theorem 6.3.5, i.e., that both A6, and (6.3.8) are met.

Lemma 6.5.1. There exist two positive constants C1, C2 > 0 independent of x and T,
such that for any coupling π ∈ Π(π

x,ψ⋆

T , π
x,ψn

T ) it holds

∥∇2 φn+1 −∇2 φ⋆∥F(x) ≤ T−2 E(Y,Z)∼π

[
|Y − Z| (|Y|+ |Z|+C1 T−1 |x|+C2)

]
.

(6.5.3)
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Proof. As a byproduct of (2.2.18) and (6.5.1) we immediately have for any x ∈
Rd and for any coupling π ∈ Π(π

x,ψ⋆

T , π
x,ψn

T )

T2 (∇2 φn+1 −∇2 φ⋆)(x) = Cov(πx,ψ⋆

T )− Cov(πx,ψn

T )

=E(Y,Z)∼π

[
Y⊗2 − Z⊗2

]
+ E

Z∼π
x,ψn
T

[Z]⊗2

− E
Y∼π

x,ψ⋆
T

[Y]⊗2

=E(Y,Z)∼π

[
(Y − Z)⊗ Y

]
+ E(Y,Z)∼π

[
Z ⊗ (Y − Z)

]
− E(Y,Z)∼π

[
Y − Z

]
E

Z∼π
x,ψn
T

[Z]

− E
Y∼π

x,ψ⋆
T

[Y] E(Y,Z)∼π

[
Y − Z

]
.

By applying the Frobenius norm, and recalling (6.5.2), we then deduce that

T2 ∥∇2 φn+1 −∇2 φ⋆∥F(x)

≤E(Y,Z)∼π

[
|Y − Z|

(
|Y|+ |Z|+ E

Z∼π
x,ψn
T

[|Z|] + E
Y∼π

x,ψ⋆
T

[|Y|]
)]

In order to bound the last two expected values in the right hand side we will
proceed as in the proof of Lemma 6.3.7. Particularly, (6.3.15) already proves that

E
Y∼π

x,ψ⋆
T

[|Y|] < |x|
T αψ⋆ + 1

+
1 + ∥g̃ν∥∞ + |∇ψ⋆(0)|

αψ⋆ + T−1 .

By reasoning in the same way we can prove that

E
Z∼π

x,ψn
T

[|Z|] < |x|
T αν,n + 1

+
1 + ∥g̃ν∥∞ + |∇ψn(0)|

αψn + T−1 ,

Particularly, the pointwise convergence of the gradients of Theorem 6.3.5 and
the convergences αµ,n ↑ αφ⋆ , αν,n ↑ αψ⋆ stated in Theorem 6.1.1 yield to the
uniform bound

E
Y∼π

x,ψ⋆
T

[|Y|] ∨ sup
n∈N

E
Z∼π

x,ψn
T

[|Z|] ≤ C1 T−1 |x|+ C2 ,

for some positive constants C1, C2 > 0 independent of x and T. This concludes
our proof.

Let us recall here (cf. Corollary 6.1.3) that V(y) = 1 + |y|2 is a Lyapunov
function for (6.0.4) satisfying a geometric drift condition, i.e., there are constants
Aµ, Aν > 0 and Bµ, Bν, independent of n (but depending on x and T), such that

Lψ⋆V(y) ∨ Lψn V(y) ≤ Bν − Aν V(y) ,

Lφ⋆V(y) ∨ Lφn V(y) ≤ Bµ − Aµ V(y) ,
(6.5.4)
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where Lh := ∆/2 − 1
2 ⟨T−1(y − x) +∇h(y), ∇⟩ is the generator associated to

(6.0.4). The possibility of choosing parameters Aµ, Aν, Bµ, Bν independently
from n ∈ N follows from the pointwise convergence of the gradients of Theo-
rem 6.3.5 and the convergences αµ,n ↑ αφ⋆ , αν,n ↑ αψ⋆ stated in Theorem 6.1.1.

We are now ready to state and prove the convergence of the Hessians. Our
proof relies on the construction of a concave function (similar to the one con-
sidered in Section 6.2). For exposition’s purposes we have partially postponed
these computations to Section 6.5.1.

Theorem 6.5.2. Assume that A6 and (6.3.8) hold. Then, for any n ≥ 1 it holds

∥∇2 φn+1 −∇2 φ⋆∥F(x) ≤ C(x, T, ν, A, B)
n−1

∏
k=0

γ̂
µ
k γ̂ν

k
T2 ,

∥∇2ψn+1 −∇2ψ⋆∥F(x) ≤ C(x, T, µ, A, B)
T

γ̂
µ
n

n

∏
k=0

γ̂
µ
k γ̂ν

k
T2 ,

where C(x, T, ν, A, B) and C(x, T, µ, A, B) are given in (6.5.15). As a consequence,
for T large enough (e.g., (6.3.10)), pointwise exponential convergence of Sinkhorn’s
Hessians holds in Frobenius norm. Finally, if the initial potential is set equal to ψ0 =
Uν (i.e., φ0 = 0), then the above bounds hold true with A and B given at (6.3.13).

Proof. For sake of notations let us introduce the constant

Cx := max{1, C1 T−1 |x|+ C2} ,

with C1, C2 > 0 as in Lemma 6.5.1. We will proceed as in Corollary 6.2.3, this
time considering a distorted Wasserstein semi-distance

W f ν
x (·, ·) := inf

π∈Π(·,·)
E(Y,Z)∼π

[
f ν
x (|Y − Z|) (1 + εV(Y) + εV(Z))

]
. (6.5.5)

In the above definition V(y) := 1 + |y|2 and we consider the bounded concave
function f ν

x and the parameter ε ∈ (0, 1) built in Section 6.5.1 below, by follow-
ing [EGZ19b, Theorem 2.2]. Let us just state here that there is no dependence
from the index n ∈ N, ε ∈ (0, 1) is taken small enough such that (6.5.18) will
hold, W f ν

x contracts along the semigroup (Pn
t )t≥0 associated to the SDE

dYn
t = −

(
Yn

t − x
2T

+
1
2
∇ψn(Yn

t )

)
dt + dBt ,

and there exists a rate λ > 0 (independent from n ∈ N, explicitly given at
(6.5.27)) such that for any µ1, µ2 ∈ P(Rd)

W f ν
x (µ1 Pn

t , µ2 Pn
t ) ≤ e−λ t W f ν

x (µ1, µ2) . (6.5.6)

Moreover, W f ν
x satisfies a weak triangle inequality, i.e., for any µ1, µ2, µ3 ∈

P(Rd)
W f ν

x (µ1, µ2) ≤ C∆(W f ν
x (µ1, µ3) + W f ν

x (µ3, µ2)) , (6.5.7)
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with C∆ = max{3, 2 + 2 R2
2}, with the radius R2 > 0 given in (6.5.17) such that

CI
2

r ≤ f ν
x (r) ≤ r and

1
2
≤ ( f ν

x )
′(r) ≤ 1 ∀ r < R2 ,

f ν
x (r) = f ν

x (R2) and hence ( f ν
x )

′(r) = 0 ∀ r > R2 ,
(6.5.8)

for a positive constant CI ∈ (0, 1) given in (6.5.19). This particularly implies
that for any coupling (Y, Z) ∼ π ∈ Π(π

x,ψ⋆

T , π
x,ψn

T ) we have

T−2|Y − Z| (|Y|+ |Z|+ Cx) ≤
Cx

T2 ε1/2 |Y − Z| (1 + ε1/2 |Y|+ ε1/2 |Z|)

≤
{

2
CI

Cx
T2 ε1/2 f ν

x (|Y − Z|) (1 + ε1/2 |Y|+ ε1/2 |Z|) if |Y − Z| ≤ R2 ,
Cx

T2 ε
f ν
x (R2)

−1 f ν
x (R2) (1 + ε1/2 |Y|+ ε1/2 |Z|)2 if |Y − Z| > R2

≤10
3

Cx

T2 ε1/2

(
2

CI
∨ f ν

x (R2)
−1

ε1/2

)
f ν
x (|Y − Z|) (1 + ε V(Y) + ε V(Z)) .

Using (6.5.3) and by minimising the above over π ∈ Π(π
x,ψ⋆

T , π
x,ψn

T ), we
deduce then that

∥∇2 φn+1 −∇2 φ⋆∥F(x) ≤ 10
3

Cx

T2 ε1/2

(
2

CI
∨ f ν

x (R2)
−1

ε1/2

)
W f ν

x (π
x,ψ⋆

T , π
x,ψn

T ) .

(6.5.9)
Now, recall that π

x,ψ⋆

T corresponds to the invariant probability of the SDE

dY⋆
t = −

(
Y⋆

t − x
2T

+
1
2
∇ψ⋆(Y⋆

t )

)
dt + dBt

and let (P⋆
t )t≥0 be its corresponding semigroup. Particularly we have π

x,ψ⋆

T P⋆
t =

π
x,ψ⋆

T for any t ≥ 0. Similarly, for any t ≥ 0 it holds π
x,ψn

T Pn
t = π

x,ψn

T , with
(Pn

t )t≥0 being the semigroup introduced above.
Given the above premises, from the weak triangle inequality (6.5.7) we de-

duce that

W f ν
x (π

x,ψ⋆

T , π
x,ψn

T ) =W f ν
x (π

x,ψ⋆

T P⋆
t , π

x,ψn

T Pn
t )

≤C∆

(
W f ν

x (π
x,ψ⋆

T P⋆
t , π

x,ψ⋆

T Pn
t ) + W f ν

x (π
x,ψ⋆

T Pn
t , π

x,ψn

T Pn
t )

)
(6.5.6)
≤ C∆ W f ν

x (π
x,ψ⋆

T P⋆
t , π

x,ψ⋆

T Pn
t ) + C∆ e−λ t W f ν

x (π
x,ψ⋆

T , π
x,ψn

T ) .

Therefore for any t > λ−1 log C∆ it holds

W f ν
x (π

x,ψ⋆

T , π
x,ψn

T ) ≤ C∆

1 − C∆ e−λ t W f ν
x (π

x,ψ⋆

T P⋆
t , π

x,ψ⋆

T Pn
t ) . (6.5.10)
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We will show that W f ν
x (π

x,ψ⋆

T P⋆
t , π

x,ψ⋆

T Pn
t ) is exponentially small as n ↑ +∞.

Hence consider the diffusion processes
dY⋆

t = −
(

Y⋆
t −x
2T + 1

2∇ψ⋆(Y⋆
t )

)
dt + dBt ,

dZt = −
(

Zt−x
2T + 1

2∇ψn(Zt)

)
dt + dBt ,

Y⋆
0 = Z0 ∼ π

x,ψ⋆

T ,

(6.5.11)

where (Bt)t≥0 is the same d-dimensional Brownian motion. Notice Y⋆
t ∼ π

x,ψ⋆

T P⋆
t

whereas Zt ∼ π
x,ψ⋆

T Pn
t , which yields to

W f ν
x (π

x,ψ⋆

T P⋆
t , π

x,ψ⋆

T Pn
t ) ≤ EY⋆

t ,Zt

[
f ν
x (|Y⋆

t − Zt|) (1 + εV(Y⋆
t ) + εV(Z⋆

t ))

]
.

(6.5.12)

By construction, if we introduce rt := |Y⋆
t − Zt|, we immediately get

dr2
t = − r2

t
T

dt − ⟨∇ψ⋆(Y⋆
t )−∇ψn(Zt), Y⋆

t − Zt⟩ dt .

By reasoning as in the proof of Theorem 6.2.1, fix δ > 0 and consider the func-
tion ρδ(r) :=

√
r + δ. Then it holds

dρδ(r̄2
t ) = − (2T)−1 r2

t
ρδ(r2

t )
dt − (2 ρδ(r̄2

t ))
−1 ⟨∇ψ⋆(Y⋆

t )−∇ψn(Zt), Y⋆
t − Zt⟩dt,

and hence we deduce that it holds

d f ν
x (ρδ(r2

t )) = − ( f ν
x )

′(ρδ(r2
t ))

2

(
T−1 r2

t
ρδ(r2

t )

+ (ρδ(r2
t )

−1 ⟨∇ψ⋆(Y⋆
t )−∇ψn(Zt), Y⋆

t − Zt⟩
)

dt

≤ − (T−1 + κψn(rt))
( f ν

x )
′(ρδ(r2

t ))

2
r2

t
ρδ(r2

t )
dt

+
( f ν

x )
′(ρδ(r2

t ))

2
rt

ρδ(r2
t )

|∇ψ⋆ −∇ψn|(Y⋆
t )dt

(6.1.3)
≤ − (T−1 + αν,n − r−1

t g̃ν(rt))
( f ν

x )
′(ρδ(r2

t ))

2
r2

t
ρδ(r2

t )
dt

+
( f ν

x )
′(ρδ(r2

t ))

2
rt

ρδ(r2
t )

|∇ψ⋆ −∇ψn|(Y⋆
t )dt .
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Since αν,n > αν − T−1 (cf. Theorem 6.1.1), the sublinearity g̃ν(r) ≤ G̃ν r and the
upper bound (6.5.8) for ( f ν

x )
′, imply

d f ν
x (ρδ(r2

t )) ≤(G̃ν − αν)
+ ( f ν

x )
′(ρδ(r2

t ))

2
ρδ(r2

t )dt +
1
2
|∇ψ⋆ −∇ψn|(Y⋆

t )dt

(6.5.8)
≤ C−1

I (G̃ν − αν)
+ f ν

x (ρδ(r2
t ))dt +

1
2
|∇ψ⋆ −∇ψn|(Y⋆

t )dt .

Gronwall Lemma and the monotonicity of f ν
x (i.e., ( f ν

x )
′ ≥ 0, cf. (6.5.8)) finally

yield for any t ≥ 0 to

f ν
x (|Y⋆

t − Zt|) ≤ f ν
x (ρδ(r2

t )) ≤ exp(C−1
I (G̃ν − αν)

+ t)
1
2

∫ t

0
|∇ψ⋆ −∇ψn|(Y⋆

s )ds

(6.3.9)
≤ exp(C−1

I (G̃ν − αν)
+ t)

1
2

∫ t

0
(A|Y⋆

s |+ B)d s
n−1

∏
k=0

γ̂
µ
k γ̂ν

k
T2 .

where the last step follows from Theorem 6.3.5. By recalling (6.5.12) and taking
expectation, so far we have proven that

W f ν
x (π

x,ψ⋆

T P⋆
t , π

x,ψ⋆

T Pn
t )

≤ 1
2

eC−1
I (G̃ν−αν)+t

∫ t

0
E

[
(A|Y⋆

s |+ B)(1 + εV(Y⋆
t ) + εV(Zt))

]
ds

n−1

∏
k=0

γ̂
µ
k γ̂ν

k
T2 .

(6.5.13)
Next, we claim that the above integral is bounded by a constant indepen-

dent from n ∈ N. From Young’s inequality and the stationarity of Y⋆
s ∼ π

x,ψ⋆

T
we have∫ t

0
E

[
(A|Y⋆

s |+ B)(1 + εV(Y⋆
t ) + εV(Zt))

]
ds

≤ Bt(1 + εE[V(Y⋆
0 )] + εE[V(Zt)])

+ A t E[|Y⋆
0 |] +

Aεt
2

(2 E[|Y⋆
0 |2] + E[V(Y⋆

0 )
2] + E[V(Zt)

2]) .

(6.5.14)

At this point it is enough noticing that the geometric drift condition (6.1.10)
obtained in the proof Corollary 6.1.3 guarantees the finiteness of the fourth
moments of the random variables appearing in the last display and hence the
finiteness of the above expected values. For exposition’s clarity we provide a
proof of this last statement in Corollary 6.A.4 in the Appendix, where we show
in (6.A.4) that U(t, ν, x, A, B, T), the upper-bounding constant, can be chosen
independently from n ∈ N.

As a byproduct of (6.5.9), (6.5.10) and (6.5.13), and by minimising over t >
λ−1 log C∆ we have proven that

∥∇2 φn+1 −∇2 φ⋆∥F(x) ≤ C(x, T, ν, A, B)
n−1

∏
k=0

γ̂
µ
k γ̂ν

k
T2 ,
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where the above constant C(x, T, ν, A, B) is equal to

C := inf
t>λ−1 log C∆

10
3

Cx

T2ε1/2

(
2

CI
∨ f ν

x (R2)
−1

ε1/2

)
C∆

1 − C∆e−λt
1
2

eC−1
I (G̃ν−αν)+tU ,

(6.5.15)

where U = U(t, ν, x, A, B, T) is the constant defined at (6.A.4).
By following the same line of reasoning, it is possible proving that

∥∇2ψn+1 −∇2ψ⋆∥F(x) ≤ C(x, T, µ, A, B)
T

γ̂
µ
n

n

∏
k=0

γ̂
µ
k γ̂ν

k
T2 ,

and the constant C(x, T, µ, A, B) can be built in analogy to (6.5.15).

6.5.1 Explicit construction and contractive properties of the W f ν
x -

distance

Here we carry out the explicit construction of f ν
x and the proof of (6.5.6) and

(6.5.7). The following result follows form [EGZ19b, Theorem 2.2].
Firstly, notice the geometric drift condition (6.5.4) implies

Lψn V(z) + Lψn V(y) < 0 ∀(z, y) ̸∈ B2d(2Bν/Aν) ,

εLψn V(z) + εLψn V(y) < − Aν

2
(1 ∧ 4Bνε)(1 + εV(z) + εV(y))

∀(z, y) ̸∈ B2d(4Bν(1 + A−1
ν )) ,

(6.5.16)

where B2d(r2) ⊆ R2d denotes the centred Euclidean ball of radius r. For later
convenience let us also define the radii

R1 := sup{|x − y| : (x, y) ∈ B2d(2Bν/Aν)} ,

R2 := sup{|x − y| : (x, y) ∈ B2d(4Bν(1 + A−1
ν ))} .

(6.5.17)

Now, take ε ∈ (0, 1) satisfying the condition

(4Bνε)−1 ≥
∫ R1

0

∫ s

0
exp

(
G̃ν − αν)+

4
(s2 − r2) + 2 ε1/2(s − r)

)
dr ds , (6.5.18)

which is always possible since the left hand side diverges as ε vanishes, whereas
the right hand side is bounded.

Finally, define

f ν
x (r) :=

∫ r∧R2

0
ϕ(s)g(s)ds, with ϕ(r) := exp

(
− (G̃ν − αν)+

8
r2 − 2 ε1/2 r

)
,

Φ(r) :=
∫ r

0
ϕ(s) ds and g(r) := 1 −

∫ r∧R1
0

Φ(s)
ϕ(s) ds

4
∫ R1

0
Φ(s)
ϕ(s) ds

−

∫ r∧R2
0

Φ(s)
ϕ(s) ds

4
∫ R2

0
Φ(s)
ϕ(s) ds

.
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Let us also consider the positive quantities

ξ−1 :=
∫ R1

0

Φ(s)
ϕ(s)

ds and β−1 :=
∫ R2

0

Φ(s)
ϕ(s)

ds ,

and notice that (6.5.18) equivalently reads as 4Bνε ≤ ξ. The function f ν
x is clearly

bounded, increasing and concave. Moreover, from the above definitions we
immediately deduce the validity of the properties stated at (6.5.8) with

CI := ϕ(R2) , (6.5.19)

and the inequality regarding the first derivative can actually be strengthen since
for any r < R2 it holds

( f ν
x )

′(r) ϕ(r)−1 = g(r) ∈ [1/2, 1] .

Finally, a straightforward differentiation shows that for any r ∈ (0, R1) ∪
(R1, R2) it holds

( f ν
x )

′′(r) =−
(
(G̃ν − αν)+

4
r + 2 ε1/2

)
ϕ(r)g(r)−

1{r<R1}ξ + β

4
Φ(r)

≤−
(
(G̃ν − αν)+

4
r + 2 ε1/2

)
( f ν

x )
′(r)−

1{r<R1}ξ + β

4
f ν
x (r) .

(6.5.20)

We conclude with the proof of the triangle inequality and the contractive
property for the distorted Wasserstein semi-distance introduced at (6.5.5)

W f ν
x (·, ·) := inf

π∈Π(·,·)
E(Y,Z)∼π

[
f ν
x (|Y − Z|) (1 + εV(Y) + εV(Z))

]
.

Proof of the weak triangle inequality (6.5.7). The following proof is an adaptation
of [HMS11, Lemma 4.14]. It is enough showing that there exists C∆ > 0 such
that for any y, z, p ∈ Rd it holds

f ν
x (|y − z|)(1 + εV(y) + εV(z))

≤C∆
[

f ν
x (|y − p|)(1 + εV(y) + εV(p)) + f ν

x (|p − z|)(1 + εV(p) + εV(z))
]

.
(6.5.21)

Firstly, notice that for any y, z ∈ Rd such that |y − z| ≤ R2 it holds

V(y) ≤ max{2, 1 + 2 R2
2}V(z) . (6.5.22)

Without loss of generalities assume that |z| ≤ |y| (and hence V(z) ≤ V(y)).
Since f ν

x (r) ≤ f ν
x (R2), if |y − p| ≥ R2 then

f ν
x (|y − z|)(1 + εV(y) + εV(z)) ≤ f ν

x (R2)(1 + 2 εV(y))
= f ν

x (|y − p|)(1 + 2εV(y))
≤ 2 f ν

x (|y − p|)(1 + εV(y) + εV(p)).
(6.5.23)
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On the other hand, if |y − p| ≤ R2 then (6.5.22) and the subadditivity of f ν
x

(which is guaranteed by its concavity) imply

f ν
x(|y − z|)(1 + εV(y) + εV(z))
≤ ( f ν

x (|y − p|) + f ν
x (|p − z|))(1 + εV(y) + εV(z))

≤ f ν
x (|y − p|)(1 + 2εV(y)) + f ν

x (|p − z|)(1 + max{2, 1 + 2 R2
2} εV(z) + εV(z)).

(6.5.24)

As a byproduct of (6.5.23) and (6.5.24) we get the validity of (6.5.21) (and hence
of (6.5.7)) with

C∆ := max{3, 2 + 2 R2
2} .

Proof of the contraction (6.5.6). Fix two probability measure µ1, µ2 ∈ P(Rd) and
let π ∈ Π(µ1, µ2) be a coupling between them. Our proof starts by considering
the coupling by reflection, i.e., the diffusion processes

dZt = −
(

Zt−x
2T + 1

2∇ψn(Zt)

)
dt + dBt ,

dYt = −
(

Yt−x
2T + 1

2∇ψn(Yt)

)
dt + dB̂t ∀ t ∈ [0, τ) and Yt = Zt ∀ t ≥ τ ,

(Z0, Y0) ∼ π ,

where τ := inf{s ≥ 0 : Zs = Ys}, and (B̂t)t≥0 is defined as

dB̂t := (Id−2 et eTt 1{t<τ})dBt where et :=

{
Zt−Yt
|Zt−Yt | when |Zt − Yt| > 0 ,

u when |Zt − Yt| = 0 .

with u ∈ Rd being a fixed (arbitrary) unit-vector. By Lévy’s characterisation,
(B̂t)t≥0 is a d-dimensional Brownian motion, hence Zt ∼ µ1Pn

t and Yt ∼ µ2Pn
t ,

and finally dWt := eTt dBt is a one-dimensional Brownian motion. By setting
rt = |Zt − Yt| and by applying Ito-Tanaka formula as in the proof of Theo-
rem 6.2.1, the trivial bound αν,n > αν − T−1 (cf. Theorem 6.1.1) and the sublin-
earity g̃ν(r) ≤ G̃ν r imply that

d f ν
x (rt) ≤

(
2 ( f ν

x )
′′(rt)−

rt ( f ν
x )

′(rt)

2
(αν,n + T−1 − r−1

t g̃ν(rt))

)
dt

+2 ( f ν
x )

′(rt) dWt

≤
(

2 ( f ν
x )

′′(rt) +
rt ( f ν

x )
′(rt)

2
(G̃ν − αν)

+

)
dt + 2 ( f ν

x )
′(rt) dWt

(6.5.20)
≤ −4 ε1/2 ( f ν

x )
′(rt)dt − 1{rt<R1}

ξ

2
f ν
x (rt)dt − 1{rt<R2}

β

2
f ν
x (rt)dt

+2 ( f ν
x )

′(rt) dWt.

(6.5.25)
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The validity of the above Ito-Tanaka formula for f ν
x can be proven as we have

already done in the proof of Theorem 6.2.1 and for this reason we omit it; we
refer the reader to [EGZ19b, Formula (5.15)] for a detailed discussion on that.

Next, we notice that from the geometric drift condition (6.5.4) and the defi-
nition of R1, R2 it follows that

d(1 + εV(Zt) + εV(Yt)) = ε(Lψn V(Zt) + Lψn V(Yt))dt + 2ε ⟨Zt + Yt, dBt⟩
−4ε ⟨Yt, et⟩dWt

≤ 2ε Bν dt − ε Aν(V(Zt) + V(Yt))dt + 2ε ⟨Zt + Yt, dBt⟩ − 4ε ⟨Yt, et⟩dWt

(6.5.18)
≤ 1{rt<R1}

(
ξ/2 − ε Aν(V(Zt) + V(Yt))

)
dt

+ε 1{rt∈[R1,R2)}(Lψn V(Zt) + Lψn V(Yt))dt

+ε 1{rt≥R2}(Lψn V(Zt) + Lψn V(Yt))dt + 2ε ⟨Zt + Yt, dBt⟩
−4ε ⟨Yt, et⟩dWt

(6.5.16)
≤

(
1{rt<R1} ξ/2 − 1{rt≥R2} λ (1 + εV(Zt) + εV(Yt))

)
dt

+2ε ⟨Zt + Yt, dBt⟩ − 4ε ⟨Yt, et⟩dWt
(6.5.26)

where in the last step we have taken

λ := min{β, Aν, 4AνBνε}/2 . (6.5.27)

Finally, notice that the choice of coupling by reflection gives to the covaria-
tion between f ν

x (rt) and 1 + εV(Zt) + εV(Yt) the expression

d[ f ν
x (r·), 1 + εV(Z·) + εV(Y·)]t = 4ε rt ( f ν

x )
′(rt)dt

< 4ε1/2 (1 + εV(y) + εV(z)) ( f ν
x )

′(rt)dt .
(6.5.28)

where the last step follows from the trivial series of inequalities

4ε |y−z| ≤ 4ε(1 + εV(y) + εV(z))
(

|y|
1 + εV(y)

+
|z|

1 + εV(z)

)
≤4ε(1 + εV(y) + εV(z)) sup

y∈Rd

2|y|
1 + εV(y)

= 4(1 + εV(y) + εV(z))
√

ε

1 + ε
.

If for sake of notation we set FV(z, y) := f ν
x (|y − z|)(1 + εV(z) + εV(y)) the
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inequalities (6.5.25), (6.5.26) and (6.5.28) gives

dFV(Zt, Yt) = (1 + εV(Zt) + εV(Yt))d f ν
x (rt) + f ν

x (rt)d(1 + εV(Zt) + εV(Yt))

+d[ f ν
x (r·), 1 + εV(Z·) + εV(Y·)]t

≤ −1{rt<R1}
ξ

2
(FV(Zt, Yt)− f ν

x (rt))dt −
(

1{rt<R2}
β

2
+ 1{rt≥R2}λ

)
FV(Zt, Yt)dt

+dMt

≤ −λ FV(Zt, Yt)dt + dMt ,

where

dMt := 2 ( f ν
x )

′(rt)(1 + εV(Zt) + εV(Yt)) dWt + 2ε f ν
x (rt) ⟨Zt + Yt, dBt⟩

−4ε f ν
x (rt) ⟨Yt, et⟩dWt

is a local martingale. Hence eλtFV(Zt, Yt) is a local-supermartingale.
Now, for any N ∈ N consider now the stopping time

τN := inf{t ≥ 0 : |Zt − Yt| ≤ N−1 or |Yt| ∨ |Zt| ≥ N} ,

and notice that τN ↑ +∞ as N grows (cf. Corollary 6.1.3). Then the previous
discussion, Gronwall Lemma and Fatou Lemma give

eλt E[FV(Zt, Yt)] ≤ lim inf
M→+∞

E[1{t<τM} eλtFV(Zt, Yt)] = E[FV(Z0, Y0)] .

In conclusion, since Zt ∼ µ1Pn
t and Yt ∼ µ2Pn

t we have

W f ν
x (µ1 Pn

t , µ2 Pn
t ) ≤ E[FV(Zt, Yt)] ≤ e−λ t Eπ [FV(Z0, Y0)] .

By minimising the above bound over π ∈ Π(µ1, µ2) concludes the proof of
(6.5.6).

6.6 Convergence rates for marginals with strictly log-
concave densities

In this section we further develop the discussion started in Remark 6.3.3. There-
fore assume the validity of A7, or equivalently A6 with g̃µ = g̃ν = gµ = gν ≡ 0.
Let us firstly observe that Theorem 6.1.1 in this particular setting simply reads
as

Theorem 6.6.1. Assume A6 with g̃µ = g̃ν = gµ = gν ≡ 0. Then there exist two
monotone increasing sequences (αµ,n)n∈N ⊆ (αµ − T−1, αµ − T−1 + (βν T2)−1] and
(αν,n)n∈N ⊆ (αν − T−1, αν − T−1 + (βµ T2)−1] such that for any n ≥ 1 for any
n ∈ N it holds r > 0 it holds

κφn(r) ≥ αµ,n and κψn(r) ≥ αν,n .
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These two sequences are defined as
αµ,0 := αµ − T−1 ,

αµ,n+1 := αµ − T−1 +

(
T2 βν + (αµ,n + T−1)−1

)−1

, n ∈ N ,

and 
αν,0 := αν − T−1 ,

αν,n+1 := αν − T−1 +

(
T2 βµ + (αν,n + T−1)−1

)−1

, n ∈ N .

Moreover, both sequences converge respectively to

αφ⋆ :=
1
2

(
αµ +

√
α2

µ + 4αµ/(T2βν)

)
− T−1 ,

αψ⋆ :=
1
2

(
αν +

√
α2

ν + 4αν/(T2βµ)

)
− T−1 ,

(6.6.1)

and for any r > 0 it holds

κφ⋆(r) ≥ αφ⋆ and κψ⋆(r) > αψ⋆ ,

where φ⋆ and ψ⋆ are the Schrödinger potentials introduced in (6.0.1).

Proof. This is a particular instance of Theorem 6.1.1 when g̃µ = g̃ν = gµ = gν ≡
0. The only statement that does not follow from that theorem is the identifica-
tion of the limit values αφ⋆ and αψ⋆ in (6.6.1). We will only prove the first one
since the second identity can be proven in the same way. From Theorem 6.1.1
we already know that αµ,n ↑ αφ⋆ ∈ (αµ − T−1, αµ − T−1 + (βν T2)−1]. Consider
the shifted sequence θ

µ
n := αµ,n + T−1. Clearly θ

µ
n > 0, θ

µ
n ↑ θ

µ
∞ := αφ⋆ + T−1

and the latter limit value can be seen as a fixed point for the iteration

θ
µ
n+1 = αν + (T2 βν + (θ

µ
n )

−1)−1 .

A straightforward computation shows that the there are just two possible fixed
point solutions, namely

1
2

(
αµ −

√
α2

µ + 4αµ/(T2βν)

)
and

1
2

(
αµ +

√
α2

µ + 4αµ/(T2βν)

)
.

Since one solution is negative, whereas (θ
µ
n )n∈N is a positive increasing se-

quence, we immediately deduce that θ
µ
∞ equals the largest (and positive) fixed

point. This proves (6.6.1).
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From the previous result we immediately deduce the explicit expressions for
the rates of convergence appearing in Remark 6.3.3. Indeed Theorem 6.6.1 im-
plies the strict convexity of the Schrödinger potentials, which allows to perform
all our contraction estimates without relying on reflection coupling. Namely, by
relying on synchronous coupling we are able to improve on Theorem 6.3.2 and
consider W2-distances, obtaining

Theorem 6.6.2. Assume A7. Then for any n ≥ 1

∥∇φn −∇φ⋆∥L2(µ) ≤
T

γ
µ
n−1

n−1

∏
k=0

γ
µ
k γν

k
T2 ∥∇ψ0 −∇ψ⋆∥L2(ν) ,

∥∇ψn −∇ψ⋆∥L2(ν) ≤
n−1

∏
k=0

γ
µ
k γν

k
T2 ∥∇ψ0 −∇ψ⋆∥L2(ν) ,

(6.6.2)

and

W2(π
n,n, πT) ≤ T

n−1

∏
k=0

γ
µ
k γν

k
T2 ∥∇ψ0 −∇ψ⋆∥L2(ν) ,

W2(π
n+1,n, πT) ≤ γν

n

n−1

∏
k=0

γ
µ
k γν

k
T2 ∥∇ψ0 −∇ψ⋆∥L2(ν) ,

(6.6.3)

where (γµ
k )k∈N and (γν

k )k∈N are non-negative non-increasing sequences satisfying{
γ

µ
0 := α−1

µ

γ
µ
k+1 := (αµ + (T2 βν + γ

µ
k )

−1)−1 and

{
γν

0 := α−1
ν

γν
k+1 := (αν + (T2 βµ + γν

k )
−1)−1

(6.6.4)
and which converge respectively to the limit rates

γ
µ
∞ := 2

(
αµ +

√
α2

µ + 4αµ/(T2βν)

)−1

γν
∞ := 2

(
αν +

√
α2

ν + 4αν/(T2βµ)

)−1

.

(6.6.5)

Henceforth, as soon as

T >
βµβν − αµαν√

αµ βµ αν βν (αµ + βµ)(αν + βν)
, (6.6.6)

the asymptotic rate is strictly less than one, and for any T−2γ
µ
∞ γν

∞ < λ < 1, there
exists C ≥ 0 such that for any n ∈ N∗,

∥∇φn −∇φ⋆∥L2(µ) + ∥∇ψn −∇ψ⋆∥L2(ν) ≤Cλn∥∇ψ0 −∇ψ⋆∥L2(ν) ,

W2(π
n,n, πT) + W2(π

n+1,n, πT) ≤Cλn∥∇ψ0 −∇ψ⋆∥L2(ν) .
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Proof. The key W2-contractive estimates

W2
2(π

x,ψn

T , π
x,ψ⋆

T ) ≤(γν
n)

2
∫

|∇ψn −∇ψ⋆|2 dπ
x,ψ⋆

T

with γν
n = (θν

n)
−1 = (αν,n + T−1)−1,

and

W2
2(π

x,φn+1

T , π
x,φ⋆

T ) ≤(γ
µ
n)

2
∫ ∣∣∣∇φn+1 −∇φ⋆

∣∣∣2 dπ
x,φ⋆

T

with γ
µ
n = (θ

µ
n )

−1 = (αµ,n + T−1)−1.

can be obtained as in Corollary 6.2.3 and Proposition 6.3.1, this time directly
considering a synchronous coupling (which allows to get estimates in Wasser-
stein W2-distance). Because of Theorem 6.6.1, these two rates sequences are
non-negative, non-increasing and satisfy (6.6.4) and converge to γ

µ
∞, γν

∞ as in
(6.6.5).

The proof of (6.6.2) and (6.6.3) follows as in Theorem 6.3.2.
Finally, from the explicit expressions (6.6.5), the exponential convergence

condition, that is T−2γ
µ
∞γν

∞ < 1, can be obtained as follows. By solving T >

θ γ
µ
∞ and T > θ−1 γν

∞, we deduce that for any θ ∈ (0, ∞) it holds

T > θ α−1
µ − θ−1β−1

ν ⇔ T > θ γ
µ
∞ ,

T > θ−1α−1
ν − θ β−1

µ ⇔ T > θ−1 γν
∞ ,

(6.6.7)

and therefore if

T > inf
θ∈(0,∞)

max{θ α−1
µ − θ−1β−1

ν , θ−1α−1
ν − θ β−1

µ }

=
α−1

µ α−1
ν − β−1

µ β−1
ν√

(α−1
µ + β−1

µ )(α−1
ν + β−1

ν )
=

βµβν − αµαν√
αµ βµ αν βν (αµ + βµ)(αν + βν)

,

then we are guaranteed that T2 > γ
µ
∞ γν

∞, and hence the exponential conver-
gence of Sinkhorn’s algorithm.

Notice that if we start Sinkhorn’s algorithm at ψ0 = Uν, then the constant
term appearing in the above right hand sides can always be bounded as in
(6.3.12), which this time yields to

∥∇ψ0 −∇ψ⋆∥2
L2(ν) = ∥∇ log PT exp(−φ⋆)∥2

L2(ν) ≤ T−2
∫

|x − y|2 dπT

≤ 2T−2(M2(µ) + M2(ν)) .

Clearly, the above result implies the L1 and W1 results of Theorem 6.3.2 in
the log-concave setting, with the rates defined as in Theorem 6.6.2.
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Remark 6.6.3. If the marginals are Gaussian distributions, i.e., if Uµ = αµ|x|2/2 and
Uν = αν|x|2/2 then Theorem 6.6.2 proves the exponential convergence of Sinkhorn’s
algorithm for any choice of T > 0 since βp = αp for p ∈ {µ , ν} and therefore the right
hand side in (6.6.6) is null.

Similarly, we may also give explicit expressions for the exponential rates
(γ̂

µ
k )k∈N, (γ̂ν

k )k∈N appearing in Theorem 6.3.5, Theorem 6.4.1, Theorem 6.4.4
and Theorem 6.5.2 which in the log-concave setting read as

γ̂
µ
k := γ

µ
k max

{
T−1 γ

µ
∞ ,
(

1 + γ
µ
∞

A(1 + |∇φ⋆(0)|)
B

)}
,

γ̂ν
k := γν

k max
{

T−1 γν
∞ ,
(

1 + γν
∞

A(1 + |∇ψ⋆(0)|)
B

)}
.

Finally, when ψ0 = Uν (i.e., φ0 = 0) the above expressions read as

γ̂
µ
k := γ

µ
k max

{
T−1 γ

µ
∞ , 2 + T−1 γ

µ
∞

}
= γ

µ
k (2 + T−1 γ

µ
∞) ,

γ̂ν
k := γν

k max
{

T−1 γν
∞ ,
(

1 +
(

T−1 γν
∞ +

γν
∞

γ
µ
∞

)
1 + |∇ψ⋆(0)|
1 + |∇φ⋆(0)|

)}
.

Notice that, if for instance we assume the validity of (6.6.7) for θ = 1, then
the asymptotic rates read as

γ̂
µ
∞ = γ

µ
∞ (2 + T−1 γ

µ
∞) < 3 γ

µ
∞ ,

γ̂ν
∞ = γν

∞

(
1 +

(
T−1 γν

∞ +
γν

∞

γ
µ
∞

)
1 + |∇ψ⋆(0)|
1 + |∇φ⋆(0)|

)
< γν

∞

(
1 + M

1 + |∇ψ⋆(0)|
1 + |∇φ⋆(0)|

)
,

with M = 1 + sup
s≥0

αµ s +
√

α2
µ s2 + 4αµ/βν

αν s +
√

α2
ν s2 + 4αν/βµ

< +∞ .

Therefore the exponential convergence of Sinkhorn’s algorithm in Theorem 6.3.5,
Theorem 6.4.1, Theorem 6.4.4 and Theorem 6.5.2 holds for any

T > max
{

3 α−1
µ − 3−1β−1

ν ,(
1 + M

1 + |∇ψ⋆(0)|
1 + |∇φ⋆(0)|

)
α−1

ν −
(

1 + M
1 + |∇ψ⋆(0)|
1 + |∇φ⋆(0)|

)−1

β−1
µ

}
.
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Bibliographical Remarks

When working on discrete spaces, convergence of Sinkhorn’s algorithm is well-
known and we refer to the book [PC19] for an extensive overview. However,
let us mention that in the discrete setting, convergence of Sinkhorn’s algorithm
dates back at least to [Sin64] and [SK67]. More recently, [FL89, BLN94] show
that Sinkhorn’s iterates are equivalent to a sequence of iterates associated to an
appropriate contraction in the Hilbert projective metrics, therefore proving the
convergence of the algorithm boils down to studying a fixed-point problem,
whose (exponential) convergence can be deduced from Birckoff’s Theorem. In
the case of continuous state spaces, the use of Birckoff’s Theorem for the Hilbert
metrics has also been employed by [CGP16a, DdBD24, Ber20], in order to estab-
lish the exponential convergence of Sinkhorn’s algorithm under the condition
that the state space is compact or that the cost function is bounded.

When considering non compact spaces with possibly unbounded costs and
marginals, results are scarcer and the techniques developed to handle the dis-
crete setting cannot apply as such and new ideas have emerged. When it comes
to results that allow for unbounded costs, [Rus95] shows qualitative conver-
gences of iterates in relative entropy and total variation for Sinkhorn’s plans.
More recently, [NW23] establishes qualitative convergence both on the primal
and dual sides under mild assumptions. Concerning convergence rates, [Lég21]
gives an interpretation of Sinkhorn’s algorithm as a block coordinate descent on
the dual problem and obtains convergence of marginal distributions in relative
entropy at a linear rate n−1 under minimal assumptions. [EN22b] derives poly-
nomial rates of convergence in Wasserstein distance assuming, among other
things, that marginals admit exponential moments. Lastly, [GN22] improves
existent polynomial convergence rates for optimal plans with respect to a sym-
metric relative entropy.

Let us further report on results available for multimarginal entropic optimal
transport problem and the natural extension of Sinkhorn’s algorithm in this
setting. For bounded costs and marginals, (or equivalently compact spaces)
[CL20] shows well-posedness of the Schrödinger system and smooth depen-
dence of Schrödinger potentials on the marginal inputs. In [DMG20] the au-
thors manage to show qualitative convergence of Sinkhorn’s iterates towards
the Schrödinger potentials in Lp-norms using tools from calculus of variations:
their results require bounded costs but apply to multimarginal problems. These
results have been subsequently improved by Carlier [Car22] who establishes
exponential convergence.

The results proven in this chapter have been presented in [CDG23]. In
contrast to the above existing works, the main contribution of [CDG23] is to
establish exponential convergence bounds for the gradients and Hessians of
Sinkhorn’s iterates as well as for the optimal plans. To the best of our knowl-
edge these findings are new both in their dual and primal formulation in that
they represent the first exponential convergence results that hold for unbounded
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costs and marginals. They also are among the very few results that yield con-
vergence of derivatives of potentials. On this subject, let us also mention the
recent work [GNCD23] (from which Chapter 5 is based) where the state space
is the d-dimensional torus and therefore deals with bounded cost functions.
As [GNCD23], our proofs are mainly probabilistic, and differ from other pro-
posed methodologies in that they rely on one-sided integrated semiconvexity
estimates for potentials along Sinkhorn’s iterates. These estimates are by them-
selves a new result, that has potentially several further implications. Though
both the approaches we proposed in [CDG23] and in [GNCD23] are inspired by
coupling methods and stochastic control, there is a fundamental difference. In
[GNCD23] exponential convergence is achieved through Lipschitz estimates on
potentials. In the current setup, we make assumptions on the integrated log-
concavity profile of the marginals; these assumption are of geometric nature
and not perturbative.

In addition, to the best of our knowledge and understanding, ours are the
very first exponential convergence results of Sinkhorn’s iterates and plans for
unbounded costs and marginals. Moreover, when solely considering Gaussian
marginals (that is when αµ = βµ and αν = βν, see Remark 6.6.3) our results
holds for any positive regularising parameter T > 0, which is crucial when
considering application where we take ∇φ⋆ as proxy for the Brenier map.

We should also mention that, after [GNCD23] and [CDG23] appeared, very
recently [Eck23] has managed to extend the approach based on Hilbert’s pro-
jective metric for unbounded settings in the general EOT problem, solely for
marginals satisfying a light-tail condition. Though their result applies to gen-
eral EOT problems for any regularising parameter ε > 0, still they can’t cover
the landmark example of quadratic cost with Gaussian marginals (as we do
here as well for any regularising parameter T > 0).
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Appendix 6

6.A Technical results

Lemma 6.A.1 (Exponential integrability of the marginals). Let ζ ∈ Palc(R
d)

associated with U : Rd → R satisfying (6.0.10). Then for any σ ∈ (0, αU/2) it holds∫
exp(σ|x|2)dζ(x) < +∞.

Proof. It is enough noticing that for any x ∈ Rd it holds

⟨∇U(x), x⟩ = ⟨∇U(x)−∇U(0), x⟩+ ⟨∇U(0), x⟩ ≥ κU(|x|) |x|2 − |∇U(0)| |x|
≥ αU |x|2 − (g̃U(|x|) + |∇U(0)|)|x| ≥ αU |x|2 − ḠU |x|

where above we have set ḠU = ∥g̃U∥∞ + |∇U(0)|. Therefore for any x ∈ Rd it
holds

U(x) =U(0) +
∫ 1

0
⟨∇U(tx), x⟩dt

≥U(0) +
∫ 1

0
(αU t |x|2 − ḠU |x|)dt = U(0) +

αU
2

|x|2 − ḠU |x| .

Finally we may deduce for any σ ∈ (0, αU/2)

∥ exp(σ|x|2)∥L1(U) =
∫
{|x|≤R}

exp(σ|x|2)dζ(x) +
∫
{|x|>R}

exp(σ|x|2)dζ(x)

≤ eσ|R|2 U({|x| ≤ R}) + e−U(0)
∫
{|x|>R}

exp(−(αU/2 − σ)|x|2 + ḠU |x|)dx

≤ eσ|R|2 U({|x| ≤ R}) + e−U(0)
∫
{|x|>R}

exp(−(αU/4 − σ/2)|x|2)dx < +∞ ,

where above we have set R := 2ḠU (αU/2 − σ)−1.

The following results proves the identities stated in (6.0.3).

Proposition 6.A.2. Assume A6 holds. Then for any n ∈ N∗, h ∈ {ψ⋆, ψn, φ⋆, φn}
it holds

∇ log PTe−h(x) = T−1
∫
(y − x)πx,h

T (dy) ,

∇2 log PTe−h(x) = − T−1 Id+T−2 Cov(πx,h
T ) .

(6.A.1)
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Proof. We will only prove the case h = ψn since the other cases can be proven
with the same argument. The proof will run as in [Con24, Proposition 5.2],
once we have noticed that A6 and Lemma 6.A.1 guarantees the validity of
exp(σν|x|2) ∈ L1(ν) for some positive σν > 0. Therefore from (2.2.18) we know
that∫

Rd×Rd
exp

(
σν|y|2 − φn(x)−ψn(y)− |x − y|2

2T

)
dx dy =

∫
Rd

σν|y|2 dν(y) < +∞,

and hence there exists at least one point x̄ ∈ Rd such that∫
Rd

exp
(

σν|y|2 − ψn(y)− |x̄ − y|2
2T

)
dy < +∞ .

Since for any x ∈ Rd we can always write

|x− y|2 = |x̄− y|2 − 2⟨x− x̄, y⟩+ |x|2 −|x̄|2 ≥ |x̄− y|2 − 2|x− x̄| |y|+ |x|2 −|x̄|2 ,

for any σ̄ < σν we have∫
Rd

exp
(

σ̄|y|2 − ψn(y)− |x̄ − y|2
2T

)
dy < +∞ ∀ x ∈ Rd . (6.A.2)

This allows to differentiate under the integral sign in

log PT exp(−ψn)(x) = −d
2

log(2πT) + log
∫

exp
(
−ψn(y)− |x − y|2

2T

)
dy

and get the validity of (6.A.1) for h = ψn, i.e.

∇ log PT exp(−ψn)(x) = − x
T
+

1
T

∫
y exp(−ψn(y)− |x−y|2

2T )dy∫
exp(−ψn(y)− |x−y|2

2T )dy

= T−1
∫
(y − x)π

x,ψn

T (dy) .

The bound (6.A.2) guarantees to differentiate again the above integral and fi-
nally deduce our thesis.

Finally, let us conclude by giving explicit upper-bounds for the fourth mo-
ments appearing in the proof of Theorem 6.5.2, under the geometric-drift con-
dition (6.1.10) obtained in the proof of Corollary 6.1.3. More precisely if for
any even p ≥ 2 we set Vp(y) = 1 + |y|p, similarly to what happened in (6.5.4),
Corollary 6.1.3 and (6.1.10), the pointwise convergence of the gradients of The-
orem 6.3.5 and the convergences αµ,n ↑ αφ⋆ , αν,n ↑ αψ⋆ (stated in Theorem 6.1.1)
imply the existence of constants Aµ,p, Aν,p > 0 and Bµ,p, Bν,p, independent of
n (but depending on x and T), such that

Lψ⋆Vp(y) ∨ Lψn Vp(y) ≤ Bν,p − Aν,p Vp(y) ,

Lφ⋆Vp(y) ∨ Lφn Vp(y) ≤ Bµ,p − Aµ,p Vp(y) ,
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where Lh := ∆/2 − 1
2 ⟨T−1(y − x) +∇h(y), ∇⟩ is the generator associated to

(6.0.4). We will bound the moments appearing in the proof of Theorem 6.5.2 in
terms of the above constants Aµ,p, Aν,p > 0 and Bµ,p, Bν,p.

Lemma 6.A.3. Take p ≥ 2 and set Vp(y) = 1 + |y|p. Let (Y⋆
t )t≥0 and (Zt)t≥0 be

defined as in (6.5.11) in the proof of Theorem 6.5.2. Recall that Z0 = Y⋆
0 ∼ π

x,ψ⋆

T ,

Y⋆
t ∼ π

x,ψ⋆

T P⋆
t = π

x,ψ⋆

T whereas Zt ∼ π
x,ψ⋆

T Pn
t . Then for any t ≥ 0 it holds

E[Vp(Y⋆
t )] =E[Vp(Y⋆

0 )] ≤ Bν,p/Aν,p

E[Vp(Zt)] ≤(Bν,p + Bν,p/Aν,p) exp(t Aν,p) .

Proof. By choosing h = ψ⋆ we immediately deduce that

dVp(Y⋆
t ) =Lψ⋆Vp(Y⋆

t )dt + 4|Y⋆
t |2⟨Y⋆

t , dBt⟩
≤ − Aν,pVp(Y⋆

t )dt + Bν,p dt + p |Y⋆
t |p−2⟨Y⋆

t , dBt⟩ .

Therefore, up to considering a stopping time as already detailed in the proof
of the contraction (6.5.6), by taking expectation and integrating over time, from
the stationarity of the process Y⋆

t ∼ π
x,ψ⋆

T we deduce

E[Vp(Y⋆
t )] ≤ Bν,p/Aν,p ∀ t ≥ 0 . (6.A.3)

Similarly, when considering h = ψn we get

dVp(Zt) =Lψ⋆Vp(Zt)dt + 4|Zt|2⟨Zt, dBt⟩
≤ − Aν,pVp(Zt)dt + Bν,p dt + p |Zt|p−2⟨Zt, dBt⟩ .

Up to considering again a stopping time, taking expectation and integrating
over time yield to

E[Vp(Zt)] ≤ E[Vp(Z0)] + Bν,p t − Aν,p

∫ t

0
E[Vp(Zs)]ds .

By recalling that Z0 = Y⋆
0 , the previous bound (6.A.3), from Gronwall lemma

we finally deduce

E[Vp(Zt)] ≤ (Bν,p t + Bν,p/Aν,p) exp(t Aν,p) ∀ t ≥ 0 .

Then, from (6.5.14), (6.3.15) and Lemma 6.A.3 (for p = 2, 4) we finally con-
clude that

Corollary 6.A.4. Let (Y⋆
t )t≥0 and (Zt)t≥0 be defined as in (6.5.11) in the proof of

Theorem 6.5.2. Then (6.5.14) can be bounded as∫ t

0
E

[
(A|Y⋆

s |+ B)(1 + εV2(Y⋆
t ) + εV2(Zt))

]
ds ≤ U(t, ν, x, A, B, T) ,
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with

U(t, ν, x, A, B, T) := Bt
(

1 + ε
Bν,2

Aν,2
(1 + et Aν,2) + εBν,2 t et Aν,2

)
+

A t
αψ⋆ + T−1 (T−1|x|+ 1 + ∥g̃ν∥∞ + |∇ψ⋆(0)|)

+ Aε t
(

Bν,2

Aν,2
+

Bν,4

Aν,4
(1 + et Aν,4) + Bν,4 t et Aν,4

)
.

(6.A.4)



Chapter 7

The kinetic Schrödinger
problem

In this chapter we investigate a different Schrödinger problem, known as the ki-
netic Schrödinger problem, hereafter KSP. Contrary to what done in the rest of the
thesis where we have often focused our attention on the small-time asymptotics
of SP, here we discuss this model with particular emphasis on the long-time and
ergodic behaviour of the corresponding Schrödinger bridges.

A heuristic formulation of KSP can be given in terms of the thought exper-
iment originally considered by Schrödinger, in the same fashion as we already
portrayed in Chapter 1 with Brownian motions. Henceforth, consider a system
of N ≫ 1 independent stationary particles (X1

t , . . . , XN
t )t∈[0,T] evolving accord-

ing to the (underdamped) Langevin dynamics{
dXi

t = Vi
t dt,

dVi
t = −∇U(Xi

t)dt − γVi
t dt +

√
2γ dBi

t, i = 1, . . . , N,

where Xi
t and Vi

t denote respectively the position and the velocity of the ith par-
ticle at time t. Notice that a first difference with the classic setting stems from
the fact that two parameters now encode the dynamics of the particle system,
namely position X and velocity V. As a consequence in order to describe parti-
cles’ trajectories we need both and therefore the space of continuous trajectories
considered here is equal to Ω2d := C([0, T]; R2d).

The Schrödinger problem is that of finding the most likely evolution of the
particle system conditionally on two snapshots of the particle system at the ini-
tial time t = 0 and at the terminal time t = T. In order to turn this heuristic
description into a sound mathematical problem, we introduce again the empir-
ical path measure as in (1.1.1), which this time is

PN :=
1
N ∑ δ(Xi· ,Vi· )

∈ P(Ω2d) ,
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and consider two probability measures µ, ν on Rd, representing the observed
configurations at initial and final time, that is to say

1
N

N

∑
i=1

δXi
0
≈ µ and

1
N

N

∑
i=1

δXi
T
≈ ν.

Notice that the above information is only a partial condition, if compared to
(1.1.2) where the snapshots’ condition was PN

0 ≈ µ, PN
T ≈ ν. Still, we may again

leverage Sanov’s Theorem [DZ10, Theorem 6.2.10], whose message is that the
likelihood of a given evolution P is measured through the relative entropy

Prob
[
PN ≈ P

]
≈ exp(−NH (P|R)),

which yields this time to the variational dynamic problem

CT(µ, ν) := inf
{

H (P|R) : P ∈ P(C([0, T]; R2d)), (X0)#P = µ, (XT)#P = ν

}
.

(7.0.1)
In the above, R is the reference probability measure, that is the law on P(Ω2d)
of 

dXt = Vtdt
dVt = −∇U(Xt)dt − γVtdt +

√
2γ dBt

(X0, V0) ∼ m,
(7.0.2)

where the invariant (probability) measure m is given by

m(dx, dv) =
1
Z

e−U(x)− |v|2
2 dx dv,

with Z being a normalising constant. The term kinetic in KSP comes indeed
from the above reference dynamics (7.0.2), since its probability density with
respect to m satisfies namely the kinetic Fokker-Planck equation

∂t ft(x, v) = γ ∆v ft(x, v)− γ v · ∇v ft(x, v) +∇U · ∇v ft(x, v)− v · ∇x ft(x, v).
(7.0.3)

Because of this, analysing KSP and its ergodic behaviour requires more at-
tention: the hypocoercive [Vil09] nature of the kinetic Fokker-Planck equation
makes more challenging quantifying its trend to equilibrium which reflects, as
we will see later, in the long-time behaviour of Schrödinger bridges for KSP. In
order to deal with that, we rely on the important progresses made in the study
of the long-time behaviour of (7.0.3) over the last fifteen years using either
an analytical approach see e.g. [Bau17, DMS15, HN04, Vil09] and references
therein, or a probabilistic approach, see e.g. [EGZ19a, GLWZ21], as well as on
the new developments around the long-time behaviour of Schrödinger bridges,
in order to gain some understanding on controlled versions of the kinetic Fokker-
Planck equation. We refer the reader to the bibliographical remarks section at
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the end of this chapter for a more accurate comparison between our results and
the existing literature.

Besides the change of the reference measure, another difference between
KSP and the classical instances of the Schrödinger problem (e.g., (1.1.4)) lies
in the fact that it is not the full marginal that is constrained at initial and final
time, but only its spatial component. Even though KSP seems to be a more
faithful representation of Schrödinger’s thought experiment, also the problem
with fully constrained marginals

CF
T(µ̄, ν̄) := inf

{
H (P|R) : P ∈ P(Ω), (X0, V0)#P = µ̄, (XT , VT)#P = ν̄

}
.

(7.0.4)
where µ̄, ν̄ ∈ P(R2d) is worth studying and we shall work on both problems in
the sequel. We will refer to the above problem as to the Kinetic Full Schrödinger
Problem, hereafter KFSP. Through a classical argument, namely the same consid-
ered in Section 1.2, it is possible to reduce the dynamic formulations (cf. (7.0.1)
and (7.0.4)) to static ones. For example, KSP is equivalent to solving

inf
{

H (π|R0,T) : π ∈ ΠX(µ, ν)

}
, (7.0.5)

where R0,T := ((X0, V0), (XT , VT))# R is the joint law of R at initial and terminal
time and the set ΠX(µ, ν) is defined as

ΠX (µ, ν) :=
{

π ∈ P
(
R2d × R2d) | (projx1

)#π = µ, (projx2
)#π = ν

}
,

with projxi

(
(x1, v1), (x2, v2)

)
:= xi for any i = 1, 2. In a similar fashion, the

static formulation of KFSP is

inf
{

H (π|R0,T) : π ∈ Π(µ̄, ν̄)

}
, (7.0.6)

where Π(µ̄, ν̄) is the (usual) set of couplings of µ̄ and ν̄.
It is worth noticing that, since the stationary Langevin dynamics is not a

reversible measure, CF
T(·, ·) is not symmetric in its arguments. Nevertheless,

due to the “physical reversibility” of the dynamics [CGP15], that is, reversibility
up to a sign flip in the velocities, it is not hard to show that CT(·, ·) is symmetric
in its arguments.

Lastly, let us add a bit of notation: if PT is the unique solution of (7.0.1), we
call entropic interpolation (µT

t )t∈[0,T] the marginal flow of PT and denote with ρT
t

its density against m, i.e.,

∀t ∈ [0, T], µT
t = (Xt, Vt)#PT , ρT

t :=
dµT

t
dm

.

With the obvious small modifications, we also define the entropic interpolation
(µ̄T

t )t∈[0,T] and their densities (ρ̄T
t )t∈[0,T] in the framework of KFSP.
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7.1 Stochastic control formulation and turnpike prop-
erty for kinetic Schrödinger bridges

KSP can be rephrased into a stochastic optimal control problem, as we already
did for the classic problem in Section 1.3. Namely, Girsanov’s Theorem [Léo12b,
Theorems 2.1 and 2.3] this time implies the equivalence between (7.0.1) and

inf
{

H ((X0, V0)#P|m) +
1

4γ
EP

[ ∫ T

0
|αP

t |2dt
]

: P ∈ P(Ω2d), P admissible
}

,

(7.1.1)
where a path probability measure P is admissible if and only if under P, there
exist a Brownian motion (Bt)t∈[0,T] adapted to the canonical filtration and an

adapted process (αP
t )t∈[0,T] such that EP[

∫ T
0 |αP|2dt] < +∞ and the canonical

process satisfies
dXt = Vtdt,
dVt = −∇U(Xt)dt − γVtdt + αP

t dt +
√

2γdBt,
X0 ∼ µ, XT ∼ ν.

(7.1.2)

The same control formulation clearly holds for KFSP, with the correspond-
ing full-marginals constraints at time 0 and T.

The above control formulation inspired the discussion of the present chap-
ter, where we study the long-time behaviour of the controlled SDE (7.1.2) and
establish the turnpike property. The latter is a general principle in optimal con-
trol theory stipulating that solutions of dynamic control problems are made of
three pieces: first a rapid transition from the initial state to the steady state,
the turnpike, then a long stationary phase localised around the turnpike, and
finally another rapid transition to reach the final prescribed state. For the con-
trol problem (7.1.1), the turnpike is the invariant measure m. Indeed, the nat-
ural tendency of the particle system is that of reaching configuration m and
since Schrödinger bridges aim at approximating as much as possible the un-
conditional dynamics while matching the observed configurations, they should
also favour configurations close to m. Obtaining a quantitative rigorous ver-
sion of this statement is one of the main objectives of this chapter and, in view
of (7.1.2), it is equivalent to show that Schrödinger bridges satisfy the turn-
pike property. In the field of deterministic control, the turnpike phenomenon
is rather well understood both in a finite and infinite dimensional setting, see
either [TZ15, TZZ18] and references therein, or the monographs [Zas05, Zas19].
The understanding of this phenomenon in stochastic control seems to be much
more limited: see [CLLP12, CLLP13, CP19] for results on mean field games and
[CCG22, BCGL20] for results on the classical and mean field Schrödinger prob-
lems. The reason why the turnpike property for Schrödinger bridges in the
present context cannot be deduced from existing results lies in the hypocoer-
civity of the kinetic Fokker-Planck equation (7.0.3).
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Proof strategy A general idea to obtain exponential speed of convergence to
equilibrium for hypocoercive equations, systematically exploited in [Vil09], is
that of modifying the natural Lyapunov function of the system by adding some
extra terms in such a way that proving exponential dissipation becomes an eas-
ier task. For the Langevin dynamics, a suitable modification of the natural Lya-
punov functional, that is the relative entropy H (·|m), is obtained considering

µ 7→ aH (µ|m) + I(µ)

for a carefully chosen constant a > 0, where the Fisher information (w.r.t. m)
we recall to be defined for any q ≪ m ∈ P(R2d) as

I(q) :=


∫

R2d

∣∣∣∇ log dq
dm

∣∣∣2 dq if ∇ log dq
dm ∈ L2(q),

+∞, otherwise.

Emulating Bakry-Émery Γ-calculus [Bau17] it is possible to show that the
modified Lyapunov functional decays exponentially fast along solutions of the
kinetic Fokker-Planck equation. Our proof of the turnpike property consists in
implementing this abstract idea on the f g-decomposition of the entropic inter-
polation, as we now briefly explain. Indeed, in order to bound I(µT

t ) one is
naturally led to consider the quantities∫

R2d

∣∣∣∇ log P∗
s f T

∣∣∣2 dµT
s , (7.1.3a)

∫
R2d

∣∣∣∇ log PT−sgT
∣∣∣2 dµT

s , (7.1.3b)

where ( f T , gT) is the f g-decomposition of KSP (cf. Proposition 7.2.3), (Ps)s∈[0,T]
the semigroup associated to (7.0.2) and (P∗

s )s∈[0,T] its L2(m)-adjoint. However,
it is not clear how to obtain a differential inequality ensuring exponential (for-
ward) dissipation of (7.1.3a) and exponential (backward) dissipation of (7.1.3b).
But, as we show at Lemma 7.4.1, it is possible to find two norms | · |M−1 and
| · |N−1 , that are equivalent to the Euclidean norm and such that if we define

φT(s) :=
∫

R2d

∣∣∣∇ log P∗
s f T

∣∣∣2
N−1

dµT
s ,

ψT(s) :=
∫

R2d

∣∣∣∇ log PT−sgT
∣∣∣2

M−1
dµT

s ,

then φT(s) and ψT(s) satisfy the desired exponential estimates. To complete the
proof, one needs to take care of the boundary conditions. This part is non triv-
ial as it demands to prove certain regularity properties of the f g-decomposition
and it is accomplished in two steps: we first show in Proposition 7.4.3 a regu-
larising property of entropic interpolations, namely that if H (µ|mX), H (ν|mX)
are finite, then the Fisher information I(µT

t ) is finite for any t ∈ (0, T). The
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proof of this property is based on a gradient bound obtained in [GW12] and is
of independent interest. The second step (Proposition 7.4.2) consists in show-
ing that for a fixed small δ, φT(δ) and ψT(T − δ) can be controlled with by the
sum of I(µT

δ ) and I(µT
T−δ). We prove this estimate adapting an argument used

in [TZ15] in the analysis of deterministic finite dimensional control problems.

7.2 Assumptions and preliminaries

In this section we collect our assumptions and useful results about the Markov
semigroup associated to the kinetic Fokker-Planck equation. We conclude with
structural results for KSP (and KFSP).

In what follows we write≲ to indicate that an inequality holds up to a multi-
plicative positive constant depending possibly on the dimension d, the bounds
on the spectrum of U, α and β, or the friction parameter γ.

7.2.1 On the assumptions

We state here the assumption on the potential U and on the constraints µ, ν, µ̄
and ν̄ that we use in the sequel. We define mX , mV ∈ P(Rd) to be the respec-
tively the space and velocity marginals of m, in particular m = mX ⊗mV .

(H1) U is a C∞ strongly convex potential with bounded derivatives of order
k ≥ 2.

(H2) There exist 0 < α < β such that√
β −

√
α ≤ γ , and αIdd ≤ ∇2U(x) ≤ βIdd , for all x ∈ Rd,

where γ > 0 is the friction parameter in (7.0.2).

(H3) The probability measures µ and ν on Rd satisfy

H (µ|mX) < +∞ and H (ν|mX) < +∞ .

(H4) µ, ν ≪ mX , dµ
dmX

, dν
dmX

∈ L∞(mX) and are compactly supported on Rd.

(FH3) The probability measures µ̄ and ν̄ on R2d satisfy

H (µ̄|m) < +∞ and H (ν̄|m) < +∞ .

(FH4) µ̄, ν̄ ≪ m, dµ̄
dm , dν̄

dm ∈ L∞(m) and are compactly supported on R2d.

In what follows we report some straightforward consequences of the var-
ious assumptions listed above that we shall repeatedly use from now on. We
begin by observing that assumption (H1) guarantees that m ∈ P2(R

2d) and that
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mX satisfies Talagrand’s inequality because of [BGL13, Corollary 9.3.2], i.e., for
any q ∈ P(Rd)

W2(q, mX)
2 ≲ H (q|mX) . (7.2.1)

Since the Talagrand inequality holds also for the Gaussian measure mV , from
[BGL13, Proposition 9.2.4] it follows that for any q ∈ P(R2d)

W2(q, m)2 ≲ H (q|m) . (7.2.2)

Let us also point out that (H4) implies (H3) and that under (H1) and (H3) it
easily follows that µ, ν ∈ P2(R

d). Indeed,

∫
Rd

|x|2 dµ ≲
∫

Rd
|x|2 dmX +W2(µ,mX)

2
(7.2.1)
≲

∫
Rd

|x|2 dmX +H (µ|mX) < +∞,

(7.2.3)
and similarly for the measure ν. We also remark that (FH4) implies (FH3).
Moreover, from (H1) and (FH3), by means of (7.2.2), it follows that µ̄, ν̄ ∈
P2(R

2d).
Finally, let us also notice that (H1) and (H2) guarantee the validity of a log-

Sobolev inequality for mX because of [BGL13, Corollary 5.7.2], and by means
of [BGL13, Proposition 5.2.7 and Proposition 5.5.1] it follows that m satisfies a
log-Sobolev inequality. Therefore for any q ≪ m it holds

H (q|m) ≲ I(q) . (7.2.4)

7.2.2 Markov semigroups and heat kernel

The generator L associated to the SDE (7.0.2) is given by

L = γ∆v − γv · ∇v −∇U · ∇v + v · ∇x

while its adjoint in L2(m) reads as

L∗ = γ∆v − γv · ∇v +∇U · ∇v − v · ∇x .

Under (H1), it is well known that Hörmander’s Theorem for parabolic hypoel-
lipticity applies [Hör67, Theorem 1.1] to the operator L , and thus the associated
semigroup (Pt)t≥0 admits a probability kernel pt((x, y), (y, w)), which is C∞ in
all of the parameters, with respect to the invariant probability measure

dm(x, v) =
1
Z

e−U(x)− |v|2
2 dxdv,

where Z is a normalising constant. Sometimes, with a slight abuse of notation
we will write m(x, v) to denote the density of m with respect to the Lebesgue
measure. Similarly, we will denote by (P∗

t )t≥0 the semigroup associated to L∗.
Note that the function pt also represents the density of R0,t (the joint law at time
0 and t of the solution to (7.0.2)) with respect to m⊗ m. Moreover, according
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to [DM10, Theorem 1.1], pt(·, ·) satisfies two-sided Gaussian estimates. Impor-
tantly, pt is locally bounded away from zero and infinity, but with constants
that might depend non-trivially on the time horizon T.

For some of our proofs, we need lower bounds that are uniform in T. To this
aim, we have the following consequence of the results of [DM10].

Lemma 7.2.1. Let T0 > 0 be fixed. Under assumption (H1), there exists a constant
cT0 > 0 such that for all T ≥ T0 and all (x, v), (y, w) ∈ R2d

log pT ((x, v), (y, w)) ≥ −cT0

(
1 + |x|2 + |v|2 + |y|2 + |w|2

)
. (7.2.5)

Proof. Let T0 > 0 be fixed. From Jensen’s inequality we know that

log pT((x, v), (y, w))

= log
∫

R2d
pT−T0/2 ((x, v), (z, u)) pT0/2 ((z, u), (y, w))dm(z, u)

≥
∫

R2d
log pT−T0/2 ((x, v), (z, u))dm(z, u)

+
∫

R2d
log pT0/2 ((z, u), (y, w))dm(z, u) .

(7.2.6)

By [DM10, Theorem 1.1], there exists C ≥ 1 depending on T0 such that

pT0/2 ((z, u), (y, w)) ≳ pT0/2((z, u), (y, w))m(y, w) ≥ C−1 e−C|θT0/2(z,u)−(y,w)T |2

where θt(x0, v0) = (θx
t , θv

t )
T denotes the solution of the denoised Langevin

ODE system{
d
dt θx

t = θv
t

d
dt θv

t = −θv
t −∇U(θx

t )
with θ0 = (x0, v0)

T .

Since under (H1) there exists a large enough positive r ∈ R such that (7.2.11)
holds for (Id,−r), from [Mon23, Theorem 1] (with Σ = 0) it follows

|θt(y, w)− θt(0, 0)| ≤ er t
∣∣∣(y, w)T

∣∣∣ , ∀ (y, w)T ∈ R2d, ∀t ≥ 0 . (7.2.7)

Therefore, up to changing the constants C from line to line, we have∫
R2d

log pT0/2 ((z, u), (y, w))dm(z, u)

≥ log C−1 − C
∫

R2d

∣∣∣θT0/2(z, u)− (y, w)T
∣∣∣2 dm(z, u)

≥ −C
(

1 + |y|2 + |w|2 +
∫

R2d

∣∣θT0/2(z, u)
∣∣2 dm(z, u)

)
≥ −C

(
1 + |y|2 + |w|2

)
,

(7.2.8)
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where the last step holds since m ∈ P2(R
2d), and therefore∫

R2d
|θT0/2(z,u)|2dm(z, u)

≤ 2
∣∣θT0/2(0, 0)

∣∣2 + 2
∫

R2d

∣∣θT0/2(z, u)− θT0/2(0, 0)
∣∣2 dm(z, u)

(7.2.7)
≤ 2

∣∣θT0/2(0, 0)
∣∣2 + 2 e2r

∫
R2d

(
|z|2 + |u|2

)
dm(z, u) ≤ C .

Now, notice that we can rewrite the first integral of the RHS in (7.2.6) as∫
R2d

log pT−T0/2 ((x, v), (z, u))dm(z, u)

=
∫

R2d
log
[∫

R2d
pT0/2 ((x, v), (q, r)) pT−T0 ((q, r), (z, u))dm(q, r)

]
dm(z, u).

Because of (7.2.9), we know that pT−T0/2 ((q, r), (z, u))dm(q, r) is a probability
measure over R2d and therefore by Jensen’s inequality and Fubini the above
displacement can be lower bounded by∫

R2d

∫
R2d log

[
pT0/2 ((x, v), (q, r))

]
pT−T0 ((q, r), (z, u))dm(q, r)dm(z, u)

=
∫

R2d
log pT0/2 ((x, v), (q, r))dm(q, r)

(7.2.9)
=

∫
R2d

log pT0/2 ((q,−r), (x,−v))dm(q, r)

=
∫

R2d
log pT0/2 ((q, r), (x,−v))dm(q, r)

(7.2.8)
≥ −C

(
1 + |x|2 + |v|2

)
.

Putting the above lower bound and (7.2.8) into inequality (7.2.6), we get

log pT ((x, v), (y, w)) ≥ −cT0

(
1 + |x|2 + |v|2 + |y|2 + |w|2

)
.

Finally, let us stress that the Langevin dynamics (7.0.2) is not reversible,
and in particular the probability kernel pt is not symmetric. However, it is
symmetric up to a sign-flip in the velocities,

pt
(
(x, v), (y, w)

)
= pt

(
(y,−w), (x,−v)

)
∀t ≥ 0, ∀(x, v), (y, w) ∈ R2d .

(7.2.9)
As we said above, this useful property is sometimes called physical reversibil-
ity.
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7.2.3 Contraction of the semigroup

In our setup, due to the lack of a curvature condition CD, the standard Bakry-
Emery machinery does not apply to obtain a commutation estimate for the
semigroup of the type

|∇Pth(z)| ≤ e−c t Pt
(
|∇h|

)
(z) , (7.2.10)

for some c > 0. It is still possible to obtain a commutation estimate simi-
lar to (7.2.10) by replacing the Euclidean norm | · | by a certain twisted norm
|ξ|M :=

√
ξ · Mξ on R2d for some well chosen positive definite symmetric ma-

trix M ∈ R2d×2d. This is a common idea in the kinetic setting and it is exploited
for example in [Bau17, GLWZ21, Mon23]. Particularly, Assumption (H2) im-
plies local gradient contraction bounds for the semigroup of the Langevin dy-
namics with a certain rate κ > 0 (see Proposition 7.2.2 or [Bau17]). The expo-
nential rate κ of Theorems 7.5.1 and 7.5.3 below is precisely the one, computed
e.g. in [Mon23, BGM10], at which the synchronous coupling is contractive for
the (uncontrolled) Langevin dynamics.

For instance, in [Mon23, Theorem 1] the author studies the contractive prop-
erties of the semigroup Pt associated to the SDE on Rm

dZt = b(Zt)dt + ΣdBt ,

with the drift b : Rm → Rm being globally Lipschitz and Σ a constant positive-
semidefinite symmetric matrix. The author shows that the condition on the
Jacobian matrix Jb of the drift

ξ · (MJb(z))ξ ≤ −κ ξ · Mξ = −κ |ξ|2M ∀ξ ∈ Rm, ∀z ∈ Rm , (7.2.11)

where κ ∈ R and M is a positive definite symmetric matrix, is equivalent to the
commutation estimate

|∇Pth(z)|M−1 ≤ e−κ t Pt
(
|∇h|M−1

)
(z) .

Our setup, which is also discussed in [Mon23, Section 3.3], corresponds to the
choice m = 2d, and

b(x, v) =
(

v
−∇U(x)− γv

)
Σ =

(
0 0
0

√
2γId

)
and therefore the Jacobian reads as

Jb(x, v) =
(

0 Id
−∇2U(x) −γId

)
.

In [Mon23, Proposition 5], the author shows that (7.2.11) holds with κ > 0 as
long as α and β from assumption (H2) are close enough. The slightly sharper



7.2. ASSUMPTIONS AND PRELIMINARIES 183

condition
√

β −
√

α ≤ γ (which corresponds to (H2)) can be obtained by mim-
icking the computations in [Bau17, Theorem 2.12], where the case γ = 1 is
discussed. By exploiting the symmetry of the heat kernel up to a sign flip, we
obtain a similar commutation estimate also for the reversed dynamics.

In view of the above discussion we have the following.

Proposition 7.2.2. Assume that (H1) and (H2) hold. Then, there exist a constant
κ > 0 and positive definite symmetric matrices M, N ∈ R2d×2d such that (7.2.11)
holds and

(i) For all h ∈ C1
c (R

2d), t ≥ 0 and z ∈ R2d

|∇Pth(z)|M−1 ≤ e−κ t Pt
(
|∇h|M−1

)
(z) . (7.2.12)

(ii) For all h ∈ C1
c (R

2d), t ≥ 0 and z ∈ R2d

|∇P∗
t h(z)|N−1 ≤ e−κ t P∗

t
(
|∇h|N−1

)
(z) . (7.2.13)

Proof. A proof that (7.2.11) holds with κ > 0 under (H1) and (H2) is included in
Section 7.B for the reader’s convenience. Given (7.2.11), (i) follows from Theo-
rem 1 in [Mon23].

We now derive (ii) from (i) with the help of (7.2.9). For any function f on
R2d define the transformation S f (x, v) = f (x,−v) and set

N =

(
Id 0
0 −Id

)
M
(

Id 0
0 −Id

)
.

Note that S2 = Id, moreover in view of (7.2.9), for all h ∈ C1
c (R

2d), P∗
t (Sh) =

S(Pth) and S|∇h|M−1 = |∇(Sh)|N−1 . It is then immediate to derive

|∇P∗
t h|N−1 = S |∇Pt(Sh)|M−1 ≤ e−κ t S

(
Pt
(
|∇(Sh)|M−1

))
= e−κ t P∗

t
(
|∇h|N−1

)
which is the desired conclusion.

As a result of Proposition 7.2.2 and [Mon23, Theorem 1] we have the equiv-
alent statements, with M, N and κ > 0 as above, and all q1, q2 ∈ P(R2d),

WM,2(q1Pt, q2Pt) ≤ e−κ t WM,2(q1, q2) , (7.2.14)

WN,2(q1P∗
t , q2P∗

t ) ≤ e−κ tWN,2(q1, q2) ,

where WM,2(q1, q2) is the W2-Wasserstein distance on P(R2d) with the Eu-
clidean metric replaced by dM(x, y) = |x − y|M and similarly for WN,2(q1, q2).
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7.2.4 The f g-decomposition for KSP

Optimal couplings in the Schrödinger problem are characterised by the fact that
their density against the reference measure takes a product form, often called
f g-decomposition, as we have established in Theorem 2.2.1. In KSP f and g
have the additional property of depending only on the first and second space
variables respectively.

Proposition 7.2.3. Grant (H1), (H3). Then, for all T > 0, (7.0.5) and (7.0.1) admit
unique solutions πT , PT with πT = ((X0, V0), (XT , VT))#PT and there exist two
non-negative measurable functions f T , gT on Rd such that

ρT(x, v, y, w) :=
dπT

dR0,T
(x, v, y, w) = f T(x)gT(y), R0,T-a.s. (7.2.15)

Moreover, f T , gT solve the Schrödinger system:{ dµ
dmX

(x) = f T(x)ER
[
gT(XT)|X0 = x

]
,

dν
dmX

(y) = gT(y)ER
[

f T(X0)|XT = y
]
.

(7.2.16)

A similar structure result holds for KFSP. Particularly the corresponding
f g-decomposition can be deduced from Theorem 2.2.1 (cf. Section 7.2.5). On
the contrary, the case KSP requires some extra work. We remark here that for
both dual representation of the cost (cf. Proposition 7.2.4 later) and the f g-
decomposition the strict convexity of U and its smoothness are not really nec-
essary. A bounded Hessian would suffice. Nevertheless, since the convex case
is the one we will be interested in later on, we prefer not to insist on this point.

Proof of Proposition 7.2.3. We only sketch the proof as it is rather standard. We
consider the measure RX

0,T := (projx1
, projx2

)#R0,T = (X0, XT)#R and the min-
imisation problem,

min
q∈Π(µ.ν)

H
(

q|RX
0,T

)
, (7.2.17)

where Π(µ.ν) is the set of couplings of µ, ν ∈ P(Rd × Rd). In view of the
heat kernel lower bound in Lemma 7.2.1, we know that for some C > 0 and
uniformly in x, y it holds

dRX
0,T

d(mX ⊗mX)
(x, y) ≥ 1

C
e−C(1+|x|2+|y|2) .

which in combination with (H3) implies that H (µ ⊗ ν|RX
0,T) < ∞. Indeed

the bound above implies that for any T > T0, T0 fixed, there is a constant
Cd,α,β,γ,T0 > 0 such that

H (µ ⊗ ν|RX
0,T) =H (µ ⊗ ν|mX ⊗mX)−

∫
R4d

log
dRX

0,T

d(mX ⊗mX)
dµ ⊗ ν

(7.2.3)
≤ Cd,α,β,γ,T0

[
1 +H (µ|mX) +H (ν|mX)

]
.

(7.2.18)
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Thus, Proposition 2.5 in [Léo14] applies and the above minimisation problem
has indeed a unique solution π ∈ Π(µ, ν). By applying [RT93, Theorem 3],
there exist two non-negative measurable functions f T , gT on Rd such that

dπ

dRX
0,T

(x, y) = f T(x)gT(y), RX
0,T-a.s.,

from which (7.2.16) directly follows. Now, in view of the additive property of
the relative entropy (1.A.4), we get for any P ∈ P(Ω2d)

H (P|R) = H
(

PX
0,T |RX

0,T

)
+
∫

R2d
H (Px,y|Rx,y)dPX

0,T(x, y),

with Rx,y = R( · |X0 = x, XT = y) and similarly for Px,y. Therefore, a minimiser
to (7.0.1) can be found by defining

PT(·) =
∫

Rd×Rd
R( · |X0 = x, XT = y)dπ(x, y),

which satisfies (X0, XT)#PT = π and CT(µ, ν) = H (PT |R) = H (π|RX
0,T) < ∞.

In particular, in view of (7.2.18), for all T > T0, T0 fixed, there is Cd,α,β,γ,T0 > 0
such that

CT(µ, ν) ≤ Cd,α,β,γ,T0

[
1 +H (µ|mX) +H (ν|mX)

]
. (7.2.19)

Similarly, for any q ∈ ΠX(µ, ν), denoting qX = (projx1
, projx2

)#q, we have
H (q|R0,T) ≥ H (qX |RX

0,T) ≥ H (π|RX
0,T) with equality if and only if q = πT

where
πT(·) =

∫
Rd×Rd

R0,T( · |X0 = x, XT = y)dπ(x, y). (7.2.20)

By construction πT = ((X0, V0), (XT , VT))#PT and H (PT |R) = H (πT |R0,T) =
H (π|RX

0,T) < ∞. The solutions are unique by strict convexity of the entropy
and the linearity of the constraint. Equation (7.2.20) implies equality of the
conditional distributions of πT and R0,T given the space variables. But then,
R0,T-a.s. it holds

dπT

dR0,T
(x, v, y, w) =

d(projx1
, projx2

)#πT

d(projx1
, projx2

)#R0,T
(x, y) =

dπ

dRX
0,T

(x, y) = f T(x)gT(y).

As we did for the classic problem we can define the kinetic Schrödinger
potentials as the measurable function φT := − log f T ∈ L1(µ) and ψT :=
− log gT ∈ L1(ν) and then clearly it holds

dπT

dR0,T
((x, v), (y, w)) = exp(−φT(x)− ψT(y)) R0,T-a.e. .
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Moreover, as already noticed in the classic setting (cf. Proposition 2.2.2)
these potentials (actually their opposites (−φT) and (−ψT)) are optimiser in a
duality representation of the entropic cost, analogous to the Monge-Kantorovich
duality (1.2.9).

Proposition 7.2.4. Grant (H1) and (H3). Then CT(µ, ν) < ∞ and

CT(µ, ν) = sup
α,β∈Mb(Rd)

{∫
Rd

α dµ +
∫

Rd
β dν − log

∫
R4d

eα⊕β dR0,T

}
.

Finally, the supremum is attained at the couple (−φT ,−ψT).

Proof. We have already seen in the previous proof that CT(µ, ν) is finite. Now,
since (7.0.5) is equivalent to the minimisation problem (7.2.17), from [Léo01,
Proposition 6.1] it follows

CT(µ, ν) = sup
α,β∈Mb(Rd)

{∫
Rd

α dµ +
∫

Rd
β dν −

∫
R2d

(
eα⊕β − 1

)
dRX

0,T

}

≤ sup
α,β∈Mb(Rd)

{∫
Rd

α dµ +
∫

Rd
β dν − log

∫
R4d

eα⊕β dR0,T

}

= sup
α,β∈Mb(Rd)

{∫
Rd

(
α ⊕ β

)
dπ − log

∫
R2d

eα⊕β dRX
0,T

}

≤ sup
h∈Mb(R2d)

{∫
R2d

h dπ − log
∫

R2d
eh dRX

0,T

}
(1.A.2)
= H

(
π|RX

0,T
)
= CT(µ, ν),

where π is the unique optimiser in (7.2.17). This concludes the proof since
RX

0,T := (projx1
, projx2

)#R0,T .

The Schrödinger system (7.2.16) is particularly useful when f T and gT are
regular enough. Under (H1) and (H4) they inherit the regularity (smoothness
and integrability) of the densities of µ, ν respectively. This follows from the
identities

dµ

dmX
= f T

∫
Rd

PT gT dmV ,
dν

dmX
= gT

∫
Rd

P∗
T f T dmV ,

and since P∗
T f T and PT gT are smooth and positive (as a result of the lower

bound (7.2.5)). Moreover, arguing exactly as in Lemma 2.1 in [CT21], owing
to the lower bound in (7.2.5), and the continuity of pT , we have that there is
cT0 > 0, (possibly depending on µ and ν) such that for all T ≥ T0

∥ f T∥L∞(m)∥gT∥L1(m) ≤ cT0

∥∥∥ dµ

dmX

∥∥∥
L∞(m)

,

∥ f T∥L1(m)∥gT∥L∞(m) ≤ cT0

∥∥∥ dν

dmX

∥∥∥
L∞(m)

.
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These bounds are pivotal to prove that f T → dµ/dmX and gT → dν/dmX as
T → ∞ in Lp(m) for all p ∈ [1, ∞) akin to what is done in Lemma 3.6 of [CT21].

To ensure that f T , gT are in L∞(m) and with compact support, we work
under assumption (H1) and (H4) for the rest of the section. With the help of the
forward and adjoint semigroup, and (7.2.15) we can write{

µT
0 = f T PT gT m ,

µT
T = gT P∗

T f T m ,

where we recall that µT
t = (Xt, Vt)#PT , with PT being optimal for (7.0.1). Fur-

thermore, if we set,

f T
t := P∗

t f T and gT
t := PT−tgT ,

then µT
t , t ∈ [0, T], can be represented as

dµT
t = f T

t gT
t dm . (7.2.21)

It is also immediate to check that it holds{
∂t f T

t = L∗ f T
t

∂tgT
t = −LgT

t
and

{
∂t log f T

t = L∗ log f T
t + Γ(log f T

t )

∂t log gT
t = −L log gT

t − Γ(log gT
t ) ,

(7.2.22)

where Γ(h) = γ |∇vh|2 is the carré du champ operator associated to the generator
L.

The f g-decomposition gives us a nice representation formula for the relative
entropy along the entropic interpolation (µT

t )t∈[0,T]. Indeed, if we introduce the
functions

hT
f (t) :=

∫
R2d

log f T
t ρT

t dm and hT
b (t) :=

∫
R2d

log gT
t ρT

t dm ∀t ∈ [0, T] ,

then it easily follows that

H (µT
t |m) = hT

f (t) + hT
b (t), ∀t ∈ [0, T] . (7.2.23)

Moreover, we have

∂thT
f (t) = −

∫
R2d

Γ(log f T
t )ρ

T
t dm and ∂thT

b (t) =
∫

R2d
Γ(log gT

t )ρ
T
t dm .

(7.2.24)
For a proof of (7.2.24) we refer to Lemma 3.8 in [Con19] where the classical set-
ting is studied, the only difference in the kinetic setting being that the operator
that acts on f T

t should be replaced with L∗, since L is not self-adjoint.

In addition to (7.2.23), the f g-decomposition gives the following represen-
tation for the kinetic entropic cost

CT(µ, ν) =H (πT |R0,T) = ER0,T

[
ρT log ρT

]
=
∫

R2d
log f T ρT

0 dm+
∫

R2d
log gT ρT

T dm = hT
f (0) + hT

b (T) .
(7.2.25)
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As a byproduct of (7.2.23), (7.2.24), and (7.2.25), we get the identities

CT(µ, ν) =H (µT
0 |m) +

∫ T

0

∫
R2d

Γ(log gT
t )ρ

T
t dmdt ,

CT(µ, ν) =H (µT
T |m) +

∫ T

0

∫
R2d

Γ(log f T
t )ρ

T
t dmdt ,

(7.2.26)

which corresponds to what we have already shown in Lemma 2.3.1 for classical
SP.

A straightforward consequence of the previous identities is the following

Lemma 7.2.5. Under the assumptions (H1), (H4), for any t ∈ [0, T] it holds

CT(µ, ν) = H (µT
0 |m) +H (µT

T |m) +
∫ t

0

∫
R2d

Γ(log gT
s )ρ

T
s dmds

+
∫ T

t

∫
R2d

Γ(log f T
s )ρ

T
s dmds −H

(
µT

t |m
)

.

(7.2.27)

Proof. From (7.2.26) we can write

CT(µ, ν) = H (µT
0 |m)+

∫ t

0

∫
R2d

Γ(log gT
s )ρ

T
s dmds+

∫ T

t

∫
R2d

Γ(log gT
s )ρ

T
s dmds.

Applying the identities (7.2.24) we obtain that the last summand equals∫ T

t

∫
R2d

Γ(log gT
s )ρ

T
s dmds

=
∫ T

t

∫
R2d

Γ(log f T
s )ρ

T
s dmds +

∫ T

t
∂shT

b (s) + ∂shT
f (s)ds

=
∫ T

t

∫
R2d

Γ(log f T
s )ρ

T
s dmds +

∫ T

t
∂sH (µT

s |m)ds

=
∫ T

t

∫
R2d

Γ(log f T
s )ρ

T
s dmds +H (µT

T |m)−H
(

µT
t |m

)
,

and we reach our conclusion.

7.2.5 The f g-decomposition for KFSP

We now discuss the structural properties for KFSP, as we did in Section 7.2.4
for KSP. Notice that, since we consider fixed the full marginals at time 0 and T,
clearly in this case f and g are function of both space and velocity.

Proposition 7.2.6. Grant (H1), (FH3). Then, for all T > 0, (7.0.6) and (7.0.4) admit
unique solutions π̄T , P̄T with π̄T = ((X0, V0), (XT , VT))#P̄T and there exist two
non-negative measurable functions f̄ T , ḡT on R2d such that

ρ̄T(x, v, y, w) :=
dπ̄T

dR0,T
(x, v, y, w) = f̄ T(x, v)ḡT(y, w) R0,T-a.s.
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and that solve the Schrödinger system{
dµ̄
dm (x, v) = f̄ T(x, v)ER

[
ḡT(XT , VT)|X0 = x, V0 = v

]
,

dν̄
dm (y, w) = ḡT(y, w)ER

[
f̄ T(X0, V0)|XT = y, VT = w

]
.

(7.2.28)

Proof. This follows in a standard way from [RT93] or [Léo14] (or also Theo-
rem 2.2.1).

Then, we may again define the potentials As we did for the classic problem
in (6.0.1) we can define the kinetic Schrödinger potentials as the measurable
function φ̄T := − log f̄ T ∈ L1(µ̄) and ψ̄T := − log ḡT ∈ L1(ν̄) and then clearly
it holds

dπ̄T

dR0,T
((x, v), (y, w)) = exp(−φ̄T(x, v)− ψ̄T(y, w)) R0,T-a.e. ,

and we may consider again a Kantorovich-type duality (for (−φ̄T) and (−ψ̄T))

Proposition 7.2.7. Grant (H1) and (FH3). Then, CF
T(µ̄, ν̄) < ∞ and

CF
T (µ̄, ν̄) = sup

φ,ψ∈Mb(R2d)

{∫
R2d

φ dµ̄ +
∫

R2d
ψ dν̄ − log

∫
R4d

eφ⊕ψ dR0,T

}
.

Finally, the supremum is attained at the couple (−φ̄T ,−ψ̄T).

The proof of the above results runs exactly as the one presented for Propo-
sition 2.2.2 and Proposition 7.2.4.

Exactly as in Section 7.2.4, under (H1) and (FH4), f̄ T and ḡT inherit the inte-
grability and regularity of the densities dµ̄/dm and dν̄/dm. In this case this is
due to the identities

dµ̄

dm
= f̄ T PT ḡT ,

dν̄

dm
= P∗

T f̄ T ḡT ,

and the fact that P∗
T f̄ T and PT ḡT are positive and smooth. For the rest of the

section we shall assume that (FH4) holds true which guarantees that f̄ T and ḡT

belong to L∞(m) and have compact support.
We define for any t ∈ [0, T]

f̄ T
t := P∗

t f̄ T and ḡT
t := PT−t ḡT .

We recall that µ̄T
t = (Xt, Vt)#P̄T , with P̄T being the solution to (7.0.4). Then

µ̄T
t = f̄ T

t ḡT
t m .

Furthermore, (7.2.28) implies that

µ̄T
0 = f̄ T

0 ḡT
0 m = µ̄ and µ̄T

T = f̄ T
T ḡT

Tm = ν̄ ,
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and it is easy to check that it holds{
∂t f̄ T

t = L∗ f̄ T
t

∂t ḡT
t = −LḡT

t
and

{
∂t log f̄ T

t = L∗ log f̄ T
t + Γ(log f̄ T

t )

∂t log ḡT
t = −L log ḡT

t − Γ(log ḡT
t ) .

Similarly to (7.2.27), under (H1) and (FH4) it holds that, for any t ∈ [0, T],

CF
T (µ̄, ν̄) = H (µ̄|m) +H (ν̄|m)−H (µ̄T

t |m)

+
∫ t

0

∫
R2d

Γ(log ḡT
s )ρ̄

T
s dmds +

∫ T

t

∫
R2d

Γ(log f̄ T
s )ρ̄

T
s dmds.

(7.2.29)

7.3 Qualitative long-time behaviour

Throughout the whole section we will always assume (H1) and (H3) (respec-
tively (FH3) for KFSP) to be true. Let us just recall here that (H1) implies that
m ∈ P2(R

2d). Note that since (Pt)t∈[0,T] is strongly mixing [DPZ14, Theorem
11.14] for any ψ, ϕ ∈ Cb(R

2d) it holds∫
R2d

∫
R2d

ψ(x, v)ϕ(y, w)dR0,Tn

=
∫

R2d
ψ PTn ϕ dm

n→∞
−−−−→

∫
R2d

∫
R2d

ψ(x, v)ϕ(y, w)dm⊗ dm .

From the Portmanteau Theorem, it follows that

R0,Tn ⇀ m⊗m . (7.3.1)

This first weak-convergence result already suggests the turnpike property, or
at least a qualitative version of it. Intuitively, this implies that the variational
problem KSP (i.e., (7.0.5)) converges, in a sense to be made precise, to the prob-
lem

min
π∈ΠX(µ,ν)

H (π | m⊗m), (7.3.2)

whose optimal solution and optimal value are easily seen to be (µ ⊗ mV) ⊗
(ν⊗mV) and H (µ|mX) +H (ν|mX) respectively. From the point of view of the
particle system, this means that in the long-time limit, initial and final states of
the system become essentially independent of one another. Moreover, the initial
and final velocities are well approximated by independent Gaussians, and are
independent from the spatial variables. The result below turns this intuition
into a solid argument. For a quantitative version of the convergence of the
entropic cost towards the sum of the marginal entropies we refer the reader
to Theorem 7.5.4 below. For the classical Schrödinger problem, an analogous
statement can be found in [CT21].
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Our approach relies on a Γ-convergence approach similar to the one used in
[CT21] for the classical Schrödinger problem. The main difference with [CT21]
is the lack of compactness for the set ΠX(µ, ν), problem that we address in the
next lemma.

Lemma 7.3.1 (Equicoerciveness). The family of entropic operators

{H (· | R0,Tn) : ΠX(µ, ν) → [0, ∞]}n∈N

is equicoercive, i.e., for any h ∈ R there exists a (weakly) compact subset Kh ⊂
ΠX(µ, ν) such that{

q ∈ ΠX (µ, ν) s.t. H (q | R0,Tn) ≤ h
}
⊆ Kh ∀n ∈ N .

Proof. Since (R0,Tn)n∈N is tight, a proof of this result is obtained by following
the same argument given in [DE97, Lemma 1.4.3c].

Thanks to Prohorov’s Theorem it is enough to show that for any t ∈ R, any
sequence (qn)n∈N ⊆ {q ∈ ΠX (µ, ν) s.t. H (q | R0,Tn) ≤ t ∀n ∈ N

}
is tight.

Firstly, fix a real number t ∈ R.

Notice that (R0,Tn)n∈N is tight since R0,Tn ⇀ m⊗m (cf. (7.3.1)). Hence for
any ϵ > 0 there exists a compact subset Kϵ ⊂ R4d such that

sup
n∈N

R0,Tn(K
C
ϵ ) < ϵ .

Now, consider the bounded measurable function ψ : R4d → R defined as

ψ := log
(

1 +
1
ϵ

)
1KC

ϵ
.

Then, the Donsker-Varadhan formula (1.A.2) tells us that for any n ∈ N

H (qn | R0,Tn) ≥
∫

R4d
ψ dqn − log

∫
R4d

eψdR0,Tn

= log
(

1 +
1
ϵ

)
qn(KC

ϵ )− log
(∫

Kϵ

1 dR0,Tn +
∫

KC
ϵ

(
1 +

1
ϵ

)
dR0,Tn

)
= log

(
1 +

1
ϵ

)
qn(KC

ϵ )− log
(

R0,Tn(Kϵ) + R0,Tn(K
C
ϵ ) +

1
ϵ

R0,Tn(K
C
ϵ )

)
= log

(
1 +

1
ϵ

)
qn(KC

ϵ )− log
(

1 +
1
ϵ

R0,Tn(K
C
ϵ )

)
≥ log

(
1 +

1
ϵ

)
qn(KC

ϵ )− log 2 .

Therefore, since H (qn | R0,Tn) ≤ t, for any δ > 0 it holds

sup
n∈N

qn(KC
ϵ ) ≤ sup

n∈N

H (qn | R0,Tn) + log 2

log
(

1 + 1
ϵ

) ≤ t + log 2

log
(

1 + 1
ϵ

) < δ ,
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where the last inequality holds for ϵ = ϵδ small enough, and hence (qn)n∈N is
tight.

Theorem 7.3.2 (A Γ-convergence result). Assume (H1) and (H3). Let (Tn)n∈N be
a sequence of positive real numbers converging to ∞, and for each n ∈ N consider the
functional H (· | R0,Tn) defined on ΠX(µ, ν) endowed with the weak topology. Then

Γ − lim
n→∞

H (·|R0,Tn) = H (·|m⊗m) .

As a direct consequence, we obtain that

lim
T→∞

CT(µ, ν) = H (µ | mX) +H (ν | mX) < ∞ , (7.3.3)

and that as T → ∞ it holds

πT ⇀ (µ ⊗mV)⊗ (ν ⊗mV) ∈ ΠX(µ, ν) weakly. (7.3.4)

Proof.
(Γ-convergence lower bound inequality) From (7.3.1) and the lower semi-

continuity of the relative entropy we immediately obtain that for any sequence
(qn)n∈N ⊂ ΠX (µ, ν) weakly converging to some q ∈ ΠX(µ, ν) it holds

lim inf
n→∞

H (qn | R0,Tn) ≥ H (q | m⊗m) . (7.3.5)

(Γ-convergence upper bound inequality) We prove that for any q ∈ ΠX(µ, ν)
it holds

lim sup
n→∞

H (q | R0,Tn) ≤ H (q | m⊗m) . (7.3.6)

We may assume H (q|m ⊗ m) < ∞ otherwise the above inequality is trivial.
Note that this implies q ∈ P2(R

4d) since µ, ν ∈ P2(R
d) (cf. (7.2.3)) while∫

Rd
|v|2 d(projv1

)#q ≤ 2
∫

Rd
|v|2 dmV + 2 W2((projv1

)#q,mV)
2

(7.2.2)
≲ 1 + H ((projv1

)#q|mV) ≤ 1 +H (q|m⊗m) < ∞ ,

and similarly for the measure (projv2
)#q. Then we have

H (q | R0,Tn) = H (q | m⊗m)−
∫

R2d×R2d
log pTn

(
(x, v), (y, w)

)
dq ,

Thanks to the lower bound given in Lemma 7.2.1 and the fact that q ∈ P2(R
4d),

we can apply Fatou’s Lemma and get

lim sup
n→∞

H (q | R0,Tn) ≤ H (q | m⊗m)−
∫

R2d×R2d
lim inf

n→∞
log pTn dq . (7.3.7)
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Now, for all t > 0 and for all (x, v), (y, w) ∈ R2d

pTn

(
(x, v), (y, w)

)
= PTn−t

(
pt
(
· , (y, w)

))
(x, v) .

For any M > 0, we introduce the function pM
t (· , (y, w)) := pt(· , (y, w)) ∧ M ∈

Cb(R
2d). Then, since PT is strongly mixing (cf. [DPZ14, Theorem 11.14]), we

get

pTn

(
(x, v), (y, w)

)
≥ PTn−t

(
pM

t
(
· , (y, w)

))
(x, v)

n→∞
−−−−→

∫
R2d

pM
t
(
(x, v), (y, w)

)
dm(x, v) .

Taking the limit as M → ∞, by dominated convergence we get that∫
R2d

pM
t
(
(x, v), (y, w)

)
dm(x, v)

M→∞
−−−−→

∫
R2d

pt
(
(x, v), (y, w)

)
dm(x, v) = 1 ,

where the last equality follows from (7.2.9). Therefore it holds

lim inf
n→∞

log pTn

(
(x, v), (y, w)

)
≥ 0 , m⊗m− a.s.

which, together with q ≪ m⊗m (since H (q | m⊗m) < ∞), leads to

lim inf
n→∞

log pTn

(
(x, v), (y, w)

)
≥ 0 , q-a.s.

Therefore, from (7.3.7) we get inequality (7.3.6). The desired Γ-convergence
follows as a byproduct of (7.3.5) and (7.3.6).

As a consequence of the Γ-convergence, we deduce the last two claims as
follows. Firstly note that the unique minimiser in (7.3.2) is given the probability
measure π∞ := (µ ⊗mV)⊗ (ν ⊗mV). Now let us consider (Tn)n∈N to be any
diverging sequence of positive real times. Then, from the optimality of πTn it
follows

lim sup
n→∞

H (πTn |R0,Tn) ≤ lim sup
n→∞

H (π∞|R0,Tn)
(7.3.6)
≤ H (π∞|m⊗m)

= H (µ | mX) +H (ν | mX),

which is finite by our assumptions. Then Lemma 7.3.1 implies that the subse-
quence (πTn)n∈N is weakly relatively compact. Then, from the Fundamental
Theorem of Γ-convergence [Bra06, Theorem 2.10], the uniqueness of the min-
imiser in (7.3.2) and from the metrizability of the weak convergence on P(R4d)
we deduce (7.3.3) and (7.3.4).

Even though here we are just interested in the Γ-convergence (as introduced
by De Giorgi) on ΠX(µ, ν) equipped with the weak topology, the previous re-
sult is actually stronger: indeed we have actually proven the Mosco conver-
gence of the functional H (· | R0,Tn) since we have considered a constant se-
quence qn = q for the upper bound inequality.
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Remark 7.3.3. Equation (7.3.4) implies in particular that µT
0 ⇀ µ ⊗ mV and that

µT
T ⇀ ν⊗mV . This convergence is also exponential, as we will show in Theorem 7.4.5.

The same reasoning applies to the full-setting in KFSP. We omit the proof of
the next result since it runs similarly to the one given above in the kinetic set-
ting. The main difference is that in this case the equicoerciveness is not needed
since we have the weak compactness of Π (µ̄, ν̄).

Theorem 7.3.4. Assume (H1) and (FH3). Let (Tn)n∈N be a sequence of positive real
numbers converging to ∞, and for each n ∈ N consider the functional H (· | R0,Tn)
defined on Π(µ̄, ν̄) endowed with the weak topology. Then

Γ − lim
n→∞

H (·|R0,Tn) = H (·|m⊗m) .

As a direct consequence, we obtain that

lim
T→∞

CF
T (µ̄, ν̄) = H (µ̄|m) +H (ν̄|m) < ∞ , (7.3.8)

and that as T → ∞ it holds

π̄T ⇀ µ̄ ⊗ ν̄ ∈ Π (µ̄, ν̄) weakly. (7.3.9)

7.4 Corrector estimates

In the remaining part of this chapter we are going to prove quantitative esti-
mates for (7.3.3), (7.3.4), (7.3.8) and (7.3.9). Throughout we assume (H1), (H2)
and (H4) to be true and we will point out whenever the latter can be relaxed
to (H3) for KSP. Let us start by defining a few key objects whose behaviour
will help us in controlling the convergence rates for the turnpike property. We
define the correctors as the functions φT , ψT : [0, T] → R given by

φT(s) :=
∫

R2d

∣∣∣∇ log f T
s

∣∣∣2
N−1

ρT
s dm and ψT(s) :=

∫
R2d

∣∣∣∇ log gT
s

∣∣∣2
M−1

ρT
s dm ,

where M, N ∈ R2d×2d are the matrices appearing in Proposition 7.2.2. Let
us also note that by the f g-decomposition it follows I(µT

s ) ≲ φT(s) + ψT(s).
Notice that, besides the change of metric induced by the matrices M, N, the
above quantities are the analogous of the correctors considered in Section 3.1
and the next result provides a kinetic version of (3.1.7) in Proposition 3.1.2.
More precisely, with the next lemma we show that the contractive properties
introduced in Section 7.2.3 translate into an exponentially fast contraction for
the correctors.

Lemma 7.4.1. Under (H1), (H2) and (H4), for any 0 < t ≤ s ≤ T it holds

φT(s) ≤ φT(t)e−2κ(s−t) and ψT(T − s) ≤ ψT(T − t)e−2κ(s−t) . (7.4.1)
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Proof. By definition f T
s = P∗

s−t f T
t and thus

φT(s) =
∫

R2d

∣∣∣∇ log f T
s

∣∣∣2
N−1

ρT
s dm =

∫
R2d

∣∣∣∇P∗
s−t f T

t

∣∣∣2
N−1

(P∗
s−t f T

t )
−1gT

s dm

An application of the gradient estimate (7.2.13) and Cauchy-Schwartz inequal-
ity yields

φT(s)
(7.2.13)
≤ e−2κ(s−t)

∫
R2d

(
P∗

s−t

∣∣∣∇ f T
t

∣∣∣
N−1

)2
(P∗

s−t f T
t )

−1PT−sgT dm

≤ e−2κ(s−t)
∫

R2d
P∗

s−t

(∣∣∇ f T
t
∣∣2

N−1

f T
t

)
PT−sgT dm

= e−2κ(s−t)
∫

R2d

∣∣∣∇ log f T
t

∣∣∣2
N−1

ρT
t dm ≤ e−2κ(s−t)φT(t),

which concludes the proof for the first inequality. The analogous inequality for
ψT runs as above by using inequality (7.2.12) for the semigroup (Pt)t∈[0,T].

Proposition 7.4.2. Grant (H1), (H2) and (H4). There exists Cd,α,β,γ > 0 such that
for any 0 < δ ≤ 1 and for any t ∈ [δ, T], as soon as T > 1

κ log Cd,α,β,γ + 2δ, it holds

φT(t) ≲ e−2κt
[
I
(

µT
δ

)
+ I

(
µT

T−δ

)]
,

ψT(T − t) ≲ e−2κt
[
I
(

µT
δ

)
+ I

(
µT

T−δ

)]
.

(7.4.2)

Proof. Without loss of generalities we may assume I
(
µT

δ

)
and I

(
µT

T−δ

)
to be

finite, otherwise the above bounds are trivial. From Lemma 7.4.1 and the f g-
decomposition of ρT

t = f T
t gT

t we know that

φT(T − δ) ≤ e−2κ T+4κδ φT(δ)

= e−2κ T+4κδ
∫ ∣∣∣∇ log ρT

δ −∇ log gT
δ

∣∣∣2
N−1

dµT
δ

≲ e−2κ T+4κδI
(

µT
δ

)
+ e−2κ T+4κδψT(δ)

≲ e−2κ T+4κδI
(

µT
δ

)
+ e−4κ T+8κδψT(T − δ) .

Using the basic inequality |a − b|2 ≥ a2/2 − b2 we obtain

φT(T − δ) =
∫

R2d

∣∣∣∇ log gT
T−δ −∇ log ρT

T−δ

∣∣∣2
N−1

dµT
T−δ

≳ψT(T − δ)− 2I
(

µT
T−δ

)
.

As a result, we get

ψT(T − δ)− 2I
(

µT
T−δ

)
≲ e−2κ T+4κδI

(
µT

δ

)
+ e−4κ T+8κδψT(T − δ) .
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Therefore, as soon as T > 1
κ log Cd,α,β,γ + 2δ for some constant Cd,α,β,γ > 0, we

find

ψT(T − δ) ≲ I
(

µT
δ

)
+ I

(
µT

T−δ

)
.

Plugging this bound into the contraction estimate (7.4.1) gives the second in-
equality in (7.4.2) for any t ∈ [δ, T]. The first inequality is obtained by exchang-
ing the roles of φ and ψ in the above discussion.

The above results already provides us a uniform in time bound for the
Fisher information along Schrödinger bridges.

Proposition 7.4.3. Assume (H1), (H2) and (H3). Let 0 < δ ≤ 1 be fixed. Then, for
all t ∈ [δ, T − δ]

I(µT
t ) ≲ δ−3

(
CT(µ, ν)−H (µT

t | m)
)

.

Proof. Let us first work under (H4). We claim that for any t ∈ [δ, T − δ] it holds

∣∣∣∇PT−tgT
∣∣∣2 ≲ δ−3

[
PT−t(gT log gT)− (PT−t gT) log(PT−t gT)

]
PT−t gT .

(7.4.3)
Indeed by applying Corollary 3.2 in [GW12] to any directional derivative we
have∣∣∣∂xi PT−tgT

∣∣∣2
≤ 4 inf

s∈(0,T−t]
Ψs(1, 0)

[
PT−t(gT log gT)− (PT−t gT) log(PT−t gT)

]
PT−t gT ,∣∣∣∂vi PT−tgT

∣∣∣2
≤ 4 inf

s∈(0,T−t]
Ψs(0, 1)

[
PT−t(gT log gT)− (PT−t gT) log(PT−t gT)

]
PT−t gT ,

where Ψs(a, b) is defined for any a, b > 0 as the quantity

Ψs(a, b) :=
1

2γ
s
[

a
(

6
s2 + β +

3γ

2s

)
+ b

(
4
s
+

4β

27
s + γ

)]2
.

By considering s = δ ∈ (0, 1] we can bound the above RHS with δ−3, up to a
multiplicative constant. Particularly this yields (7.4.3). Similarly one can prove
that it holds∣∣∣∇P∗

t f T
∣∣∣2 ≲ δ−3

[
P∗

t ( f T log f T)− (P∗
t f T) log(P∗

t f T)
]

P∗
t f T .
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Therefore because of the f g-decomposition (7.2.21) we obtain

I(µT
t ) ≤ 2

∫
R2d

[ ∣∣∇PT−tgT
∣∣2

PT−tgT P∗
t f T +

∣∣∇P∗
t f T

∣∣2
P∗

t f T PT−tgT

]
dm

≲ δ−3
∫

R2d

{[
PT−t(gT log gT)− (PT−t gT) log(PT−t gT)

]
P∗

t f T

+
[

P∗
t ( f T log f T)− (P∗

t f T) log(P∗
t f T)

]
PT−tgT

}
dm

By integrating by parts and (7.2.21) this last displacement equals

δ−3
( ∫

Rd
log gT dν +

∫
Rd

log f T dµ −
∫

R2d
log ρT

t ρT
t dm

)
,

and the thesis follows in view of (7.2.25).
Now let us just assume (H3). Firstly, define the probability measure qT

n as
the measure whose R0,T-density is given by

dqT
n

dR0,T
:=
(

ρT ∧ n
) 1Kn

Cn
, (7.4.4)

where (Kn)n∈N is an increasing sequence of compact sets in R4d and Cn is
the normalising constant. Then, by applying Lemma 7.A.1 we know that the
marginals µn := (projx1

)#qT
n and νn := (projx2

)#qT
n satisfy (H4) and by means of

Proposition 7.A.2 and Corollary 7.A.3 it follows that there exists a unique min-
imiser Pn,T ∈ P(Ω2d) for KSP with marginals µn, νn, and as soon as n diverges
it holds

µn,T
t ⇀ µT

t and CT (µn, νn) → CT (µ, ν) . (7.4.5)

Then, the thesis in the general case follows from the one under (H4) and the
lower semicontinuity of I(·) and H (·|m).

The presence of the factor δ−3 in the previous result should not be surpris-
ing: indeed the more we get close to the extremes t = 0, T the worse we expect
this bound to behave. Indeed we do not have any a priori information on the
Fisher information of the two prescribed marginals µ, ν which could possibly
be infinite. Moreover, since the velocities are not fixed at time t = 0, T, even
assuming I(µ), I(ν) to be finite, yet we are not guaranteed a priori bounds on
the Fisher information of the full marginals µT

0 , µT
T .

As a byproduct of Proposition 7.4.2 and Proposition 7.4.3 we get

Corollary 7.4.4. Under (H1), (H2) and (H4), there exists Cd,α,β,γ > 0 such that for
any 0 < δ ≤ 1 and t ∈ [δ, T], as soon as T > 1

κ log Cd,α,β,γ + 2δ, it holds

φT(t) ≲ δ−3 e−2κt CT(µ, ν) and ψT(T − t) ≲ δ−3 e−2κt CT(µ, ν) . (7.4.6)
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Let us now draw a few useful consequences from the above correctors esti-
mates. In the first result we consider the long-time behaviour of the marginals
of the solution to KSP at times t = 0, T; in the second one we give a bound for
the entropic cost, uniformly in time.

Theorem 7.4.5. Under assumptions (H1),(H2) and (H4) there exists a positive con-
stant Cd,α,β,γ such that for any 0 < δ ≤ 1 and T > 1

κ log Cd,α,β,γ + 2δ it holds∣∣∣H (µT
0 |m)−H (µ|mX)

∣∣∣ ≤ Cd,α,β,γ δ−3 CT(µ, ν) e−2κ T ,∣∣∣H (µT
T |m)−H (ν|mX)

∣∣∣ ≤ Cd,α,β,γ δ−3 CT(µ, ν) e−2κ T .
(7.4.7)

Proof. We will prove only the first bound since the second one can be proven
similarly. Since dµ

dmX
(·) =

∫
Rd ρT

0 (·, v)dmV(v), the log-Sobolev inequality for the
Gaussian measure mV gives

H (µT
0 |m)−H (µ|mX)

=
∫

Rd

[∫
Rd

ρT
0 log ρT

0 −
(∫

Rd
ρT

0 dmV

)
log
(∫

Rd
ρT

0 dmV

)
dmV

]
dmX

≤
∫

Rd

[∫
Rd

∣∣∣∇v

√
ρT

0

∣∣∣2 dmV

]
dmX =

∫
R2d

1
2

∣∣∣∣∣∇vρT
0

ρT
0

∣∣∣∣∣
2

ρT
0 dm

=
1
2

∫
R2d

∣∣∣∇v log( f T PT gT)
∣∣∣2 ρT

0 dm

=
1
2

∫
R2d

∣∣∣∇v log f T +∇v log PT gT
∣∣∣2 ρT

0 dm

=
1
2

∫
R2d

∣∣∣∇v log gT
0

∣∣∣2 ρT
0 dm ≲ ψT(0)

(7.4.6)
≲ δ−3 CT(µ, ν) e−2κ T ,

where the equality in the last line follows from the fact that f T = f T(x) does
not depend on the velocity variable. Finally, since (projx)# µT

0 = µ we know
that the left hand side term above is positive.

The above result can be seen as an entropic exponential convergence esti-
mate for the convergence of the full-marginals at time t = 0, T towards the
independent couplings µ ⊗mV and ν ⊗mV respectively (as pointed out in Re-
mark 7.3.3).

Since it holds H (µ|mX) = H
(
(X0)#πT |(X0)#R0,T

)
≤ H

(
πT |R0,T

)
=

CT(µ, ν), and similarly H (ν|mX) ≤ CT(µ, ν), the following lower bound is al-
ways true

CT(µ, ν) ≥ H (µ|mX) +H (ν|mX)

2
.

We now give a corresponding upper bound for sufficiently large times.
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Lemma 7.4.6. Under (H1) and (H2) there exists a constant Cd,α,β,γ > 0 such that for

any 0 < δ ≤ 1 and T > ( 1
κ log Cd,α,β,γ + 2δ) ∨

( 1
κ log

Cd,α,β,γ
δ3

)
it holds

CT(µ, ν) ≤ Cd,α,β,γ

[
H (µ|mX) +H (ν|mX)

]
. (7.4.8)

Proof. Firstly, let us assume (H4) to hold. Owing to the bounds |∇v log gT
s |2 ≲

|∇ log gT
s |2M−1 and |∇v log f T

s |2 ≲ |∇ log f T
s |2N−1 , from (7.2.27) it follows

CT(µ, ν) ≤ H (µT
0 |m) +H (µT

T |m) +
∫ T

2

0
ψT(s)ds +

∫ T

T
2

φT(s)ds

(7.4.7)
≲ H (µ|mX) +H (ν|mX) + 2 δ−3 CT(µ, ν) e−2κ T +

∫ T
2

0
ψT(s)ds

+
∫ T

T
2

φT(s)ds .

We first consider
∫ T

T/2 φT(s)ds. For any s ∈ [T/2, T] from Corollary 7.4.4
we have∫ T

T
2

φT(s)ds ≲ δ−3 CT(µ, ν)
∫ T

T
2

e−2κ s ds ≲ δ−3 CT(µ, ν)
(
e−κ T − e−2κ T) .

(7.4.9)
By reasoning in the same way, this time by using the fact that s ∈ [0, T/2],

we get∫ T
2

0
ψT(s)ds ≲ δ−3 CT(µ, ν)

∫ T
2

0
e−2κ (T−s) ds ≲ δ−3 CT(µ, ν)

(
e−κ T − e−2κ T) .

(7.4.10)
Therefore there exists a positive constant Cd,α,β,γ such that

CT(µ, ν) ≤ Cd,α,β,γ

[
H (µ|mX) +H (ν|mX) + δ−3 CT(µ, ν)

(
e−κ T − e−2κ T)],

which yields our thesis as soon as T > 1
κ log

Cd,α,β,γ
δ3 for a well chosen Cd,α,β,γ > 0.

Now, let us prove the result under (H2). Firstly, notice that we may assume
that µ and ν satisfy (H3), otherwise the bound is trivial. The main idea is defin-
ing the probability measures µM

n and νM
n on Rd, approximating µ and ν, as the

measures whose mX-densities are given by

dµM
n

dmX
:=
(

dµ

dmX
∧ n
)

1Kn

Cµ
n

and
dνM

n
dmX

:=
(

dν

dmX
∧ n
)

1Kn

Cν
n

, (7.4.11)

where (Kn)n∈N is an increasing sequence of compact sets in Rd and Cµ
n , Cν

n
are the normalising constants. Then, µM

n and νM
n satisfy (H4) and by means of

(7.A.2) it follows

H (µM
n |mX)

n→∞−→ H (µ|mX) and H (νM
n |mX)

n→∞−→ H (ν|mX) . (7.4.12)
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Owing to Lemma 7.A.4 and (7.4.8) for the approximated µM
n , νM

n , we conclude
our proof.

The results given in Theorem 7.4.5 and Lemma 7.4.6 will come at hand while
proving the turnpike property in Section 7.5.

Corrector estimates in the kinetic-full setting

In this section we collect results in the kinetic-full setting analogous to the
ones already presented above for KSP. We omit the proofs since the arguments
are very similar to the one already seen. Throughout we assume (H1), (H2)
and (FH4) to be true and we will point out whenever the latter can be relaxed
to (FH3)

Therefore, let us define the correctors as the functions φ̄T , ψ̄T : [0, T] → R

given by

φ̄T(s) :=
∫

R2d
|∇ log f̄ T

s |2N−1 ρ̄T
s dm and ψ̄T(s) :=

∫
R2d

|∇ log ḡT
s |2M−1 ρ̄T

s dm ,

where M, N ∈ R2d×2d are positive definite symmetric matrices as appearing
in Proposition 7.2.2. In the next result we collect all the contractive properties
satisfied by the above correctors, which correspond to the ones proven for KSP
in Lemma 7.4.1, Proposition 7.4.2, Proposition 7.4.3 and Corollary 7.4.4.

Lemma 7.4.7. Grant (H1), (H2), (FH4) and fix δ ∈ (0, 1]. For any 0 < t ≤ s ≤ T it
holds

φ̄T(s) ≤ φ̄T(t)e−2κ (s−t) and ψ̄T(T − s) ≤ ψ̄T(T − t)e−2κ (s−t) .

Moreover, for any fixed δ ∈ (0, 1] as soon as T > 1
κ log Cd,α,β,γ + 2δ the followings

hold true
φ̄T(t) ≲ e−2κt

[
I
(

µ̄T
δ

)
+ I

(
µ̄T

T−δ

)]
∀t ∈ [δ, T] ,

ψ̄T(T − t) ≲ e−2κt
[
I
(

µ̄T
δ

)
+ I

(
µ̄T

T−δ

)]
∀t ∈ [δ, T] ,

I(µ̄T
t ) ≲ δ−3

(
CF

T(µ̄, ν̄)−H (µ̄T
t | m)

)
∀t ∈ [δ, T − δ] ,

φ̄T(t) ≲ δ−3 e−2κ t CF
T (µ̄, ν̄) and ψ̄T(T − t) ≲ δ−3 e−2κ t CF

T (µ̄, ν̄) ∀t ∈ [δ, T] .
(7.4.13a)

Clearly there is no kinetic-full equivalent statement of Theorem 7.4.5 since
µ̄T

0 = µ̄ and µ̄T
T = ν̄.

The analogous of Lemma 7.4.6 in the full setting can be shown under (H1)
and (H2) following the same approach. Hence, it holds

Lemma 7.4.8. Under (H1) and (H2) there exists a constant Cd,α,β,γ > 0 such that for

any 0 < δ ≤ 1 and T > ( 1
κ log Cd,α,β,γ + 2δ) ∨

( 1
κ log

Cd,α,β,γ
δ3

)
it holds

CF
T (µ̄, ν̄) ≤ Cd,α,β,γ

[
H (µ̄|m) +H (ν̄|m)

]
.
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7.5 Exponential turnpike results

One of the main contributions of this chapter are the upcoming quantitative
results on the long-time behaviour of Schrödinger bridges, which imply in par-
ticular exponential convergence to m when looking at timescales of order T
and exponential convergence in T to the Langevin dynamics when looking at
the Schrödinger bridge over a fixed time-window [0, t].

Below we propose two turnpike results in which distance from equilibrium
is measured through the relative entropy H (·|m) and the Fisher information
I(·). The use of H (·|m) is natural in light of the fact that the costs CT(µ, ν)
and CF

T(µ̄, ν̄) are also relative entropies, but computed on different spaces. On
the other hand, the bound on I(·) is reminiscent of the celebrated Bakry-Émery
estimates [BÉ85] and the CD gradient estimates (2.1.12).

Theorem 7.5.1 (Entropic turnpike for KSP). Grant (H1), (H2) and (H3). There
exists a positive constant Cd,α,β,γ such that for any 0 < δ ≤ 1 and t ∈ [δ, T − δ], as
soon as T > 1

κ log Cd,α,β,γ + 2δ, it holds

I(µT
t ) ≤ Cd,α,β,γ δ−3 e−2κ[t∧(T−t)] CT(µ, ν) , (7.5.1)

H (µT
t |m) ≤ Cd,α,β,γ δ−3 e−2κ[t∧(T−t)] CT(µ, ν) . (7.5.2)

Moreover, as soon as T > ( 1
κ log Cd,α,β,γ + 2δ) ∨ 1

κ log
Cd,α,β,γ

δ3 , we have

H (µT
t |m) ≤ Cd,α,β,γ δ−3 e−2κ[t∧(T−t)]

[
H (µ|mX) +H (ν|mX)

]
. (7.5.3)

Proof. We start proving the result under (H4). Since I(µT
t ) ≲ φT(t) +ψT(t), the

first inequality (cf. (7.5.1)) is an immediate consequence of Corollary 7.4.4. The
relative entropy bound (cf. (7.5.2)) follows from the first one by means of (7.2.4).
In order to extend (7.5.1) and (7.5.2) to (H3), it is enough to consider the approx-
imation of the optimiser (cf. (7.4.4) and (7.4.5)) together with the lower semi-
continuity of I(·) and H (·|m). Finally, (7.5.3) follows from (7.5.2) by means of
Lemma 7.4.6.

Remark 7.5.2. The bound on the Fisher information is our strongest result as it implies
immediately an entropic bound thanks to the logarithmic Sobolev inequality (7.2.4).
Moreover, entropic bounds are stronger than bounds expressed by means of a transport
distance such as W1 or W2, since m satisfies Talagrand’s inequality (7.2.2).

Theorem 7.5.3 (Entropic turnpike for KFSP). Grant (H1), (H2) and (FH3).There
exists a positive constant Cd,α,β,γ such that for any 0 < δ ≤ 1 and t ∈ [δ, T − δ], as
soon as T > 1

κ log Cd,α,β,γ + 2δ, it holds

I(µ̄T
t ) ≤ Cd,α,β,γ δ−3 e−2κ[t∧(T−t)] CF

T(µ̄, ν̄) ,



202 CHAPTER 7. THE KINETIC SCHRÖDINGER PROBLEM

H (µ̄T
t |m) ≤ Cd,α,β,γ δ−3 e−2κ[t∧(T−t)] CF

T(µ̄, ν̄) . (7.5.4)

Moreover, as soon as T > ( 1
κ log Cd,α,β,γ + 2δ) ∨ 1

κ log
Cd,α,β,γ

δ3 , we have

H (µ̄T
t |m) ≤ Cd,α,β,γ δ−3 e−2κ[t∧(T−t)]

[
H (µ̄|m) +H (ν̄|m)

]
. (7.5.5)

Proof. The proof of the result under (FH4) follows the same reasoning presented
in the first part of the proof of Theorem 7.5.1 and for this reason is omitted. An
approximating argument akin to the one in the proof of Theorem 7.5.1, this time
considering the full marginals µ̄n, ν̄n and the corresponding KFSP, gives

µ̄n,T
t ⇀ µ̄T

t and CF
T (µ̄n, ν̄n) → CF

T (µ̄, ν̄) .

Therefore the first two bounds follow from the lower semicontinuity of I(·)
and H (·|m). Finally, (7.5.5) follows from (7.5.4) by means of Lemma 7.4.8.

Finally, let us provide quantitative exponential versions of Theorem 7.3.2
and Theorem 7.3.4. The key ingredient in the proof of the exponential estimates
is the representation formula for the difference

CT (µ, ν)−H (µ|mX)−H (ν|mX)

that we have established in Lemma 7.2.5 and allows to profit from the turnpike
estimates in Theorem 7.5.1 and Theorem 7.5.3.

Theorem 7.5.4. Grant (H1), (H2) and (H3). Then there exists a positive constant
Cd,α,β,γ (depending only on d, α, β and γ) such that for any 0 < δ ≤ 1, as soon as

T > ( 1
κ log Cd,α,β,γ + 2δ) ∨ 1

κ log
Cd,α,β,γ

δ3 , it holds

|CT (µ, ν)−H (µ|mX)−H (ν|mX) |

≤Cd,α,β,γ δ−3 e−κ T
[
H (µ|mX) +H (ν|mX)

] (7.5.6)

and as a consequence the following entropic Talagrand inequality holds

CT (µ, ν) ≤
(

1 + Cd,α,β,γ δ−3 e−κ T
) [

H (µ|mX) +H (ν|mX)

]
.

Proof. Firstly, assume (H4) to hold. By (7.2.27) and owing to the trivial bounds
|∇v log gT

s |2 ≲ |∇ log gT
s |2M−1 and |∇v log f T

s |2 ≲ |∇ log f T
s |2N−1 , we know that

∣∣∣CT(µ, ν)−H (µT
0 |m)−H (µT

T |m)
∣∣∣ ≲ H (µT

T
2
|m) +

∫ T
2

0
ψT(s)ds

+
∫ T

T
2

φT(s)ds,



7.5. EXPONENTIAL TURNPIKE RESULTS 203

and from (7.4.9), (7.4.10) and the entropic turnpike (7.5.2) it follows∣∣∣CT(µ, ν)−H (µT
0 |m)−H (µT

T |m)
∣∣∣ ≲ δ−3 e−κ T CT(µ, ν) + δ−3 CT(µ, ν) e−κ T .

As a byproduct of the above inequality and Theorem 7.4.5 we get

|CT (µ, ν)−H (µ|mX)−H (ν|mX)| ≤ Cd,α,β,γ δ−3 e−κ T CT(µ, ν), (7.5.7)

which combined with Lemma 7.4.6 proves (7.5.6) under (H4).
Let us now assume that µ and ν satisfy (H3) only. Firstly, consider the ap-

proximating sequence (πT
n )n∈N of the optimiser (cf. (7.4.4) and (7.4.5)). Then,

by means of (7.5.7) under (H4) and the lower semicontinuity of the relative en-
tropy we have

H (µ|mX) +H (ν|mX)− CT (µ, ν)

(7.4.5)
≤ lim inf

n→∞

[
H (µn|mX) +H (νn|mX)− CT (µn, νn)

]
(7.5.7)
≲ δ−3e−κ T lim inf

n→∞
CT(µ

n, νn) = δ−3e−κ T CT(µ, ν)

(7.4.8)
≲ δ−3 e−κ T

[
H (µ|mX) +H (ν|mX)

]
.

For the other bound we are going to use the approximation on the marginals
(cf. (7.4.11)). Therefore, let us consider µM

n , νM
n such that (H4) holds. Then, from

Lemma 7.A.4 and the convergence of the relative entropies in (7.4.12), we get

CT (µ, ν)−H (µ|mX)−H (ν|mX)

≤ lim inf
n→∞

[
CT(µ

M
n , νM

n )− H (µM
n |mX)−H (νM

n |mX)

]
(7.5.7)
≲ δ−3 e−κ T lim inf

n→∞
CT

(
µM

n , νM
n

)
(7.4.8)
≲ δ−3 e−κ T lim inf

n→∞

[
H
(

µM
n |mX

)
+H

(
νM

n |mX

)]
= δ−3 e−κ T

[
H (µ|mX) +H (ν|mX)

]
.

Theorem 7.5.5. Grant (H1), (H2) and (FH3). Then there exists a positive constant
Cd,α,β,γ such that for any 0 < δ ≤ 1, as soon as T > ( 1

κ log Cd,α,β,γ + 2δ) ∨
1
κ log

Cd,α,β,γ
δ3 , it holds∣∣∣CF

T (µ̄, ν̄)−H (µ̄|m)−H (ν̄|m)
∣∣∣ ≤ Cd,α,β,γ δ−3 e−κ T

[
H (µ̄|m) +H (ν̄|m)

]
,



204 CHAPTER 7. THE KINETIC SCHRÖDINGER PROBLEM

and as a consequence the following entropic Talagrand inequality holds

CF
T (µ̄, ν̄) ≤

(
1 + Cd,α,β,γ δ−3 e−κ T

) [
H (µ̄|m) +H (ν̄|m)

]
. (7.5.8)

Proof. By means of (7.2.29), the corrector estimates (7.4.13a), the turnpike es-
timate (7.5.4) and Lemma 7.4.8, at least under (FH4), it follows that for any

0 < δ ≤ 1, as soon as T > ( 1
κ log Cd,α,β,γ + 2δ) ∨ 1

κ log
Cd,α,β,γ

δ3 ,

∣∣∣CF
T (µ̄, ν̄)−H (µ̄|m)−H (ν̄|m)

∣∣∣ ≤ Cd,α,β,γ δ−3 e−κ T
[
H (µ̄|m) +H (ν̄|m)

]
,

and from this immediately deduce (7.5.8). The extension to (FH3) is a conse-
quence of a standard approximation argument.

7.5.1 Wasserstein convergence over a fixed time-window

In this section we show in Theorem 7.5.6 that the entropic interpolations for KSP
and KFSP enjoy a turnpike property with respect to the Wasserstein distance.

Notice that a turnpike property in the Wasserstein distance could be de-
duced from the entropic one (cf. Theorem 7.5.1 and Theorem 7.5.3) by means of
the Talagrand inequality (7.2.2). However, below we provide a different proof
that is of independent interest for two reasons. Firstly, the inequality below
holds for any t ∈ [0, T], while the entropic turnpike is restricted to the sub-
interval [δ, T − δ]. Secondly, the argument in the proof, which uses the optimal
control formulation of the Schrödinger problem, will be instrumental for the
study of the short-time behaviour of the Schrödinger bridge.

Theorem 7.5.6 (Wasserstein turnpike). Under hypotheses (H1), (H2) and (H3),
there exists a positive constant Cd,α,β,γ such that for any 0 < δ ≤ 1, as soon as
T > 1

κ log Cd,α,β,γ + 2δ, for any t ∈ [0, T] it holds

W2(µ
T
t , m) ≤ Cd,α,β,γ δ−

3
2 e−κ [t∧(T−t)]

√
CT(µ, ν) .

Proof. Let us firstly assume (H4). We we will prove our result for the distorted
Wasserstein distance WM,2 induced by the metrics |·|M. Fix δ ∈ (0, 1) and as-
sume t ∈ [0, T − δ]. Define µ̃T

· as the marginal flow generated by the uncon-
trolled process Z0,T

s := (X0,T
s , V0,T

s )s∈[0,T] solution of (7.0.2) started at the initial
distribution µT

0 ∈ P(R2d). Then, since µ̃T
0 = µT

0 , it holds

WM,2(µ
T
t ,m) ≤ WM,2(µ

T
t , µ̃T

t ) + WM,2(µ̃
T
t ,m)

(7.2.14)
≤ WM,2(µ

T
t , µ̃T

t ) + e−κ t WM,2(µ
T
0 ,m) ,

(7.5.9)
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The second term in the right hand side can be handled with the Talagrand in-
equality:

WM,2(µ
T
0 ,m) ≲ W2(µ

T
0 ,m)

(7.2.2)
≲

√
H (µT

0 |m) ≤
√
CT(µ, ν) ,

where the last step holds since CT(µ, ν) ≥ H
(
(projx1

)#πT |(projx1
)#R0,T

)
.

Let us now focus on WM,2(µ
T
t , µ̃T

t ). We will use a synchronous coupling
between these two measures. Therefore let us introduce the process Zu,T

s :=
(Xu,T

s , Vu,T
s ) ∼ µT

s , i.e., the solution of (7.1.2) (driven by the same Brownian
motion for Z0,T

s ) when considering the control us = 2γ∇v log gT
s (Xu,T

s , Vu,T
s ).

Particularly, from (7.2.22) it follows that u is the optimal control and Zu,T
s ∼ µT

s .
For notation’s sake set Z∆,T

s := Zu,T
s − Z0,T

s . Then it holds

dZ∆,T
s =

[
b
(

Zu,T
s

)
− b

(
Z0,T

s

)]
ds +

(
0
us

)
ds ,

where b(z) denotes the drift of the Langevin dynamics (7.0.2). By Itô’s Formula
we obtain

d
∣∣∣Z∆,T

s

∣∣∣2M = 2MZ∆
s ·
(

b(Zu
s )− b(Z0

s )
)

ds + 2MZ∆
s ·
(

0
us

)
ds

= 2
∫ 1

0
Z∆,T

s · MJb

(
rZu,T

s + (1 − r)Z0,T
s

)
Z∆,T

s drds + 2MZ∆,T
s ·

(
0
us

)
ds

≤ −2 κ
∣∣∣Z∆,T

s

∣∣∣2
M

ds + 2MZ∆,T
s ·

(
0
us

)
ds ,

where the last inequality follows from (7.2.11). By taking the expectation, and
applying Hölder’s inequality we get

d
ds

ER

[∣∣∣Z∆,T
s

∣∣∣2
M

]
≤ −2 κ ER

[∣∣∣Z∆,T
s

∣∣∣2
M

]
+ 2ER

[∣∣∣Z∆,T
s

∣∣∣2
M

] 1
2

ER

[∣∣∣(0, us)
T
∣∣∣2

M

] 1
2

.

Therefore it holds

d
ds

√
ER

[∣∣Z∆,T
s
∣∣2

M

]
≤ −κ

√
ER

[∣∣Z∆,T
s
∣∣2

M

]
+ ER

[∣∣∣(0, us)
T
∣∣∣2

M

] 1
2

.

Recalling that the optimal control is given by us = 2γ∇v log gT
s (Xu,T

s , Vu,T
s ) we

obtain that

d
ds

√
ER

[∣∣Z∆,T
s
∣∣2

M

]
≲
(∫

R2d

∣∣∣∇v log gT
s

∣∣∣2 ρT
s dm

) 1
2
≲ ψT(s)

1
2 .

Therefore, by integrating over s ∈ [0, t] we get√
ER

[∣∣Z∆,T
t
∣∣2

M

]
=
∫ t

0

d
ds

√
ER

[∣∣Z∆,T
s
∣∣2

M

]
ds

(7.4.6)
≲ δ−

3
2 e−κ (T−t)

√
CT(µ, ν) ,



206 CHAPTER 7. THE KINETIC SCHRÖDINGER PROBLEM

and hence it holds

WM,2(µ
T
t , µ̃T

t ) ≲ δ−
3
2 e−κ (T−t)

√
CT(µ, ν) . (7.5.10)

Then, from (7.5.9) we deduce that for any t ∈ [0, T − δ] it holds

WM,2(µ
T
t ,m) ≲ δ−

3
2 e−κ (T−t)

√
CT(µ, ν) + e−κ t

√
CT(µ, ν)

≲ δ−
3
2 e−κ [t∧(T−t)]

√
CT(µ, ν) .

By considering the contraction along P∗, the same argument gives us the same
bound for t ∈ [δ, T] and therefore on the whole domain [0, T].

In order to relax the assumption to (H3), it is enough to consider once again
the approximation of the optimiser (as in the proof of Theorem 7.5.1) together
with the lower semicontinuity of the Wasserstein distance.

The previous argument can also be applied in order to analyse the behaviour
of entropic interpolations for a fixed time t, while T grows large. More pre-
cisely, we show that the (uncontrolled) Langevin dynamics and the Schrödinger
bridge are exponentially close in the long-time regime T → ∞, for all time-
windows [0, t]. Note that this result cannot be deduced from the turnpike esti-
mates of the former section.

Theorem 7.5.7. Under hypotheses (H1), (H2) and (H3), there exists a positive con-
stant Cd,α,β,γ such that for any 0 < δ ≤ 1 and t ∈ [0, T − δ], as soon as T >
1
κ log Cd,α,β,γ + 2δ, it holds

W2(µ
T
t , µ∞

t ) ≤ Cd,α,β,γ δ−
3
2 e−κ(T−t)

√
CT(µ, ν) ,

where µ∞
t is the law of (X·, V·) satisfying

dXt = Vtdt,
dVt = −∇U(Xt)dt − γVtdt +

√
2γ dBt,

(X0, V0) ∼ µ ⊗mV .
(7.5.11)

Proof. At first, let us assume (H4). We have

W2

(
µT

t , µ∞
t

)
≤W2

(
µT

t , µ̃T
t

)
+ W2

(
µ̃T

t , µ∞
t

)
(7.5.10),(7.2.14)

≲ δ−
3
2 e−κ (T−t)

√
CT(µ, ν) + e−κ t W2

(
µT

0 , µ ⊗mV

)
,

(7.5.12)

where µ̃T
· is the marginal flow defined in the previous proof, i.e., the flow gen-

erated by the uncontrolled process (X0,T
s , V0,T

s )s∈[0,T] started at the initial dis-
tribution µT

0 ∈ P(R2d). Using the inequality

W2

(
µT

0 , µ ⊗mV

)2
≤
∫

Rd
W2

(
µT

0 (·|x),mV

)2
dµ(x),
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applying Talagrand’s inequality for mV and using the additive property of rel-
ative entropy (1.A.4), we obtain

W2

(
µT

0 , µ ⊗mV

)2
≤ 2

∫
Rd

H
(

µT
0 (·|x)|mV

)
dµ(x) = 2 H

(
µT

0 |µ ⊗mV

)
= 2 H (µT

0 |m)− 2
∫

R2d
log

d (µ ⊗mV)

dm
dµT

0

= 2 H (µT
0 |m)− 2

∫
Rd

log
dµ

dmX
dµ

= 2 H (µT
0 |m)− 2 H (µ|mX)

(7.4.7)
≲ δ−3 CT(µ, ν) e−2κ T .

By combining the above inequalities with (7.5.12) we get our result.
The extension of the result to the weaker (H3) follows from the same ap-

proximating argument discussed in the previous proof.

With a similar reasoning one can prove that the Wasserstein turnpike holds
also for KFSP under (FH3). Notice that since in this setting we fix the whole
marginals at time 0 and T, it holds µ̄T

0 = µ̄ and µ̄T
T = ν̄ and therefore in this

case we do not need a result similar to Theorem 7.4.5. Therefore we have the
following

Theorem 7.5.8 (Wasserstein turnpike). Under hypotheses (H1),(H2) and (FH3),
there exists a positive constant Cd,α,β,γ such that for any 0 < δ ≤ 1, as soon as
T > 1

κ log Cd,α,β,γ + 2δ, for any t ∈ [0, T] it holds

W2(µ̄
T
t , m) ≤ Cd,α,β,γ δ−

3
2 e−κ [t∧(T−t)]

√
CF

T (µ̄, ν̄) .

Similarly, we can easily prove a statement for KFSP equivalent to Theo-
rem 7.5.7 where Assumption (H3) is replaced with (FH3) and where the initial
condition in (7.5.11) is just the full fixed marginal µ̄.

Theorem 7.5.9. Under hypotheses (H1),(H2) and (FH3), there exists a positive con-
stant Cd,α,β,γ such that for any 0 < δ ≤ 1 and t ∈ [0, T − δ], as soon as T >
1
κ log Cd,α,β,γ + 2δ, it holds

W2(µ̄
T
t , µ̄∞

t ) ≤ Cd,α,β,γ δ−
3
2 e−k(T−t)

√
CF

T (µ̄, ν̄)

where µ̄∞
t is the law of (Xt, Vt) satisfying

dXt = Vtdt,
dVt = −∇U(Xt)dt − γVtdt + dBt,
(X0, V0) ∼ µ̄.
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Bibliographical Remarks

The results presented in this chapter come from [CCGR22].

Given that Schrödinger’s thought experiment is motivated by statistical me-
chanics and the physical relevance of the (underdamped) Langevin dynamics
and its various applications, the study of the kinetic Schrödinger problem ap-
pears to be quite natural. Nevertheless, to the best of our knowledge, it seems
that there has been no dedicated study so far, with the exception of [CGP15].
The objective of [CCGR22], from which this chapter is based, is to take some
steps forward in this direction, in particular by gaining a quantitative under-
standing of optimal solutions, namely the Schrödinger bridges.

Proving the turnpike property for Schrödinger bridges in this context is
harder than in the classical setting, and we need to work under stronger as-
sumptions on the potential U than its strong convexity. This is not a surprise.
Indeed, proving the exponential convergence to equilibrium for the kinetic
Fokker-Planck equation is a difficult problem that has been, and still is, inten-
sively studied by means of either a probabilistic or an analytic approach, see
[CGMZ19, EGZ19a, Tal02, GLWZ21] for some references on the probabilistic
approach. Following the terminology introduced by Villani in his monograph
[Vil09], this obstruction is a manifestation of the hypocoercive nature of the ki-
netic Fokker-Planck equation. KSP may indeed be regarded as the prototype
of an hypocoercive stochastic control problem. For the moment, we have been
able to show the turnpike property under a quasilinearity assumption. The key
assumption for obtaining (7.5.2) and (7.5.4) is (H2), asking U to be strongly con-
vex and such that the difference between the smallest and largest eigenvalues
of ∇2U(x) is controlled by the friction parameter γ uniformly in x. Assump-
tions of this type, where the friction parameter has to be in some sense large in
comparison with the spectrum of ∇2U are commonly encountered in the litera-
ture. In the language of probability, they ensure that the synchronous coupling
is contracting for the Langevin dynamics [BGM10, Mon23]. On the other hand,
from an analytical standpoint, Assumption (H2) implies local gradient bounds
for the semigroup generated by the Langevin dynamics [Bau17]. Finally, we re-
call that the exponential rate κ of Theorems 7.5.1 and 7.5.3 is precisely the one,
computed e.g. in [Mon23, BGM10], at which synchronous coupling is contrac-
tive for the (uncontrolled) Langevin dynamics.

Although exponential L2 estimates are known to hold under considerably
weaker assumptions (see e.g. [HN04] and [CHSG22, HM19] for singular poten-
tials), and entropic estimates assuming a bounded and positive Hessian have
been known for more than a decade [Vil09], it is only recently [GLWZ21] that
entropic estimates have been obtained beyond the bounded Hessian case. In
light of this, the question of how to improve our results is quite interesting and
deserves to be further investigated.

Finally, if we compare our results with what is known in deterministic con-
trol we remark that, quite curiously, exponential estimates for the deterministic
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noiseless version of (7.1.1), obtained removing the Brownian motion form the
controlled state equation, do not seem to be covered from existing results, even
in the case when µ and ν are Dirac measures.1 For linear-quadratic problems
though, the result is well known, see e.g. [BP20] for precise estimates. Theo-
rem 7.5.1 and Theorem 7.5.3 provide global turnpike estimates, that is to say we
do not ask µ and ν to be close to m. We do ask H (µ|mX), H (ν|mX) < +∞, but
this condition is very mild and necessary for the Schrödinger problem to have a
finite value. This is in contrast with most exponential turnpike estimates we are
aware of in deterministic control (see e.g. [TZ15, Theorem 1]). The passage from
local to global estimates seems to be possible [TZ18, Tré23] under some extra
assumptions, such as the existence of a storage function, but this comes at the
price of losing quite some information on the multiplicative constants appear-
ing in (7.5.2). Moreover, the condition T > 1

κ log Cd,α,β,γ + 2δ of Theorem 7.5.1
should be replaced with a condition of the form T > T0 with T0 depending on
the initial conditions and potentially very large.

1For example, if we compare with the reference work [TZ15], the matrix W defined at Eq. (10)
therein would not be invertible for the problem under consideration, which thus fails to satisfy the
hypothesis of the main turnpike result obtained there.
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Appendix 7

7.A From compact support to finite entropy

In this appendix we discuss two types of approximating sequences that we
have used in order to extend our main results from (H4) to (H3).

In Section 7.A.1 we deal with the Approximation of the optimiser where we are
able to prove the convergence of the entropic cost of the approximated prob-
lem to the original entropic cost but not the convergence of the associated en-
tropies of the marginals at time t = 0, T. On the other hand in Section 7.A.2,
we investigate the Approximation of the marginals, by approximating directly
the marginals and consider the associated Schr̈odinger problems. In this case,
we get the convergence of the marginals’ relative entropies, but not the one of
the entropic cost. The two aforementioned strategies produce complementary
bounds which can be applied together in order to relax the assumptions from
(H4) to (H3).

We will deal exclusively with the approximations and proofs for KSP and
omit those for KFSP, since the latter can be treated in the same way.

7.A.1 Approximating the optimiser

Fix a couple of marginals µ, ν ∈ P(Rd) satisfying (H3). We already know
that there exists a unique minimiser πT ∈ ΠX (µ, ν) for KSP, with R0,T-density
given by ρT . Now consider an increasing sequence of rectangular compact sets
(Kn)n∈N in R4d whose union gives the whole space. For each n ∈ N define the
probability measure qT

n as the measure whose R0,T-density is given by

ρ̂T
n =

dqT
n

dR0,T
:=
(

ρT ∧ n
) 1Kn

Cn
,

where Cn :=
∫

Kn
(ρT ∧ n)dR0,T is the normalising constant. Notice that Cn ↑ 1

by monotone convergence and ρ̂T
n → ρT . For convenience, we fix in this section

some n̄ ∈ N such that Cn ≥ 1/2 for any n ≥ n̄.

Lemma 7.A.1. The following properties hold true.

(i) The marginals µn := (projx1
)#qT

n and νn := (projx2
)#qT

n satisfy (H4).

211



212 CHAPTER 7. THE KINETIC SCHRÖDINGER PROBLEM

(ii) qT
n ⇀ πT .

(iii) H
(
qT

n |R0,T
)
→ H

(
πT |R0,T

)
= CT(µ, ν).

Proof. We start with i). Since qT
n has compact support, so do its marginals µn, νn.

Moreover if B ⊆ Rd is a Borel set, then

µn(B) = qT
n (B × R3d) ≤ n

Cn

∫
B×R3d

dR0,T =
n

Cn
R0,T(B × R3d) =

n
Cn

mX(B)

and therefore ∥dµn/dmX∥L∞(mX)
≤ n

Cn
. The same reasoning applies also to νn.

The weak convergence in (ii) follows from dominated convergence.
Let us prove point (iii). Notice that for each n ≥ n̄ it holds∣∣∣ρ̂T

n log ρ̂T
n

∣∣∣ ≤ max
{

e−1, (ρTC−1
n̄ ) log(ρTC−1

n̄ )
}

,

and the above RHS is R0,T-integrable since it holds∫
R4d

(ρTC−1
n̄ ) log(ρTC−1

n̄ )dR0,T =
1

Cn̄
CT(µ, ν) +

1
Cn̄

log
(

1
Cn̄

)
< ∞ ,

which is finite under (H3). From the Dominated Convergence Theorem we get
(iii).

Proposition 7.A.2. Assume (H1) and (H3) to be true for µ, ν ∈ P(Rd). Let πT be
the unique minimiser in KSP with marginals µ, ν. Suppose we are given a sequence(
qT

n
)

n∈N
⊂ P(R4d) such that such that

(i) qT
n ⇀ πT ,

(ii) H
(
qT

n |R0,T
)
→ H

(
πT |R0,T

)
.

Moreover for each n ∈ N consider the marginals qT
n , that are the probability measures

µn := (projx1
)#qT

n and νn := (projx2
)#qT

n . Then, for each n ∈ N, there exists a unique
minimiser πT

n ∈ ΠX (µn, νn) in KSP with marginals µn, νn. Moreover it holds

πT
n ⇀ πT and CT (µn, νn) ⇀ CT (µ, ν) .

Proof. Firstly, (H3) and the convergence of the entropies in the assumptions
imply that

H (µn|mX) , H (νn|mX) ≤ H
(

qT
n |R0,T

)
< C

for some positive constant C, uniformly in n ∈ N. Hence (H3) holds also for
µn, νn. This gives the existence and uniqueness of the minimiser in KSP with
marginals µn and νn for each n ∈ N.

Then, from (7.2.19) we deduce

sup
n∈N

H
(

πT
n |R0,T

)
= sup

n∈N

CT (µn, νn) ≲ 1 + sup
n∈N

[
H (µn|mX) +H (νn|mX)

]
≲ 1 + 2C .
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Since the relative entropy H (·|R0,T) has compact level sets [DE97, Lemma

1.4.3], there is a subsequence
(

πT
nk

)
k∈N

and a probability measure π̃T ∈ P(R4d)

such that πT
nk

⇀ π̃T weakly. Moreover, from the lower semicontinuity of
H (·|R0,T) and the optimality of πT

nk
we get

H
(

π̃T |R0,T

)
≤ lim inf

k→∞
H
(

πT
nk
|R0,T

)
≤ lim inf

k→∞
H
(

qT
nk
|R0,T

)
= H (πT |R0,T).

(7.A.1)
Now, we claim that π̃T ∈ ΠX(µ, ν). Indeed we have for any i = 1, 2

(projxi
)#π̃T = lim

k→∞
(projxi

)#πT
nk

= lim
k→∞

(projxi
)#qT

nk

= (projxi
)#πT =

{
µ i = 1
ν i = 2 ,

where the second equality holds because πT
nk

and qT
nk

share the same marginals,
while the third follows from our hypotheses. Therefore, from the bound (7.A.1)
and the optimality of πT as unique minimiser in ΠX(µ, ν) for KSP, it follows
π̃T = πT .

Hence, as k → ∞, it holds πT
nk

⇀ πT and

∃ lim
k→∞

CT (µnk , νnk ) = lim
k→∞

H
(

πT
nk
|R0,T

)
= H (πT |R0,T) = CT(µ, ν) .

Since in both the limits above the limit objects do not depend on the subse-
quence and since the weak convergence is metrizable, we get the desired the-
sis.

Corollary 7.A.3. Under the same setting of the previous proposition, if Pn,T ∈ P(Ω)

denotes the minimiser in (7.0.1) for the marginals µn, νn, and if µn,T
t := (Xt, Vt)#Pn,T ,

then for each t ∈ [0, T]

Pn,T ⇀ PT and µn,T
t ⇀ µT

t .

Proof. From the relation between (7.0.1) and KSP, for any ϕ ∈ Cb(Ω) we have∫
Ω

ϕ dPn,T =
∫

R4d

(∫
Ω

ϕ dRx,v,y,w
)

dπT
n →

∫
R4d

(∫
Ω

ϕ dRx,v,y,w
)

dπT

=
∫

Ω
ϕ dπT ,

where Rx,v,y,w denotes the bridge of the reference measure. Let us just justify
the middle step. Since ϕ is bounded, so does

∫
Ω ϕ dRx,v,y,w. Moreover since

the bridge Rx,v,y,w is weakly continuous with respect to its extremes [CB11,
Corollary 1], from the continuity of ϕ, it follows the continuity of the function
(x, v, y, w) 7→

∫
Ω ϕ dRx,v,y,w. Hence the above function is bounded and contin-

uous on R4d and from the weak convergence πT
n ⇀ πT it follows Pn,T ⇀ PT .

The other limit follows by taking the time marginals of Pn,T .
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7.A.2 Approximating the marginals

In this section we are going to perform the approximating arguments directly
on the fixed marginals. This will not lead to the convergence of the respec-
tive kinetic entropic costs, nevertheless it will be useful in proving the bounds
where the previous approximating argument fails. The idea is similar to the
one performed previously: consider an increasing sequence of compact sets
(Kn)n∈N in Rd whose union gives the whole space and for any q ∈ P(Rd), sat-
isfying (H3) and n ∈ N large enough so that q(Kn) > 0, define the probability
measure qM

n as the measure whose mX-density is given by

dqM
n

dmX
:=
(

dq
dmX

∧ n
)

1Kn

Cq
n

,

where Cq
n :=

∫
Kn
( dq

dmX
∧ n)dmX ≥ 0 is the normalising constant. Note that

monotone convergence yields Cq
n ↑ 1. Then it follows that qM

n satisfies (H4),
qM

n ⇀ q and by mimicking the argument performed in the Lemma 7.A.1 it
follows that

H (qM
n |mX)

n→∞−→ H (q|mX) . (7.A.2)

Lemma 7.A.4. Fix µ, ν ∈ P(Rd) satisfying (H3). Then, up to restricting ourselves
to a subsequence, it holds

CT(µ, ν) ≤ lim inf
n→∞

CT(µ
M
n , νM

n ) .

Proof. Let πT
M,n denotes the optimiser for CT(µ

M
n , νM

n ). Then we have

H (πT
M,n|R0,T) = CT(µ

M
n , νM

n )

(7.2.19)
≲ 1 +H (µM

n |mX) +H (νM
n |mX)

n→∞−→ 1 +H (µ|mX) +H (ν|mX) ,

which is finite because of (H3). Since H (·|R0,T) has compact level set, we know
that there exists π⋆ ∈ P(R4d) such that πT

M,n ⇀ π⋆, up to considering a
subsequence. We claim that π⋆ ∈ ΠX(µ, ν). Indeed we have (X0)#πT

M,n ⇀

(X0)#π⋆ but (X0)#πT
M,n = µM

n ⇀ µ and hence (X0)#π⋆ = µ. Similarly it holds
(XT)#π⋆ = ν. Therefore we have CT(µ, ν) ≤ H (π⋆|R0,T) and from the lower
semicontinuity of H (·|R0,T) we deduce our thesis.

7.B Proof of the contraction condition

Proof of (7.2.11) with κ > 0 under (H1) and (H2). Notice that proving (7.2.11) is
equivalent to finding a positive definite symmetric matrix Q ∈ Msym>0

2d,2d (R)

and a positive scalar κ > 0 such that

ξ · (Jb(z)Q)ξ ≤ −κ ξ · Qξ = −κ |ξ|2Q ∀ξ ∈ R2d, ∀z ∈ R2d ,
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and then setting M = Q−1. Therefore let us consider the symmetric positive
definite matrix

Q =

(
aId −bId
−bId cId

)
with

{
a, c > 0 ,
ac > b2 .

with a, b, c ∈ R to be determined later in such a way such for all x̄, v̄ ∈ Rd ∈ Rd

the matrix Jb(x̄, v̄) Q is negative definite uniformly in x̄, v̄. This will allow us to
conclude that Jb(x̄, v̄) Q ≤ −κ Q for some κ > 0. For sake of notation we will
omit the Jacobian’s argument (x̄, v̄) when it is clear from the context. Since

Jb Q =

(
−bId cId

−a∇2U + γbId b∇2U − γcId

)
,

Then for all x, v ∈ Rd it holds(
x
v

)
· Jb Q

(
x
v

)
= −b |x|2 + c x · v − a v · ∇2U x + γb v · x

+b v · ∇2U v − γc |v|2 .

By choosing a = 1, and under a sign flip in the velocity term v 7→ −v, it is enough
to find b, c and ε > 0 such that c > b2 and such that for all x, v, uniformly in
x̄, v̄, it holds

b |x|2 + c x · v − a v · ∇2U x + γb v · x − b v · ∇2U v + γc |v|2 ≥ ε
(
|x|2 + |v|2

)
.

A sufficient condition such that the previous inequality holds for some ε > 0
is that for all eigenvalues ℓ of ∇2U (notice ℓ ∈ [α, β] because of (H2)) and all
(x, v) ̸= (0, 0) it holds

b |x|2 + (c + γb) x · v − ℓ v · x − b ℓ v · v + γc |v|2

= b |x|2 + (c + γb − ℓ) x · v + (γc − b ℓ) |v|2 > 0.

This last one is satisfied for any non-zero (x, v) ∈ R2d as soon as b > 0 and

4b(γc − b ℓ) > (c + γb − ℓ)2,

i.e., ℓ2 − 2λ ℓ+ ϕ2 < 0, where λ := c + γb − 2b2 and ϕ := c − γb. Therefore for
any eigenvalue ℓ ∈ [α, β] we have the condition

λ −
√

λ2 − ϕ2 < ℓ < λ +
√

λ2 − ϕ2,

which is satisfied if {
α = λ −

√
λ2 − ϕ2

β = λ +
√

λ2 − ϕ2 .
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This yields to {
λ = β+α

2
ϕ2 = β α

i.e.,

{
c + γb − 2b2 = β+α

2
c − γb =

√
β α

whose solutions b, c are given by the solutions of{
c = b2 + 1

4
(√

β +
√

α
)2

b2 − γb + 1
4
(√

β −
√

α
)2

= 0

The first equation fixes c and in particular tells us that c > b2 (as requested
in order to have Q ∈ Msym>0

2d,2d (R)), while the second equation has a positive
solution b if ad only if

γ2 −
(√

β −
√

α
)2

≥ 0,

which we have assumed to be true in (H2).

Remark 7.B.1. Let us point out that Equation (7.0.2) is just a particular instance of
the general class dealt by Monmarché in [Mon23]. Nevertheless the previous result is
more sharp than the one presented there in Proposition 5. The idea for the previous proof
comes from [Bau17, Theorem 2.12], where the author proves a Γ-calculus contraction
condition, which turns out to be equivalent to (7.2.11) for γ = 1.



Looking forward

In this last section we will collect a few possible lines of research that can follow
from the results presented in this manuscript.

Convergence of gradients of EOT potentials. In Chapter 3 we have shown
the convergence of the gradients of Schrödinger potentials towards the gradi-
ents of Kantorovich potentials. The same question can be asked in the more
abstract setting of entropic optimal transport for a general cost function c(·, ·)
(cf. (2.A.1)). More precisely, if φε, ψε denote the entropic potentials as defined
at (2.A.2), then it is natural asking whether the result presented in Theorem 3.2.3
can be extended to this different setting. Convergence of entropic potentials to
the Kantorovich ones has already been established in [NW22], however the va-
lidity of the same result for the gradients is still an open question.

One possible way to tackle this problem would be establishing uniform in
time bounds for the gradients’ Lp-norms as we did in (3.2.8). This might be
accomplished by proving corrector estimates as in Proposition 3.1.2, however
mimicking the proof given there seems unfeasible since it relies on a dynamic
representation of CT(µ, ν) as the one given in Lemma 2.3.1. The latter formu-
lation is still missing for general EOT problems. A different approach in order
to establish the corrector estimates (and consequently uniform norm bounds)
would be reasoning as we did at the end of Section 3.1, where under the con-
dition CD(κ, ∞) we have established the same estimates via the reverse log-
Sobolev inequality (3.1.13). This approach seems more feasible even though it
requires establishing the validity of the reverse log-Sobolev inequality for a gen-
eral Markov operator (induced by the convolution with exp(−c(x, ·)/T)). The
ideas described above are part of a (preliminary) ongoing work with Katharina
Eichinger and Luca Tamanini.

Exponential convergence of Sinkhorn’s algorithm for EOT. In Chapters 5
and 6 we have established the exponential convergence of Sinkhorn’s algorithm
for general SP problems with Langevin reference dynamics and log-Lipschitz
marginals and respectively for the landmark SP with Brownian motions and
marginals that are weakly log-concave. As we have already mentioned in the
Bibliographical Remarks to Chapter 6, an iterative fitting algorithm can be in
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general considered for any EOT problem. Apart from the very recent contribu-
tion [Eck23], exponential convergence rates for general EOT problems are still
unknown. A first approach in order to prove the convergence of Sinkhorn’s
algorithm for general EOT problems would be looking for functional inequal-
ities for general Markov operators in order to prove convexity propagation, as
we did in Section 6.1. As a corollary, this would eventually lead also to novel
functional inequalities for general EOT problems. Some potential references for
functional inequalities for general Markov operators would be [Wan13, BG10,
BR08, BE21]. Alternatively, a different approach would be trying to directly
mimic the backward-in-time convexity propagation approach along Hamilton-
Jacobi-Bellman equations (cf. Theorem 6.1.4), this time by considering a stochas-
tic control problem for discrete-time Markov chains and its corresponding dy-
namic programming principle.

Once the convexity propagation is established, unfortunately, our approach
can not be carried over straightforwardly as done in Chapter 6, since there we
heavily rely on the link between gradients and conditional probability mea-
sures portrayed in (6.0.3), which is peculiar to the quadratic cost case c(x, y) =
|x − y|2/2 (that corresponds to the classic Brownian motion SP). Nevertheless,
for some specific cases (e.g., c(x, y) = |x − y|p)) some link between gradients
and (distorted) Wasserstein distances of conditional measures might still be es-
tablished.

Exponential convergence of Sinkhorn’s algorithm for the Mean-Field SP. In
[BCGL20] the authors proposed a SP where instead of considering a cloud of in-
dependent Brownian motions, they considered a mean-field interacting system.
The entropic minimisation problem then gets harder since both terms in the en-
tropy functional would depend on the optimiser and there is no (algebraically)
straightforward connection with EOT. This particularly implies that in order
to solve the Mean-Field SP (hereafter MFSP) one cannot simply consider pairs
of potentials, but instead corrector processes and forward/backward stochas-
tic differential equations. Nevertheless, Sinkhorn’s algorithm for classical SP
(more precisely, its primal formulation (2.2.20)) might be emulated also for
MFSP, this time directly dealing with diffusion processes and measures on path
space instead of densities and potentials. As noticed in [LCST22], MFSP may be
considered as an opinion dynamic Mean-Field Game (MFG), where every sin-
gle individual interacts with the population, which is urged to converge exactly
to a desired prescribed opinion (distribution) in finite time. Therefore the study
of Sinkhorn’s algorithm for MFSP would have a natural application in mod-
elling and solving the collective behaviour of opinion/population dynamics.
In [LCST22] the authors suggest an algorithm (referred to as Deep Generalized
Schrödinger Bridge (DGSB)) which tries to solve MFGs via minimising a total loss
function which corresponds to the sum of a loss fitting the correct marginals
and a loss fitting the mean-field interaction and which is related to the Tempo-
ral Difference Learning. Sinkhorn’s algorithm should indeed fit the mean-field
interaction nature of the considered path measures when minimising the rela-
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tive entropy with respect to the McKean-Vlasov version of the previous iterate.
From a computational point of view it would then be interesting to understand
whether the loss associated to this Mean-Field Sinkhorn’s algorithm coincides
with the one considered in [LCST22] and with the temporal difference loss.

Overdamped limit of the kinetic SP. The study of the overdamped limit for
the (underdamped) Langevin dynamics (7.0.2) is a very old research topic, often
referred to as the Smoluchowski–Kramers limit, initiated with the seminal work of
Kramers [Kra40]. Since then many contributions appeared in the literature and
let us just mention here a partial (and far from being exhaustive) list of contri-
butions [Nel67, HVW12, GN20, DLP+18]. Particularly, in [DLP+18] the authors
provide explicit quantitative convergence rates of the underdamped Langevin
dynamics (7.0.2) towards the overdamped Langevin dynamics (2.1.1), in terms
of relative entropy and Wasserstein W2-distance. This means that the reference
measure considered in the kinetic SP converges in the overdamped limit to the
reference of the classic (Langevin) SP considered in Chapter 2. Therefore, if
some sort of stability results hold for SP when varying the underlying refer-
ence process (such as [EN22b]), then one might expect the convergence of KSP
to SP in the overdamped limit with convergence rates inherited from the results
obtained in [DLP+18].
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Notation

The set Rd is endowed with the standard Euclidean metric and we denote by |·|
and ⟨·, ·⟩ the corresponding norm and scalar product. When its clear from the
context the scalar product between the vectors v, w will simply be denoted as
v · w. We denote by B(Rd) the Borel σ-field of Rd, by P(Rd) the space of proba-
bility measures defined on (Rd,B(Rd)) and by P2(R

d) the subset of probability
measures with finite second moment. Ω denotes the space of continuous tra-
jectories in the time interval [0, T], that is the space C([0, T], M). In Chapter 7
this space will be denoted with Ω2d since the trajectories will take values in
the position-velocity product space R2d. We adopt for Lp-spaces the standard
notation and denote Lp-norms as ∥ · ∥Lp . Similarly, we adopt the standard nota-
tion for p-Wasserstein distances Wp for any p ∈ [1,+∞]. We denote with W1,2

loc
local-Sobolev spaces.

a+ = 0 ∨ a
a− = 0 ∨ (−a)
projx(a, b) = a projection on first component
projy(a, b) = b projection on second component
f ⊕ g(x, y) := f (x) + g(y)
Cb(X ) bounded continuous functions on X
Mb(X ) bounded measurable functions on X
∥ f ∥∞ := supx∈M | f (x)| supremum norm
Mk(µ) =

∫
d(z0, x)kdµ(x) kth moment of µ ∈ P(M) (z0 = 0 in Rd)

Cov(µ) :=
∫

xxTdµ − (
∫

xdµ)(
∫

xdµ)T covariance matrix of µ ∈ P2(R
d)

Leb Lebesgue measure on Rd

f♯µ(·) = µ( f−1(·)) pushforward measure of µ by f
Π(µ1, µ2) set of couplings between µ1, µ2 ∈ P(M)
H (λ1 | λ2) =

∫
log(dλ1/dλ2)dλ1 relative entropy (see Section 1.A)

Ent(λ1) = H (λ1|Leb)
I(µ) :=

∫
|∇ log(dµ/dm)|2dµ Fisher information w.r.t. m (see (3.2.7))

PT Schrödinger bridge (optimiser in (2.1.2))
πT Schrödinger plan (optimiser in (2.1.3))
CT(µ, ν) = H (PT |R) = H (πT |R0,T) Schrödinger cost
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[Léo01] Christian Léonard. Minimization of energy functionals applied
to some inverse problems. Applied Mathematics and Optimization,
44:273–297, 2001.
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[PC19] Gabriel Peyré and Marco Cuturi. Computational Optimal Trans-
port. Foundations and Trends in Machine Learning, 11(5-6):355–607,
2019.
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[TZZ18] Emmanuel Trélat, Can Zhang, and Enrique Zuazua. Steady-state
and periodic exponential turnpike property for optimal control
problems in hilbert spaces. SIAM Journal on Control and Optimiza-
tion, 56(2):1222–1252, 2018.

[Vil03] Cédric Villani. Topics in Optimal Transportation, volume 58. Amer-
ican Mathematical Society, 2003.

[Vil08] Cédric Villani. Optimal transport: old and new, volume 338.
Springer Science & Business Media, 2008.

[Vil09] Cédric Villani. Hypocoercivity, volume 202. American Mathemati-
cal Society, 2009.

[Wan94] Feng-Yu Wang. Application of coupling methods to the Neu-
mann eigenvalue problem. Probability Theory and Related Fields,
98(3):299–306, 1994.

[Wan11] Feng-Yu Wang. Equivalent semigroup properties for the
curvature-dimension condition. Bulletin des sciences mathematiques,
135(6-7):803–815, 2011.

[Wan13] Feng-Yu Wang. Harnack Inequalities for Stochastic Partial Differential
Equations. SpringerBriefs in Mathematics. Springer New York, NY,
1 edition, 2013.

[Zas05] Alexander Zaslavski. Turnpike properties in the calculus of variations
and optimal control, volume 80. Springer Science & Business Media,
2005.

[Zas19] Alexander Zaslavski. Turnpike conditions in infinite dimensional op-
timal control. Springer, 2019.



Summary

The Schrödinger problem
where analysis meets stochastics

In this thesis we study the most likely behaviour of a cloud of particles sub-
ject to the information of its initial and final configuration. Despite the motiva-
tion of this problem coming from statistical mechanics, the problem itself lies
at the crossroad between Optimal Transport and Stochastic Optimal Control
theories, where analysis meets stochastics. Indeed this problem can be thought of
as finding the best way possible of steering a diffusion process from a starting
distribution to a prescribed final one, and at the same time it is equivalent to
a regularised version of the Optimal Transport problem, whose aim is moving
in the cheapest way possible some goods from an initial configuration to a fi-
nal one. Particularly, the time-window parameter T > 0 in our Schrödinger
problem acts as regularising parameter, i.e., the smallest T is and the closest the
particles behave according to Optimal Transport theory.

Besides being an interesting theoretical problem that connects two differ-
ent fields in mathematics, in the last couple of years the Schrödinger problem
has found a tremendous use in generative modelling, namely creating data from
noise, which has led to an increasing interest in the study of the behaviour of
its solutions and in finding efficient algorithms that allow to rapidly compute
the latter. This thesis focuses exactly on these two aspects and the approach we
have relied on is always based on the interplay between the analytical and the
stochastic point of view.

Below we detail our main contributions.

In Chapter 3, motivated by the control interpretation, we prove the corrector
estimates which can be interpreted as contraction estimates for the optimal con-
trol process that steers the diffusion to the target distribution. Then, we employ
these estimates in order to investigate the convergence towards the optimal
transport map.

In Chapter 4 we provide quantitative stability estimates for the Schrödinger
problem, by relying on the corrector estimates.
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In Chapter 5 and Chapter 6 we provide exponential convergence rates for
Sinkhorn’s algorithm, an iterative scheme that allows to compute the solution
of the Schrödinger problem. We have proven this result with two different
approaches: one perturbative and the other one non-perturbative.

For the first approach we have studied how Lipschitzianity propagates along
Sinkhorn’s algorithm. This is deduced from a more general result which proves
that Lipschitzianity backward-propagates along Hamilton-Jacobi-Bellman equa-
tions, result that we prove via a stochastic optimal control approach.

The non-perturbative approach relies on studying this time how convexity
propagates along Sinkhorn’s algorithm. From that we have deduced the expo-
nential convergence of the algorithm by meaning of coupling techniques.

Our last contribution, namely Chapter 7, deals with a different instance of
the Schrödinger problem, where we consider particles that are described both
by their position and velocity and whose density obeys to the kinetic Fokker-
Planck equation. We fully characterised this new problem, despite its hypoco-
ercive nature, and study its long time behaviour.
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