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ABSTRACT The efficient diagnosis of COVID-19 plays a key role in preventing its spread. Recently, many
artificial intelligence techniques, such as the deep neural network approach, have been implemented to
help efficient diagnosis of COVID-19. However, the accurate performance of deep learning depends on
the tuning of many hyperparameters and a large amount of labeled data. This COVID-19 data bottleneck
also leads to insufficient human resources for data labeling, which presents a challenging obstacle. In this
paper, a novel discriminative batch-mode active learning (DS3) is proposed to allow faster and more effective
COVID-19 data annotation. The framework specifically designed to suit the imbalanced data phenomenon
that is characteristic of COVID-19 data. Extensive experiments over four public real-world COVID-19
datasets from several countries such as Brazil, China, Israel and Mexico show that our active learning
framework significantly outmatches other state-of-the-art models. Our proposed framework achieves an
average G-Mean of 10% improvement for the four datasets. Finally, the results of significance testing verify

the effectiveness of DS3 and its superiority over baseline active learning algorithms.

INDEX TERMS COVID-19, imbalanced data, active learning, deep neural network.

I. INTRODUCTION

The COVID-19 pandemic has infected over 10 million people
globally with more than 4 million people deceased as of
mid-June 2021. This crisis has further affected billions of
people on a social, economic, and medical level, leading to
significant changes in social connections, health regulations,
commerce, employment, and educational settings. Thus, the
pandemic is a threat to human society, and fast action is
required. In reaction to this, The COVID-19 pandemic has
motivated the scientific community to assist front-line medi-
cal personnel with cutting-edge research for viral mitigation,
detection, and prevention. By utilizing digital technologies,
the scientific community has made two significant contri-
butions to the fight against COVID-19. The primary digital
effort came from the Artificial Intelligence (AI) community
in the form of automatic COVID-19 identification from Com-
puted Tomography (CT) scans and X-ray pictures. Secondly,
mathematicians and epidemiologists are creating compre-
hensive virus dispersion and transmission models to predict
virus propagation under different mobility and social distance
situations [1]. Aside from these examples, other attempts
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are being made to analyze social and emotional behav-
ior from social media [2], to gather academic articles for
knowledge-based discovery [3], and to identify COVID-19
from cough samples [4]. Artificial Intelligence, machine
learning, and deep learning have shown promising results in
solving real-world problems using image recognition [5]-[8],
natural language processing [9]-[11], and speech recogni-
tion [12]-[14]. Recently, researchers have employed a deep
neural network to perform automatic COVID-19 detection.
In the standard process of diagnosis, a patient will undergo
numerous screening tests, such as clinical assessments, lab-
oratory tests, chest X-ray, and PCR testing to rule out pneu-
monia and confirm COVID-19 infection. Deep learning plays
an important role in speeding up this process by providing
automatic COVID-19 detection using chest X-ray recogni-
tion; it has shown a significant impact in accurate detection
of COVID-19 patients [15]-[17]. Although deep learning can
make an accurate prediction, the performance of deep neural
networks on COVID-19 task depends on large numbers of
labeled data, such as chest CT scans and symptoms. However,
the process of data labelling is not only time-consuming and
arduous but also requires the expertise of medical profession-
als. Furthermore, sufficient annotation of COVID-19 data is
impossible due to the fast spread of the virus, time limitations,
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and the heavy burden on the healthcare system. To solve this
problem, many works have implemented active learning to
reduce the annotation time and effort. Active learning works
by intelligently selecting the most informative samples to be
labeled by a domain expert. It is expected that active learning
will be able to maintain the model performance while reduc-
ing the annotation cost. Recently, many works have combined
active learning with deep neural networks. The underlying
idea for this combination is that deep neural networks can
detect complex data representation, such as images, and thus
improve the prediction outcome. Furthermore, deep active
learning also improves the automatic detection of COVID-19
through lung x-ray image recognition.

However, this study has a drawback as it is challenging
to implement to real human since the deep neural network
retraining procedure require certain amount of time thus
affecting human mental awareness [2]. Furthermore, in the
real world the dataset of COVID-19 is significantly imbal-
anced. The number of positive cases is small compared to
negative cases, making positive cases a minority class. There-
fore, it is a challenge for the active learning model to select
the most informative samples. In several works, informative
samples are regarded as the samples that will improve the
model performance [18]-[20]; however, for imbalanced data,
it is also essential to select the minority class.

In this paper, a novel approach in active learning frame-
work to reduce annotation cost is proposed. We propose a
discriminative batch-mode active learning framework, called
DS31, to implement a discriminative, skew-specialized sam-
pling that is suitable for imbalanced data. The experimental
results demonstrate that DS3 can greatly cut the annotation
cost for training a model and consistently outperforms the
state-of-the-art active learning methods in the diagnosis of
COVID-19. The contribution of the paper can be summarized
as:

« We propose a novel batch-mode active learning specifi-
cally designed to solve imbalanced data annotation.

o« We perform discriminative batch-mode active learn-
ing that outperforms the state-of-the-art active learning
approaches in cutting the labeling cost and achieves
effective diagnosis of COVID- 19.

o We perform experiments on four real COVID-19 patient
datasets. We compare the DS3 algorithm with other
state-of-the-art batch-mode active learning algorithms.
We statistically test the performance of our model com-
pared to other popular classifiers with the Wilcoxon test.
The results show that DS3 outperforms most other state-
of-the-art batch-mode active learning model.

The remainder of this paper is organized as follows. A brief
discussion of the related studies in section II. The detailed
description of the experimental materials, proposed frame-
work, and algorithms will be shown in Section V. Section VI

IThe source code and datasets of this work are publicly available
at https://github.com/analyticray/Discriminative-
Batch- Mode-Active-Learning-Framework-DS3-—
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demonstrates the experimental results and corresponding
empirical evaluation. Section VII presents a discussion about
this work. This paper is concluded with an assessment of
future work in Section VIII.

Il. RELATED WORK
COVID-19 pandemic has attracted many researchers to
develop state-of-the-art models in performing automatic
detection. For example Mohammed ef al. [17] proposed a
multi-criteria decision making (MCDM) to evaluate and
benchmark the different diagnostic models for COVID-19
with respect to evaluation criteria. Another study by
Al-Waisy et al. [15] proposed a novel multimodal deep
learning system for identifying COVID-19 data based
on X-Ray Images. The proposed DeepNet architecture
showed promising result in COVID-19 prediction. Simi-
larly, Al-Waisy et al. [16] proposed an advanced ResNet34
deep neural network image recognition model to classify
healthy and COVID-19 infected patient based on the X-Ray
images. More recently, Mohammed et al. [21] performed a
large comparison study on various machine learning and deep
learning models. The study reported that ResNet50 achieved
the optimum accuracy of 98.8%. Although most of these
studies showing promising results, however, they are per-
formed on large labeled data which are expensive to generate.
Therefore, active learning strategy is proposed in this paper to
reduce the cost of annotation in COVID-19 prediction task.
Conventional active learning (i.e. pool-based active learn-
ing) has been extensively explored in the literature [18],
[22]. Most of the methods operate in an iterative manner,
where ““the most informative sample” is chosen for labelling.
Subsequently, the model is retrained with the newly labeled
example. The steps are iterated alternatively until most of
the examples can be classified with “reasonably high con-
fidence” [23]. Re-training after each iteration is quite costly,
especially with complex and expensive models. This is the
main rationale behind batch-mode active learning methods,
which select a group of informative instances simultaneously.
The BMAL methods are characterized into two main groups:
1) global methods, 2) cluster-based approaches. Global meth-
ods try to find the most informative set of samples from
the whole space directly by solving an optimization prob-
lem [20], [24]-[28]. These approaches have mathematically
and empirically demonstrated a good performance, however,
they do not scale well with big datasets [29]. On the other
hand, clustering-based methods, which are highly scalable,
partition either whole [30] or a fraction of (i.e. the most uncer-
tain) unlabeled space [23], [31], [32] to reduce the probability
of picking correlated queries. Once the partitions are formed,
one or multiple instances are chosen to represent it.
Recently, many works have implemented a combination of
deep neural networks for active learning [33]-[35]. However,
to the best of our knowledge, COVID-AI [36] is the only work
that explores active learning for CT scan data labeling. The
authors use hybrid active learning with a 3D residual network
that simultaneously considers sample diversity and predicted
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loss. Despite there being many deep active learning methods
that directly utilize an uncertainty-based sampling strategy,
deep active learning can easily lead to insufficient diversity of
batch query samples (such that relevant knowledge regarding
the data distribution is not fully utilized). This in turn leads
to low or even invalid Deep Learning (DL) model training
performance. Thus, a feasible strategy would be to use a
hybrid query strategy in a batch query, taking into account
both the information volume and diversity of samples in
either an explicit or implicit manner.

lIl. PROBLEM DEFINITION

First X = {x1,xp, ..., x,} denotes a dataset of n instances.
Let’s introduce the labeled set L and unlabeled set U, where
LJU =X and LU = ¢. Every instance in L, x* is asso-
ciated with a label yﬁ, which has been revealed by a domain
expertd and thus is known, whereas the labels associated with
in are still unknown. The proposed approach interactively
selects a batch B of samples that satisfies B C U and |B| = b,
where the batch size b is defined by human handling ability.
Note, that all instances are of equal annotation cost. The
proposed approach operates in T iterations. In each iteration,
the learner will choose b instances to be labeled by the domain
expert and add these labeled examples to the L to update the
classifier.

IV. PROPOSED APPROACH

This section presents our proposed approach, namely, the
discriminative skew-specialized sampling (DS3), which has
been specifically designed to tackle the class-imbalance
problem in real-world applications. The illustration of the
proposed approach can be seen in Fig. 1. The framework is
comprised of two main components: 1) Batch-mode imbal-
ance learning, which predominantly focuses on finding a
compromise between exploration and exploitation to effec-
tively cover an uncertain space subject to a predefined budget
and 2) Balancing approach, which addresses the unbalanced
class problem for active learning.

A. BATCH-MODE IMBALANCE LEARNING

The main objective of DS3 is to develop a scalable
batch-model framework for the class-imbalance problem.
The success of batch mode active learning (BMAL) depends
on selecting representative samples [37] as well as the batch
size and total budget constraints [29]. The key question is how
to find the most representative samples from both the minor-
ity and majority classes to cover the whole uncertain space
given the limited budget. To achieve these goals, the DS3
learning component consists of two folds: a) Partition-based
exploration and representation, and b) Skewed-specialized
sampling.

1) PARTITION-BASED EXPLORATION

Dealing with massive amounts of unlabeled data, it is not
feasible for a domain expert to examine every entry, and
given the limited budget, it is very likely that portions of
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minority space are poorly represented. Therefore, it is ben-
eficial to develop a discriminative model that can distinguish
the most informative samples based on certain criteria such
as ranking function. The proposed discriminative model is
inspired from Guo and Schuurmans [25] work. Having access
to both labeled and unlabeled samples, we built a model to
maximize the expected log likelihood of the labeled data and
to minimize the entropy of the missing labels on the unlabeled
data:

D log Pyilxi, w) +a ) Y P(ylxj, w)log Pylxy, w),

icL jeU y==+1
(D

where w specifies the classification model, L is the labeled
data, U the unlabeled instances and « is the tradeoff parame-
ter. In order to maximize the objective function in equation 1,
we construct a scoring function for a set of selected candi-
dates S in iteration ¢ 4 1 according to:

FS)= Y logPilx, wth—a Y Helywth

ieL'us jeuns
(2)
where w't! is the parameter set for the conditional classifi-
cation model trained on the new labeled set L't! = L' U

S and H(y|x;, w/*1) denotes the entropy of the conditional
distribution P(y|x;, w'*1) such that

> PO, Wt log Pk, w'th) (3)
y==1

Hlxg, w'th) = —

Thus, the next strategy would be selecting a batch that has
highest rank. We ranked all the samples using equation 2 and
took the highest rank. We only selected highest scores (10%
from the unlabeled amount). However, selecting top K data
as a batch would harm the performance since many homo-
geneous samples would be selected due to sharing similar
uncertainty scores. Thus, we used a partition-based approach
for uncertain space exploration that divides the problem space
into a K disjoint partition, resulting in a higher potential to
explore the regions of the minority class [38]. In this work,
we use K-Means and set the cluster size to 180 based on the
budget we derived from a batch-selection experiment. In our
experimental studies, we also examine the effect of changing
the cluster size.

K n
J=3 2k =gl @

j=1 i=1
Once a cluster is formed, a representative set, which is
significantly smaller from the original set, needed to be iden-
tified. J in question 4 represent the centroid of each cluster.
A good representation should capture most of the information
from the original set. Three samples near the centroid of the
cluster is used as the represented sample, with the intuition
that the central point could represent a substantial portion of
the instances inside a specific partition. Furthermore, several
pieces of literature mention that the clusters are represented
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FIGURE 1. lllustration of proposed method.

by a central point [31], [32]. However, in K-Means clustering,
the centroid point does not usually belong to certain sam-
ples, thus selecting three samples near the center improves
the probability of selecting the most representative samples
inside the cluster. Algorithm 1 summarizes our DS3 algo-
rithm.

2) SKEWED-SPECIALIZED SAMPLING

In a highly-skewed environment where the amount of samples
in the minority class is extremely low (under 10%) [19], con-
ventional active learning approaches tend to perform poorly.
It is due to this fact that even using the intelligent active
learning approach, the probability of picking a minority sam-
ple is under 1% [39]. Thus, the model’s performance tends
to fluctuate over the training iterations. One of the classic
approaches to overcoming the class imbalance is to represent
the classes in a more balanced way either by oversampling the
minority class, under-sampling the majority, or a blend of two
approaches. Here, a simple yet effective method is proposed
which maintains the original population of the minority class
while under-sampling the majority class in the query set.
This method keeps the model stable by selecting the best
representative sample to be labeled.

B. BATCH SELECTION

Much research on batch-mode active learning picks the batch
as an arbitrary number thus neglecting the real human limita-
tion on labeling. Commonly, a batch of 20, 50, 100, 150 and
200 samples are selected as batches for labeling. However,
there is lack of explanation as to how this number is selected.
Therefore, this work follows studies that explore their reason-
ing behind selecting a specific number of batches by imple-
menting recent studies [40], [41] that select 180 as the batch
size. While Mirisaee et al. [40] chose 180 because it pro-
vides a good representation of the entire data, Fajri et al. [41]

VOLUME 9, 2021
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Algorithm 1: DS3 Algorithm
Input: Labeled Dataset (L)
X = {(xl,)’l), ey (xl’l’ }’n)}

Unlabeled Dataset U = {(x1, ..., x,)}
Labeling Budget b, Classifier C
Output: Sample Selection X* = {(x}, ..., x;) € U}

initialization;
Calculate entropy x € C(x) using equation 3 ;
while b < |B| do
Initialize k cluster randomly;
Set cluster prototype as cluster centroid ;
Select representative data from cluster using
equation 4 ;
Balance the amount using random under-sampling ;
end
Sample representation selection X * ;
Add label (x*, y) to L and remove X* from U ;
Update the model C; using L ;

selected 180 by doing a real human labeling experiment. The
work [41] shows that 180 samples is suitable for clustered
text data which has a large feature space. Therefore, it is well
suited for lower feature spaces such as the COVID-19 dataset
presented in this paper.

V. EXPERIMENTAL METHODOLOGY

A. DATASETS

Several experiments are conducted on four publicly available
COVID-19 datasets from several countries. We focus primar-
ily on COVID-19 datasets as they represent both a recent
data science problem and an imbalanced set of data. Table 1
illustrates the characteristics of datasets used in this paper.
As the study is designed for predicting the COVID-19 cases,
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FIGURE 2. Comparison of five sample selection algorithms. The black star represents the selected sample.

TABLE 1. Datasets.

(r) Chinese CBMB

(s) Chinese LBC (t) Chinese DS3

| #Instances | #Positive | #Negative | %Positive | %Negative | #Features | Imbalance Ratio

Dataset
Mexican COVID ! 26143 101753 159670 38% 62% 24 1:1.5
Israeli COVID [42] 163639 69327 94312 43% 57% 10 1:1.3
Brazillian COVID 2 2092 976 1116 46% 54% 12 1:1.14
Chinese COVID [43] 2542 912 1630 35% 65% 11 1:1.78

thus the dataset is designed to contain mixed features. The
features range from categorical and numerical data, such as
age or COVID-19 symptoms. The Table 1 shows the number
of features in each dataset as well as the imbalanced ratio.

1) DATA PRE-PROCESSING AND PARAMETER TUNING

This paper follows a standard machine learning data pre-
processing, including deleting the null value and performing
encoding on categorical data.

B. TWO-DIMENSIONAL VISUALIZATION OF DATASETS

Further experiments compared the sample selection strategy
of each model and used T-SNE [44] visualization as it able

161642

to preserve local structure of the data compared to PCA.
Fig. 2 showed the illustration of the sample selection; a black
star represents the selected sample, black lines represent
the classification decision boundary, and circles represent a
cluster. The figure showed that all samples in the datasets
are non-linearly separable. Thus, nonlinear classifiers such
as Random Forest, SVM, and neural network are suitable as
base classifiers.

Uncertainty-based Active Learning (AL) tends to select the
samples near the edge of the classification boundary. This
suggests that the classifier plays an important role in sample
selection; samples that are far from decision boundary have
a lower probability of being picked. To increase the ability
of selecting the most representative sample, CBMB [39] and
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LBC [37] introduce several classifier boundaries. LBC chose
several upper bounds while CBMB measured the classifica-
tion cost based on uncertainty sampling. Both approaches
can increase the ability of selecting the most representative
sample in ‘round shape’ data, such as in the Mexican and
Israeli datasets. However, in a spherical data shape, such as
the Brazilian and Chinese datasets, a cluster-based approach,
such as Certainty-based BMAL (CBMAL) and DS3, has
better performance. This performance is supported by the
clustering algorithm, which can locate the representative sam-
ple at the edge of the data shape.

C. LEARNING ALGORITHM & HYPERPARAMETERS
SETTING
The proposed DS3 approach is a model-agnostic method;
thus, any classification algorithm could be implemented.
In the experiment, the Random Forest is selected as the main
learning algorithm. The model extracted the entropy from
class prediction probability that resulted from Random Forest
as the uncertainty sampling method, shown in equation 3.
The random forest model is chosen because it is simple
and shows potential performance in many machine learning
problems [45], [46]. The hyperparameter of the random forest
is set to have 50 numbers of trees and 4 level of depth
for each tree. Several experiments with different types of
classifier is performed with details in section VI-C. The other
hyperparameter in the experiment is the cluster size, which
is fixed to 60 by default. However, several experiments with
different cluster size is also tested to evaluate the sensitivity
of the proposed approach in section VI-B.

D. BASELINE METHODS

The DS3 method was compared with the most recent
clustered-based BMAL approaches and the standard active
learning method:

o CBMAL (Certainty-Based BMAL) [31]. The most
ambiguous points are clustered together and the most
uncertain point inside a cluster is sent for labelling.

o AL(Active Learning) [18]. In uncertainty-based active
learning, first the model calculates the uncertainty of
each sample then it presents a batch of uncertain data
to be labeled.

o« LBC [37]. As one of the most recent state-of-the-art
objective-driven batch active learning methods, LBC
uses the lower bounded certainty score of unlabeled data.
Subsequently, a large similarity matrix over all unla-
beled space is formed and a random greedy algorithm
is employed to find a candidate batch for labeling.

« CBMB (Cost-Bound Make-Balance [39]. CBMB is a
recent active learning approach that was implemented in
unbalanced class distribution. This approach consists of
two parts, Cost Bound and Make Balance. Cost Bound
is used to select the candidate sample based on a cost
condition (uncertainty sampling or generated sample
cost) while Make Balance is used to balance the majority
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class samples with the amount of minority class samples.
The majority sample selection is done using random
strategy.

E. EVALUATION CRITERIA
In conventional classification problem, accuracy is a standard
choice for performance evaluation. The accuracy score is
straightforward and easy to implement:

TP + TN

Accuracy = 5)
TP + FP + FN + TN

This work implement accuracy as one of the evaluation
metrics. However, it fails to reflect the performance on the
skewed datasets. In such scenarios, G-Mean and F1 measures
are widely used in the literature. G-Mean is the geometric
mean of the accuracies of both minority and majority classes:

TP TN
G-Mean = \/ X (6)
TP+ FN TN + FP

and F-1 measures output the harmonic mean of precision and
recall:

Bl — 2 x Precision x Recall

— )
Precision + Recall

VI. RESULTS AND DISCUSSION

In this section evaluations of the performance of the proposed
approach and comparisons of the model with other state-
of-the-art methods is discussed. The experiments focus on
the G-Mean measurement; and the investigation of why the
proposed of the balancing approach outmatches other model
is also presented.

A. PERFORMANCE EVALUATION
The proposed DS3 algorithm was compared with sev-
eral state-of-the-art active learning models: CBMAL [31],
CBMB [39] and LBC [37], and a common active learning
baseline [18]. For comparison, a standard pool-based active
learning strategy is implemented, dividing each dataset into
3 disjoint sets train (10%), test (20 %) and unlabeled (70 %).
Fig. 3 compares the F1 score of the active learning model.
The figure shows the proposed algorithm ranked first in F1
score. DS3 generally outperformed the state-of-the-art active
learning models. It outperformed best when the data it was
in a spherical shape, for example in Brazilian and Chinese
datasets where most of the informative samples reside on the
edge of the data location far away from the center. Thus,
for this shape, a clustering-based active learning approach
performed well in selecting the most informative sample.
In some cases, for example in Mexican and Israeli datasets,
DS3 performed equally well with the comparison method,
with a few advantages. For example, DS3 reached a 0.25 and
0.34 F1 score on the Mexican and Israeli datasets respectively,
having a 0.10 difference compared to the baselines.

For evaluation purposes, the performance comparison of
each model in is presented on Table 2. Based on the table,
the proposed approach shows a high performance compared
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FIGURE 3. Comparison of the performance of DS3 with baseline methods on multiple datasets (F1 against

number of queries).

to other state-of-the-art models. This performance was high-
lighted in three different evaluation metrics. For example,
in the Chinese COVID-19 dataset, DS3 wins in all evalua-
tion metrics, however, in the Israeli dataset it only succeeds
in 2 categories (i.e., F1 Score and accuracy). Despite DS3
losing the G-Mean score compared to the Israeli dataset, the
difference is only 0.01. To further highlight the performance
of each method, a ROC curve is discussed. A similar Random
Forest classifier is selected for the experiment. Fig. 4 shows
the result of each dataset with respect to the ROC curve.
Almost all models perform equally well in the Mexican,
Israeli, and Chinese datasets. The performance differences
on these datasets are only marginal. In the Brazilian dataset,
DS3-labeled data showed a higher ROC Curve with 0.71,
which is 0.11 points above LBC and CBMB.

B. EXPERIMENTS USING DIFFERENT CLUSTER SIZES

A further experimentation of the robustness of the DS3
approach using different cluster sizes is conducted. The main
objective of this experiment was to explore whether cluster
size has a significant impact on the approach. In CBMAL
approaches, such as DS3, the cluster size selection will
influence the representation of the data. Thus, the choice of
cluster size should maximize the creation a homogeneous
cluster, leading to the ease of selecting representative data
and contributing to the better model performance. Table 3
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illustrates DS3 performance across different cluster sizes.
In particular, it shows that the performance of the DS3 model
increases with increased cluster size. For example, in the
Mexican COVID-19 dataset, DS3 with cluster size of 100 has
a G-Mean of 0.59 and an F1 score of 0.20. This number rises
when the cluster size is extended to 300. Each model gains
performance, reaching a G-Mean of 0.65 and an F1 Score of
0.37. However, in examining the result, one can infer that the
accuracy of DS3 in the Israeli dataset behaves opposite to the
general result. This could be influenced by the characteristic
of the Israeli dataset, which is the largest dataset wherein
180 samples selected from the cluster could not represent the
dataset well.

C. EXPERIMENTS USING DIFFERENT CLASSIFIERS

The DS3 underlying classifier was compared with other well-
known tree-based algorithms such as AdaBoost, CatBoost,
XGBoost, and LightGBM. The Random Forest was chosen
as the underlying classifier of our main algorithm. Previ-
ously, Support Vector Machine was a popular classifier for
active learning [47], [48]; however, many recent works prefer
Random Forest as the base classifier since it works well
for BMAL in unbalanced class distribution [49]-[51]. Since
most of the datasets have an imbalanced class ratio, Random
Forest was chosen as base classifier. The results in Table 4
compare the performance of each classifier with regards
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TABLE 2. Overall model performance (Average over 10 runs | standard deviation).
Methods Mexican COVID Israelli COVID Brazillian COVID Chinese COVID
G-Mean F1 Score Accuracy G-Mean F1 Score Accuracy G-Mean F1 Score Accuracy G-Mean F1 Score Accuracy
CBMAL | 0.5910.004 | 0.2010.016 | 0.6210.011 | 0.7410.016 | 0.3210.009 | 0.6510.003 | 0.5410.042 | 0.3010.065 | 0.5310.013 | 0.8910.014 | 0.8810.014 | 0.8810.014
AL 0.5910.004 | 0.1910.018 | 0.6110.004 | 0.7310.047 | 0.3110.047 | 0.6310.020 | 0.5510.023 | 0.3310.079 | 0.5410.020 | 0.8910.010 | 0.8810.011 | 0.8710.009
LBC 0.5910.004 | 0.1910.015 | 0.6110.009 | 0.7510.004 | 0.3310.008 | 0.6410.0097 | 0.5610.022 | 0.3110.069 | 0.5510.016 | 0.8810.019 | 0.8710.021 | 0.8610.022
CBMB | 0.6010.006 | 0.1810.017 | 0.6110.003 | 0.7210.04 | 0.3210.009 | 0.6410.003 | 0.5310.035 | 0.2610.086 | 0.5410.019 | 0.8810.020 | 0.8710.022 | 0.8710.024
DS3 0.5910.004 | 0.3510.014 | 0.6210.004 | 0.7410.008 | 0.3410.012 | 0.6510.002 | 0.5710.024 | 0.3410.057 | 0.5610.014 | 0.8910.008 | 0.8910.010 | 0.9010.008

TABLE 3. Model performance using different cluster sizes.

Dataset
Cluster Size Mexican COVID Israeli COVID Brazilian COVID Chinese COVID
G-Mean FI1 Score Accuracy G-Mean FI1 Score Accuracy G-Mean F1 Score Accuracy G-Mean FI Score Accuracy

AVG STD AVG [ STD AVG STD AVG STD AVG STD AVG STD AVG [ STD | AVG [ STD | AVG [ STD | AVG [ STD | AVG [ STD | AVG [ STD
100 0.595 | 0.0048 0.2 0.01 0.62 0 0.75 0.004 032 ] 0.004 | 0.64 | 0.008 | 0.53 0.03 0.45 0.03 0.53 0.03 0.85 0.02 | 0.841 | 0.03 0.86 0.02
120 0.596 | 0.005 0.2 0.01 0.62 0 0.752 0.004 | 0.328 | 0.006 | 0.647 | 0.006 | 0.538 | 0.01 | 0.443 | 0.03 0.54 0.01 | 0.843 | 0.01 | 0.836 | 0.02 | 0.851 | 0.01
140 0.599 | 0.005 0.2 0.01 0.622 | 0.04 | 0.756 | 0.0004 | 0.328 | 0.007 [ 0.647 | 0.006 | 0.54 0.01 | 0.456 | 0.05 0.54 0.01 | 0.849 | 0.02 | 0.841 | 0.02 | 0.869 | 0.01
160 0.596 | 0.0048 0.2 0.01 0.622 | 0.04 0.76 [ 0.0018 | 0.33 0.005 | 0.645 | 0.008 [ 0.551 | 0.02 0.45 0.03 0.53 0.01 | 0.843 | 0.02 | 0.828 | 0.02 | 0.848 | 0.01
180 0.601 0.01 0.25 | 0.002 | 0.621 | 0.003 | 0.762 | 0.0018 | 0.332 | 0.003 | 0.643 | 0.006 | 0.558 | 0.02 0.49 0.04 0.54 0.03 | 0.854 | 0.02 | 0.846 | 0.02 | 0.863 | 0.02
200 0.61 0.013 0.26 0.01 0.621 | 0.003 0.77 0.005 0.336 | 0.005 | 0.641 [ 0.009 | 0.561 | 0.02 0.5 0.05 | 0537 | 0.03 | 0.858 | 0.01 | 0.845 | 0.01 | 0.863 | 0.02
220 0.616 0.02 0.32 0.01 0.621 | 0.003 | 0.772 0.001 0.34 | 0.001 [ 0.643 | 0.008 | 0.564 | 0.04 | 0.509 | 0.03 0.51 0.03 ] 0.839 | 0.02 | 0.823 | 0.02 | 0.864 | 0.01
240 0.625 0.02 0.33 0.02 | 0.626 | 0.004 | 0.776 | 0.008 0.34 | 0.009 | 0.641 | 0.009 | 0.571 | 0.03 | 0.511 | 0.04 | 0.557 | 0.02 | 0.846 | 0.01 | 0.838 | 0.01 0.85 0.01
260 0.63 0.03 0.36 | 0.008 [ 0.624 | 0.004 | 0.78 0.05 0.343 | 0.009 | 0.64 0.01 0.573 | 0.04 0.52 0.05 0.53 0.02 | 0.855 | 0.01 | 0.843 | 0.01 0.86 0.01
280 0.64 0.04 0.36 | 0.001 0.62 0 0.781 0.008 0.346 | 0.008 0.63 0.01 0.583 | 0.05 | 0.523 | 0.05 | 0.526 | 0.02 | 0.847 | 0.01 0.832 | 0.02 | 0.854 | 0.02
300 0.65 0.05 0.37 | 0.008 | 0.621 | 0.003 | 0.786 | 0.007 0.35 | 0.006 | 0.63 0.01 0.597 | 0.05 | 0.538 | 0.04 0.54 0.03 | 0.862 | 0.02 | 0.857 | 0.02 | 0.876 | 0.01

to the G-Mean, F1 Score, and Accuracy score. The results
show that DS3 with Random Forest performs slightly better
compared to other base classifiers. For example, Random
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Forest has a better F1 score in the Mexican and Chinese
COVID-19 datasets, and DS3 with Random Forest reaches
an F1 score of 0.37 and 0.89 in the Mexican and Chinese
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TABLE 4. Model performance using different classifiers.

Main Algorithm Mexican COVID Israeli COVID Brazilian COVID Chinese COVID
G-Mean FI1 Score Accuracy G-Mean F1 Score Accuracy G-Mean FI1 Score Accuracy G-Mean F1 Score Accuracy
(AVG ISTD) | (AVGISTD) | (AVGISTD) | (AVGISTD) | (AVGISTD) | (AVGISTD) | (AVGISTD) | (AVGISTD) | (AVGISTD) | (AVGISTD) | (AVGISTD) | (AVGISTD)
AdaBoost 0.5910.004 [ 0.3410.0127 | 0.6210.005 0.7310.005 0.3310.004 0.6410.003 0.5210.02 0.5010.03 0.5310.02 0.8910.01 0.8710.01 0.9010.009
XGBoost 0.58 10.0049 0.3510.014 0.6110.001 0.6710.007 0.3710.006 0.6310.005 0.5210.002 0.5210.02 0.5210.02 0.8910.01 0.8810.03 0.9110.01
CatBoost 0.5910.0028 | 0.3110.032 0.6210.003 0.7510.004 0.3210.004 0.6410.009 0.5310.02 0.4710.05 0.5310.02 0.8510.01 0.8310.01 0.8610.01
LightGBM 0.5910.003 | 0.3610.014 0.6210.003 0.7310.008 0.3410.006 0.6410.003 0.5210.02 0.5310.02 0.5210.02 0.90710.01 0.8810.01 0.9110.01
Random Forest | 0.5910.0046 | 0.3710.005 0.6210.004 0.7410.008 0.3410.01 0.6410.004 0.5710.02 0.5210.02 0.5610.01 0.8910.008 0.8910.01 0.9010.008
TABLE 5. Experiments with different amounts of initial training data.
Methods
Amount of Initial Training Set AL CBMAL CBMB DS3 LBC
AVG | STD AVG STD AVG STD AVG STD AVG STD
10K 2518 | 0.58 | 267.17 10.02 39.49 10.01 | 531.26 | 17.56 | 704.61 | 24.82
20K 28.28 | 0.89 | 258.03 7.38 42.19 1.73 536.15 8.09 610.25 7.98
40K 35.48 1.04 | 232.58 8.24 47.21 5.23 498.03 3.52 576.23 | 77.28
60K 40.14 | 0.38 | 218.82 | 17.80 | 56.70 5.59 | 45214 | 17.77 | 511.38 | 26.85
80K 49.67 1.74 195.27 | 24.68 73.20 2.18 452.58 6.03 481.25 | 23.16
100K 55.64 | 2.09 187.34 | 40.44 87.65 2.33 436.15 16.34 | 451.14 9.45
120K 65.78 | 2.88 160.02 | 43.13 97.01 5.07 401.12 5.04 390.88 | 16.59
140K 81.48 | 0.52 171.23 5.24 109.85 8.25 360.18 15.76 | 456.06 | 56.61
160K 88.38 | 2.32 | 163.54 | 576 128.59 | 4.63 | 362.34 | 9.86 | 406.35 | 59.22
180K 98.94 | 2.55 151.99 2.68 137.10 | 10.13 | 348.04 | 17.23 | 399.44 | 21.11

TABLE 6. p-values of wilcoxon test using the random forest classifier vs
other classifiers.

Random Forest Vs Dataset

Mexican [ TIsraeli | Brazilian | Chinese

AdaBoost 0.011 0.011 0.012 0.012
XGBoost 0.011 0.012 0.261 0.12
CatBoost 0.012 0.010 0.012 0.012
LightBM 0.011 0.074 0.51 0.012

datasets respectively. In other datasets, Random Forest per-
forms equally well compared to other approaches. How-
ever, the performance of DS3 Random Forest is lower than
XGBoost and LightBM in both the Israeli and Brazilian
datasets; nonetheless the differences between Random Forest
and these classifiers is only 0.01 and thus does not illustrate
the real performance of DS3 with Random Forest.

Further examination of the performance of each classifier
is measured statistically. First a test of the normality assump-
tion is conducted by performing the Kolmogorov-Smirnov
test, and the F1 score is used as the base score for statistic
evaluation. The results showed that the test sample failed the
normality test, thus non-parametric tests such as the Wilcoxon
test, are more appropriate for evaluating the performance of
our model statistically. We used the Wilcoxon signed-rank
test, and the results are presented in Table 6.

The Wilxocon test shows that in almost all datasets Ran-
dom Forest is significantly better than AdaBoost, XGBoost,
CatBost, and LightBM. However, there are no significant dif-
ferences between Random Forest and LightBM in the Israeli
and Brazilian datasets.

D. EXPERIMENTS USING DIFFERENT INITIAL AMOUNTS
OF TRAINING DATA

A final experiment was conducted to evaluate how our DS3
framework behaves with different amount of training data.
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The initial training data was set to a default of 10% of the
dataset; however, it is interesting to evaluate the time per-
formance with increase amounts of initial training set data.
Highlights of the execution time of each models with respect
to the various amount of training data is presented in Table 5.
The value in bold presents the lowest execution time while the
highest running time is highlighted in italics. The experiment
only use the Mexican COVID-19 dataset since it is the largest
dataset presented in this paper. Table 5 also illustrates that
traditional AL has the lowest execution time across all the
training sets. This is intuitive since AL does not have any
extra computational costs other than calculating the entropy.
The LBC model shows the highest time performance since its
characteristic is the opposite of AL with a lot of extra com-
putational costs. The other three methods CBMAL, CBMB,
and DS3 show an extra computational time compared to AL.
CBMB has lower execution time compared to the CBMAL
and DS3, while DS3 shows the highest. However, considering
the results, DS3 has a better F1 score in the Mexican dataset
compared to the other approaches. DS3 has an F1 score of
0.35, which almost doubled the performance compared to the
rest of the models used on the Mexican dataset.

VII. DISCUSSION
This research shows that a discriminative-based approach
works best for batch-mode active learning in imbalanced data
scenarios. There are several potential explanations for the
results. The first potential explanation is that the ability of
DS3 to select the most representative data; since data that
belong to the minority class inside the cluster leads to bet-
ter sample selection compared to other models. The second
potential explanation is that our balancing mechanism leads
to more stable performance.

It is envisaged that our framework will have a positive
impact on the community as our model could be used as a
solution to reduce COVID-19 data annotation cost. Secondly,
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with reduced cost, the deep learning model can be trained
for automatic COVID-19 detection efficiently. Finally, our
framework could be transferred to other domains that focus
on reducing the cost of annotation in both balanced and
imbalanced datasets.

Although showing a better performance compared to other
baselines, the purposed approach is no silver bullet. Thus,
there is room for improvement in the proposed framework.
For example, in the DS3 balancing approach, the data selec-
tion is at random. In future works, it would be interesting
to see how other sampling methods would behave when
combined with partition-based models.

VIil. CONCLUSION

This paper proposes a discriminative batch-mode active
learning framework, called DS3, for the diagnosis of
COVID-19. The framework can greatly reduce the cost of
manual labeling for training models and can further relieve
the burden of the healthcare system in the case of a fast-
spreading pandemic. The proposed framework can boost the
performance of any machine learning model by simultane-
ously considering diversity and representativeness of the data
samples that also fit the imbalanced data distribution. To ver-
ify the effectiveness of DS3, extensive experiments have been
conducted on various real-world COVID-19 datasets. The
experimental and statistical significance test results demon-
strate that the DS3 outperforms the baselines of state-of-the-
art batch-mode active learning methods.
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