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Abstract

I consider a binary classi�cation problem with a feature vector of
high dimensionality. Spam mail �lters are a popular example hereof. A
Bayesian approach requires us to estimate the probability of a feature
vector given the class of the object. Due to the size of the feature vector
this is an unfeasible task. A useful approach is to split the feature space
into several (conditionally) independent subspaces. This results in a
new problem, namely how to �nd the "best" subdivision. In this paper
I consider a weighing approach that will perform (asymptotically) as
good as the best subdivision and still has a manageable complexity.

1 Problem statement

An object O belongs to a particular class c and is described by a vector
of features, fk. Given a sequence of objects O1;O2; : : : ;On, we wish to
estimate the conditional features probabilities given the classes.

An extreme, and extremely simple, model for these probabilities is known
as the Naive Bayes �lter, see e.g. [1], where all features are assumed to be
conditionally independent or

P (fkjc) =
kY

i=1

P (fijc): (1)

This simple model is applied, with much success, see [2], to spam �ltering
although the model is obviously too simple to be correct.

Apart from the unexpected success of the naive Bayes �lter, the main
reason to use this model is its computational simplicity. The model classes
that I will consider, partition the feature vector into conditionally indepen-
dent parts, each one containing a variable number of features. In [3] ad-hoc
methods are discussed that create models with partial dependencies and
experimental results indicate that the success rate of spam detection im-
proved signi�cantly over the Naive Bayes �lter. But now a new question
arises, namely what is the most appropriate partitioning model, given a set
of training data, and can this model be determined or approximated in a
computationally e�cient manner?
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I assume binary classes and binary features and also assume that the
objects are drawn independently from the same distribution P (c)P (fkjc).
Of course it is possible to relax the restriction on the alphabet and the
method applies to non-binary discrete alphabets too.

2 Model class description

Let the feature vector index set f1; 2; : : : ; kg be written as F. A model M
is described by a number of subsets s1; s2; : : : ; sg for some number g. These
subsets have a (sub-) partitioning property de�ned by si

T
sj = ;; if i 6= j,

and
Sg
i=1 si � F. Apart from the subsets a model also contains parameters

� that describe the probabilities of the feature vector given the class.
A subset s selects some features from the feature vector fk. If s =

fi1; i2; : : : ; isg then this selection is written as f s = fi1 ; fi2 ; : : : ; fis . The
model M = (s1; s2; : : : ; sg), together with its parameters �, de�ne the fol-
lowing conditional feature vector probability.

P (fkjc;M; �) =
gY

i=1

P (f si jc; �): (2)

A possible model class results if the subsets si for each model form a
complete partitioning. e.g. let k = 3, then the following models belong to
this class.

Model feature probability
M1 = (f1g; f2g; f3g) P (f1jc)P (f2jc)P (f3jc);
M2 = (f1; 2g; f3g) P (f1; f2jc)P (f3jc);
M3 = (f1; 3g; f2g) P (f1; f3jc)P (f2jc);
M4 = (f2; 3g; f1g) P (f2; f3jc)P (f1jc);
M5 = (f1; 2; 3g) P (f1; f2; f3jc):

Given is a sequence of objects O1;O2; : : : ;On, where the ith object is
described as Oi =

�
c(i); fk(i)

�
. Assume a given model M = (s1; s2; : : : ; sg).

Due to the independence of the objects, the conditional features probability
is written as

P (fk(1:::n)jc(1:::n);M;�)
�= P (fk(1); : : : ; f

k
(n)jc(1); : : : ; c(n);M;�) =

nY

i=1

P (fk(i)jc(i);M;�);

(3)
where P (fk(1:::n)jc(1:::n)) is just a shorthand notation for this sequence prob-
ability.

2

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 27, 2009 at 06:13 from IEEE Xplore.  Restrictions apply.



2.1 Unknown parameters, Bayesian mixture, and the log-
regret

First of all, the parameters � for a given model are unknown and must be es-
timated. Just as in [4] formula (8), I will use the Krichevsky-Tro�mov proba-
bility assignment, written as PKT (fk(1:::n)jc(1:::n);M) =

Q
i=1;g PKT (f si

(1:::n)jc(1:::n)).
The second problem is that I do not know the \best" (or (\real" or \ML"

model) model, M�, in a given model class M. To solve this problem I will
compute the following Bayesian mixture

Pe(fk(1:::n)jc(1:::n)) =
jMjX

i=1

P (Mi)PKT (fk(1:::n)jc(1:::n);Mi); (4)

where the model class is given as M =
�
M1;M2; : : : ;MjMj

	
and P (M) is a

prior over M. The log-regret measures the decrease in probability of a given
probability assignment as compared to the \target" M�. The log-regret r
can now be written as

r = � log2 Pe(f
k
(1:::n)jc(1:::n)) + log2 P (fk(1:::n)jc(1:::n);M�; �): (5)

From the fact that Pe(fk(1:::n)jc(1:::n)) � P (M�)PKT (fk(1:::n)jc(1:::n);M�) we
obtain

r � � log2 P (M�) + log2
P (fk(1:::n)jc(1:::n);M�; �)

PKT (fk(1:::n)jc(1:::n);M�)
: (6)

In this paper I am mainly concerned with the complexity of the computation
of (4), but I will also consider the contribution of the mixture to the log-
regret, � log2 P (M�).

3 Introducing four model classes

I will consider ordered and unordered partitions. A partition is ordered if the
subsets contain only consecutive feature indices, so s= fa; a+ 1; a+ 2; : : : ; a+ bg.
In an unordered partition the subsets can contain any combination of feature
indices. For both cases the partitioning can be complete (full partitioning)
or incomplete (sub-partitioning).

g[

i=1

si

(
= F; full partitioning
� F; sub-partitioning

(7)

3.1 Class I: ordered features and full partitioning

Here I wish to compute (4) in the case where the model subsets contain
consecutive indices and form a complete partition of F. If si is a subset in the
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model, then we call PKT (f si
(1:::n)jc(1:::n)) the corresponding basic probability.

Obviously there are 1
2k(k + 1) basic probabilities.

I consider two methods of computing (4). The brute force or direct com-
putation of (4), and the Network method that makes use of the distributive
law of algebra. I will use the short-hand notation P123 for PKT (ff1;2;3g(1:::n) jc(1:::n))
and so on. Also I will compute partial mixture results

N1;2;3 = �1PKT (ff1;2;3g(1:::n) jc(1:::n)) + �2PKT (ff1;2g(1:::n)jc(1:::n))PKT (ff3g(1:::n)jc(1:::n))
(8)

+ �3PKT (ff1g(1:::n)jc(1:::n))PKT (ff2;3g(1:::n)jc(1:::n)) (9)

+ �4PKT (ff1g(1:::n)jc(1:::n))PKT (ff2g(1:::n)jc(1:::n))PKT (ff3g(1:::n)jc(1:::n)):
(10)

The �’s are to be selected in a appropriate or convenient way. The �nal mix-
ture result will be written as NF. The network computations are explained
by the following graph.

N1 N2 N3 N4

N12 N23 N34

N123 N234

N1234

This graph describes e.g. the following computations.

N1 = P1; N2 = P2; N3 = P3; N4 = P4: (11)
N12 = P12 +N1 �N2 = P12 + P1P2: (12)
NF = N1234 = P1234 + P1P234 + P12P34 + P123P4 + 2P1P2P34

+ 2P1P23P4 + 2P12P3P4 + 5P1P2P3P4: (13)

I am interested in

� T1(k): The total number of terms in N(F). This is the normalization
factor needed to turn N(F) into the probability Pe(fk(1:::n)jc(1:::n)).

� M1(g) the multiplicity of a model with g subsets in N(F). Together
M1(g)
T1(k) de�ne the model prior.

� W1(k) the number of additions and multiplications needed to compute
N(F).
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T1(k) is described by the recursion T1(k) = 1 +
Pk�1

i=1 T1(i)T1(k� i); and
T1(1) = 1. This results in

T1(k) =
k�1X

i=0

Ci
�
k � 1
i

�
: (14)

Here Ci is the ith Catalan number, Ci = 1
i+1
�2i
i
�
.

M1(g) is described by the recursion M1(g) =
Pg�1

i=1 M1(i)M1(g � i) =
Cg�1. This results in a contribution to the log-regret of r1;M(k; g) =
� log2

M1(g)
T1(k) .

0

20

40 k

0
20

40

g

0

50

100

log- regret
r1;M(1; 1) = 0;

r1;M(50; 50) = 16:263;
r1;M(50; 1) = 104:982:

The following table lists the amount of work, W1(k), that is needed for
the brute-force method and for the network method as a function of the
feature length k. The graph plots the number of operations as a function of
k.

Brute force Network model
(k � 1)2k�2 multiplications.
2k�1 � 1 additions.

1=6(k � 1)k(k + 1) multiplications.
1=6(k � 1)k(k + 1) additions.

10 20 30 40 50

1000

106

109

1012

1015

networkopr

brutef . mult

brutef . add

3.2 Class II: unordered features and full partitioning

In this model class the features can be distributed arbitrarily over the feature
groups. The network computations are now performed with the following
graph.
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N1 N2 N3

N12 N13 N23

N123

So we �nally obtain the (unnormalized) mixture probability

N(F) = N123 = P123 + P1P23 + P2P13 + P3P12 + 2P1P2P3: (15)

� T2(k): The total number of terms in N(F).

T2(k) = 1 +
k�1X

i=1

�
k � 1
i� 1

�
T2(i)T2(k � i); T2(1) = 1: (16)

=
kX

i=1

(2i� 3)!!
�
k
i

�
: (17)

Here a!! is the double factorial and
�a
b
	

denotes a Stirling number of
the second kind.

� M2(g) the multiplicity of a model with g subsets in N(F).

M2(g) = (2g � 3)!! (18)

This results in a contribution to the log-regret of r2;M(k; g) = � log2
M2(g)
T2(k) .

0
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0
20

40

g

0

100

200

log- regret
r2;M(1; 1) = 0;

r2;M(50; 50) = 15:263;
r2;M(50; 1) = 269:191:

W2(k)

Brute force Network modelPk
g=1(g � 1)

�k
g
	

multiplications.
Pk

g=1
�k
g
	
� 1 additions.

1=2(3k � 2k+1 + 1) multiplications.
1=2(3k � 2k+1 + 1) additions.

6

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 27, 2009 at 06:13 from IEEE Xplore.  Restrictions apply.



10 20 30 40 50
1

108

1016
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1040

1048

networkopr

brutef . mult

brutef . add

3.3 Class III: ordered features and sub-partitioning

It seems reasonable to request a model class that allows some features not to
be used at all. I might have added all features I could think of, not knowing
how relevant they are. So I wish to compute

Pe(fk(1:::n)jc(1:::n)) = 2�n�
jMjX

i=1

P (Mi)Pe(f si
(1:::n)jc(1:::n);Mi); (19)

where the model subsets contain consecutive indices and form a (partial)
partition of F and � is the number of unused features. As we shall see, this
can be accommodated in a simple using the method for Class I. I use the
additional short-hand Z = 2�n.

N1 N2 N3 N4

N12 N23 N34

N123 N234

N1234

The only di�erence from (13) is N1 = P1 + Z; N2 = P2 + Z; N3 = P3 + Z;
andN4 = P4 + Z: This results in

N(F) = N1234 = P1234 + P1P234 + P12P34 + P123P4 + 2P1P2P34 + 2P1P23P4

+ 2P12P3P4 + 5P1P2P3P4 + P123Z + P234Z + 2P1P23Z + : : :+ 5Z4:
(20)

Remember: k is the length of the feature vector; g is the number of
subsets s in a model M plus the number of unused features. So every
unused feature counts as a subset.
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� T3(k): The total number of terms inN(F). T3(k) = 1+
Pk�1

i=1 T3(i)T3(k�
i); and T3(1) = 2.

T3(k) =
1
k

�
2(k � 1)
k � 1

�
+

kX

g=1

1
g

�
2(g � 1)
g � 1

� g�1X

a=0

�
g
a

��
k � a� 1
g � a� 1

�
: (21)

� M3(g) the multiplicity of a model with g subsets in N(F).

M3(g) =
1
g

�
2(g � 1)
g � 1

�
: (22)

This results in a contribution to the log-regret of r3;M(k; g) = � log2
M3(g)
T3(k) .

0

20

40 k

0
20

40

g

0

50

100
log- regret

r3;M(1; 1) = 1;
r3;M(50; 50) = 54:6877;
r3;M(50; 1) = 143:407:

W3(k)

First de�ne n3(k; g) =
Pg�1

a=0
�g
a
��k�a�1
g�a�1

�
if g < k; and n3(k; g) = 2k if g = k.

Brute force Network modelPk
g=1 n3(k; g)(g � 1) multiplications.

Pk
g=1 n3(k; g)� 1 additions.

1
6(k � 1)k(k + 1) multiplications.
1
6(k � 1)k(k + 1) + k additions.

10 20 30 40 50

104

108

1012

1016

1020

networkmult

networkadd

brutef . mult

brutef . add
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3.4 Class IV: unordered features and sub-partitioning

N1 N2 N3

N12 N13 N23

N123

Just as in Class III we only add Z to each of the nodes N1, : : : ; Nk and
obtain the following.

N(F) = N123 = P123 + P1P23 + P2P13 + P3P12 + 3P1P2P3 + P12Z + P13Z + P23Z

+ 3P1P2Z + 3P1P3Z + 3P2P3Z + 3P1Z2 + 3P2Z2 + 3P3Z2 + 3Z3:
(23)

� T4(k): The total number of terms in N(F).

T4(k) = 1 +
k�1X

i=1

�
k � 1
i� 1

�
T4(i)T4(k � i); T4(1) = 2: (24)

= 2k(2k � 3)!! +
k�1X

g=1

(2i� 3)!!
g�1X

a=0

�
k
a

��
k � a
g � a

�
: (25)

� M4(g) the multiplicity of a model with g subsets in N(F).

M4(g) = (2g � 3)!! (26)

This results in a contribution to the log-regret of r4;M(k; g) = � log2
M4(g)
T4(k) .

r4;M(1; 1) = 1;
r4;M(50; 50) = 54:4977;
r4;M(50; 1) = 308:425:
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