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A B S T R A C T

Accurately assessing the resilience of the road network is crucial for responding to emergencies
and enhancing public safety. Signal control plays a significant role in managing traffic flow.
However, its impact is often overlooked in resilience assessments, where traffic flow and signal
control are usually considered separately. A Movement-Specific Resilience (MSR) assessment
model is proposed to integrate signal timing into resilience analysis. To accurately represent
traffic flow paths under phase control, a dual graph is used to depict the topological network,
allowing the assessment of relationships among all movements at an intersection. Based on this,
a cascading failure model is developed to analyze the impact of signal control on traffic flow
reassignment, reflecting how signal timing influences traffic flow propagation after failures. The
method is validated using data collected from a sub-road network in Xi’an city. Results reveal
the cumulative resilience of single lanes is not equivalent to the resilience of road segments.
The MSR is higher when the network’s failure degree is low and decreases as the failure level
increases. Furthermore, road saturation is inversely related to MSR, while MSR is proportional
to capacity. MSR remains unaffected by failures and oversaturation when capacity exceeds a
certain threshold. These insights could be a theoretical foundation for bolstering resilience via
signal control adjustments.

1. Introduction

A resilient transport network can have a greater ability to withstand disturbances, absorb external shocks, and recover itself [1].
Accurate resilience assessments are essential for informing transportation management strategies, enabling networks to recover
quickly from disturbances and maintain safety during emergencies [2]. Traditional resilience assessment models typically evaluate
road segment flows, assuming traffic can move freely between spatially interconnected road segments or lanes [3–5]. However, this
approach overlooks a critical factor: the influence of signal control at intersections. Signal control significantly adjusts the temporal
and spatial order of traffic passing through intersections, affecting the actual movement trajectories of vehicles [6–8].

Furthermore, due to the interconnected and interdependent nature of urban road networks, disturbances can cause cascading
failures that propagate throughout the network [9]. The resilience of a transportation network can be measured by comparing its
performance before and after a disturbance [10]. Cascading failure models analyze how congestion and failure spread following a
disturbance to evaluate network performance [11], simulating the redistribution of extra traffic flow based on the weights of nodes
or edges to analyze congestion and failure propagation. However, these models often fail to account for the influence of signal
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control on the paths and intensities of traffic propagation during disturbances. This oversight can lead to incorrect assessments of
congestion points and failure propagation patterns, resulting in inaccurate resilience assessments.

In resilience analysis, transportation networks are often abstracted to topological networks. Topological networks, whether
undirected or directed, weighted or unweighted, are constructed to analyze performance changes following a cascading failure,
with nodes and edges depicting intersections and road segments, respectively [12,13]. The primary graph approach, commonly
used in these models, can represent the green duration and phase sequence by adding node attributes. However, node attributes
contain extensive information, which can complicate the topological structure when representing movement in large networks. A
simplified but comprehensive approach is needed to characterize these dynamics effectively.

We need to consider three issues when assessing the resilience of transportation networks: (1) Current resilience assessment
models primarily focus on the impact of road segments or lanes on traffic propagation, with limited attention given to traffic
movements. (2) Existing cascading failure models applied in the resilience analysis fail to incorporate the influence of signal control
at intersections on traffic flow congestion and failure propagation. (3) While assessing resilience, the efficacy of the primal graph
method becomes complex when representing signal timing’s role in regulating traffic flow in a topological network.

Therefore, this research proposes a Movement-Specific Resilience (MSR) assessment model incorporating signal control. This
model focuses on traffic movements — defined as specific flow directions at intersections [14] — rather than just road segment flows.
By analyzing these movements, we can more accurately assess network resilience, aiming to provide both theoretical advancements
and practical guidance for system resilience. The main contributions of the study can be summarized as follows:

1. The development of an MSR assessment framework that assesses network resilience by focusing on the actual movement
trajectories under signal control, providing a more accurate representation of traffic flows.

2. The cascading failure model is improved by analyzing lane cascading failures and the impact of signal timing on traffic
propagation. This includes integrating signal timing parameters into reassignment rules and identifying the traffic propagation
process for each lane after a failure.

3. The transportation topological network modeling technique advances by adopting a dual graph method to represent the
signal-controlled network. This method adapts the topological network to reflect movement inherently, simplifying the
characterization of complex transportation networks.

The remainder of the paper is organized as follows: Section 2 discusses a review of related literature. The methodology of the
proposed MSR assessment model is described in Section 3. The dynamics of MSR with different parameters are presented in Section 4.
Finally, Section 5 summarizes the research results of this paper and the outlook for future research.

2. Literature review

This section reviews and summarizes the literature on the transportation network resilience model. It consists of three parts:
methods for building topological networks, cascading failure models for analyzing network performance after disturbances, and the
definition and assessment methods for resilience.

2.1. Network modeling methods

Establishing topological networks is essential for accurately representing and analyzing the structure and dynamics of road
network systems. Common road network modeling methods include primal-graph, dual-graph [15], and dynamic-graph ap-
proaches [16]. In the primal-graph approach, intersections are represented as nodes and road segments as edges, providing a simple
and intuitive topological representation [17]. In contrast, the dual-graph method abstracts the network by representing intersections
as edges and road segments as nodes [18]. The dynamic-graph method typically builds on the primal or dual-graph methods, with
the graph’s structure and weights changing over time [16]. The key difference between these three methods lies in how intersections
and road segments are mapped. This difference influences their applicability in various types of road network analyses.

The primal-graph method used for constructing urban road topologies is straightforward. It directly reflects the physical layout
of the road network, making it suitable for basic road network analysis. However, a single primal graph cannot accurately reflect the
movement within the road network. The dual-graph method can analyze the space relationships between road segments with more
detail [18]. The dual-graph method can characterize the traffic flow direction of a road segment by creating adjacency matrices
between nodes. Creating a feature matrix for the edges can also assess the signal states.

2.2. Cascading failure model

Traffic network cascading failure occurs when a road segment or intersection malfunctions and triggers a redistribution of traffic
flow to surrounding areas. This redistribution can lead to congestion and, in severe cases, may result in the loss of functionality
across the entire traffic network zhang2023cascading. Several models have been developed to analyze such failures, including the
load-capacity model [19], coupled map lattices model [20], percolation theory [21], sandpile model [22]. The load-capacity and
coupled map lattice models are most commonly used due to their versatility.

Traditional road network cascading failure models typically focus on the impact of road segment or intersection failures on the
entire road network. The load-capacity model simulates how traffic redistributes when a road segment or intersection fails. The
critical steps of this model include four parts, which are (i) defining the initial load, (ii) defining the capacity, (iii) determining
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attack strategy, and (iv) implementing a load reassignment strategy [23]. As research has progressed, studies have focused on
the impact of directional traffic flow failures on the road network. In bidirectional road networks, the coupled map lattices model
analyzes the failure of road segments and explores how interactions between traffic flows in different directions influence congestion
propagation [24]. This approach provides a more accurate description of how failure spreads across different traffic flow directions.
Further research refines the analysis to lane-level failures. Lane-level failure analysis enables a more granular understanding of how
the failure of individual lanes impacts entire road segments and the road network [19].

These studies have gradually deepened the analysis of cascading failures and their impacts on road networks. However, current
research analyzes these factors in isolation, not comprehensively examining how traffic flow disturbances propagate through road
networks. Therefore, this paper proposes an integrated approach that combines signal control with lane-level failure analysis. This
combination enables a more comprehensive assessment of the overall performance of the traffic network under stress.

2.3. Transportation resilience assessment method

Resilience was first introduced in ecological systems [25]. The concept of resilience has been extensively researched and defined
within transportation systems. The initial definition encompassed ten dimensions [26]. Subsequently, resilience has been applied
across various transportation domains, encompassing railxu2021resilient, road [27], maritime [28], and aviation systems [29]. In
the context of road networks, network resilience refers to the network’s ability to maintain, recover, and adapt system functions
after disturbances [10,30]. Robustness, redundancy, resourcefulness, and rapidity [31,32] were proposed and widely used in road
network resilience studies, which reflect the system’s absorptive, recovery, and adaptive capacity.

Two main approaches are used to quantify resilience. The first approach, performance-based assessment, quantifies resilience
by comparing network performance indicators before and after disturbances. For example, local network speed is a performance
indicator to analyze resilience under various traffic conditions [33]. The second approach, attribute-based evaluation, defines
network resilience attributes metrics and evaluates resilience based on these metrics [34,35]. Common resilience attributes include
absorptive, restorative, and adaptive capacity, which performance indicators can measure. Both approaches can utilize performance
indicators, categorized as topological or traffic-related, or a combination. Topological indicators include metrics such as network
connectivity [36], accessibility [37], betweenness centrality [38]. Traffic-related indicators include delay [39], redundant paths [40],
traffic demand satisfaction ratio [41] and so on. Regardless of the chosen approach, these indicators are the quantitative basis for
assessing network resilience. The Table 1 summarizes the various evaluation objectives, methods, and corresponding indicators used
in resilience assessment.

Road network resilience assessment typically focuses on the overall network’s performance. These analyses examine the network’s
capacity to respond to natural disasters or significant traffic incidents, informing targeted improvement measures to enhance system-
level resilience. While assessing the entire network is crucial, it often does not account for the specific impacts of critical road
segments. Therefore, critical road segment resilience is proposed and studied in more detail [33] . However, in actual road design,
multiple bidirectional lanes exist on a single road segment. The failure of a single lane cannot be equated with the failure of the
entire road segment. To better understand this nuance, lane-level resilience is proposed [19] to explore the road network’s ability
to withstand single-lane failures. However, focusing on road segment or lane flow analysis overlooks the influence of signal control
on traffic, which is critical to understanding overall traffic movement. Therefore, shifting the focus from segment-based or lane-
based flow to studying movement across the network is essential. This shift allows for developing a Movement Specific Resilience
(MSR) assessment framework. By incorporating signal control factors, this framework provides a more detailed and comprehensive
assessment of network resilience. The MSR assessment approach advances our understanding of road network performance under
disruptions and provides a theoretical foundation for enhancing resilience through signal control.

3. Methodology

This section outlines the framework for assessing MSR, including traffic topology network modeling, lane cascading failure
modeling, and an MSR assessment model.

3.1. Framework for assessing the MSR

A model for assessing resilience that considers the effects of signal control in traffic regulation is proposed. The framework entails
several vital steps as depicted in Fig. 1.

Initially, the topology of the signal-controlled transportation network is established using a dual graph, where intersections are
mapped as edges and lanes as nodes. Then, the process of lane cascading failures is analyzed, which consists of three main parts:
defining the initial network’s capacity and flow using a load-capacity model, discussing node attack and edge attack strategies, and
integrating signal control parameters into the reassignment model to analyze the process of traffic flow spreading from failed lanes
to adjacent lanes. Finally, based on the network performance before and after failure, the MSR is evaluated using the metrics of Lane
Absorption Capacity (𝐿𝐴𝐶), Lane Recovery Capacity (𝐿𝑅𝐶), and Lane Adaptation Capacity (𝐿𝐷 𝐶). Table 2 defines the parameters
employed within this resilience assessment framework.
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Table 1
Literature on transportation network resilience assessment.

Performance-based measurement Attributes-based measurement

Failure
scenarios

Research
subjects

Performance
indicators

Failure
scenarios

Research
subjects

Attribute metrics Performance
indicators

Road segment
failure

Transportation
network

Time and cost
required to
restore
component
[10]

Road segment
failure

Transportation
network

Adaptive resilience Performance [42]

Road segment
failure

Transportation
network

Link reliability,
network
stability [43]

Road segment
failure

Transportation
network

Throughput resilience,
O-D connectivity
resilience, average
reciprocal distance
resilience

Average degree,
diameter, cyclicity
[37]

Road segment
failure

Road network Speed [33] Road segment
failure

Road network Adaptive capacity,
relative size of the
giant component

Betweenness
centrality, node
strength, adaptive
capacity [44]

Road segment
failure

Road network Delay [39] Road segment
failure

Road network Absorption capacity,
recovery capacity

Independent paths,
redundancy of the
network [45]

Road segment
failure

Road network Equivalent
resistance,
survival
Function [40]

Road segment
failure
(bidirectional)

Transportation
network

Connectivity
reliability,
vulnerability

Flow, link importance
[46]

Road segment
failure

Road network Travel time,
shorten path
[27]

Lane failure Road network Resilience
performance index,
the robustness index,
the recovery index

Traffic flow [19]

Road segment
failure

Public transit
system (bus)

Travel time,
volumes [47]

Node failure Public transit
system (Rail
transit network
and bus)

Resistance,
recoverability,
adaptability

Structural resistance,
structural
recoverability,
functional resistance,
functional
recoverability,
passenger
adaptability,
management
adaptability [48]

Node failure Air
transportation
network

Flight
connectivity,
delay
connectivity
[49]

Node failure Air
transportation
network

Vulnerability,
emergency capability

The class and scale of
airports, operation
intensity, the scale of
the flight area,
passenger arrival rate,
maximum number of
takeoffs and landings,
and the scale of
security infrastructure
[29]

Node failure Maritime
transportation
network

Network
density,
network
centrality,
network
connectivity,
network size
[50]

Node failure Maritime
transportation
network

Robustness,
redundancy, visibility,
flexibility, agility
recovery

Network structure
[51]

(continued on next page)

3.2. Transportation network topology modeling

The topology structure of the transportation network, based on a dual graph, can be represented as a directed, weighted network,
denoted as 𝐺 = ⟨𝑁 , 𝐸 , 𝐴, 𝑇 ⟩. In this representation, 𝑁 =

{

𝑁𝑖
}

is the set of nodes in the topology network, where each node 𝑁𝑖
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Table 1 (continued).
Node failure Maritime

transportation
network

Node centrality,
edge betweenness
centrality,
transmission
Efficiency [38]

Node
failure

Maritime
transporta-
tion
network

Absorption capacity,
adaptive capacity,
restorative ability

Additional capital
equipment, alternate
routing, timely
evacuation,
relocation,
conservation, facility
restoration,
manpower (service)
restoration,
technology restoration
[28]

Node failure Rail transit
network

Network efficiency,
bi-directional
passenger flow [36]

Node
failure

Rail transit
network

Absorption ability,
resistance ability,
recovery ability

Global efficiency,
passenger flow [52]

Node failure Rail transit
network

Global Efficiency,
topological
Integrity,
importance exposure
(demand, travel
time)[53]

Node
failure

Rail transit
network

Preparedness,
robustness, recovery,
adaptation

Node degree, node
flow, flow-weighted
betweenness
centrality [54]

Fig. 1. MSR assessment framework.

corresponds to a specific road segment. Each road segment 𝑁𝑖 can be further decomposed into lanes, represented as 𝑁𝑖𝑘 , indicating
the individual lanes within segment 𝑁𝑖. The set of directed edges 𝐸 =

{

𝐸𝑖→𝑗
}

represents the edge set of the network topology. These
edges indicate the movement from the upstream direction(road segment) 𝑖 to the downstream direction(road segment) 𝑗, controlled
by the intersection phase. The adjacency matrix 𝐴 =

{

𝑎𝑖→𝑗
}

indicates the connections between directions, with 𝑎𝑖→𝑗 = 1 signifying
an allowed movement from direction 𝑖 to direction 𝑗, and 𝑎𝑖→𝑗 = 0 indicating no allowed movement. Fig. 2 represents the difference
between the primal and dual graph approaches in representing the same road network. Fig. 2(a) shows the original road network,
where the arrows indicate the permitted movement directions under signal control. Fig. 2(b) represents the topological road network
created using the primal graph method, which describes the spatial relationships between road segments and intersections. Fig. 2(c)
illustrates the topology constructed using the dual graph method. In this representation, the short dashed lines represent movements
through intersections when traveling straight. The long dashed lines indicate movements associated with right turns, and the solid
lines depict movements involving left turns. This dual representation effectively captures the spatial relationships between road
segments and intersections under phase control.

The flow matrix from segment 𝑖 to segment 𝑗 is denoted as 𝑊 (see Eq. (1)).

𝑊 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑤1→1 𝑤1→2 ⋯ 𝑤1→𝑁
𝑤2→1 𝑤2→2 ⋯ 𝑤2→𝑁
⋮ ⋮ ⋱ ⋮

𝑤𝑁→1 𝑤𝑁→2 ⋯ 𝑤𝑁→𝑁

⎤

⎥

⎥

⎥

⎥

⎦

(1)

where 𝑤𝑖→𝑗 represents the movement per time step.
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Table 2
Variables and parameters used.

Notation Definition

𝑅𝑎𝑏𝑠 Performance of lane degradation after attack
𝑅𝑎𝑏𝑡 Lane performance degradation time after attack
𝑅𝑟𝑒𝑠 Performance of lane restoration after attack
𝑅𝑟𝑒𝑡 Lane performance restoration time after attack
𝑅𝑎𝑑 𝑎 Performance of lane adaption after attack
𝐹 (𝑡) Lane Performance at 𝑡 time
𝑠𝑡 Lane saturation when the lane is not under attack at 𝑡 time
𝑠,𝑡 Lane saturation when the lane is under attack at 𝑡 time
𝜇 The capacity tolerance parameter, 0 < 𝜇 < 1
𝛥𝑥𝑖→𝑗 Redundant flows in movement 𝐸𝑖→𝑗 resulting from the failure of direction 𝑖
𝑄𝑖→𝑗 The initial load of the movement 𝐸𝑖→𝑗
𝑆𝑖→𝑗 The saturation flow rate of the movement from direction 𝑖 to 𝑗
𝜆𝑖→𝑗 The green ratio for a specific movement 𝐸𝑖→𝑗 within a signal cycle
𝑔𝑖→𝑗 The effective green time for the movement 𝐸𝑖→𝑗
𝑦𝑖→𝑗 The cycle length
𝑀 𝑖 The set of upstream neighbors associated with the failed direction 𝑖
𝐶𝑖→𝑗 The capacity for a single traffic movement 𝐸𝑖→𝑗 , defined by the maximum number of vehicles that can pass during the green phase
𝑃𝑖→𝑚 The expected weight assigned to the redundant traffic flow from failed direction 𝑖 to upstream 𝑚
𝛥𝑥𝑖→𝑚 Additional traffic flow assigned from failed segment 𝑖 to 𝑚
𝑡𝑒 Disturbance onset time
𝑡𝑑 Performance nadir time
𝑡𝑟 Functional recovery time
𝜂1 , 𝜂2 , 𝜂3 Weight coefficients

Fig. 2. Illustration of the initial road network and the topological representations under different graph approaches.
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Fig. 3. Cascading failure process under attack.

3.3. Lane level cascading failure model

3.3.1. The load-capacity model
The load-capacity model analyzes the cascading failure in transportation networks [19,23] . In our study, the initial edge load

𝑄𝑖→𝑗(intersection load) is defined as the total flow transitioning from segment 𝑁𝑖 to segment 𝑁𝑗 per time step, referred to as the
particular traffic movements. The edge’s capacity 𝐶𝑖→𝑗 (intersection capacity) is influenced by two main factors: the maximum rate
at which vehicles can pass through the intersection(also known as the saturation flow rate 𝑆𝑖→𝑗) and the green time ratio 𝜆𝑖→𝑗 in
signal timing during which vehicles are allowed to enter [55,56] . It is the maximum number of vehicles it can handle for a single
traffic movement per time step. Following the Highway Capacity Manual (HCM) guidelines [14], the capacity 𝐶𝑖→𝑗 can be expressed
as in Eq. (2).

𝐶𝑖→𝑗 = (1 + 𝜇)𝑆𝑖→𝑗𝜆𝑖→𝑗 (2)

Here, 𝑆𝑖→𝑗 is the saturation flow rate, 𝜇 is a capacity tolerance parameter, and 𝜆𝑖→𝑗 is the green ratio, defined as:

𝜆𝑖→𝑗 =
𝑔𝑖→𝑗

𝑦𝑖→𝑗
(3)

where 𝑔𝑖→𝑗 is the effective green time and 𝑦𝑖→𝑗 is the cycle length.

3.3.2. Attack strategy
Fig. 3 illustrates the cascading failures triggered by intersection and lane attacks. The red arrows indicate the direction in which

congestion propagates following a disturbance.

A. Intersection attack Failures in transportation networks can typically be categorized into two types: congestive failures and
complete failures. When an intersection fails, it initiates congestion in the connected lanes. This congestion then progressively
extends to adjacent intersections, causing a chain effect over time. It is important to note that congestive failures at neighboring
intersections do not necessarily lead to complete failure, as the system attempts to handle the additional traffic load. This cycle
persists until the intersections and road segments can effectively accommodate the traffic demand.

B. Lane attack Transportation road networks are complex systems consisting of multi-lane roads. In the dual graph representation,
failures within road segments are naturally represented by the failure of specific nodes. Therefore, for simplicity and consistency,
our study assumes that these road segments are typically separated by medians, which can prevent disturbances in one direction
from directly affecting the opposite direction. Consequently, failures within these road segments can be categorized into two main
categories: two-way and one-way lane failures, further divided into all-lane and single-lane failures.

In the case of a two-way lane failure, congestion spreads to upstream intersections and impacts traffic flow in both directions.
On the other hand, if a one-way lane fails, congestion will also propagate towards the upstream intersection since the traffic flow
in the failed lane comes from various upstream movements, which are influenced by signal timing. Traffic can only move when the
signal phase permits. Thus, the spread of congestion is similarly impacted by it. Even a single-lane failure can impact the adjacent
lanes’ operational efficiency and contribute to congestion spreading toward the upstream intersection.

The cascading failure continues until the affected intersection and all lanes can handle traffic demands effectively.
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Table 3
Comparison between movement-specific resilience model and resilience triangle model.

Aspect Resilience triangle model MSR model

Analysis level Macro-level system performance Movement-specific analysis
Signal control consideration Not typically considered Explicitly integrated
Cascading failure representation Assumes uniform impact across road segments Congestion spread with integrated signal timing
Topological network representation Primal graph method Dual graph method
Urban adaptability Limited Specifically designed for urban complexities

3.3.3. Traffic assignment strategy
The redundant traffic flow 𝛥𝑥𝑖→𝑗 from the failed movement (𝐸𝑖→𝑗) will transfer to the upstream neighbor directions in proportion

to their remaining capacity [19,23]. Congestive failure occurs when an intersection becomes over-saturated. A factor 𝛾𝑖→𝑗 is usually
set to balance intersection efficiency and green time utilization. Therefore, to ensure the effective utilization of the intersection or
lanes, its load must remain within this threshold, as represented by 𝛾𝑖→𝑗𝐶𝑖→𝑗 . The redundant flow can be expressed as Eq. (4):

𝛥𝑥𝑖→𝑗 = 𝑄𝑖→𝑗 − 𝛾𝑖→𝑗𝐶𝑖→𝑗 (4)

Here, 𝑖 and 𝑗 represent movement directions, where 𝑗 is the downstream direction of 𝑖.
The propagation of congestion following a failure is influenced by signal control due to the timing and phase sequence at

intersections. Signal control directly affects the flow rates and the accumulation of vehicles from the upstream intersections. When
congestion occurs, the direction and proportion of its spread to upstream directions are heavily influenced by signal timing. The
impact factor 𝜆𝑚→𝑖, representing the green movement ratio from upstream 𝑚 to downstream 𝑖, should be incorporated into the
original reassignment model. This integration is necessary to account for the influence of signal timing on congestion propagation.
Therefore, the proportion of transferred redundant traffic from failed 𝐸𝑖→𝑗 to upstream can be represented as Eq. (5):

𝑃𝑖→𝑚 =
(𝛾 𝐶𝑚→𝑖 −𝑄𝑚→𝑖)

∑

𝑚∈𝑀 𝑖 (𝛾 𝐶𝑚→𝑖 −𝑄𝑚→𝑖)
𝜆𝑚→𝑖

∑

𝑚∈𝑀 𝑖 𝜆𝑚→𝑖
(5)

𝑚 represents the upstream direction of 𝑖, and 𝑀 𝑖 denotes the upstream neighbors associated with the failed direction 𝑖. Therefore,
the extra traffic reassigned is calculated as Eq. (6):

𝛥𝑥𝑖→𝑚 = 𝑃𝑖→𝑚 ∗ 𝛥𝑥𝑖→𝑗 (6)

After the reassignment process, the traffic flow of intersection 𝐸𝑚→𝑖 is updated to 𝑄′
𝑚→𝑖 = 𝑄𝑚→𝑖 + 𝛥𝑥𝑖→𝑚. At this time, if

𝑄′
𝑚→𝑖

𝑄𝑚→𝑖
≤ 𝛾𝑚→𝑖, the intersection is considered operational. However, the intersection is considered failed if this ratio exceeds 𝛾𝑚→𝑖.

In such a case, the excess flow will spread to neighboring intersections and segments, and the flow at those intersections and
segments will be reassigned iteratively again until the failure is resolved.

3.4. Movement-specific resilience assessment model

Movement-specific resilience (MSR) refers to the ability of a road network to absorb disturbances, recover to its original state,
and adapt to new conditions when facing disruptions, focusing on analyzing traffic movements rather than segment flows. While
sharing similarities with the widely used resilience triangle model, the MSR model offers several key advantages. Table 3 presents
a detailed comparison.

The MSR model effectively captures performance changes based on lane failures, enabling targeted interventions to improve
network resilience in complex urban settings. The performance change based on the lane failure is shown in Fig. 4.

Saturation can be used as a performance indicator to represent the operational status of the lane and intersection. High saturation
levels generally indicate that the transportation system is operating inefficiently. As a result, we have determined that the most
resilient systems experience the smallest reduction in performance indicators after a disturbance. The performance indicator, denoted
as 𝐹 (𝑡), can be calculated using Eq. (7) to assess the network performance at any given time 𝑡.

𝐹𝑡 = 𝑠𝑡∕𝑠′𝑡 , (7)

where 𝑠𝑡 and 𝑠′𝑡 indicate the function before and after failure at time 𝑡.
Lane Absorptive Capacity (𝐿𝐴𝐶) refers to the ability of a lane to withstand the negative impacts of unforeseen incidents. This

can be expressed in terms of the lane’s lost performance 𝑅𝑎𝑏𝑠 and performance degradation duration 𝑅𝑎𝑏𝑡. These factors are inversely
proportional to the lane’s absorption capacity.

𝑅𝑎𝑏𝑠 = ∫

𝑡

𝑡𝑒
[𝐹 (𝑡) − 𝐹 (𝑡 + 1)]d𝑡 (8)

where 𝑡𝑒 ≤ 𝑡 ≤ 𝑡𝑑 − 1, 𝑡𝑒 represents the time point at which the network’s performance begins to degrade due to an attack, and 𝑡𝑑 is
the time point at which the network’s performance reaches its lowest level.

𝑅𝑎𝑏𝑡 = 𝑡𝑑 − 𝑡𝑒 (9)
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Fig. 4. Schematic representation of MSR.

Lane Restorative Capacity (𝐿𝑅𝐶) measures the ability of a lane to resume its evacuation functions after a disturbance. Two
main factors determine this capacity: the degree of recovery 𝑅𝑟𝑒𝑠 and the time to recover 𝑅𝑟𝑒𝑡. A lane’s ability to restore its functions
effectively is directly proportional to the speed at which it recovers.

𝑅𝑟𝑒𝑠 = ∫

𝑡

𝑡𝑑
[𝐹 (𝑡 + 1) − 𝐹 (𝑡)]d𝑡 (10)

where 𝑡𝑑 ≤ 𝑡 ≤ 𝑡𝑟 − 1, 𝑡𝑟 represents the time point at which the network’s performance begins to normal.

𝑅𝑟𝑒𝑡 = 𝑡𝑟 − 𝑡𝑑 (11)

Lane Adaptive Capacity (𝐿𝐷 𝐶) denotes a lane’s capability to adjust to the new situation in the event of a disturbance. The
ability of a lane to restore lost functionality (see the Eq. (12)) is used to measure a lane’s adaptability 𝑅𝑎𝑑 𝑎.

𝑅𝑎𝑑 𝑎 =
∫ 𝑡𝑟
𝑡𝑑
[𝐹 (𝑡) − 𝐹 (𝑡𝑑 )]d𝑡

∫ 𝑡𝑑
𝑡𝑒

[𝐹 (𝑡𝑒) − 𝐹 (𝑡)]d𝑡
(12)

The three attribute metrics described above dynamically analyze the evolution of system performance changes. The Eq. (13) is
utilized to evaluate MSR qualitatively.

𝑀 𝑆 𝑅 = 𝜂1(1 − 𝑅𝑎𝑏𝑠) + 𝜂2
𝑅𝑟𝑒𝑠
𝑡𝑟 − 𝑡𝑑

+ 𝜂3𝑅𝑎𝑑 𝑎 (13)

where 𝜂1, 𝜂2, and 𝜂3 denote the three indicators’ weighting coefficient, which can be adjusted according to the management
objectives.

In summary, Table 4 shows the procedures of calculating the MSR:

4. Case study

In this section, we validate the efficacy of the MSR assessment and conduct a sensitivity analysis. We designed eight failure
scenarios to analyze the statistical characteristics of resilience and verify the model’s effectiveness. Additionally, in the sensitivity
analysis, we primarily investigate the impact of failure degree, road saturation, and intersection capacity on MSR.

4.1. Design of experiments

The road network in the southern part of Xi’an City, Shaanxi Province, China(see Fig. 5) is selected for the study. This area
comprises 91 lanes across 21 intersections. The diversity of lane types in this network, such as bidirectional, unidirectional, tidal,
and right-in/right-out lanes, provides a comprehensive basis for examining the process of lane disturbance.

Intersection signal timing and lane flows are investigated and used as information to establish the adjacency matrix, flow matrix,
and weight matrix.

Various failure scenarios(see Table 5) are devised to evaluate the MSR. These scenarios compare the impacts of various failure
types on MSR, such as lane failures versus section failures and unidirectional failures at intersections versus complete intersection
failures. The failure scenarios are mainly assigned two categories: intersection failure and road segment failure. Intersection failure
consists of intersection complete failure and intersection failure in a certain direction, while segment failure is categorized into
entire road segment failure and single-lane failure. The results presented are based on the averages of 500 simulations.
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Table 4
The process of calculating the MSR.

Input:
The adjacent matrix 𝐴
The traffic flow matrix 𝑊
Basic data of the urban road: service level, road distance, load and capacity
Capacity parameter: 𝜇
Control threshold value: 𝛾𝑖→𝑗
Signal control impact factor: 𝜆𝑖→𝑗

Output:
The result of lane resilience: 𝑅𝑎𝑏𝑡, 𝑅𝑎𝑏𝑠, 𝑅𝑟𝑒𝑠, 𝑅𝑟𝑒𝑡, 𝑅𝑎𝑑 𝑎, 𝑀 𝑆 𝑅

Initial settings:
Initialize the iteration number 𝑡 = 0;

Step 1: Attack model: Intersection failure, Lane failure
Get the attack nodes or edges

Step 2: Cascading failure
Traffic reassignment: for the failure intersections or lanes, calculate the weight of reassignment of the neighborhoods intersections by Eqs. (4)–(5)
Then calculate the intersection flow after the distribution

Step 3: Recover
All failure intersections, process recover if saturation > threshold, then if the intersections fail, back to Step 2.
Until saturation < threshold

Step 4: For 𝜇 in (0.1, 1), calculate resilience by Eqs. (7)–(13)
End

Fig. 5. Layout of studied transportation networks.

4.2. General characterization of MSR

The statistical characteristics of MSR, obtained by simulating the failure scenarios provided in Table 5, are shown in Fig. 6. The
figure shows that system performance initially decreases after an attack on the road network but gradually returns to normal. This
is because congestion spreads faster than the system’s recovery mechanisms can handle. As congestion peaks, system performance
drops. However, as the congestion spreads wider but with less intensity, the system stabilizes and eventually returns to normal.

The system performance analysis under eight different failure scenarios reveals a descending order of MSR: S4, S2, S3, S8, S1, S6,
S7, S5, as displayed in Fig. 6(a). This ranking indicates that as the degree of failure increases, the system performance declines, and
congestion lasts longer. Additionally, the recovery time extends. The duration of system performance degradation is longer than the
recovery time, except for scenario S5. This phenomenon could be attributed to the pronounced degradation of system performance
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Table 5
Selected different failure scenarios.

Scenario All phase failure One phase failure Complete failure Lane
at the intersection at the intersection at the road section failure

Scenario1(S1) 1 0 0 0
Scenario2(S2) 0 1 0 0
Scenario3(S3) 0 0 1 0
Scenario4(S4) 0 0 0 1
Scenario5(S5) 1 0 1 0
Scenario6(S6) 0 1 1 0
Scenario7(S7) 1 0 0 1
Scenario8(S8) 0 1 0 1

Fig. 6. Resilience results analyzed under different failure scenarios.

in S5, which requires a longer recovery period. Scenario 4 exhibits a higher MSR than Scenario 2, while Scenario 3 exceeds Scenario
1 in MSR. These findings show that intersection failures have a greater impact on traffic efficiency than lane failures.

Fig. 6(b) illustrates the pattern of MSR degradation under the above eight failure scenarios, which helps us understand how
congestion spreads within the network. Overall, the more failures there are, the worse the system performs. The spread of congestion
is not linear. Initially, congestion spreads gradually because network redundancy slows down its spread. As congestion persists and
spreads to adjacent lanes and intersections, its speed accelerates, leading to a faster decline in the overall performance of the road
network until it reaches its worst state.
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Fig. 7. Influence of capacity on MSR.

The recovery process following the system’s lowest performance point is depicted in Fig. 6(c). An inverse relationship exists
between the degree of failure and the system’s restoration speed. The system’s performance recovery rate increases with time.
Initially, the congestion is at its worst, slowing the evacuation process. As the system performance improves, the speed of vehicle
departure gradually increases, enhancing the efficiency of the recovery process.

The adaptability of the network is crucial in determining the system’s performance after an attack on the network, which is
illustrated in Fig. 6(d). This adaptability can either improve or worsen the overall system performance.

4.3. Influence of intersection capacity on MSR

Given the load-capacity model, the intersection capacity is pivotal in determining the MSR of a transportation network. The split
and cycle length emerge as decisive parameters among the factors influencing intersection capacity. To simplify the analysis of how
changes in intersection capacity affect MSR, we analyze the parameter 𝜇 to represent the intersection’s capacity in a normalized
form, where 𝜇 can be incremented by 0.1, and 𝜇 ∈ (0, 1).

Fig. 7 illustrates the relationship between the parameter 𝜇 and MSR in the event of lane failure. We discussed the changes in
adaptive, absorptive, and restorative capacity under different values of 𝜇.

Fig. 7(a) examines the dynamics of MSR for different values of 𝜇. As 𝜇 increases, the time taken for failure and recovery decreases,
and the MSR increases. This phenomenon occurs because a higher road capacity increases the redundant flow, which improves the
system’s ability to handle unexpected situations. It is essential to note that the system resilience reaches its maximum value of 1
when 𝜇 exceeds 0.8. This suggests disturbances have negligible effects on the system when the capacity is sufficiently large. As a
result, we will not analyze the MSR performance metrics for values of 𝜇 greater than 0.8.
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Fig. 7(b) shows that as 𝜇 increases, the redundant capacity at the intersection also increases. Consequently, there is a slower
decrease in congestion propagation. A comparative analysis of 𝑅𝑎𝑏𝑠 across various 𝜇 values indicates the degradation in system
performance is significantly reduced for 0.2 < 𝜇 < 0.4. This finding suggests that increasing capacity within this range may be most
effective. This suggests that strategically increasing capacity can achieve the desired regulatory objective.

Figs. 7(c) show that the recovery rate increases as the parameter 𝜇 increases. However, the recovery rate decreases during the
recovery process when 𝜇 = 0.4 and 𝜇 = 0.6. This phenomenon may occur because the system is approaching a fresh equilibrium,
which results in a reduced recovery rate.

From Fig. 7(d), it is noted that as the value of 𝜇 increases, the network’s performance of the new steady state achieved post-
recovery also enhances. This improvement is attributed to the increased system redundancy capacity with the increase in the value
of 𝜇.

Comprehensive analysis indicates that intersection capacity (𝜇) significantly impacts the MSR of road networks. Increasing
capacity enhances the system’s adaptability, absorption, and recoverability while reducing recovery time. These findings provide
theoretical support for developing transportation management strategies, demonstrating that optimizing intersection capacity
settings can significantly improve network resilience in the face of disturbances.

4.4. Influence of saturation degree on MSR

The traffic flow varies depending on the time of day, with higher saturation during peak hours and lower saturation during off-
peak hours. Lane failures are simulated during evening peak and off-peak hours to assess the dynamic MSR changes in transportation
networks, with a specified parameter value of 𝜇 = 1.2.

The analysis of Fig. 8(a) shows that the deterioration in evening peak performance surpasses that of the off-peak. This difference
can be attributed to the heightened road traffic flow during the evening peak hours. During this peak period, the disparity between
road and minimum performance is minimal, leading to a reduction in redundant traffic flow. As a result, even minor disturbances
can cause system failure due to its limited performance tolerance. This phenomenon explains the inner degradation mechanism at
peak and off-peak hours, as shown in Fig. 8(b).

The efficiency of system restoration and its adaptability across various saturation levels are compared in Figs. 8(c) and 8(d). The
analysis reveals that the system recovery efficiency and adaptive capacity are higher during off-peak hours. The lower system load
during off-peak hours means a large amount of redundant capacity is available for failure recovery and response. Moreover, the
propagation of faults is relatively slower during off-peak hours, which leads to a faster system recovery process.

4.5. Sensitivity analysis

Many factors intricately influence the road network’s performance, including the road system’s operational state, the degree of
failures, and the capacity of intersections. Collectively, these factors significantly influence the determination of MSR within the
network.

The impact of varying failure degrees and capacities on MSR is depicted in Fig. 9. The figure elucidates that the capacity decreases
as the failure degree increases, resulting in a proportional decrease in MSR. When the system experiences a failure degree above
0.5 and 0.1 ≤ 𝜇 ≤ 0.7, its performance declines rapidly. This observation suggests that even with a marginal increase in capacity,
a significant degree of failure severely limits the enhancement of MSR. Therefore, the intervention of traffic authorities becomes
crucial to facilitate and expedite the recovery of the road network.

The dynamic changes in MSR across different saturation and failure degree levels are illustrated in Fig. 10. Consistent with the
preceding single-factor analysis findings, the road network demonstrates greater resilience at lower saturation degrees, effectively
mitigating the impact of significant failures. In contrast, when the saturation degree surpasses 0.7, the system’s resilience diminishes
significantly. This highlights the need to monitor high-saturation lanes and road segments. Appropriate strategies can be adopted
to prevent minor disturbances from escalating into widespread cascading failures.

Fig. 11 depicts the influence of both saturation and the capacity factor 𝜇 on MSR. The system recovery efficiency transitions
from significant to marginal as saturation exceeds 0.7, with the capacity factor 𝜇 ranging between 0.1 and 0.7. This implies that
increasing intersection capacity is an effective way to reduce initial congestion caused by unforeseen disturbances. However, once
road saturation reaches a certain threshold, the impact of growing intersection capacity on congestion regulation becomes notably
constrained. Alternative traffic management strategies have become more viable at this point. Different regulation measures should
be used to optimize network resilience under different road operating conditions.

5. Conclusions

Movement-specific resilience assessment is crucial and necessary, as it integrates signal control features into the evaluation of
network resilience. The concept of MSR is defined with assessment metrics including 𝐿𝐴𝐶, 𝐿𝑅𝐶, and 𝐿𝐴𝐶. The research enhances
the cascading failure model by analyzing the lane failure and investigating the impact of signal timing on the failure process. A dual
graph is utilized to construct a road topology network that inherently characterizes phase designs in signal control. This approach
enhances the model’s accuracy in reflecting a realistic transportation network. Furthermore, the study investigates the characteristics
of the MSR assessment metrics under various failure scenarios. It analyzes the properties of MSR influenced by three key metrics:
degree of failure, saturation, and capacity.
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Fig. 8. Influence of saturation on MSR.

Fig. 9. Influence of failure degree and capacity on MSR.
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Fig. 10. Influence of failure degree and saturation on MSR.

Fig. 11. Influence of capacity and saturation on MSR.

The findings reveal an inverse relationship between the degree of lane failures and MSR, while capacity is positively related to
MSR. In addition, the cumulative resilience of single lanes is not equivalent to the resilience of road segments, which emphasizes
the need for a dedicated analysis of lane failures.

This study provides insight into the dynamic evolution of MSR by examining the impact of failure degree, saturation, and
capacity. The research shows that MSR remains unaffected by failures and oversaturation when capacity exceeds 0.8. However,
within the capacity growth range of 0.1–0.7, the increase in failure degree and oversaturation leads to a decrease in the MSR.
Furthermore, it is important to note that for the degree of failure exceeding 0.5 and saturations surpassing 0.7, the increase in MSR
from adding capacity is minimal. Therefore, additional measures must be taken to improve the MSR.

In future research, the main analysis will consider pedestrians and non-motorized vehicles. Extending the MSR model to include
pedestrians and non-motorized vehicles is necessary. Furthermore, optimizing traffic signal control is a complex field. In this study,
an increase in the 𝜇 value means an increase in the green duration or cycle time. Subsequent analysis will explore optimizing signal
timing in response to disturbances to improve system resilience. This exploration aims to optimize system resilience by optimizing
signal timing in the affected area in response to disturbances. Future research can focus on optimizing the lane types to maximize
overall network resilience while considering specific urban contexts and traffic patterns.
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