How does the northern-winter wave driving of the Brewer-Dobson circulation increase in an enhanced-CO₂ climate simulation?

Citation for published version (APA):

DOI:
10.1029/2007GL033054

Document status and date:
Published: 01/01/2008

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
How does the northern-winter wave driving of the Brewer-Dobson circulation increase in an enhanced-CO₂ climate simulation?

A. J. Haklander,¹ ² P. C. Siegmund,² M. Sigmond,³ and H. M. Kelder¹ ²

Received 19 December 2007; revised 29 January 2008; accepted 6 March 2008; published 9 April 2008.

[1] Recent climate studies show that the northern-winter wave driving of the Brewer-Dobson circulation is enhanced if greenhouse gas concentrations increase. An explanation for this enhancement does not yet exist. In this study, the enhanced wave driving, as simulated in a doubled-CO₂ experiment with the MA-ECHAM4 climate model, is analyzed in detail. The extratropical poleward eddy heat flux increases (decreases) in the stratosphere (troposphere) mainly due to the stationary (transient) heat-flux component. The heat flux at 100 hPa is a measure of the stratospheric wave driving, and is found to increase by 12% in the doubled-CO₂ climate. This increase is dominated by the stationary-wave 1 heat flux, which is also enhanced in the midlatitude troposphere. The heat flux increase at 100 hPa is almost entirely due to an increase in the longitudinal temperature variability. The latter increase is mainly due to the well-understood sharpening of the lower-stratospheric meridional temperature gradient. Citation: Haklander, A. J., P. C. Siegmund, M. Sigmond, and H. M. Kelder (2008), How does the northern-winter wave driving of the Brewer-Dobson circulation increase in an enhanced-CO₂ climate simulation?, Geophys. Res. Lett., 35, L07702, doi:10.1029/2007GL033054.

1. Introduction

[2] Global-mean CO₂ concentrations have risen by about 10% in the 1979–2002 period, but a structural trend in the planetary-wave driving of the Brewer-Dobson circulation (BDC) is not yet observed during northern winter, likely due to a low signal-to-noise ratio over this relatively short period [e.g., Haklander et al., 2007]. However, Butchart et al. [2006] recently found that a more substantial increase of greenhouse gas (GHG) concentrations yields an overall strengthening of the BDC and the associated upward propagation of planetary-wave activity, with the strongest trend during northern winter. They found this result by comparing the response of the BDC to increasing GHG concentrations in an ensemble of general circulation models (GCM), with some models including interactive chemistry. The causes and nature of the strengthening are not yet clear. Shindell et al. [1999] suggested that increased GHG concentrations enhance the subtropical jet, so that more tropospheric planetary-wave activity at midlatitudes propagates into the stratosphere, thereby strengthening the BDC. The physical explanation of this was, that near 200 hPa, the meridional temperature gradient increases due to lower-stratospheric cooling on the poleward side and upper-tropospheric warming on the equatorward side of the subtropical jet. The associated enhancement of the subtropical jet would then cause a decrease in the equatorward refraction of tropospheric wave activity at midlatitudes. Eichelberger and Hartmann [2005] studied the qualitative effect of increasing GHG concentrations on the BDC by imposing a tropical tropospheric heat source in their GCM. This dry hydrostatic GCM had a flat lower boundary, and therefore did not simulate stationary waves at all. It was found that the BDC strengthens in response to the imposed tropospheric tropical heating, with an increase in upward propagation of transient wave-2 and wave-5 activity in the troposphere. However, only the transient wave-2 increase extended upward into the stratosphere.

[3] Sigmond et al. [2004] compared the BDC in a control climate and a doubled-CO₂ climate simulation. The BDC was found to be significantly stronger in the doubled-CO₂ run. Although the vertical component of the Eliassen-Palm (EP) flux increased in the midlatitude lower stratosphere, a decrease was found in the midlatitude troposphere. Sigmond et al. [2004] concluded that this might be caused either by a higher transparency of the NH midlatitude tropopause for tropospheric wave activity, or by more generation of wave activity near the tropopause. Also, a modification of the gravity-wave spectrum could alter the wave driving of the BDC during northern winter. In the present study, the processes via which the resolved wave driving of the BDC could increase in an enhanced-CO₂ climate are examined in greater detail, using the same climate simulations as used by Sigmond et al. [2004].

2. Climate Simulations and Methods

[4] This study compares two climate simulations which have been performed by Sigmond et al. [2004], using the middle-atmosphere (MA) version of the ECHAM4 model [Manzini et al., 1997; Roeckner et al., 1996]. The model has a T42 horizontal spectral resolution (about 2.8° × 2.8°), with 39 vertical levels between the surface and 0.01 hPa (about 80 km). Momentum deposition by sub-grid scale waves is parameterized for both orographic gravity waves [McFarlane, 1987] and for a transient gravity-wave spectrum [Hines, 1997a, 1997b]. One simulation is a 30-yr control run, in which CO₂ concentrations were fixed at 353 ppmv. In the perturbation run, CO₂ concentrations were doubled. The prescribed sea-surface temperatures were obtained from a control run and a doubled-CO₂ run with the ECHAM4 model coupled to a slab layer ocean model.
[5] We use the zonal-mean poleward eddy heat flux \([v*T^*]\) as a measure of the net zonal-mean upward flux of planetary-wave activity, since \([v*T^*]\) is proportional to the vertical component of the EP flux for quasigeostrophic waves. We define \(H_{100}\) as the average of \([v*T^*]\) at 100 hPa over January–February and 40°–80°N. This (or a similar) diagnostic has been used in several studies [e.g., Austin et al., 2003; Haklander et al., 2007]. By partitioning the response of \(H_{100}\) to the CO doubling into its stationary and transient components for different zonal wavenumbers, we examine the causes and nature of the increase in the northern midwinter wave driving in greater detail. Here, the zonal wave-number-k component of \([v*T^*]\) is defined as the zonal-mean product of the wave-k components of \(v\) and \(T\).

[6] Additionally, the poleward eddy heat flux is decomposed by noting that it equals the zonal covariance between \(v\) and \(T\), i.e.,

\[
[v*T^*] = r_{v,T} \sigma_v \sigma_T,
\]

where \(r_{v,T}\) is the zonal correlation coefficient of \(v\) and \(T\), and \(\sigma_v\) and \(\sigma_T\) are the zonal standard deviations of \(v\) and \(T\). Both \(\sigma_v\) and \(\sigma_T\) are indicators of wave amplitude, while \(r_{v,T}\) is a measure of how effectively waves transport the sensible heat poleward. For monochromatic waves, \(r_{v,T}\) is directly proportional to the cosine of the zonal phase difference between the \(v\) and \(T\) fields. CO doubling could modify both the amplitude of the waves and the efficacy of the poleward eddy heat transport.

[7] By definition, \(H_{100}\) is obtained by evaluating the l.h.s. of Equation 1 at 100 hPa and averaging over January–February and 40°–80°N. If the three r.h.s. terms are averaged over January–February and 40°–80°N separately, the product of those averages might be different from the average of the single-variable product, due to intraseasonal and meridional cross-correlations between \(r_{v,T}\), \(\sigma_v\), and \(\sigma_T\). Averaging the three factors on the r.h.s. of Equation 1 over January–February and 40°–80°N at 100 hPa, and multiplying them, yields an approximation of \(H_{100}\) which can be compared to \(H_{100}\) itself. For both runs, the 30-year timeseries of this approximation of \(H_{100}\) follows that of \(H_{100}\) itself very closely: correlation coefficients are 0.96 and 0.89 for the control and doubled-CO2 runs, respectively. Henceforth, to keep notation simple, \(r_{v,T}\), \(\sigma_v\), and \(\sigma_T\) will denote the corresponding averages over January–February and 40°–80°N at 100 hPa. We examine if the difference in \(H_{100}\) between the control and doubled-CO2 runs can be understood in terms of the differences in \(r_{v,T}\), \(\sigma_v\), and \(\sigma_T\). These decompositions of the poleward eddy heat flux have been discussed in more detail by Haklander et al. [2007, section 2.3]. In the present paper, the uncertainties provided along with the estimates represent the 95% confidence intervals. Differences between the control run and the doubled-CO2 run are considered statistically significant if the confidence level exceeds 95%.

3. Results

[8] We first examine the effect of CO2 doubling on \(H_{100}\) by comparing the 30-year averages of the control and doubled-CO2 runs. The result is shown in Table 1, along with the same comparison for several wave components of \(H_{100}\). The total \(H_{100}\) control-run average of 15.0 ± 0.9 K m/s agrees remarkably well with the observed 1979–2002 average of 15.1 ± 1.1 K m/s in the ERA-40 dataset [Haklander et al., 2007]. In our model, doubling the CO2 concentrations yields a significant and substantial increase in \(H_{100}\) of 1.8 ± 1.2 K m/s, or 12% ±8% of the control average.

[9] In both the control and the perturbation run, stationary waves dominate the influx of planetary wave activity into the lower stratosphere. Doubling the CO2 concentration in the model yields a significant stationary-wave flux increase of 23% ±16%, determining almost entirely the total \(H_{100}\) increase. The stationary-wave flux increase occurs mainly in its stationary wave-1 component. Of the longest five stationary zonal wave components, only wavenumber 1 exhibits a noticeable change. This suggests that the total wave response to the CO2 doubling can mainly be attributed to stationary wave 1. Considering the transient waves, we find a significant and substantial reduction in the transient wave-1 flux. However, this reduction is neutralized by small increases in the transient wave 2–5 components. Although the change in the transient wave 2–4 components is not significant, the statistical significance of the increase in the transient wave-5 flux is extremely high. Figures 1 and 2 show a large vertical coherence near 100 hPa. At the adjacent model levels (70 and 150 hPa), the increases in ‘\(H_{100}\)’ and ‘\(H_{150}\)’ are 1.3 ± 1.5 K m/s (8% ±9%), and 0.6 ± 1.2 K m/s (4% ±7%), respectively. The significant changes in the stationary wave-1, and transient wave-1 and wave-5 fluxes are also found at 70 and 150 hPa, with the dominant change being an increase in the stationary wave-1 flux.

[10] So far, we have only discussed 40°–80°N averages at 100 hPa, and not yet considered the pattern of the difference in \([v*T^*]\) in the meridional plane. It was men-

| Table 1. The 30-Year Averages for Run C and Run A and Differences Between the A- and C-Runs for \(H_{100}\) and Its Total, Stationary and Transient \(k = 1–5\) Components |
|------------------------|------------------------|------------------------|------------------------|------------------------|
| Component | C-Run Mean, K m/s | A-Run Mean, K m/s | Differences, K m/s | Relative Differences, % |
| Total | 15.0 ± 0.9 | 16.8 ± 0.8 | +1.8 ± 1.2 | +12% ± 8% |
| Stationary | 8.6 ± 1.0 | 10.6 ± 0.9 | +2.0 ± 1.3 | +23% ± 16% |
| Transient | 6.4 ± 0.6 | 6.2 ± 0.5 | −0.1 ± 0.8 | −2% ± 12% |
| Total | 8.6 ± 1.0 | 9.2 ± 0.7 | +0.6 ± 1.2 | +7% ± 14% |
| Stationary | 3.2 ± 0.7 | 3.4 ± 0.5 | +0.3 ± 0.8 | +8% ± 26% |
| Transient | 1.7 ± 0.4 | 2.1 ± 0.3 | +0.4 ± 0.5 | +24% ± 27% |
| Total | 5.0 ± 0.2 | 0.5 ± 0.2 | −0.1 ± 0.3 | −12% ± 56% |
| Stationary | 0.5 ± 0.1 | 0.9 ± 0.1 | +0.4 ± 0.2 | +86% ± 40% |
| Transient | 1.5 ± 1.0 | 8.2 ± 0.7 | +1.7 ± 1.3 | +27% ± 20% |
| Total | 1.7 ± 0.6 | 1.8 ± 0.5 | +0.1 ± 0.8 | +5% ± 46% |
| Stationary | 0.5 ± 0.3 | 0.6 ± 0.2 | +0.1 ± 0.4 | +26% ± 80% |
| Transient | −0.2 ± 0.1 | −0.2 ± 0.1 | +0.0 ± 0.1 | +1% ± 60% |
| Stationary | 0.1 ± 0.1 | 0.2 ± 0.0 | +0.1 ± 0.1 | +49% ± 59% |
| Transient | 2.2 ± 0.4 | 1.1 ± 0.3 | −1.1 ± 0.8 | −51% ± 25% |
| Total | 1.5 ± 0.4 | 1.6 ± 0.3 | +0.2 ± 0.5 | +12% ± 35% |
| Stationary | 1.2 ± 0.3 | 1.5 ± 0.2 | +0.3 ± 0.3 | +23% ± 28% |
| Transient | 0.7 ± 0.1 | 0.8 ± 0.2 | +0.1 ± 0.2 | +8% ± 30% |
| Total | 0.4 ± 0.1 | 0.7 ± 0.1 | +0.4 ± 0.1 | +99% ± 45% |

Also provided are the 95% confidence intervals. Components for which the differences are >95% significant are given in bold.
tioned in the previous section, that for quasigeostrophic waves \([v^*T^*]\) is proportional to the vertical component of the EP flux. The meridional pattern of the EP-flux vector differences can elucidate the effect of CO\(_2\) doubling on the propagation of planetary-wave activity. Figure 1 shows these difference patterns for the total, stationary and transient components of the EP flux. At midlatitudes between 400 and 10 hPa, the total upward EP flux increases significantly. A significant decrease is found in the troposphere north of about 25°N. In the stratosphere the total wave response (Figure 1a) is similar to the stationary-wave response (Figure 1b), whereas in the troposphere it is more similar to the transient-wave response (Figure 1c). In the subtropical troposphere, the doubled-CO\(_2\) run exhibits significantly less equatorward propagation of (transient) wave activity, indicated by the poleward orientation of the EP flux difference vectors in Figures 1a and 1c. Starting in the subtropical troposphere and following the difference vectors according to ray-tracing theory, we see that the subtropical reduction of equatorward wave propagation is likely associated with less transient upward wave propagation in the midlatitude (lower) troposphere to begin with. The latter is expected to be due to a decrease in baroclinicity, since the tropospheric pole-to-equator temperature gradient is reduced in the perturbation run [Sigmond et al., 2004] (Figure 2a).

[11] Since a significant difference between the control and perturbation runs was found for the stationary wave-1 and transient wave-1 and wave-5 components of \(H_{100}\), we also show the meridional cross sections of the EP flux difference for those three wave components in Figure 2. For stationary wave-1 (Figure 2a), a marked increase in the upward EP flux is observed particularly at midlatitudes, although the increase is not significant in the lower troposphere. Nevertheless, the contour pattern in Figure 2a indicates that the increase in stationary wave-1 activity flux at 100 hPa is associated with an increase in upward stationary wave-1 flux in the entire troposphere. Table 1 suggests that the total wave response to the CO\(_2\) doubling can mainly be attributed to stationary wave 1. This is
confirmed by the strong similarity in the lower stratosphere between the total difference pattern in Figure 1a and the stationary wave-1 difference pattern in Figure 2a. Figure 2b shows that the substantial decrease in the transient wave-1 component of H_{100} is due to a flux decrease north of about 52°N. The EP-flux difference for the transient wave-5 component at 100 hPa (Figure 2c) exhibits a significant increase at midlatitudes.

We next examine the effect of CO$_2$ doubling on the amplitude of the waves, and their correlation, as described in the previous section. Table 2 shows the 30-year averages and differences for H_{100}, its approximate value r_v, s_v, and s_T; and r_v, r_T, and s_T. The increase in r_v and s_T in the doubled-CO$_2$ climate is statistically significant and quantitatively comparable to the increase in H_{100}. The changes in r_v and s_T are very small and not significant. However, the zonal standard deviations of both v and T do show a significant increase. Whereas s_v exhibits only a marginal increase, the increase in s_T is found to be the dominant cause of the increased wave driving. Not only is the change in s_T significant, the relative change is substantial (+12% ± 5%) and comparable to the change in H_{100} (+12% ± 8%). A significant increase in s_T is also found at 70 and 150 hPa, and the percent increase in s_T is comparable with the percent increase in the total heat flux at both levels (not shown). In Figure 3, the January–February mean total eddy temperature field at 100 hPa is shown for the control and the perturbation runs. The stationary wave-1 signature is well visible for both experiences.

Table 2. The 30-Year Averages for the Control and Doubled-CO$_2$ Runs and Differences Between the Two Runs in H_{100} and r_v, r_T, and the Separate Factors r_v, s_v, and s_T.

<table>
<thead>
<tr>
<th>Component</th>
<th>Control</th>
<th>2 × CO$_2$</th>
<th>Differences</th>
<th>Relative Differences, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_{100}, K m/s</td>
<td>15.0 ± 0.9</td>
<td>16.8 ± 0.8</td>
<td>+1.8 ± 1.2</td>
<td>+12% ± 8%</td>
</tr>
<tr>
<td>r_v, K m/s</td>
<td>14.1 ± 0.9</td>
<td>16.4 ± 0.8</td>
<td>+2.3 ± 1.2</td>
<td>+16% ± 8%</td>
</tr>
<tr>
<td>r_T, K m/s</td>
<td>0.213 ± 0.007</td>
<td>0.216 ± 0.013</td>
<td>+0.002 ± 0.015</td>
<td>+1% ± 7%</td>
</tr>
<tr>
<td>s_v, m/s</td>
<td>10.1 ± 0.2</td>
<td>10.5 ± 0.3</td>
<td>+0.4 ± 0.4</td>
<td>+4% ± 3%</td>
</tr>
<tr>
<td>s_T, K</td>
<td>6.5 ± 0.2</td>
<td>7.3 ± 0.2</td>
<td>+0.8 ± 0.3</td>
<td>+12% ± 5%</td>
</tr>
</tbody>
</table>

*Also provided are the 95% confidence intervals. Components for which the differences are 95% significant are given in bold.
ments, and Figure 3 clearly demonstrates the increase in longitudinal temperature variability in the doubled-CO\textsubscript{2} run. The increase in σ_T may be due to an increase in the meridional temperature gradient between 40°–80°N at 100 hPa, as meridional air displacements will produce larger zonal temperature asymmetries if the zonal-mean meridional temperature gradient increases. Indeed, the 30-year average January–February temperature difference between 40°N and 80°N at 100 hPa increases by about 10% in the perturbation run (not shown). Below 400 hPa, the temperature difference between 40°N and 80°N decreases in the doubled-CO\textsubscript{2} run, with the largest reduction in the lower troposphere. This result agrees with the significant reduction in midlatitude upward EP flux at those levels that was discussed above.

4. Conclusion

[13] In this paper, the effect of CO\textsubscript{2} doubling on the northern-winter upward wave activity flux at midlatitudes has been analyzed, using the MA-ECHAM4 climate model. The upward wave flux is quantified by H_{100}, defined as the average of v^*T^* at 100 hPa over January–February and 40°–80°N. Doubling the CO\textsubscript{2} concentration leads to a substantial and significant increase in H_{100} of 1.8 ± 1.2 K m/s, or $12\% \pm 8\%$. This is, at least qualitatively, in agreement with the studies by, e.g., Butchart and Scaife [2001], Rind et al. [1998, 2002], and Butchart et al. [2006]. Table 1 and Figures 1a and 2a indicate that stationary-wave 1 likely accounts for almost all of the total increase in H_{100}. This suggests that at least part of the increase is due to more stationary wave-1 generation at midlatitudes in the (lower) troposphere. The results indicate that doubling the CO\textsubscript{2} yields significant changes in transient wave-1 and transient wave-5 as well. The latter change is in agreement with the result of Eichelberger and Hartmann [2005], but their model setup (no topography) was quite different from that in the present study. Transient wave-5 may not seem very relevant due to its small contribution, but its increase amounts to $19 \pm 15\%$ of the total H_{100} increase.

[14] Using an alternative decomposition of the poleward eddy heat flux, we found that the increased wave driving can be attributed mainly to a larger longitudinal temperature variability, that is mainly due to the increased meridional temperature gradient at 100 hPa in the doubled-CO\textsubscript{2} climate simulation. With only one climate model at our disposal, we were not able to test the robustness of our results. However, both the increase in the northern-winter wave driving of the BDC and the increase in the 100-hPa meridional temperature gradient are robust features in enhanced-CO\textsubscript{2} climate simulations. We would welcome studies in which our analysis method is applied to data from other enhanced-CO\textsubscript{2} simulations.

[15] Acknowledgments. The authors gratefully acknowledge the constructive suggestions that were made by two anonymous referees.

References

A. J. Haklander and H. M. Kelder, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven, Netherlands. (haklander@knmi.nl)

P. C. Siegmund, Climate and Seismology Department, Royal Netherlands Meteorological Institute, P.O. Box 201, NL-3730 AE De Bilt, Netherlands.

M. Sigmond, Department of Physics, University of Toronto, 60 St. George St., Toronto, ON, Canada M5S 1A7.