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Abstract

In this paper we study the metastability problem for a stochastic dynamics with
a parallel updating rule; in particular we consider a finite volume Probabilistic
Cellular Automaton (PCA) in a small external field at low temperature regime.
We are interested in the nucleation of the system, i.e., the typical excursion from
the metastable phase (the configuration with all minuses) to the stable phase (the
configuration with all pluses), triggered by the formation of a critical droplet. The
main result of the paper is the sharp estimate of the nucleation time: we show
that the nucleation time divided by its average converges to an exponential random
variable and that the rate of the exponential random variable is an exponential
function of the inverse temperature β times a prefactor that does not scale with β.
Our approach combines geometric and potential theoretic arguments.
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Key words and phrases. Stochastic dynamics; probabilistic cellular automata; metasta-
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1. Introduction

Metastable states are very common in nature and are typical of systems close to a first
order phase transition. It is often observed that a system can persist for a long period
of time in a phase not favored by the thermodynamic parameters; classical examples are
the super-saturated vapor and the magnetic hysteresis. The rigorous description of this
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phenomenon in the framework of well defined mathematical models is relatively recent,
dating back to the pioneering paper [CGOV], and has experienced substantial progress
in the last decade. See [OV], [Bo], [Ho] for reviews and for a list of the most important
papers on this subject.

A natural setup in which the phenomenon of metastability can be studied is that
of Markov chains, or Markov processes, describing the time evolution of a statistical
mechanical system. Think for instance to a stochastic lattice spin system. In this context
powerful theories (see [BEGK], [OS], [OS2] and [OV]) have been developed. Furthermore,
the results in [MNOS] improved those in [OS] in the direction of minimizing the number
of model-dependent inputs necessary to describe the metastable behavior of the system.

Whatever approach is chosen, a key model dependent question is the computation
of the minimal energy barrier, called communication energy, to be overcome by a path
connecting the metastable to the stable state. Such a problem is in general quite com-
plicated and becomes particularly difficult when the dynamics has a parallel character:
as soon simultaneous updates are allowed, the continuity constraint on the structure of
the trajectories in the configuration space is lost. Therefore, in order to compute the
communication energy, one must take into account all the possible transitions in the con-
figuration space. The parallel dynamics studied in the present paper belongs to the family
of Probabilistic Cellular Automata (PCA) introduced by [De]. In these lattice models the
single site probabilistic updating rule used is local, in the sense that it depends only on
the value of the variables in a finite subset of the lattice containing the site itself. A
difficulty arising in the study of PCA is the existence of many local minima in which the
system can be trapped on its way to the stable phase. The zero temperature dynamics
has indeed a large variety of fixed points and cyclic pairs. Examples of cyclic pairs are
flip-flop chessboard-like configurations.

The paper [CN] represents the first rigorous study of metastability in a parallel dy-
namics setup. The model studied in [CN] is a PCA without self-interaction and can be
considered the parallel implementation of the kinetic Ising model. For a comparison be-
tween Probabilistic Cellular Automata and serial dynamics in the context of metastability
see [BCLS], [CN], [CNS] and [CNS2]. In [CN] the following three metastability questions
have been addressed: 1) what is the transition time between the metastable state −1
(configuration with all minuses) and the stable state +1 (configuration with all pluses)?
2) What is the large (critical) fluctuation needed by the system in order to perform the
transition towards the equilibrium? 3) Which are the typical paths the system follows
during the excursion from the metastable equilibrium −1 to the stable one +1?
In [CN] the metastability scenario differs from the one of the kinetic Ising model: starting
from −1 the system visits with probability 1 the check-board phase C before reaching the
stable phase +1. Moreover, the saddles set is richer than expected since the wells of the
metastable states −1 and C have the same depth.

In the present paper instead, we study a reversible PCA with self–interaction, whose
presence makes the single–site updating weights differ from the kinetic Ising’s counterpart.
The addition of the self-interaction changes again completely the metastability scenario:
the check-board C is not anymore a metastable state. However, in the proof of the the
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transition time the chessboard pairs configuration have to be controlled very carefully.
The metastable behavior of this model has been investigated on heuristic and numerical
grounds in [BCLS] and rigorously in [CNS]. In [CNS2] the authors introduce a class of
PCA depending on a tuning parameter for the strength of the self-interaction in this way
one can generate different models with completely different metastability scenarios. The
role played by the intermediate metastable state (check-board phase) changes as the self–
interaction is varied. Surprisingly, for some range of the self–interaction parameter results
similar to those found for the Blume-Capel model are obtained. Hence, PCA present a
non obvious metastable behavior, whose complexity makes this class of models physically
very interesting.

The results proven in the present paper can be considered the first attempt to give
precise estimates for the mean nucleation time in case of PCA dynamics. In fact, our goal
is to improve the already established results in [CNS] by using the potential theoretic
approach to metastability instead of large deviation methods (see [BEGK] and [Bo]).
Indeed, in [CNS] only the asymptotic behavior of the exponential rates is obtained, while
in the present paper we compute the precise prefactors up to multiplicative errors that
tend to 1 as the temperature goes to zero. The key ingredient is the reduction of the
metastability problem to the computation of capacities, verifying manageable variational
principles. In fact, the definition of metastable points can be given in terms of capacities
and, once the set of metastable points is identified, precise asymptotics for the mean exit
time from each metastable state follows via general theorems. Hence, the basic difficulty
is to obtain sharp upper and lower bounds on capacities. However, upper bounds follow
from the Dirichlet variational principle, which represents a capacity as an infimum over
a class of test functions (see [BEGK]). Furthermore, lower bounds can be derived using
another variational principle due to Berman and Konsowa (see [BK], [BHS] and [BBI]),
which represents a capacity as a supremum over a class of unit flows. In this sense, the
two variational principles complete each others. The present paper shows the power of
potential theoretic approach to metastability: with almost the same model–dependent
input of [CNS] we derive sharp estimates for the nucleation time. Moreover, it also
illustrates the application of the powerful Berman Konsowa variational principle to a
finite volume parallel dynamics.

The application of the potential approach to our model requires three model dependent
results proved in [CNS]: (1) the solution of the global variational problem for all the paths
connecting the metastable and the stable state, i.e., the computation of the communication
energy; (2) a sort of recurrence property stating that, starting from each configuration
different from the metastable and the stable state, it is possible to reach a configuration at
lower energy following a path with an energy cost strictly smaller than the communication
energy; (3) determination of particular set of configurations, i.e., critical configurations
for the transition from metastable to stable state and the neighbor of this set. This set
of critical configurations is typically visited by the system during its excursion from the
metastable to the stable state. The critical configurations play the role of the saddle
configurations in the energy landscape and represent the most important part of the
typical tube of trajectories the system follows during the transition.
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Points (1) and (2) are needed to prove that there are only two configurations belonging
to the metastable set, defined according to Definition 5.2: −1, the proper metastable
state, and +1, the stable state. This recurrence property prevents the presence of deep
wells where the system can be trapped for long time. Points (1) and (3) are used in
the calculation of the capacity between −1 and +1. In particular, the prefactor of the
nucleation time is related to the cardinality of the saddles set studied in (3).

The outline of the paper is as follows. In Sect. 2 we define the model. In Sect. 3
we state our main theorem on the nucleation time (Theorem 3.1). In Sect. 5 we review
the potential theoretic approach to metastability. In particular, we recall two variational
principles, namely (5.23) and (5.28), yielding computable upper and lower bounds for
the capacities, respectively. Moreover, we state Theorem 5.2 which relates the mean
nucleation time to the capacity between the metastable state and the stable state. Sect. 6
is devoted to the proof of Theorem 3.1. Theorem 6.4 guarantees that the dynamics has
no deep wells inside where the system can be trapped. Since this result is a corollary of
the recurrence properties proven in [CNS], we recall these results in Theorem 6.3. Thus,
in Theorem 6.5 sharp estimates for the capacity between −1 and +1 are obtained via
suitable upper and lower bounds.

2. Probabilistic Cellular Automata

In this section we introduce the basic notation, define the class models of reversible
Probabilistic Cellular Automata, and the specific one that will be studied in the sequel.

2.1. The lattice and the configuration space

First of all for x = (x1; x2) ∈ R2 we set |x| := |x1|+ |x2|. The spatial structure is modeled
by the two–dimensional finite square Λ ⊂ Z2 of side length L with periodic boundary
condition namely, by the torus Λ. We consider Λ endowed with the lattice distance
d(x, y) := |x− y|.

We say that x, y ∈ Λ are nearest neighbors iff d(x, y) = 1. For X ⊂ Λ we let ∂X :=
{x ∈ Xc : d(x,X) = 1} be the external boundary of X and X := X ∪ ∂X be the closure
of X. Two sets X, Y ⊂ Λ are said to be not interacting if and only if d(X, Y ) ≥ 3.

Let x ∈ Λ; for `1, `2 positive integers we let Q`1,`2(x) := {y ∈ Λ : x1 ≤ y1 ≤
x1+(`1−1), x2 ≤ y2 ≤ x2+(`2−1)} be the rectangle of side lengths `1 and `2 with x the
site of the upper-left corner. For X ⊂ Λ and ` > 0 we set B`(X) := {y ∈ Λ : d(X, y) ≤ `}.
If ` = 1 we shall write B(X) for B1(X); note that B(X) = X. If x ∈ Λ we write B`(x)
for B`({x}), note that B`(x) is the ball of radius ` centered at x. Finally, we remark that
B(x) is the five site cross centered at x ∈ Λ.

The single spin state space is given by the finite set S0 := {−1,+1} which we consider
endowed with the discrete topology; the associated Borel σ–algebra is denoted by F0. The
configuration space in X ⊂ Λ is defined as SX := SX

0 and considered equipped with the
product topology and the corresponding Borel σ algebra FX . The model and the related
quantities that will be introduced later on will all depend on Λ, but since Λ is fixed it will
be dropped from the notation; in this spirit we let SΛ =: S and FΛ =: F .
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Given Y ⊂ X ⊂ Λ and σ := {σx ∈ S{x}, x ∈ X} ∈ SX , we denote by σY the restriction
of σ to Y namely, σY := {σx, x ∈ Y }. Moreover, given σ ∈ S and x ∈ Λ, we denote by
σx the configuration such that σx(x) = −σ(x) and σx(y) = σ(y) for y 6= x.

2.2. The model: Probabilistic Cellular Automaton

Let β > 0 and h ∈ R such that |h| < 1 and 2/h is not integer, we consider the Markov
chain on S with transition matrix

p(σ, η) :=
∏
x∈Λ

px,σ (η(x)) ∀σ, η ∈ S (2.1)

where, for each x ∈ Λ and σ ∈ S, px,σ(·) is the probability measure on S{x} defined as
follows

px,σ(s) :=
1

1 + exp {−2βs(Sσ(x) + h)}
=

1

2
[1 + s tanh β (Sσ(x) + h)] (2.2)

with s ∈ {−1,+1} and

Sσ(x) :=
∑

y∈V (x)

σ(y) (2.3)

where V (x) is a suitable neighborhood of the site x. Note that for x and s fixed px,·(s) ∈
FV (x) namely, the probability px,σ(s) for the spin at site x to be equal to s depends only
on the values of the spins of σ inside the the neighborhood V (x) of x. The normalization
condition px,σ(s)+px,σ(−s) = 1 is trivially satisfied. We study the metastability behavior
of the PCA model, for (2.3) as

V (x) := B(x) (2.4)

The choice (2.4) corresponds to the model studied in [CNS], note that the self–
interaction of the spin at x is taken into account.

Such a Markov chain on the finite space S is an example of reversible Probabilistic
Cellular Automaton (PCA). Let n ∈ N be the discrete time variable and σn ∈ S denote
the state of the chain at time n, the configuration at time n+1 is chosen according to the
law p(σn, ·), see (2.1), hence all the spins are updated simultaneously and independently
at any time. Finally, given σ ∈ S we consider the chain with initial configuration σ0 =
σ, we denote with Pσ the probability measure on the space of trajectories, by Eσ the
corresponding expectation value, and by

τσA := inf{t > 0 : σt ∈ A} (2.5)

the first hitting time on A ⊂ S; we shall drop the initial configuration from the notation
(2.5) whenever it is equal to −1, we shall write τA for τ−1

A , namely.

2.3. The stationary measure

It is easy to prove (see [De]) that the PCA (2.1) is reversible with respect to the finite
volume Gibbs measure µ(σ) := exp{−βH(σ)}/Z with Z :=

∑
η∈S exp{−βH(η)} and

H(σ) := Hβ,h(σ) := −h
∑
x∈Λ

σ(x)− 1

β

∑
x∈Λ

log cosh [β (Sσ(x) + h)] (2.6)

5



In other words the detailed balance condition

p(σ, η) e−βH(σ) = p(η, σ) e−βH(η) (2.7)

is satisfied for any σ, η ∈ S, and, as a consequence, the measure µ is stationary for the PCA
(2.1). Since the Hamiltonian has the form (2.6) we shall refer to 1/β as to the temperature
and to h as to the magnetic field. However, the dependence of the Hamiltonian on β makes
the definition of ground states not completely trivial. Considering that the ground states
are those configurations on which the Gibbs measure µ is concentrated when β → ∞,
they can be defined as the minima of the energy :

E(σ) := lim
β→∞

H(σ) = −h
∑
x∈Λ

σ(x)−
∑
x∈Λ

|Sσ(x) + h| (2.8)

Let X ⊂ S, if the energy E is constant on X namely, if all the configurations in X have
the same energy, we shall misuse the notation by writing E(X ) for E(σ) with σ ∈ X .

2.4. Communication Energy

In our model the energy difference between two configurations σ and η is not sufficient to
establish if the system prefers to jump from σ to η or vice versa. Indeed, there are pairs of
configurations such that the system sees an energetic barrier in both directions. For this
reason we associate a sort of communication height H(σ, η) to each pair of configurations
σ, η ∈ S. More precisely we extend the Hamiltonian (2.6) to H : S ∪ S × S → R so that

H(σ, η) := H(σ)− 1

β
log p(σ, η) (2.9)

We consider the communication energy

E(σ, η) := lim
β→∞

H(σ, η) ≥ max{E(σ), E(η)} (2.10)

and the transition rate

∆(σ, η) := E(σ, η)− E(σ) =
∑
x∈Λ:

η(x)(Sσ(x)+h)<0

2|Sσ(x) + h| ≥ 0 (2.11)

where in the last equality we have used the definition (2.8) of E(σ), (2.9), (2.1), and (2.2).
We state a simple Lemma that relates the communication height H(σ, η) to the commu-
nication energy E(σ, η).

Lemma 2.1 For any σ, η ∈ S we have:

H(σ, η) = E(σ, η) + |Λ| log 2
β

(2.12)
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We will prove the previous lemma in Sect. 4. We give now some useful definitions. A finite
sequence of configurations ω = {ω1, . . . , ωn} is called a path with starting configuration
ω1 and ending configuration ωn; we denote the length of a path |ω| := n. Given a path ω
we define the height along ω as

Φω :=

{
E(ω1) if |ω| = 1
maxi=1,...,|ω|−1 E(ωi, ωi+1) otherwise

(2.13)

Given two configurations σ, η ∈ S, we denote by Θ(σ, η) the set of all the paths ω starting
from σ and ending in η. The minimax between σ and η is defined as

Φ(σ, η) := min
ω∈Θ(σ,η)

Φω (2.14)

3. Main results: sharp description of nucleation

We pose now the problem of metastability, we state the related theorem for the exit time
for the model in (2.1) with 0 < h < 1. Suppose that the system is prepared in the
state σ0 = −1, where −1 is the configuration with all the sites with spin −1, and let the
dynamics evolve according with (2.1), we want to study the transition towards the phase
+1, the configuration with all spin +1. Let us consider the critical length λ defined as
follows:

λ :=
⌊2
h

⌋
+ 1 (3.15)

where, for any positive real x, we denote by bxc the integer part of x, i.e., the largest
integer smaller than or equal to x. We choose h to be such that 2/h is not integer in order
to avoid ties (see [CNS], Sect. 2.3).
In order to state the main theorem for the PCA, we define the following activation energy
of the configurations that trigger the nucleation:

Γ1 := −4hλ2 + 4(4 + h)λ+ 2− 6h (3.16)

corresponding to the choice of V in 2.4. In [CNS] it was proven that the random variable
(1/β) log τ+1 converges in probability to Γ1 as β → ∞ and that the logarithm of the mean
value of τ+1 divided by β converges to Γ1 in the same limit. Moreover, before reaching the
stable state +1, the system started at −1 must necessarily visit a set of critical droplets C.
In the present paper we sharper the results of [CNS], computing the the mean transition
time up to sub–exponential prefactors. Indeed, we have:

Theorem 3.1 Consider the probabilistic cellular automaton (2.1), for h > 0 small enough,
we have:

i) E−1(τ+1) =
1

K1

eβΓ1 [1 + o(1)] (3.17)

ii) P−1(τ+1 > tE−1τ+1) = [1 + o(1)]e−t[1+o(1)], t ≥ 0 (3.18)
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for β large enough and where

K1 = 2−|Λ| 8|Λ|(λ− 1) (3.19)

4. Proof of Lemma 2.1

By using (2.9), (2.1), (2.2), and (2.11) we get:

H(σ, η)−H(σ)− [E(σ, η)− E(σ)]

=
1

β

∑
x∈Λ

log(1 + e−2βη(x)[Sσ(x)+h]) +
∑
x∈Λ:

η(x)(Sσ(x)+h)<0

2η(x)[Sσ(x) + h]

=
1

β

∑
x∈Λ:

η(x)(Sσ(x)+h)>0

log(1 + e−2βη(x)[Sσ(x)+h]) +
1

β

∑
x∈Λ:

η(x)(Sσ(x)+h)<0

log(1 + e−2βη(x)[Sσ(x)+h])

+
∑
x∈Λ:

η(x)(Sσ(x)+h)<0

2η(x)[Sσ(x) + h]

=
1

β

∑
x∈Λ:

η(x)(Sσ(x)+h)>0

log(1 + e−2βη(x)[Sσ(x)+h]) +
1

β

∑
x∈Λ:

η(x)(Sσ(x)+h)<0

log(e+2βη(x)[Sσ(x)+h] + 1)

=
1

β

∑
x∈Λ

log(1 + e−2β|Sσ(x)+h|)

(4.20)
Moreover, since

H(σ) := − 1

β

∑
x∈Λ

log(cosh(β(Sσ(x) + h)))− h
∑
x

σ(x)

= − 1

β

∑
x∈Λ

log(cosh(β|Sσ(x) + h|))− h
∑
x

σ(x)

E(σ) := −h
∑
x

σ(x)−
∑
x

|Sσ(x) + h|

we have for the energy:

H(σ)− E(σ) = − 1

β

[∑
x∈Λ

log(cosh(β|Sσ(x) + h|))− β
∑
x

|Sσ(x) + h|

]

= − 1

β

[∑
x

(log(cosh(β|Sσ(x) + h|))− log exp(β|Sσ(x) + h|))

]

= − 1

β

[∑
x

(
log

eβ|Sσ(x)+h| + e−β|Sσ(x)+h|

2eβ|Sσ(x)+h|

)]

= − 1

β

[∑
x

(
log

1 + e−2β|Sσ(x)+h|

2

)]
(4.21)
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By summing (4.20) and (4.21) we get (2.12). �

5. Review on Potential Theoretic approach

The proof of the Theorem (3.1) is based on the potential–theoretic approach to metasta-
bility developed in [BEGK]. In this approach a key role is played by the notion of capacity
between two sets of configurations, which we are going to recall.

5.1. Capacity

For any h : S → R, we define the Dirichlet form in the following way:

E(h) =
1

2

∑
σ,η∈S

µ(σ)p(σ, η)[h(σ)− h(η)]2 =
1

2

∑
σ,η∈S

1

Z
e−βH(σ,η)[h(σ)− h(η)]2 (5.22)

where Z is the partition function defined in Sect. 2.3. From the definition (2.9) of com-
munication energy, we have

µ(σ)p(σ, η) = µ(σ) e−β(H(σ,η)−H(σ)) =
1

Z
e−βH(σ,η)

Given two non-empty disjoint sets A and B, the capacity of the pair A,B is defined as
follows:

CAP(A,B) := min
h:S→[0,1]

h|A=1,h|B=0

E(h) (5.23)

By (5.23) follows that the capacity is a symmetric function of the sets A and B. The
right hand side of (5.23) has a unique minimizer h∗

A,B called equilibrium potential of the
pair A,B given by

h∗
A,B(η) = Pη(τA < τB) (5.24)

for any η /∈ A ∪ B. Hence, inserting a general test function h in the Dirichlet form, one
obtains an upper bound for the capacity. Obviously, the closer h is to the equilibrium
potential, the sharper is the bound.
A remarkable property of capacity is that it can be characterized also by another vari-
ational principle, useful for giving a lower bound. It is given in term of unitary flows.
For the sake of completeness, we recall the main definitions and results given in [BHS]
and [BBI] (pg. 1550-1551). In the following, it will be convenient to think of S as the
vertex set of a graph (S,L) whose edge set L consists of all pairs (σ, η), σ, η ∈ S , for
which p(σ, η) > 0.

Definition 5.1 Given two non-empty disjoint sets A,B ⊂ S, a loop-free non-negative
unit flow, f , from A to B is a function f : L → [0,∞) such that:
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(a) (f(e) > 0 =⇒ f(−e) = 0) ∀ e ∈ E.
(b) f satisfies Kirchoff’s law:∑

σ′∈S

f(σ, σ′) =
∑
σ′′∈S

f(σ′′, σ), ∀σ ∈ S\(A ∪ B). (5.25)

(c) f is normalized: ∑
σ∈A

∑
σ′∈S

f(σ, σ′) = 1 =
∑
σ∈S

∑
σ∈B

f(σ′′, σ). (5.26)

(d) Any path from A to B along edges e such that f(e) > 0 is self-avoiding.
The space of all loop-free non-negative unit flows from A to B is denoted by UA,B.

A loop-free non-negative unit flow f is naturally associated with a probability measure Pf

on self-avoiding paths, γ. To see this, define F (σ) =
∑

σ′∈S f(σ, σ
′), σ ∈ S\B. Then Pf

is the Markov chain (σn)n∈N0 with initial distribution Pf (σ0) = F (σ0)1A(σ0), transition
probabilities

qf (σ, σ′) =
f(σ, σ′)

F (σ)
, σ ∈ S\B, (5.27)

such that the chain is stopped upon arrival in B. In terms of this probability measure,
we have the following proposition:

Proposition 5.1 Let A,B ⊂ S be two non-empty disjoint sets. Then, with the notation
introduced above,

CAP(A,B) = sup
f∈UA,B

Ef

[∑
e∈γ

f(el, er)

µ(el) p(el, er)

]−1
 , (5.28)

where e = (el, er) and the expectation is with respect to γ.

The nice feature of this variational principle is that any flow gives a computable lower
bound. In this sense (5.23) and (5.28) complement each other.
Remark. As showed in [BNS], the lower bounds for the capacity could have been obtained
using the monotonicity of capacities in the transition probabilities (Raighleys principle).
However, several recent papers (see [BBI], [BHS]) showed the power of Berman-Konsowa
variational principle in models where entropy is an issue. Despite in our case entropy does
not play any role, our finite–volume setting offers the possibility to illustrate the use of
this variational principle in a simpler framework, providing an intuitive an elegant way of
obtaining the precise lower bound.

5.2. Relation between capacity and the mean hitting time

We want now to recall a theorem from [BEGK] that links mean hitting times and
capacities. Indeed, we define the set of metastable configuration M:
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Definition 5.2 Consider a family of Markov chains, indexed by β, on a finite state space
S. A set M ⊆ S is called metastable if

lim
β→∞

maxη/∈M µ(η)[CAP(η,M)]−1

minη∈M µ(η)[CAP(η,M\ η)]−1 = 0 (5.29)

Definition 5.3 The valley A(σ) for a configuration σ ∈ M is defined as

A(σ) := {ζ ∈ S : Pζ(τσ = τM) = sup
η∈M

Pζ(τη = τM)} (5.30)

With these definitions, we are able to write the mean hitting times in terms of the ca-
pacities, that satisfies a manageable variational principle. In fact, the following theorem
holds:

Theorem 5.2 Let σ ∈ M and J ⊆ M \ x be such that for all m ∈ M \ (J ∪ x) either
µ(m) � µ(σ) or CAP(m, J) � CAP(m,σ). Then

i) EστJ =
µ(A(σ))

CAP(σ, J)
(1 + o(1)) (5.31)

ii) Pσ(τJ > tEστJ) = [1 + o(1)]e−t[1+o(1)] t ≥ 0 (5.32)

for β large enough.

Hence, the strategy for proving the main theorem will be to identify the metastable sets
(i.e., −1, +1), and to give sharp estimates for the capacities among the elements of this
set, via a suitable application of the variational principle for the Dirichlet form.

6. Proof of Theorem 3.1

In order to prove the theorem, we first show that the metastable set M is {−1,+1},
and that µ(A(−1)) = µ(−1)(1+ o(1)) for β large enough. Hence, we give sharp estimates
on CAP(−1,+1) and we conclude the proof by using Theorem 5.2.

6.1. Metastable set M = {−1,+1}
Let us give the following definitions:

Definition 6.4 (Saddles) 1. We denote by P the set of the protocritical droplets
containing the configurations with all the spins equal to −1 excepted those in a
rectangle of sides λ − 1 and λ in a neighboring site adjacent to one of the longest
sides.

11



Figure 1: Protocritical and critical droplets

2. we denote with C the set of the critical droplets consisting in the configurations with
all the spins equal to −1 excepted those in a rectangle of sides λ− 1 and λ in a pair
of neighboring sites adjacent to one of the longest sides.

We restate a theorem from [CNS], giving a recurrence property on the set {−1,+1}, and
estimate in probability of the first hitting time in the stable state.

Theorem 6.3 [CNS] Recall Γ1 has been defined in (3.16) and suppose h > 0 is chosen
small enough; then

1. for any σ ∈ S \ {−1} we have

Φ(σ,+1)− E(σ) < Γ1 (6.33)

2. we have
Φ(−1,+1)− E(−1) = Γ1 (6.34)

3. for each path ω = {ω1, . . . , ωn} ∈ Θ(−1,+1) such that Φω = Γ1, then E(ωi−1, ωi) =
Γ1 iff ωi−1 ∈ P, ωi ∈ C and ωi = ωx

i−1 for a suitable x ∈ Λ.

Moreover recall the following estimate given in [BHN]:

Lemma 6.2 [BHN] For every non–empty disjoint sets A,B ⊂ S, there exist constants
0 < C1 ≤ C2 < ∞ (depending on A,B) such that for all β:

C1 ≤ eβΦ(A,B) Z CAP(A,B) ≤ C2 (6.35)

Recall Definition 5.3 of metastable set M, the following holds

Theorem 6.4
M = {−1,+1} (6.36)

Proof
For simplicity in the sequel we will denote by Ci any positive constant non depending on
β. From (6.33) and (6.35), it follows that, for any η /∈ {−1,+1}

µ(η)[CAP(η,M)]−1 ≤ Z

C1

µ(η) eβ φ(η,+1) ≤ e−H(σ)

C1

eβ φ(η,M) ≤ C3 e
β(Γ1−δ) (6.37)

12



for some δ > 0, where in the last inequality we used (4.21).
If η ∈ {−1,+1}, we have

µ(η)[CAP(−1,+1)]−1 ≥ C4e
β Γ1 (6.38)

Indeed, if η = −1 equation (6.38) follows from (6.35), (6.34) and (4.21), while if η = +1
we can write:

µ(+1)

CAP(−1,+1)
≥ Z

µ(+1)

C2 e−β φ(−1,+1)
=

eβφ(−1,+1)−H(+1)

C2

> C5 e
β Γ1

Hence, from (6.38) and (6.37), we get

maxη/∈M µ(η)[CAP(η,M)]−1

minη∈M µ(η)[CAP(η,M\ η)]−1 ≤ C6 e
−β δ

that concludes the proof.�

We state and prove now a simple lemma regarding the measure of the valley A(−1) of
the metastable configuration −1.

Lemma 6.3
µ(A(−1)) = µ(−1)(1 + o(1)) (6.39)

for β large enough.

Proof
The valley (5.30) for the metastable configuration −1 can be written also in the form:

A(−1) := {ζ ∈ S : Pζ(τ−1 ≤ τ+1) ≥ Pζ(τ+1 ≤ τ−1)} (6.40)

From [BHN] (see the proof of Proposition 3.2.3), using elementary properties of the equi-
librium potential, we have the inclusions:

A1(−1) ⊆ A(−1) ⊆ A2(−1) (6.41)

for β large enough and where

A1(−1) := {ζ ∈ S : Φ(ζ,−1) < Φ(ζ,+1)}

A2(−1) := {ζ ∈ S : Φ(ζ,−1) ≤ Φ(ζ,+1)}
If η ∈ A2(−1), by absurdity, is such thatE(η) ≤ E(−1), then we show that Φ(−1,+1) <

Γ1+E(−1), in contradiction with (6.34). In fact, let us consider the paths ω1 : −1 → η at-
taining the minimax Φ(−1, η) and ω2 : η → +1 attaining the minimax Φ(η,+1). Merging
the path ω1 with ω2 we obtain the path ω : −1 → +1. Hence, Φω = max(Φ(−1, η),Φ(η,+1)) =
Φ(η,+1), for the definition of the set A2(−1). By the recurrence property 6.33:

Φ(η,+1) < Γ1 + E(η)
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so that
Φω < Γ1 + E(−1) = Φ(−1,+1)

that is an absurd from (6.34). In as similar way one can proceed for the set A1(−1).
Hence, for any η ∈ A(−1) \ −1, we have E(η) > E(−1) that concludes the proof. �

6.2. Sharp estimates for CAP(−1,+1)

In the case of parallel dynamics the lacking of continuity increases the difficulty of the
computation of the communication energy between the metastable and the stable state.
Hence in [CNS] a set G ⊂ S containing −1, but not +1 has been constructed in such a
way that the evaluation of the transition energy for all the possible transitions from the
interior to the exterior of such a set G was under control. The set G defined in [CNS] in
Sect. 3.2 is constructed using the two mappings A,B : S → S. We recall their definitions
for the sake of completeness. The map A flips the first, in lexicographic order, unstable
plus spin of σ, providing that this change corresponds to a decrease in the energy. More
explicitly, the map changes the value in x ∈ Λ if σ(x) = +1,

∑
y∈V (x) σ(y) ≤ −1 and

providing that H(σx) ≤ H(σ). The effect of the map A is that the number of unstable
pluses decrease. We iteratively apply the map A to σ, until we reach a fixed point, denoted
by Āσ. For any σ ∈ S the configuration Bσ is the single step bootstrap percolation, i.e.,
it changes the value in x ∈ Λ if the σ(x) = −1 and

∑
y∈V (x) σ(y) ≥ −1.

The iteration of the map B on Āσ converges to a fixed point B̄Āσ in a finite time.
The composed mapping is not necessarily the result of the zero temperature dynamics,
but has the remarkable property of having the support consisting in well separated rect-
angles or stripes winding around the torus. We can now define the set G. Denoting by
∪n(σ)

i Q`i,1,`i,2(xi) the collection of n(σ) pairwise not interacting rectangles (or stripes) be-
ing the support of the fixed point B̄Āσ of the composed mapping, we define G as the set
of all configurations σ such that the fixed point B̄Āσ is either −1 or min{`i,1, `i,2} ≤ λ−1
and max{`i,1, `i,2} ≤ L− 2 for any i = 1, . . . , n(σ). Note that the set G contains the sub-
critical configurations (namely, starting from such a configuration the system visits −1
before +1 with probability tending to one in the limit β → ∞) and that configurations
σ such that B̄Āσ contains plus stripes winding around the torus Λ do not belong to G.
Following [CNS] we can evaluate the minmax between G and Gc.

Proposition 6.2 [CNS]
With the definitions above, for h > 0 small enough and L = L(h) large enough, we have

1. −1 ∈ G, +1 ∈ S \ G, and C ⊂ S \ G;

2. for each η ∈ G and ζ ∈ S \ G we have E(η, ζ) ≥ E(−1) + Γ1;

3. for each η ∈ G and ζ ∈ S \ G we have E(η, ζ) = E(−1) + Γ1 if and only if ζ ∈ C,
η ∈ P and ζ = ηx for a suitable x ∈ Λ.

Now we have all the ingredients to prove the sharp estimates for the capacity between −1
and +1.
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Theorem 6.5 With the notation of Theorem 3.1, we have:

CAP(−1,+1) = K1 µ(−1)e−β Γ1(1 + o(1)) (6.42)

in the limit β → ∞

Proof.
In order to prove the theorem we give upper and lower bounds to the capacity CAP(−1,+1).

G

Gc

−1

+1

h=1

h=0

irrilevant contribution

critical contribution

S

Figure 2: Upper bound

i) Upper bound
We use a general strategy to prove a upper bound by guessing some a–priori proper-
ties of the minimizer h?, solving of the variational problem (5.23). We give an upper
bound hu to the equilibrium potential h? choosing a test function in the following
way:

hu(σ) :=

{
1 σ ∈ G
0 σ ∈ Gc (6.43)

Thus

E(hu) =
1

Z

∑
σ∈G,
η∈Gc

e−H(σ,η) =
1

Z 2|Λ|

∑
σ∈G,
η∈Gc

e−βE(σ,η) ≤ µ(−1)

2|Λ|

∑
σ∈G,
η∈Gc

e−β(E(σ,η)−E(−1))

(6.44)
where in the second step we used (2.12) and in the last (4.21). We denote with N1

the cardinality of the set of the saddles where the minmax Γ1 is attained. The l.h.s
of (6.44), is bounded as follows:
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2|Λ| E(hu)

µ(−1)
≤ N1 e

−βΓ1 + |S| e−β(Γ1+δ) (6.45)

where δ > 0. Indeed Φ(G,Gc) = Γ +E(−1) and, by Proposition 6.2, the minmax is
attained only in the transitions between configurations η ∈ P ⊂ G and ζ ∈ C ⊂ Gc.
Therefore, for all the other transitions we have E(η, ζ) > Γ + E(−1).
We denoted with N1, the number of the possible ways to choose a protocritical
droplet in the lattice with periodic boundary conditions . We know that the set P of
such configurations contains all the rectangles Qλ−1,λ(x) with a single protuberance
adjacent to one of the largest sides. Because of the translational invariance on
the lattice, we can associate at each site x two rectangular droplets Qλ−1,λ(x) and
Qλ,λ−1(x) such that their lower-left corner is in x. Considering the periodic boundary
conditions, the number of such rectangles is

NQ = 2|Λ|. (6.46)

For every rectangle the possible transitions between a protocritical droplet and a
critical droplet are:

NS = 2 (2(λ− 2) + 2) (6.47)

since there are two larger sides and given a single protuberance there are two ways
to form a double protuberance if the spin is not in a corner and just one otherwise.
Thus

N1 = NQ NS = 8|Λ|(λ− 1)

Hence,
CAP(−1,+1) ≤ K1 µ(−1)e−βΓ(1 + o(1))

for β large enough.

ii) Lower bound

In [CNS] (see Section 3.1) we have detailed information about the optimal paths
attaining the minmax Φ(−1,+1) for the nucleation of +1 starting from −1. We
exploit Proposition 5.1 by making a judicious choice for the flow f . We distribute
indeed the mass of the test flow equally among a suitable subset of optimal paths.
More precisely, starting from −1, we flip with uniform probability in the lattice
the spin in the site x, obtaining the configuration σ := −1(x). From σ, either
we follow with probability 1/2 a deterministic path, along which we nucleate a
horizontal quasi-square droplet with support equal to Qλ−1,λ(x) in the canonical
order described in Fig. 3, or with probability 1/2 we nucleate deterministically a
vertical quasi–square droplet with support equal to Qλ,λ−1(x) following Fig. 4. Once
the quasi–square is nucleated, with probability 1/λ we flip a site along one of the two
longest sides, creating a protuberance. In case the protuberance is on a corner as
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in Fig 5, we continue deterministically to nucleate the square Qλ,λ(x) enlarging the
protuberance by flipping adjacent spins. Otherwise, with probability 1/2 we choose
one of the two sites next to the protuberance, creating a double protuberance as
described in Fig 6. Hence, we continue to enlarge the protuberance, in the same
direction used to change the previous spin, flipping spins adjacent to the chosen
site until we reach the corner (see Fig 6). Afterwards, we proceed in similar way
flipping adjacent spins until we reach the other corner and we nucleate the droplet
with support Qλ,λ(x). Once we have nucleated the square droplet of side λ, the
two flows for the horizontal and the vertical protocritical droplets merge. Hence, we
simply continue invading all the lattice following deterministically a canonical path
as described in Fig 7. We set

K = λ (λ− 1)

and

ν0 =
1

|Λ|
Moreover, we denote with Pc the set of all the configurations with a protocritical
droplet with a protuberance in a corner of one of the longest sides (see the first
configuration in Fig 5), and with Pnc the set of all the configurations with a proto-
critical droplet with a protuberance not in the corner (see the first configuration in
Fig. 6). In addition, following the notation introduced in Fig. 3 and in Fig. 4, we
denote with γi

x a canonical path starting from the site x and nucleating a horizontal
protocritical droplet if i = 1 or a vertical if i = 2.
Thus, we can define the unitary flow from −1 to +1, corresponding to the algorithm
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so far explained:

f(σ′, σ′′) =



ν0 if σ′ = −1, σ′′ = −1(x), for some x ∈ Λ,
ν0
2

if σ′ = γi
x(k), σ

′′ = γi
x(k + 1),

for some , x ∈ Λ, i ∈ {1, 2}, 1 ≤ k ≤ K
ν0
4λ

if σ′ = γi
x(K), σ′′ = γi

x(K + 1)

for some , x ∈ Λ, i ∈ {1, 2},
ν0
4λ

if σ′ = γi
x(K + 1), σ′′ = γi

x(K + 2),

γi
x(K + 1) ∈ Pc, for some , x ∈ Λ, i ∈ {1, 2}

ν0
8λ

if σ′ = γi
x(K + 1), σ′′ = γi

x(K + 2),

γi
x(K + 1) ∈ Pnc, for some , x ∈ Λ, i ∈ {1, 2}

ν0
4λ

if σ′ = γi
x(k), σ

′′ = γi
x(k + 1)

γi
x(K + 1) ∈ Pc, for some , x ∈ Λ, i ∈ {1, 2},

K + 2 ≤ k ≤ λ2 − 1
ν0
8λ

if σ′ = γi
x(k), σ

′′ = γi
x(k + 1)

γi
x(K + 1) ∈ Pnc, for some , x ∈ Λ, i ∈ {1, 2},

K + 2 ≤ k ≤ λ2 − 1

ν0 if σ′ = γi
x(k), σ

′′ = γi
x(k + 1)

for some x ∈ Λ, i ∈ {1, 2}, λ2 ≤ k ≤ |Λ| − 1

0, otherwise.

(6.48)

x

γ1

x
(1) γ1

x
(2) γ1

x
(3) γ1

x
(4) γ1

x
(5)

γ1

x
(K)

λ− 1

λ

Figure 3: Canonical order to nucleate γ1x(K)

x

γ2

x
(1)

γ2

x
(2) γ2

x
(3) γ2

x
(4)

γ2

x
(5)

γ2

x
(K)

λ− 1

λ

γ2

x
(6)

Figure 4: Canonical order to nucleate γ2x(K)

18



γ1(K + 1) ∈ Pc γ1(K + 2)

λ− 1

λ

γ1(K + 3) γ1(K + λ)

Figure 5: Construction of the flow when γ(K + 1)1 ∈ Pc

γ1(K + 1) ∈ Pnc

γ1(K + 2)

λ− 1

λ

γ1(K + 2)

p = 1

2

p = 1

2

γ1(K + 3) γ1(K + 4)

γ1(K + 4)γ1(K + 3)

Figure 6: Construction of the flow when γ1(K + 1) ∈ Pnc

λ

λ

λ

λ+ 1

λ+ 1

λ+ 1

γ1(K + λ) = γ2(K + λ)

γ1(K + 3λ+ 1)

Figure 7: Construction of the supercritical flow
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Given a path γ = (γ(0), . . . , γ(|Λ|)), with γ(0) = −1 and γ(|Λ|) = +1, we denote
from now on with P(γ) the probability of the path γ for the Markov chain associated
with the flow f :

P(γ) := Pf (X = γ) =

∏|Λ|
i=1 f(γ(i− 1), γ(i))∏|Λ|−1
i=1 F (γ(i− 1))

Hence, the non–null probability paths from −1 → +1 of the Markov chain defined
by the flow f are of two types: we denote with Ic the set of the paths γ such that
γ(K + 1) ∈ Pc and with Inc the set of the paths such that γ(K + 1) ∈ Pnc. Thus,
we have the following results: #{γ ∈ Ic} = 8|Λ| and that for γ ∈ Ic

P(γ) = 1/(4|Λ|λ) = f(γ(K + 1), γ(K + 2))

so that:
P(Ic) = 8|Λ| f(γ(K + 1) ∈ Pc, γ(K + 2))

Analogously we have #{γ ∈ Inc} = 8|Λ|(λ− 2) and for γ ∈ Inc:

P(γ) = 1/(8|Λ|λ) = f(γ(K + 1), γ(K + 2))

P(Inc) = 8|Λ| (λ− 2)f(γ(K + 1) ∈ Pnc, γ(K + 2))

By Proposition 5.1 and by the choice of the flow (6.48), we have

CAP(−1,+1) ≥
∑

γ∈Inc∪Ic

P(γ)

|Λ|−1∑
k=0

f(γ(k), γ(k + 1))

µβ(γ(k))p(γ(k), γ(k + 1))

−1

≥ P(γ ∈ Ic)
e−H(γ(K+1),γ(K+2))

Z f(γ(K + 1) ∈ Pc, γ(K + 2))
(1 + o(1))

+P(γ ∈ Inc)
e−H(γ(K+1),γ(K+2))

Zf(γ(K + 1)Pnc, γ(K + 2))
(1 + o(1)) (6.49)

where in the last inequality we used Theorem 6.3, since the paths are optimal paths
for β large enough. Hence, from the definition of the flow and from 2.12, we have:

CAP(−1,+1) ≥ µ(−1) e−βΓ

2|Γ|

[
P(γ ∈ Ic)

f(γ(K + 1) ∈ Pc, γ(K + 2))
(6.50)

+
P(γ ∈ Inc)

f(γ(K + 1) ∈ Pnc, γ(K + 2))

]
(1 + o(1)) (6.51)

≥ µ(−1) e−βΓ

2|Γ|
[8|Λ|+ 8|Λ|(λ− 2)] = K1µ(−1)e−βΓ (6.52)

�
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