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Abstract: Objective: Contactless monitoring of instantaneous heart rate and respiration rate has a
signi�cant clinical relevance. This work aims to use Speckle Vibrometry (i.e., based on the secondary
laser speckle effect) to contactlessly measure these two vital signs in an intensive care unit. Methods:
In this work, we propose an algorithm for the estimation of instantaneous heart rate and respiration
rate from mechanically ventilated patients. The algorithm uses multiple regions, principal component
analysis, and dominant angle analysis. A semi-automated peak detection method is implemented
to precisely label the aortic valve opening peak within the cardiac waveform. Results: Compared
with electrocardiography, the present work achieves limits of agreement of [�2.19, 1.73] beats per
minute of instantaneous heart rate. The measurement spot is on the chest covered with two to
three layers of duvet blankets. Compared with the airway �ow signal measured by the mechanical
ventilator, the present work achieves limits of agreement of [�0.68, 0.46] respirations per minute of
instantaneous respiration rate. Conclusions: These results showcased Speckle Vibrometry’s potential
in vital sign monitoring in a clinical setting. Signi�cance: This is the �rst human clinical study for
Speckle Vibrometry.

Keywords: camera; contactless; vital sign monitoring; laser speckle; speckle vibrometry; instantaneous
heart rate; instantaneous respiration rate; ICU

1. Introduction
Both heart rate and respiration rate are two vital signs that are routinely monitored

in clinical settings. Continuous monitoring provides detailed information that can be
used to assess the potential clinical deterioration of their patients, as both heart rate and
respiration rate serve as critical indicators for the general health status of a patient [1,2].
The current gold standard for heart rate monitoring in the intensive care unit (ICU) is
the electrocardiogram (ECG), which requires at least three electrodes to be attached to
the patient’s skin. However, using wired sensors for heart rate monitoring is not always
possible or desired due to a patient’s medical condition, such as severely burnt skin or
delirium. Respiration rate monitoring is frequently performed using impedance-based
measurement, whereas the gold standard is considered to be capnography [3]. These
methods are obtrusive as well and are not always possible to be used in the general ward or
ICU setting. Therefore, research efforts have been put into investigating using contactless
solutions to monitor these two vital signs.

Several technologies have been proposed in the existing literature for contactless
instantaneous heart rate and respiration rate monitoring. Methods for instantaneous
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heart rate monitoring are the use of cameras [4�8], RadioFrequency (RF) [9�11], and ultra-
sound [12]. Example methods for instantaneous respiration rate monitoring include the
aforementioned three and thermography [13�15]. An RGB camera detects blood volume
changes via visible skin and has been employed in both laboratory and clinical environ-
ments. Compared with sensors that detect micro-motions, including RF and ultrasound,
it requires visible skin to detect heart rate. The RGB camera has also been used to extract
respiration rate from the thoracic area which does not require skin exposure [8]. However, it
requires suf�cient ambient light whereas thermography can operate in no-light conditions
to detect respiration rate. Both RF and ultrasound exploit the Doppler effect to detect
minute displacements from the human body (e.g., the neck, the head, etc.) to derive cardiac
and respiratory motions. Toften et al. [11] validated a radar-based sleep monitor to measure
instantaneous respiration rate and compared its performance with respiratory inductance
plethysmography. However, apart from the dif�culty in separating cardiac motions from
respiratory ones, RF and ultrasound have a limited measuring distance to reduce the impact
of background noise (e.g., moving objects in the background, temperature, etc.).

Speckle Vibrometry (SV) is another contactless solution for the monitoring of instanta-
neous heart rate and respiration rate. An SV setup typically consists of a laser source and a
camera that is defocused at the laser spot. It differs from laser speckle plethysmography
(SPG) which requires visible skin and a focused camera. SPG extracts cardiac pulse signals
based on certain statistical properties (e.g., mean intensity) of the laser speckles formed on
the human �nger [16]. While both SV and SPG exploit the secondary laser speckle effect [17],
SV uses a defocused camera to capture a laser speckle pattern. Besides, SV employs motion
registration techniques instead of statistical properties to extract micro-motions on the
laser-illuminated surface. The advantages of SV over the aforementioned methods are
its insensitivity to background noise and independence of visible skin. The feasibility of
using SV to monitor average heart rate [18�20], instantaneous heart rate [21,22], and aver-
age respiration rate [19] has been described in existing literature, including our previous
work [18,21]. However, there has been an absence of clinical studies on the implementation
of SV in a real-life clinical setting.

In this work, we study the performance of using SV to monitor instantaneous heart
rate in an ICU setting. We demonstrate the possibility of extracting respiratory motion
modulated in SV cardiac motion signal, from which an instantaneous respiration rate
can be extracted. Our previous work used SV for instantaneous heart rate monitoring in
a controlled laboratory environment. In contrast, in this work we propose several new
algorithms to address the practical challenges present in a real-life ICU setting. This is a
special corner case where patients were sedated and mechanically ventilated after large
surgery as well as the �rst human clinical application for SV.

2. Materials and Methods
2.1. Protocol

This study was part of the FORSEE study (NCT05455775), a prospective single-center
validation study of video-based vital sign monitoring in ICU patients in a tertiary care
hospital (Catharina Ziekenhuis, Eindhoven, The Netherlands). According to the Dutch
directives on research in human subjects, the study was reviewed by the Medical Research
Ethics Committees United (MEC-U) (Nieuwegein, The Netherlands, File no: W20.180).
The study protocol was approved by the internal review board of Catharina Hospital
Eindhoven on 9 March 2022. Written informed consent was obtained prior to the research
procedure. All patients were mechanically ventilated after cardiac surgeries. Depending on
the clinical situation, patients were either sedated with additional propofol administered or
in the process of waking up. For practical reasons, we collected 20 min of measurements
from SV and reference setup simultaneously from each patient.
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2.2. Measurement Setup and Data
A typical SV setup consists of one laser source and a camera that is defocused at

the laser-illuminated spot. In the camera’s defocused �eld of view, a random intensity
pattern of bright and dark spots can be observed. When the illuminated surface is optically
rough on the scale of the laser wavelength, the re�ected laser light waves differ in the path
lengths. And that leads to constructive and destructive interference. This is due to the
monochromatic and phase-coherent nature of the laser light. The SV setup, as used inside
the ICU, is shown in Figure 1. It comprises a near-focused camera (i.e., the focal plane
is between the detected surface and the camera lens) and two laser sources. The relative
positioning of the camera and laser sources is �xed during recording, rendering the location
of the two laser spots inside the camera’s �eld of view also �xed. Two regions of interest
containing the two laser spots are manually selected. The two laser sources are placed next
to each other and parallel to the camera. One laser source is aimed at the neck of the patient
and the other is aimed at the thoracic area (i.e., on blankets). The thoracic area was the
main focus of our investigation on instantaneous heart rate and respiration rate monitoring
in an ICU setting. However, we also included the neck because it is relatively distant from
the heart and has weaker cardiac motions. Thus it was considered to be a challenging
spot and served as SV’s technical validation. Under the given imaging condition, angular
changes of the detected surface are magni�ed signi�cantly whereas transversal or axial
movement barely has an impact [23]. The equation that maps the displacement between
consecutive laser speckle patterns to the angular change of the detected surface is detailed
in our previous work [18].

A monochrome camera with a 2.35 megapixel CMOS sensor (UI-3060CP-M-GL, IDS
Imaging Development Systems GmbH, Dimbacher Str. 10, 74182, Obersulm, Germany)
was used. Under a two-area setting, the camera operated with a �eld of view consisting of
1000-by-500 pixels (i.e., 500-by-500 pixels per area). It recorded 300 frames per second (fps)
with an exposure time of 3.000 ms. Two class-I green lasers (Starlight Lasers X1 Groene
Laserpen, Laserpenonline.nl, Kagerplein 415, 2172 EG, Sassenheim, The Netherlands) were
mounted in parallel with a C-mount camera lens (M111FM50, Tamron, Saitama, Japan).
Both laser light sources have a wavelength of 532 nm and an emission power of <1 mW.
The camera lens’ aperture (f-stop) was set at F/1.8.

As per standard of care, heart and respiration rate reference data were provided using
an IntelliVue MX750 patient monitor (Philips, Eindhoven, The Netherlands) and extracted
using ixTrend (ixitos, Aken, Germany). Heart rate was derived from a single-lead ECG
II (500 Hz) and respiration rate was derived using the airway �ow (AWF) signal (125 Hz)
from the mechanical ventilator (Hamilton Medical, Bonaduz, Switzerland). Measurements
from the patient monitor and SV measurements were synchronized with timestamps at a
precision of 1 ms.

2.3. Cardiac Motion Extraction
For the extraction of cardiac motion, which manifests as angular velocity on the laser-

illuminated surface, we propose a Multi-ROI Principal-component-analyse and Dominant-
angle-analysis method (MRPD). The MRPD method is based on the existing full-frame
cross-correlation method (FFCC) [18,19,21,24]. The work�ow of our MRPD method is
presented in Figure 2 and consists of three main parts, which are applied to each 10-s
window of video recordings.

2.3.1. Sub-Pixel Image Registration with ROI Selection
Instead of extracting angular velocity from the whole video frame of the laser speckle

pattern, each video frame was segmented into 16 ROIs equal in size as shown in Figure
3. The size of each ROI is 125-by-125 pixels. This ROI size was chosen based on the
following reasons. First, it covered a suf�cient area to avoid the de-correlation between
consecutive video frames and thereby guaranteed the ability to extract movements of
large magnitude. Second, if the ROI size was bigger (e.g., 250-by-250 pixels), the noise
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component could not be canceled suf�ciently due to the limited number of ROIs available
(i.e., 4 in this case). If the ROI size was smaller, the signals extracted from each ROI could
be noisy, and more computational power would be needed. Last, it was square instead
of rectangular or circular because it was not known beforehand in which direction the
laser speckles moved between frames. To extract angular velocity signals from each ROI,
i.e., displacements between consecutive video frames, we utilized the sub-pixel image
registration algorithm proposed by Guizar-Sicairos et al. [25] with a sub-pixel accuracy of
0.01 pixels. Per the 10-s window, for each ROI(i) with i indicating the index number of the
ROI, the angular velocity signals along the x-direction and y-direction were estimated as
Mxi (t) and Myi (t), respectively.
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Figure 1. The upper plot illustrates the working principle of SV with two laser spots in one camera’s
�eld of view, where L1 denotes the distance between the focal plane of the optical system and the
measured surface (i.e., neck and chest), L2 denotes the distance between the focal plane of the optical
system and the camera lens, F denotes the focal length of the camera lens, a denotes the angular
change of the measured surface, and d denotes the displacement between laser speckle patterns of
consecutive frames. The lower plot illustrates the SV setup in the ICU, where the two laser sources
are mounted close to each other and parallel to the camera. Both laser sources share the same L2 and
F values, which are 0.4 m and 0.05 m, respectively. The L1 of the laser source 1 is around 1 m while
that of the laser source 2 is around 0.9 m.
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Figure 2. Summarized work�ow of our novel motion (i.e., displacements between consecutive video
frames) extraction algorithm (MRPD). The sliding window size is 10 s with an overlap of one video
frame. The �rst window has a length N equal to 3000 video frames (i.e., 300 fps) while the following
ones have a length N equal to 3001 video frames, with each window starting from its previous
window’s last video frame.
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Figure 3. Regions of interest (ROI) indication and annotation for a full video frame of the laser speckle
pattern (the green circle) in a dark background. The numbers indicate the index of each ROI.

It was assumed that the ROIs with the higher SNR values should be those that had the
widest coverages of the green area, that is where the laser speckles are located. Hypotheti-
cally speaking, these ROIs should be 4, 7, 10, and 13. However, since the SNR distribution
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across the laser speckle pattern could be quite uneven due to, for instance, the detected
surface’s texture and the ambient lighting condition, the SNR of the ROIs at the upper left
corner (e.g., 4) would not be necessarily comparable with that of those at the lower right
corner (e.g., 13). Therefore, we propose two signal quality index values to automate the
selection of the best four ROIs. We de�ned them as heart rate power ratio and heart rate
spectral entropy [26], denoted as SNRHR and SEHR, respectively.

The heart rate power ratio is de�ned as:

SNRHR =
PSD(0.5� 3Hz)

PSD(all)
(1)

where PSD denotes the power spectral density. A range from 0.5 to 3 Hz was chosen,
corresponding to a heart rate of 30 up to 180 beats per minute (bpm).

The heart rate spectral entropy is de�ned as:

SEHR = �åm P(m) � log2 P(m)
log2 NF

(2)

where NF is the total frequency points between 0.5 and 6 Hz with a frequency resolution
equal to 0.05 Hz and P(m) denotes the probability distribution of the power spectral density.
A range from 0.5 to 6 Hz was empirically chosen as the base heart rate range and its �rst
harmonic for the ICU patient group. A lower SEHR value is desirable as it indicates clearer
periodicities in the frequency domain, leading to a cleaner waveform in the time domain.

First, SNRHR was utilized to discard four ROIs where the heart rate frequency com-
ponents of the angular velocity signals, i.e., Mxi (t) or Myi (t), had the lowest power in the
frequency domain (e.g., ROI 1, 6, 11, and 16). Then, from the remaining 12 ROIs, SEHR was
utilized to select the best four ROIs with the lowest spectral entropy values (i.e., SEHR).
This procedure was performed on Mxi (t) and Myi (t) separately.

2.3.2. Principal Component Analysis
After the Mxi (t) and Myi (t) of the selected four ROIs were obtained, they were mapped

onto the direction along which the variance of the signal was the largest, respectively. It was
assumed that the angular velocity signal was composed of two independent components,
the authentic angular velocity component and the sensor noise component. The authentic
angular velocity component consists of angular velocities induced by cardiac, respiratory,
and arbitrary movements (e.g., motion distortions introduced by nursing staff). The angular
velocity signals from ROI(i) were then further de�ned as follows:

Mxi (t) = Axi (t) + Nxi (t) (3)
Myi (t) = Ayi (t) + Nyi (t) (4)

where Axi (t) and Nxi (t) denote the authentic angular velocity and sensor noise components
along the x-direction. Ayi (t) and Nyi (t) denote the components along the y-direction.

It was assumed that authentic angular velocity components were correlated among
different ROIs whereas the sensor noise component was uncorrelated. Based on this
assumption, a cross-correlation matrix was calculated from the four-ROI set of Mxi (t) and
another one from Myi (t). From each of the two matrices, the eigenvector corresponding to
the highest eigenvalue was derived using principal component analysis (PCA) [27]. Using
the eigenvector as the weighting matrix, the four angular velocity signals per direction (x
or y) were combined into one single merged measurement. The merged measurements are
denoted, respectively, as Mx(t) and My(t).

2.3.3. Single-Channel Derivation
The dominant-angle (DA) method, as presented in our previous work [18] was used

to merge both angular velocity signals, Mx(t) and My(t), into a single-channel SV measure-
ment M(t) that is independent of the camera-surface orientation.
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2.4. Respiratory Motion Extraction
From the cardiac motion represented by the angular velocity and denoted as M(t),

the respiratory motion R(t) was estimated. First, M(t) was numerically integrated and a
fourth-order low-pass Butterworth �lter was applied, with a cut-off value equal to 0.7 Hz
(corresponding to 42 respirations per minute (rpm)). In this case, the respiratory motion is
represented by the angular displacement. This method will be compared with the methods
described in literature [28,29] of directly applying the same low-pass �lter on M(t) to create
the respiration signal ML(t).

2.5. Peak Detection
2.5.1. The Cardiac Signals

Similar to Gyrocardiography [30] which detects angular velocities on the chest intro-
duced by the contractions of the heart, there is inter- and intra-subject variability observed
in the SV waveform [18]. Different measurement spots (i.e., the neck and the chest) might
yield different cardiac waveforms within the same subject. It was further observed that
due to the intra-subject variability of the SV waveform over time, the peak of the high-
est amplitude within one cardiac cycle does not always correspond to the AO peak (i.e.,
the characteristic cardiac peak that corresponds to the aortic valve opening [30]). Some-
times the polarity of the SV waveform is �ipped during recording (i.e., the amplitude of
the AO peak switches from positive to negative values), which can be attributed to the
respiration-induced displacement of the laser spot on the detected surface (i.e., a blanket).
To reduce the in�uence of inter- and intra-subject variability of the morphology of the
SV signal, a new semi-automated waveform-based cardiac peak detection algorithm was
developed. This method starts with manually selecting one complete cardiac cycle with
the AO peak annotated as the waveform template for each unique 20-min measurement,
which is followed by an automated process. The automated process consists of two major
steps: (1) locating the peaks of the cross-correlation signal between the waveform template
and the whole SV cardiac measurement; (2) mapping these peaks to their corresponding
AO peak locations based on waveform comparison. A work�ow diagram is displayed in
Figure 4. The details are presented in Algorithm A1 in the Appendix A.

Each cardiac cycle of an ECG signal is characterized by the QRS complex [31], among
which the R peak (i.e., the highest amplitude in the R wave) is typically used for heart
rate calculation. For the detection of R peaks in the reference signal, i.e., ECG, a widely
adopted method that is a combined work of both W. Engelse and C. Zeelenberg [32] and A.
Lourenco et al. [33] was used.

2.5.2. The Respiration Signals
An adapted version of our previously developed algorithm was used for the estimation

of instantaneous respiration rate [18]. An envelope signal was calculated, respectively, from
ML(t), R(t), and the reference signal (AWF signal), by applying a fast Fourier transform-
based bandpass �lter (cutoffs: 0.1 Hz to 0.7 Hz). The envelope signal was then segmented
into 20-s sliding windows with a 5-s stride. Within each 20-s window, the envelope peaks
were labeled based on adaptive thresholding.

2.6. Instantaneous Heart Rate and Respiration Rate Estimation from Peak Alignment and
Interval Selection

We employed the peak alignment and inter-peak interval selection algorithm proposed
by our previous work [21] to align R peaks of ECG and AO peaks of M(t) and subsequently
to select pairs of R-R peak intervals and AO-AO peak intervals. For each ground-truth
R peak, within a given interval, a true AO peak was located. If there was more than
one peak found within that interval of the SV signal, the peak that was most adjacent
to the R peak was selected as the true AO peak (true positive peak), and the remaining
peaks were discarded (false positive peaks). If there was no AO peak found within that
interval, the R peak was discarded (false negative peak). After the one-to-one mapping
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between selected R peaks and AO peaks was obtained, inter-peak intervals were calculated
from the consecutive R peaks and consecutive AO peaks, respectively. If between two
selected R peaks, there had been originally one R peak but it was discarded during the peak
aligning process, the interval formed by these two selected R peaks was labeled as �false
intervals�. So were their corresponding AO-AO peak intervals. These inter-peak intervals
were discarded to avoid overestimating the performance. The same method was used for
peaks of AWF and peaks of R(t), and peaks of AWF and dips of ML(t). The peak of AWF
denotes the maximum inspiratory �ow rate measured at the end of inhalation. The peak of
R(t) denotes the maximum angular displacement at the end of inhalation. The dip location
of ML(t) corresponds to the peak location of R(t). After inter-peak interval selection,
instantaneous heart rates [bpm] were calculated by dividing 60,000 milliseconds by each
inter-peak interval [ms], and the same method was applied to calculate instantaneous
respiration rates [rpm].
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Figure 4. Summarized work�ow of the waveform-based peak detection algorithm for the SV cardiac
motion signal. The letter A denotes the length of the waveform template. The letter B denotes the
length of the SV cardiac measurement M(t). CC denotes cross-correlation. AO denotes aortic valve
opening and is annotated by a yellow circle in the blue line plot.
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2.7. Evaluation Metrics
Bland�Altman analysis [34] was conducted to evaluate the performance of the esti-

mated instantaneous heart rate and respiration rate from SV compared to their reference
signals. The quantitative metric was the limits of agreement (LOA). A Bland�Altman
analysis is valid only when the differences between measurements (i.e., ECG and M(t),
AWF and R(t), and AWF and ML(t)) have a normal distribution, which was veri�ed by the
Shapiro�Wilk test [35] with the p-value set to 0.05. The calculated limits of agreement were
compared with the clinically acceptable LOA for instantaneous heart rate and respiration
rate measurements according to the American National Standards Institute [36].

For inter-beat interval analysis, both the LOA and the root-mean-square error (RMSE)
were used. The de�nition of the RMSE is given below:

RMSE =

vuut 1
jNvalidj

jNvalid j

å
i=1

(IBIECG � IBIM(t))2 (5)

where IBIECG and IBIM(t) are selected pairs of R-R peak intervals and AO-AO peak
intervals, and jNvalidj denotes the total number of valid intervals.

3. Results
In total, 11 postoperative patients after cardiac surgeries were recorded with SV inside

the ICU as a subset of the FORSEE study. Demographical information is presented in
Table 1. From each patient, 20 min of data were recorded. For visualization clarity, a �xed
set of colors is used to indicate the same patient in all graphs. One patient with a pacemaker
was excluded from the analysis of instantaneous heart rate as no variation in heart rate was
expected. The patient coded as purple does not have the chest measurement available due
to a malfunction of the laser beam during recording.

Table 1. Patient information. N = number of patients, IQR = interquartile range, BMI = body mass
index. # denotes the number of.

Baseline Characteristics (N = 11)

Age (median, IQR) 74, 15.5
BMI (median, IQR) 26.3, 2.4

Male 8
Female 3

#patients on propofol 7
#patients using pacemaker 1

Admission reason ICU Postoperative after cardiac surgery

3.1. Time Domain Analysis
Figure 5 shows a segment of the measurements in the time domain from one patient,

including ECG, M(t), ML(t), and R(t), and AWF. M(t) denotes the SV cardiac motion
(angular velocity). It is observed that by extracting the baseline wander of M(t) a signal
that has a respiratory periodicity can be obtained, denoted as ML(t). However, the pixel
range of ML(t) only covers up to about four pixels, which is lower than the cardiac
movements on the measured surface (about 20 pixels). This is because ML(t) only consists
of respiration-induced low-frequency variations but not the respiratory motions themselves.
In contrast, R(t) represents the cumulative pixel displacements (about 600 pixels and
1000 pixels, respectively), taking into account the co-effect of both cardiac and respiratory
movements on the measured surface. R(t) also exhibits clear periodicity and can be used
to extract instantaneous respiration rates. Of course, the pixel ranges here do not carry
any absolute meaning. What differentiates R(t) from ML(t) is its waveform, which is a
more authentic representation of the respiratory movement. Therefore, R(t) carries more
information than ML(t), which entails not only the instantaneous respiration rate but
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also the respiratory motion. It is worth noting that the waveform of the AWF signal here
indicates the airway �ow, i.e., the volume of air passing through a point in the airway per
minute. Therefore, although all three measurements exhibit respiratory periodicity, they
are from different origins.
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Example Cardiac and Respiratory Measurements in the Time Domain

Figure 5. Example segments of cardiac and respiratory measurements in the time domain. M(t),
ML(t), and R(t), respectively, denote SV cardiac motion, baseline wander of the SV cardiac motion,
and SV respiratory motion signals. AWF is the respiration signal from the mechanical ventilator.

3.2. Inter-Beat Interval Analysis
Table 2 shows the performance of the inter-beat interval agreement (i.e., indicated by

LOA ranges and RMSE values). When the laser spot was on the neck, the minimum mean
RMSE value of 19.55 ms and LOA of [�37.68, 41.47] ms were achieved with the MRPD
method combined with the waveform-based peak detection algorithm. Such improvement
was signi�cant, from 40.11 ms (achieved with the old method) to 19.55 ms. In contrast,
when the laser spot was on the chest, the difference between the MRPD and FFCC methods
was smaller, regardless of which peak detection algorithm was used. The minimum RMSE
value of 11.90 ms and LOA of [�20.41, 25.32] ms were achieved on the chest. This relatively
limited improvement (from 15.34 ms to 11.90 ms) on the chest could be attributed to the
fact that the cardiac motions from the chest are easier to detect, rendering the signal quality
suf�ciently high for the FFCC and Hilbert methods to already yield adequate results.

Table 2. Comparison of the inter-beat interval agreements. FFCC = full-frame based motion extraction
method, MRPD = multiple-ROI based motion extraction method, Hilbert = Hilbert-transform based
peak detection method, Waveform = waveform-based peak detection method, LOA = limits of
agreement based on Bland�Altman analysis, RMSE = root-mean-square error, SD = standard deviation.
The best combination of measurement spot and algorithms is highlighted in bold font.

Laser Spot Motion
Extraction Peak Detection LOA [ms] RMSE [ms]

Mean � SD

neck FFCC Hilbert [�89.47, 87.98] 40.11 � 31.84
neck FFCC Waveform [�67.90, 67.36] 31.74 � 24.44
neck MRPD Hilbert [�85.14, 83.11] 38.69 � 21.69
neck MRPD Waveform [�37.68, 41.47] 19.55 � 12.24

chest FFCC Hilbert [�29.18, 34.13] 15.34 � 10.47
chest FFCC Waveform [�30.38, 34.63] 15.78 � 7.65
chest MRPD Hilbert [�23.58, 29.25] 13.09 � 6.55
chest MRPD Waveform [�20.41, 25.32] 11.90 � 5.56
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Table 3 shows the impact of each component of the MRPD method on the performance,
including the ROI selection, the number of the selected ROIs, and how the motion measure-
ments from these ROIs were synthesized into one measurement. It can be observed that
the best combination for both the neck and the chest is using both signal quality indices (SE
and SNR) to select four ROIs and synthesizing them using PCA. This coincides with the
results shown in Table 2. For the neck, both signal quality indices SE and SNR (i.e., which
selected four ROIs) contributed to better results than when no ROI selection was performed
(i.e., which used all 16 ROIs). The usage of PCA in general also yielded better results than
the equal-weighted averaging method. As for the chest, it can be observed that the impact
of PCA outweighed that of both SE and SNR.

Table 3. Comparison of the inter-beat interval agreements: the components of the multiple-ROI
based motion extraction (MRPD) method. RMSE = root-mean-square error, SD = standard deviation.
The best combination of measurement spot and MRPD components is highlighted in bold font. The
motion synthesis method Average indicates averaging across all used ROIs instead of using principal
component analysis. The waveform-based peak detection method was used.

Laser Spot ROI
Selection

Number of
Used ROIs

Motion
Synthesis of
Used ROIs

LOA [ms] RMSE [ms]
Mean � SD

neck No 16 PCA [�58.06, 60.59] 25.15 � 20.36
neck No 16 Average [�74.61, 77.46] 30.57 � 35.02
neck SE + SNR 4 PCA [�37.68, 41.47] 19.55 � 12.24
neck SE 4 PCA [�42.95, 46.59] 20.94 � 12.59
neck SNR 4 PCA [�51.62, 54.41] 23.82 � 18.02
neck SE + SNR 4 Average [�42.78, 46.22] 20.90 � 12.44
neck SE 4 Average [�55.50, 57.23] 26.28 � 22.29
neck SNR 4 Average [�72.64, 72.82] 32.40 � 32.41

chest No 16 PCA [�21.79, 21.17] 12.80 � 5.76
chest No 16 Average [�43.77, 46.53] 20.15 � 16.49
chest SE + SNR 4 PCA [�20.41, 25.32] 11.90 � 5.56
chest SE 4 PCA [�21.52, 26.56] 12.36 � 6.24
chest SNR 4 PCA [�21.70, 26.61] 12.81 � 5.55
chest SE + SNR 4 Average [�26.96, 31.64] 14.61 � 8.32
chest SE 4 Average [�26.93, 31.57] 14.64 � 8.42
chest SNR 4 Average [�27.42, 31.67] 14.98 � 8.22

3.3. Heart Rate Analysis
Figure 6 shows the performance comparison of measuring instantaneous heart rate

on the chest between the adopted method in existing literature (FFCC) and our novel
algorithm (MRPD). It can be observed that the LOA of MPRD outperforms that of FFCC
by almost 1 bpm. Figure 7 shows a similar performance with SV measured on the neck. It
shows that the LOA of MPRD precedes that of FFCC by slightly over 1 bpm. By comparing
Figures 6 and 7, we can observe that the performance on the chest exceeds that on the neck
by around 2 bpm regardless of the motion extraction algorithm that was used.

To compare the performance of Hilbert transform-based and waveform-based peak
detection algorithms, the MRPD method was utilized as the motion extraction method due
to its superior performance showcased above. Figure 8 shows that there is no performance
difference between these two peak detection algorithms when the measurement spot is on
the chest. However, when the measurement spot is on the neck, as shown in Figure 9, the
waveform-based algorithm outperforms the Hilbert transform-based algorithm by almost
2 bpm. Such an observation is consistent with the results shown in Figures 6 and 7, where
a larger improvement of MRPD over FFCC is found when the measurement spot is on
the neck.
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Figure 6. Bland�Altman plots of instantaneous heart rate on the chest (ECG-M(t)): a comparison
between FFCC and MRPD motion extraction methods. Each color indicates recordings from one
patient. The waveform-based cardiac peak detection algorithm was used. The FFCC method refers to
the full-frame motion extraction algorithm while the MRPD method refers to our new algorithm: the
multi-ROI-based motion extraction algorithm.

Figure 7. Bland�Altman plots of instantaneous heart rate on the neck (ECG-M(t)): a comparison
between FFCC and MRPD motion extraction methods. Each color indicates recordings from one
patient. The waveform-based cardiac peak detection algorithm was used. The FFCC method refers to
the full-frame motion extraction algorithm while the MRPD method refers to our new algorithm: the
multi-ROI-based motion extraction algorithm.

Several patients exhibited low heart rate variability (i.e., almost a vertical line in the
Bland�Altman plot of the neck), such as the ones coded in pink, light blue, and grey
(see Figures 6 and 7). Right before the recording, these patients all went through aortic
valve repair surgeries. During the recording, they were under the effect of propofol and
noradrenaline. This could have potentially contributed to their low heart rate variability
during the measurement. However, the grey patient had episodes of cardiac arrhythmia
during measurement (i.e., variability in heart rate), which was accurately captured by SV.
To observe better the heart rate variability of each patient, please refer to the scatterplots
(see Figure A1) in the Appendix B.



Sensors 2024, 24, 6374 13 of 22

No differences in performance were found between patients with additional propofol
administered and those without. A detailed comparison is given in the Appendix C.

Figure 8. Bland�Altman plots of instantaneous heart rate on the chest (ECG-M(t)): a comparison
between waveform-based and Hilbert transform-based peak detection methods. Each color indicates
recordings from one patient. The MRPD motion extraction method was used.

Figure 9. Bland�Altman plots of instantaneous heart rate on the neck (ECG-M(t)): a comparison
between waveform-based and Hilbert transform-based peak detection methods. Each color indicates
recordings from one patient. The MRPD motion extraction method was used.

3.4. Respiration Rate Analysis on Mechanically Ventilated Patients
Instantaneous respiration rates were extracted, respectively, from ML(t) and R(t) and

the AWF signal was used as the reference. As shown in Figure 10, it can be observed that
R(t) and ML(t) yielded very similar results when the measuring spot was on the chest,
with the bounds of LOA around 1 rpm. In comparison, as shown in Figure 11, R(t) yielded
slightly better results than ML(t). The points form a straight-line distribution because there
is no respiration rate variability due to the mechanical ventilator.
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Figure 10. Bland�Altman plot of instantaneous respiration rate on the chest: a comparison be-
tween AWF-ML(t) and AWF-R(t). The AWF is the mechanical ventilation signal with a stationary
frequency equal to 12 rpm. Each color indicates recordings from one patient.

Figure 11. Bland�Altman plot of instantaneous respiration rate on the neck: a comparison be-
tween AWF-ML(t) and AWF-R(t). The AWF is the mechanical ventilation signal with a stationary
frequency equal to 12 rpm. Each color indicates recordings from one patient.

4. Discussion
In this work, we have showcased the potential of SV in extracting cardiac and res-

piratory motions from mechanically ventilated patients in an ICU setting. SV is privacy-
preserving by design because in a defocused camera’s �eld of view, the laser speckle pattern
is the targeted area, and no visible human face can be discerned. During recording, the
patients were all mechanically ventilated, and some were administered with additional
propofol. It is a decent starting point for SV to be used in a real clinical environment with
available high-quality and medically graded physiological measurements (e.g., ECG and
AWF). The usage of a high-speed camera comes with an additional cost compared with, for
example, simply using ECG electrodes. However, SV provides a contactless solution that is
desirable and needed in certain clinical situations, such as in critical care on patients with
burnt skin or delirium or sleep monitoring. In addition, the SV solution proposed in this
work has a similar price range to other contactless sensing modalities.

There is inter- and intra-subject variability observed in the waveform of SV cardiac
signal, M(t), due to the amount of biomechanical information it carries. The biomechanical
information itself is subject- and time-dependent. This advantage also poses challenges
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in the accurate annotation of the characteristic peaks within one cardiac cycle (e.g., the
AO peak). Our proposed waveform-based cardiac peak detection algorithm was designed
and tailored to the speci�c needs of SV. It has achieved an improved result (as shown in
Figures 8 and 9) compared with the Hilbert-transform method. The latter annotates the
peak reaching the highest amplitude within each cardiac cycle, disregarding the waveform
variability over time.

When presented as inter-beat interval agreements, M(t) achieved an LOA of
[�20.41, 25.32] ms on the chest and [�37.68, 41.47] ms on the neck. The performance
of M(t) on the chest is comparable to the performance (an LOA of [�23.41, 25.45] ms)
reported in [22] that used SV on the chest of healthy volunteers in a laboratory setting.
Furthermore, it exceeds the performance (an SD of 25.2 ms) reported in [16] using SPG on
healthy volunteers in a laboratory setting. When presented as instantaneous heart rate
agreements, M(t) achieved clinically accepted results from the neck (an SD of 1.79 bpm)
and the chest (an SD of 0.98 bpm). However, M(t) exhibits a performance discrepancy
between the two measuring spots. We attribute such a difference to two plausible factors.
First, the laser was directly illuminated on the surface of the skin when the measuring
spot was on the neck whereas it was on two to three layers of duvet blankets when the
measuring spot was on the chest. Considering the green visible light source (532 nm) that
we deployed, the re�ection was stronger on the duvet blankets than on bare skin, rendering
a higher SNR of the laser speckle pattern formed on the former. Second, as discussed in
our previous work [21], adding several layers of duvet blankets aided in the extraction
of cardiac motions thanks to its dampening effect on low-frequency movements, such
as respiratory ones. Respiratory movement has a higher magnitude than cardiac ones.
Movements of higher magnitude cause the laser speckles to move at a larger distance in
the camera’s �eld of view. When the frame rate is �xed (300 fps in our case), the larger the
movement, the more dif�cult it is to extract the motion between consecutive frames, and the
more noisy M(t) becomes. However, such a difference between these two measuring spots
was signi�cantly reduced (see Figures 8 and 9), by approximately 2 bpm, when we applied
the waveform-based peak detection algorithm (around 1.5 bpm) in place of the Hilbert
transform-based method (around 3.5 bpm). This improvement by one fold solely based
on the improvement of AO peak annotation indicates that the potential impact introduced
by different measuring spots can be mitigated via algorithmic improvement. As shown
in Figures 6 and 7, the performance of SV is not dependent on heart rate values. Within
our patient group, SV can measure from 40 bpm to 100 bpm without any performance
bias. These two observations showcase the resolution of motions that SV can detect and its
usability on real patients for instantaneous heart rate monitoring.

To evaluate how each component of our proposed MRPD method contributed to
the performance, we present a comprehensive comparison in Table 3. It can be observed
that when the PCA was used to synthesize motions from different ROIs, for the neck, a
combination of both signal quality indices, SE and SNR, yielded better results than using
either of them alone or none at all. However, for the chest, the aforementioned four cases
yielded very similar results. When a simple equally-weighted averaging method was used
in place of PCA, on the chest, the results were worse, especially when neither SE nor SNR
was used to perform ROI selection. This could be attributed to the fact that the noise
residing in different ROIs on the chest was uncorrelated (i.e., which can be detected by
PCA) but did not exhibit characteristics that can be detected by either SE or SNR.

On the estimation of instantaneous respiration rate, both R(t) and ML(t) achieved
clinically accepted results from both measuring spots in this corner case. The achieved
LOAs are also comparable to the result ([�0.99, 0.85] rpm) reported in [11]. R(t), repre-
senting the respiratory movement derived from the numerical integration of M(t), yielded
slightly better results than ML(t) which is the baseline wander of M(t). This demonstrates
the potential of R(t) in the future as a contactless respiratory measurement that not only
carries information on respiration rates but also movement. By aiming one laser spot on the
chest and the other on the abdomen, R(t) extracted from both sites could perhaps be used
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to deduce respiratory efforts or detect desynchronized thoracic and abdominal movements
that can occur during an apnea episode.

There are several limitations of this study. The current waveform-based method is
semi-automated. More speci�cally, the determination of the waveform template from one
complete cardiac cycle is manual. Future work needs to investigate automating this step
(e.g., via ensemble average), which shall also introduce a more dynamic construction of
waveforms that could self-adapt over time in case of waveform changes during a longer
duration of recording (e.g., more than 20 min). The patient group is special in the sense that
some of the patients were under the effect of additionally administered propofol. Second,
the patients were mechanically ventilated and not breathing spontaneously. Although no
de�nite or concrete claims have been made, studies have indicated the potential dampening
effect of propofol on heart rate variability [37], which is a relevant factor to consider for
instantaneous heart rate monitoring. Nevertheless, within this study, no difference can be
observed between SV’s instantaneous heart rate performances in patients who received
additional propofol and patients who did not. The number of patients in our experiment
is small. Under the same monitoring conditions, our solution can be generalized to other
situations as long as patients do not move frequently. However, as the number of patients
increases, more variability of SV cardiac signal waveform can potentially occur. Its impact
on the performance of our SV solution still needs further investigation.

Beyond the ICU setting, SV could have value in other clinical applications. For instance,
in sleep monitoring, the patient does not move frequently and bene�ts from less obtrusive
sensing techniques. In this case, SV could be a potential contactless addition or replacement
for heart rate and respiration rate monitoring. Since SV detects respiratory motion, two
laser beams aimed, respectively, at the chest and at the abdomen can be used to assess
respiratory effort or potential desynchronization introduced by sleep apnea. In the general
ward, where the vital signs are mainly measured based on spot-checks, SV could be a
potential continuous solution to measure heart rate and respiration rate. However, when it
comes to moving SV from this special corner case to a more general ward setting or sleep
monitoring, there are several factors to be considered. First, we only recorded 20 min from
each patient, which is too short of a window to detect potential deterioration of the patient.
For long-term monitoring (e.g., 8�48 h), an alternative device setup entailing both hardware
selection and software con�guration might be needed. Second, we need to address potential
motion distortions introduced by non-sedated patient’s spontaneous movement and tackle
more diverse cardiac and respiratory patterns. In the context of long-term monitoring,
such as a sleep study, occasional episodes of motion distortions caused by the patient’s
spontaneous changing posture are often of limited duration. Thus, they could be simply
removed from the analysis. It would not jeopardize the overall assessment of the patient’s
health state during sleep. In the general ward, the patient is usually non-sedated and while
in bed might be doing some reading or talking. In such cases, a potential solution could be
to introduce several laser beams aimed at different spots of the body and bed. Through motion
reconstruction from multiple sensory inputs, the cardiac motion could be potentially extracted
from the original signal contaminated by distortions.

5. Conclusions
In this work, we demonstrate that SV can be used to extract cardiac and respiratory

motions from real-world ICU patients through algorithmic improvements and innovations.
Our multi-ROI-based method allows for the automated selection of high-quality speckle
patterns for motion extraction and signi�cantly reduces the impact of sensor noise. Our
waveform-based method allows for precise AO peak annotation in the presence of diverse
waveform patterns. The detailed motion waveform of SV allows the estimation of instan-
taneous heart rate and respiration rate as demonstrated by this work. It can also be used
to potentially extract other cardiac and respiratory information, such as respiratory effort,
sleep apnea, and cardiac arrhythmia, which deserves the attention of future work. This is
the �rst real-world clinical study of SV as a contactless sensing technology that does not
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require visible skin. It also serves as a starting point to transition SV from a laboratory-
controlled environment to a clinical one. Future work needs to assess the feasibility of
using SV for longer recording duration, e.g., a minimum of 8 h in sleep monitoring or 48 h
in a general ward setting, where patients are not sedated, breathe spontaneously, and can
have spontaneous movements. Long-term monitoring on a larger population introduces
higher variability of cardiac and respiratory motion patterns. The feasibility of using the
current motion extraction algorithm for such diverse motion patterns still needs to be
investigated. A fully automated accurate AO peak annotation method still needs to be
developed accordingly.
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Abbreviations
The following abbreviations are used in this manuscript:

IHR Instantaenous heart rate
BPM Beats per minute
SV Speckle vibrometry
BMI Body mass index
SD Standard deviation
LOA Limits of agreement
RMSE Root mean square error
ECG Electrocardiogram
BCG Ballistocardiogram
PPG Photoplethysmogram
SCG Seismocardiogram
SPG Speckle plethysmogram
GCG Gyrocardiogram
LDV Laser Doppler vibrometry

Appendix A. Waveform-Based Peak Detection
The pseudo-code of the waveform-based peak detection method is presented in

Algorithm A1.
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Algorithm A1 Waveform-based cardiac peak detection for SV
f ind_peaks(Signal, Threshold) . the �nd_peaks function in Python
PW . the AO peak location inside W(t)
W(t) = [w1, w2, ..., wA ] . the waveform template with A data points
flW(t) = W(t)�min(W(t))

max(W(t))�min(W(t)) � 0.5 . normalize W(t)
M(t) = [m1, m2, ..., mN ] . the SV cardiac measurement with N data points
flM(t) = M(t)�min(M(t))

max(M(t))�min(M(t)) � 0.5 . normalize M(t)
CC(t) = [cc1, cc2, ..., ccN ] . the cross-correlation between flW(t) and flM(t)
Po  [] . the initial list of peaks in M(t)
Pcc  [] . the initial list of peaks in CC(t)
Gcc  [] . the polarity/sign of peaks in CC(t)

#(1) locating peaks of the cross-correlation signal CC(t)

while i � N do
Wi(t) = CC(t = i : i + A)

Si =
3mWi
sWi

. the skewness of Wi(t)

if Si < 0 then
if i > 1 & length(Pcc) > 0 then

if min(Wi(t)) + i� Pcc(i� 1) < A
1.5 then continue

end if
end if
Pcc  min(Wi(t)) + i . append to the list Pcc
Gcc  �1 . append to the list Gcc

else
if i > 1 & length(Pcc) > 0 then

if max(Wi(t)) + i� Pcc(i� 1) < A
1.5 then continue

end if
end if
Pcc  max(Wi(t)) + i
Gcc  1

end if
i = i + A

2
end while

#(2) mapping Pcc to their corresponding AO peak locations Po based on waveform comparison with flW(t)

while j � length(Pcc) do
if j == 1 then

s = Pcc(j)� A
2

else
s = Pcc(j� 1) + Pcc (j)�Pcc (j�1)

4
end if
if j == length(Pcc) then

e = Pcc(j)
else

e = Pcc(j) + 0.05
T . 1

T : the sampling frequency (Hz)
end if
if s > 1 then

Mj(t) = M(t)(t = s : e)
if W(PW ) < 0 then

Th = percentile90(�Mj(t))
Pj(t) = f ind_peaks(�Mj(t), Th)

else
Th = percentile90(Mj(t))
Pj(t) = f ind_peaks(Mj(t), Th)

end if
if length(Pj(t)) == 1 then

Po  Pj(1)
else

cx(t) = M(t)(t = Pj(x) + s� PW : Pj(x) + s + A� PW )
C(t) = [c1(t), ..., cy(t)] . y = length(Pj(t))
cc_list = [cc flW(t)c1(t) , ..., cc flW(t)cy (t) ] . cc: correlation coef�cient
Po  Pj(argmax(cc_list))

end if
end if

j = j + 1
end while
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Appendix B. Scatterplots of ECG-Derived IHR and SV-Derived IHR

Figure A1. Scatterplots of instantaneous heart rates (IHR) derived from ECG and M(t). The MRPD
method was used in combination with the waveform-based peak detection algorithm. Each color
indicates recordings from one patient.

Figure A2. Bland�Altman plot of instantaneous respiration rate on the chest: a comparison between
patients with additional propofol administered and patients without. Each color indicates recordings
from one patient.

As can be observed in Figure A1, subjects coded in pink, blue, and grey exhibited an
explicit vertical trend on the scatterplot from the neck, but less so from the chest. It is worth
noting that the numbers of inter-beat interval (IBI) from both locations are comparable for
all subjects despite the peak alignment procedure which selected valid IBI pairs from ECG
and M(t). For example, the IBI numbers of the pink subject from the chest and the neck
are 543 and 553, respectively. This indicated that such differences in alignment observed
from the chest and the neck were not introduced by differing numbers of valid IBI. Instead,
it implies that the peak annotation performance from the chest M(t) exceeds that from
the neck M(t) for these subjects. Nevertheless, from the chest measurements, it can be
observed that the subjects coded in light blue and pink exhibit low heart rate variability
(narrowly centered around 60 bpm and 58 bpm, respectively). Both participants underwent
aortic valve repair surgery prior to the recording. Before and during the recording, propofol
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and noradrenaline were administered which presumably reduced the heart rate variability.
The heart rate pattern of the subject coded in grey showed two centering points, one
around 40 bpm and the other around 80 bpm. The 40 bpm was induced by the patient’s
cardiac arrhythmia.

Figure A3. Bland�Altman plot of instantaneous respiration rate on the neck: a comparison between
patients with additional propofol administered and patients without. Each color indicates recordings
from one patient.

Appendix C. Performance Comparison between Patients with Additional Propofol
Administered and Patients without

Excluding the patient with a pacemaker, there were six patients (color-coded as pink,
light blue, brown, blue, purple, and olive green) administered propofol after surgical
operations while the others were in the process of waking up during recording. As shown
in Figures A2 and A3, the pink, light blue, and purple patients exhibited lower heart rate
variability while the brown, blue, and olive green patients still showed a certain degree of
heart rate variability despite the potential impact of additionally administered propofol.
Among patients without additional propofol administered, the grey patient exhibited two
heart rate ranges during recording, one close to 40 bpm and the other close to 80 bpm.
The green patient also exhibited a high degree of heart variability as did the propofol-
administered patient coded in olive green. The performance of SV does not exhibit a bias
concerning different degrees of heart rate variability. Results on patients without additional
propofol are comparable to those with.
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