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Preface

The 4th International Conference on Educational Data Mining (EDM 2011) brings together researchers
from computer science, education, psychology, psychometrics, and statistics to analyze large datasets to
answer educational research questions. The conference, held in Eindhoven, The Netherlands, July 6-9,
2011, follows the three previous editions (Pittsburgh 2010, Cordoba 2009 and Montreal 2008), and a
series of workshops within the AAAI, AIED, EC-TEL, ICALT, ITS, and UM conferences.

The increase of e-learning resources such as interactive learning environments, learning management
systems, intelligent tutoring systems, and hypermedia systems, as well as the establishment of state
databases of student test scores, has created large repositories of data that can be explored to understand
how students learn. The EDM conference focuses on data mining techniques for using these data to
address important educational questions. The broad collection of research disciplines ensures cross
fertilization of ideas, with the central questions of educational research serving as a unifying focus.

This year’s conference includes short papers as a new submission category targeting original and
unpublished research with merit in terms of originality and importance rather than maturity and technical
validation. In the paper track, we received 60 long and 20 short papers, each of which was reviewed by
three experts in the field, resulting in 20 long and 17 short papers accepted for presentation at the
conference (some of the long paper submissions have been accepted as short paper). We also received 22
posters, targeting work in progress and last minute results with high potential to foster new developments
and interesting discussions during the conference’s poster presentation sessions. These sessions included
the presentation of 30 posters, 14 from the original pool of poster submissions and the reminder from the
pool of paper submissions.

All accepted submissions appear in these proceedings. The conference also includes invited talks by
Barry Smyth (University College, Dublin, Ireland), John Stamper (Carnegie Mellon University, USA)
and Erik-Jan van der Linden (MagnaView B.V., the Netherlands), with abstract in these proceedings.

We would like to thank Eindhoven University of Technology for the sponsorship and hosting of
EDM’2011. We would like to thank the Netherlands Organization for Scienti!c Research (NWO),
Belgium-Netherlands Association for Artilcial Intelligence (BNVKI) and the Dutch Research School for
Information and Knowledge Systems (SIKS), University of Cordoba and PSLC DataShop.

We also want to acknowledge the amazing work of the program committee members and additional
reviewers, who with their enthusiastic contributions gave us invaluable support in putting this conference
together.

Our special thanks to the local organizing team and additional thanks to Evgeny Knutov and Jorn Bakker
for their technical support on putting these proceedings together.

Last but not least we would like to thank Arnon Hershkovitz who has served as the Web Chair of EDM
series from its first edition.

June 2011
Cristina Conati and Sebastian Ventura — Program Chairs

Mykola Pechenizkiy and Toon Calders — Conference Chairs
Cristobal Romero and John Stamper — Posters Chairs
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Social Information Discovery

Barry Smyth, University College Dublin, Ireland

The world of web search is usually viewed as a solitary place. Although millions of
searchers use services like Google and Yahoo everyday, their individual searches take
place in isolation, leaving each searcher to fend for themselves when it comes to
finding the right information at the right time. Recently, researchers have begun to
question the solitary nature of web search, proposing a more collaborative search
model in which groups or users can cooperate to search more effectively.

For example, students will often collaborate as part of class projects, bringing
together relevant information that they have found during the course of their
individual searches. Indeed, despite the absence of explicit collaboration features
from mainstream search engines, there is clear evidence that users implicitly engage
in many different forms of collaboration as they search, although, these collaboration
"work-arounds” are far from ideal. Naturally, this has motivated researchers to
consider how future web search engines might better support different types of
collaboration to take advantage of this latent need; for example, how might students
collaborate as they search rather than defer the sharing of information as a post-search
activity.

In this talk we focus on some of the ways in which web search may become a more
social and collaborative experience. This will include lessons learned from both the
theory and practice of a more collaborative approach to web search and we will
describe recent attempts to bring collaboration support to mainstream search engines.
We will consider a number of educational use-cases during the course of this talk to
describe how instructors and learners can take full advantage of this more social
perspective on web search.
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On exploration and mining of data in educational practice

Erik-Jan van der Linden, MagnaView B.V., the Netherlands
Martijn Wijffelaars, MagnaView B.V., the Netherlands

Thomas Lammers, MagnaView B.V. and
Eindhoven University of Technology, the Netherlands

Educational institutions are confronted with increasing pressure from authorities and
governments to justify their spending of public means. This, in turn, has led to increased
internal use of the huge amounts of data in information systems on results, careers,
absence, etc. Experience with a data analysis product that is actively used in 20+ schools
(secondary education) indicates that visual presentation and user interaction are crucial to
have analyses of large datasets lead to real improvement. Intricate and finely-tuned
interaction between methods from the field of data mining and these interactive
techniques may further aid schools.
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EDM and the 4th Paradigm of Scientific Discovery -
Reflections on the 2010 KDD Cup Competition

John Stamper, Carnegie Mellon University, USA

Technology advances have made the ability to collect large amounts of data easier
than ever before. These massive datasets provide both opportunities and challenges
for many fields and education is no different. Understanding how to deal with
extreme amounts of student data in the EDM field is a growing problem. The 2010
KDD Cup Competition, titled "Educational Data Mining Challenge", included data
for over 10,000 students. The students completed over 30 million problem steps
collected over a year long courses from Carnegie Learning Inc.'s Cognitive Tutors.
We believe these are the largest educational dataset at this level of granularity to be
released publicly. The competition drew broad interest from the data mining
community, but it was also clear that many in the research community could not
handle datasets of this size. In this talk, John will discuss the 2010 KDD Cup and the
impact of larger and larger amounts of data coming available for educational data
mining and how this will drive the direction of educational research in the future.
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Factorization Models for Forecasting Student Performance

Nguyen Thai-Nghe, Tones Honath and Lars Schmidt-Thieme, University of Hildesheim, Germany

Predicting student performance (PSP) is one of the educational data mining task, where we would like to know how much
knowledge the students have gained and whether they can perform the tasks (or exercises) correctly. Since the student's
knowledge improves and cumulates over time, the sequential (temporal) e ect is an important information for PSP. Previous
works have shown that PSP can be casted as rating prediction task in recommender systems, and therefore, factorization
techniques can be applied for this task. To take into account the sequential e ect, this work proposes a novel approach which
uses tensor factorization for forecasting student performance. With this approach, we can personalize the prediction for each
student given the task, thus, it can also be used for recommending the tasks to the students. Experimental results on two large
data sets show that incorporating forecasting techniques into the factorization process is a promising approach.

1. INTRODUCTION

Predicting student performance, one of the tasks in educational data mining, has been taken into account
recently [Toscher and Jahrer 2010; Yu et al. 2010; Cetintas et al. 2010; Thai-Nghe et al. 2011]. It was
selected as a challenge task for the KDD Cup 2010[Koedinger et al. 2010]. Concretely, predicting student
performance is the task where we would like to know how the students learn (e.g. generally or narrowly), how
quickly or slowly they adapt to new problems or if it is possible to infer the knowledge requirements to solve
the problems directly from student performance data [Corbett and Anderson 1995; Feng et al. 2009], and
eventually, we would like to know whether the students perform the tasks (exercises) correctly (or with some
levels of certainty). As discussed in Cen et al. [2006], an improved model for predicting student performance
could save millions of hours of students' time and e ort in learning algebra. In that time, students could
move to other specic elds of their study or doing other things they enjoy. From educational data mining
point of view, an accurate and reliable model in predicting student performance may replace some current
standardized tests, and thus, reducing the pressure, time, as well as e ort on \teaching and learning for
examinations" [Feng et al. 2009; Thai-Nghe et al. 2011].

To address the problem of predicting student performance, many papers have been published but most
of them are based on traditional classi cation/regression techniques [Cen et al. 2006; Feng et al. 2009;
Yu et al. 2010; Pardos and He ernan 2010]. Many other works can be found in Romero et al. [2010].
Recently, [Thai-Nghe et al. 2010; Toscher and Jahrer 2010; Thai-Nghe et al. 2011] have proposed using
recommendation techniques, e.g. matrix factorization, for predicting student performance. The authors have
shown that predicting student performance can be considered as rating predictiorsince the student, task
and performance would becomeuser, item, and rating in recommender systems, respectively. We know that
learning and problem-solving are complex cognitive and a ective processes that are di erent to shopping and
other e-commerce transactions, however, as discussed in Thai-Nghe et al. [2011], the factorization models
in recommender systems are implicitly able to encode latent factors of students and tasks (e.g. \slip" and
\guess"), and especially in case where we do not have enough meta data about students and tasks (or even
we have not enough background knowledge of the domain), this mapping is a reasonable approach.

Lhttp://pslcdatashop.web.cmu.edu/KDDCup/

Author's address: Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Marienburger Platz 22,
31141 Hildesheim, Germany. Emails: fnguyen, horvath, schmidt-thieme g@ismil.de
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Moreover, from the pedagogical aspect, we expect that students (or generally, learners) can improve their
knowledge over time, thus, the temporal/sequential information is an important factor in predicting student
performance. Thai-Nghe et al. [2011] proposed using three-mode tensor factorization (on student/task/time)
instead of matrix factorization (on student/task) to take the temporal e ect into account.

Inspired from the idea in Rendle et al. [2010], which used matrix factorization with Markov chains to
model sequential behavior of the user in e-commerce area, and also inspired from the personalized forecasting
methods [Thai-Nghe et al. 2011], we propose a novel approactensor factorization forecasting, to model
the sequential e ect in predicting student performance. Thus, we bring together the advantages of both
forecasting and factorization techniques in this work. The proposed approach can be used not only for
predicting student performance but also for recommending the tasks to the students, as well as for the other
domains (e.g. recommender systems) in which the sequential e ect should be taken into account.

2. RELATED WORK

Many works can be found in [Romero and Ventura 2006; Baker and Yacef 2009; Romero et al. 2010] but
most of them relied on traditional classi cation/regression techniques. Concretely, Cen et al. [2006] proposed
a semi-automated method for improving a cognitive model called Learning Factors Analysis that combines a
statistical model, human expertise and a combinatorial search; Thai-Nghe et al. [2009] proposed to improve
the student performance prediction by dealing with the class imbalance problem, using support vector
machines (i.e., the ratio between passing and failing students is usually skewed); Yu et al. [2010] used
linear support vector machines together with feature engineering and ensembling techniques for predicting
student performance. These methods work well in case we have enough meta data about students and tasks.

In student modeling, Corbett and Anderson [1995] proposed the Knowledge Tracing model, which is widely
used in this domain. The model assumes that each skill has four parameters: 1) initial (or prior) knowledge,
which is the probability that a particular skill was known by the student before interacting with the tutoring
systems; 2) learning rate, which is the probability that student's knowledge changes from unlearned to learned
state after each learning opportunity; 3) guess, which is the probability that a student can answer correctly
even if he/she does not know the skill associated with the problem; 4) slip, which is the probability that a
student makes a mistake (incorrect answer) even if he/she knows the required skills. To apply the knowledge
tracing model for predicting student performance, the four parameters need to be estimated either by using
Expectation Maximization method [Chang et al. 2006] or by using Brute-Force method [Baker et al. 2008].
Pardos and He ernan [2010] propose a variant of knowledge tracing by taking individualization into account.
These models explicitly take into account the \slip" and \guess" latent factors.

Recently, researchers have proposed using recommender system techniques (e.g. matrix factorization) for
predicting student performance [Thai-Nghe et al. 2010; Toscher and Jahrer 2010]. The authors have shown
that predicting student performance can be considered as rating prediction since thestudent, task and
performance would becomeuser, item, and rating in recommender systems, respectively; Extended from
these works, Thai-Nghe et al. [2011] proposed tensor factorization models to take into account the sequential
e ect (for modeling how student knowledge changes over time). Thus, the authors have modeled the student
performance as a 3-dimensional recommender system problem gstudent, task, time).

In this work, the problem setting is similar to our previous work [Thai-Nghe et al. 2011], however, we
introduce two new methods - tensor factorization forecasting models - for predicting student performance.

3. PREDICTING STUDENT PERFORMANCE (PSP)

The problem of predicting student performance is to predict the likely performance of a student for some
exercises (or part thereof such as for some particular steps) which we call theasks The task could be to
solve a particular step in aproblem to solve a whole problem or to solve problems in &ection or unit, etc.
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Detailed descriptions can be found in [Thai-Nghe et al. 2011]. Here, we are only interested in three features,
e.g. student ID, task ID, and time ID.

More formally, let S be a set of students,| be a set of tasks, and® R be a range of possible performance
scores. LetD"@" (S | P) be a sequence of observed student performances aB®st (S | P)
be a sequence of unobserved student performances. Furthermore, let

p:S | P! P, (siip)7!p
and
si:S I PL S I, (s5i;p) 7 (s;i)

be the projections to the performance measure and to the student/task pair. Then the problem of student
performance prediction is, givenD'" and ¢; (D™*), to nd

such that
D
err(p;p) == (M2

1=1

is minimal with p:= p(D'*'). Some other error measures could also be considered.

As discussed in Thai-Nghe et al. [2011], the problem of predicting student performance can hgcasted as
rating prediction task in recommender systemssinces;i and p would be user, item and rating, respectively,
and ii) casted as forecasting problem(illustrated in Figure 1b-top) to deal with the potentially sequential
e ects (e.g. describing how students gain experience over time) which is discussed in this work. An illustration
of predicting student performance which takes the data sequence into account is presented in Figure 1la.
Figure 1b-bottom is an example of representing student performance data in a three-mode tensor.

Fig. 1. An illustration of casting predicting student performance as forecasting problem, which uses all historical performance
data controlled by the history length L to forecast the next performance
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4. TENSOR FACTORIZATION FORECASTING

In this work, we will use three-mode tensor factorization which is a generalization of matrix factorization.
Given a three-mode tensorZ of sizeU | T, where the rst mode describesU students, the second
mode described tasks (problems), and the third mode describes the time. TherZ can be written as a sum
of rank-1 tensors by using CANDECOM-PARAFAC [Carroll and Chang 1970; Harshman 1970; Kolda and
Bader 2009]:

X
z KWk he O 1)
k=1
where is the outer product; ¢ 2 R*; and each vectorwy 2 RY, hy 2 R', and g« 2 R" describes the latent
factor vectors of the student, task, and time, respectively (see the articles [Kolda and Bader 2009; Dunlavy
et al. 2011] for details). In this work, these latent factors are optimized for root mean squared error (RMSE)
using stochastic gradient descent [Bottou 2004].

As mentioned in the literature, \the more the learners study the better the performance they get", and
the knowledge of the learners cumulates over time, thus the temporal e ect is an important factor to predict
the student performance. We adopt the ideas in the previous works [Dunlavy et al. 201%] [Thai-Nghe et al.
2011; Thai-Nghe et al. 2011] to incorporate forecasting model into the factorization process, which we call
tensor factorization forecasting.

For simpli cation purpose, we apply the moving average approach (the unweighted mean of the previous
n data points [Brockwell and Davis 2002]) with a periodL on the time mode. The performance of student
u given taski is predicted by:

X
Pur = Wyk hik 1 K 2
k=1
where
P
_ tT:Tl L Ok Pt
TkE 3

whereT is the current time in the sequencegk and p; are the time latent factor and the student performance
of the previous time, respectively;L is the number of steps in the history to be used by the model (refer back
to Figure 1 to see the value ofL). We call this method TFMAF  (Tensor Factorization - Moving Average
Forecasting).

As shown in [Toscher and Jahrer 2010; Thai-Nghe et al. 2011], the prediction result can be improved if one
employs the biased terms into the prediction model. In educational setting, those biased terms arstudent
bias" which models how good a student is (i.e. how likely is the student to perform a task correctly), and
\task bias" which models how di cult/easy the task is (i.e. how likely is the task to be performed correctly).
To take into account the \student bias" and \task bias", the prediction function (2) now becomes:

X
Pur = +h+hbh+ Wk hik 7 (4)
k=1

where is the global average (average performarg)ce of all students and tasks B"@" ):

p 2D train p

= “jpranj ()

2This work used tensor factorization for link prediction
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b, is student bias (average performance of studenti deviated from the global average):
P

_ pY 2D train (pu )
b, = ipY 2 D train j (6)
and by is task bias (average performance on task deviated from the global average):
P _
i train :
h = p' 2D (p ) (7)

jpi 2 Dtrain J
Moreover, in e-commerce area, Rendle et al. [2010] have used matrix factorization with Markov chains
to model sequential behavior by learning a transition graph over items that is used to predict the next
action based on the recent actions of a user. The authors proposed using previous \basket of items" to
predict the next \basket of items" with high probabilities that the users might want to buy. However, in
educational environment, one natural fact is that the performance of the students not only depend on the
recent knowledge (e.g. the knowledge in the previous problems or lessons, which act as \previous basket of
items") but also depend on the cumulative knowledge in the past that the students have studied. Thus, we
need to adapt this method by using all previous performances which are controlled by history length L (see
Figure 1) for forecasting the next performance.
The 1 k in equation (3) now becomes:
P
tT: T ' L g G pr
i ®)
where hg, is the latent factor of the previous solved task in the sequence. We call this methodFF (Tensor
Factorization Forecasting).

T k —

5. EVALUATION

In this section, we rst present two real-world data sets, then we describe the baselines for comparison. We
show how we set up the models, and nally, the results of tensor factorization forecasting are discussed.

5.1 Data sets

We use 2 real world data sets which are collected from the Knowledge Discovery and Data Mining Challenge
201CF. These data sets, originally labeled \Algebra 2008-2009" and \Bridge to Algebra 2008-2009" will be
denoted \Algebra" and \Bridge" for the remainder of this paper. Each data set is split into a train and a test
partition as described in Table |. The data represents the log les of interactions between students and the
tutoring system. While students solve math related problems in the tutoring system, their activities, success
and progress indicators are logged as individual rows in the data sets.

Table I. Original data sets

Data set #Attributes #Instances

Algebra-2008-2009 train 23 8,918,054
Algebra-2008-2009 test 23 508,912
Bridge-to-Algebra-2008-2009 train 21 20,012,498
Bridge-to-Algebra-2008-2009 test 21 756,386

The central element of interaction between the students and the tutoring system is theproblem Every
problem belongs into a hierarchy ofunit and section. Furthermore, a problem consists of many individual

3http://pslcdatashop.web.cmu.edu/KDDCup/
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steps such as calculating a circle's area, solving a given equation, entering the result and alike. The eld
problem view tracks how many times the student already saw this problem. The other attributes we have
not used in this work. Target of the prediction task is the correct rst attempt (CFA) information which
encodes whether the student successfully completed the given step on the rst attempt (CFA = 1 indicates
correct, and CFA = 0 indicates incorrect). The prediction would then encode the certainty that the student
will succeed on the rst try.

As presented in Thai-Nghe et al. [2010], these data sets can be mapped teer;item, and rating in
recommender systems. The student becomes theser, and the correct rst attempt (CFA) becomes the
rating , bounded between 0 and 1. The authors also presented several options that can be mapped to item.
In this work, the item refers to a solving-step which is a combination (concatenation) of problem hierarchy
(PH), problem name(PN), step name(SN), and problem view (PV). The information of student;task, and
performance is summarized in Table II.

Table Il. Information of students, tasks (solving-steps), and performances (CFAs)

Data set #Student (as User) #Task (as Item) #Performance (as Rating)
Algebra 3,310 1,416,473 8,918,054
Bridge 6,043 887,740 20,012,498

5.2 Evaluation metric and model setting
Evaluation metric.: =~ The root mean squared error (RMSE) is used to evaluate the models.

S p
pui )2

P

_ i 2D test (pui
RMSE = . jDtest

9)

Baselines: We use theglobal averageas a baseline, i.e. predicting the average of the target variable from
the training set. The proposed methods are compared with other methods such astudent average(user
average in recommender systems)iased-student-task(this method originally is user-item-baseline in Koren
[2010]). Moreover, we also compare the proposed approach wittmatrix factorization (MF) since previous
works [Toscher and Jahrer 2010; Thai-Nghe et al. 2010] have shown that MF can produce promising results.
For MF, the mapping of user and item as the following:

student 7! user;
Problem hierarchy (unit, section), problem name, step name, problem view! item;
performance 7! rating

Hyper parameter setting: Hyper parameter search was applied to determine the hyper parametetsfor
all methods (e.g, optimizing the RMSE on a holdout set). We will report later the hyper parameters for some
typical methods (in Table 1V). Please note that we have not performed the signi cance test (t-test) because
the real target variables of the two data sets from KDD Challenge 2010, until now, have not been published
yet. We have to submit the results to the KDD Challenge 2010 website to get the RMSE score. Thus, all
the results reported in this study are the RMSE score from this website (it is still opened for submission
after the challenge). Of course, one can use the internal split (e.g. splitting the training set to sub-train and
sub-test) but we have not experimented in this way since we would like to see how good the results of our
approach are compared to the other approaches on the given data sets.

4Using similar approach described in [Thai-Nghe et al. 2010]
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Dealing with cold-start problem: To deal with the \new user” (new student) or \new item" (new task),

e.g., those that are in the test set but not in the train set, we simply provide the global average score for
these new users or new items. However, using more sophisticated methods, e.g. in [Gantner et al. 2010], can
improve the prediction results. Moreover, in the educational environment, the cold-start problem is not as
harmful as in the e-commerce environment where the new users and new items appear every day or even
hour, thus, the models need not to be re-trained continuously.

5.3 Results

To justify why forecasting method can be a choice in predicting student performance (especially embedding
in the factorization process) and how the sequential (temporal) information a ects to the performance of the
learners, we plot the student performance on they axis and the problem ID (in sequence) on thex axis.
However, in the experimental datasets, the true target variable (the actual performance) for each single step
is encoded by binary values, i.e., 0 (incorrect) and 1 (correct), thus, the student performance does not show
the trend line when we visualize these data sets.

Fig. 2. Sequential e ect on the student performance: y axis is the average of correct performances and x axis is the
sequence of problems (ID) aggregated from the steps. Typical results of Unit 1 and Section 1 of Algebra and Bridge datasets

We aggregate the performance of all steps in the same problem to a single value and plot the aggregated
performance to Figure 2. From this, we can see the sequential e ect on the sequence of solving problems (from
left to right). The average performance increases with the trend line, which implicitly means that forecasting
methods are appropriate to cope with predicting student performance. Please note that by aggregating,
we will come up with new data sets and the task now is to predict/forecast the whole problem instead of
predicting/forecasting the single step in that problem. This work is, however, out of the scope of this paper,
so we leave the experimental results on these new aggregated data sets for future work.

Also, in these specic data sets, the actual target variable (the actual performance) is encoded by O
(incorrect) and 1 (correct), so we modify the equations (3) and (8) to avoid the zero value of the factor
product. The 1 g in equation (3) now becomes:

P
Lt (e 05) 2)

_— 3 (10)
and the  in equation (8) now becomes:
Pr 1
- hi Gk (pr  0:5) 2)
7= =T L (12)

L
However, other modi cations on these speci c data sets can also be used.
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Fig. 3. RMSE results of taken into account the temporal e ect using tensor factorization which factorize on student/solving-
step/time.

Figure 3 presents the RMSE of the tensor factorization forecasting methods which factorize on the student
(asuser), solving-step (asitem), and the sequence of solving-step (asme ). The results of the proposed meth-
ods show improvement compared to the others. Moreover, compared with matrix factorization which does
not take the temporal e ect into account, the tensor factorization methods have also improved the prediction
results. These results may implicitly re ect the natural fact that we mentioned before: \the knowledge of the
student improves over time". However, the results of TFF has a small improvement compared to TFMAF
method.

Table IIl presents the RMSE of the proposed methods and the well-known Knowledge Tracing [Corbett
and Anderson 1995] which estimates the parameters by using Brute-Force (BF) [Baker et al. 2008], on
Bridge data set. Since this data set is quite large, it is intractable when using Expectation Maximization
(EM) method [Chang et al. 2006]. The tensor factorization forecasting models have signi cant improvements
compared to the Knowledge Tracing model. However, the comparison with other methods, e.g. Performance
Factors Analysis [Pavlik et al. 2009] and Prior Per Student [Pardos and He ernan 2010], is leaved for future
work.

Table 1ll. RMSE of Knowledge Tracing vs. Tensor
Factorization Forecasting models
Data set | Knowledge Tracing (BF) TFEMAF TFF
Algebra 0.30561 0.30398 | 0.30159
Bridge 0.30649 0.28808 | 0.28700

For referencing, we report the hyper parameters found via cross-validation and approximation of running
time in Table 1V. Although the training time of TFF is high (e.g. 15 hours on Algebra) but in educational
environment where the models need not to be retrained continuously, this running time is not an issue.

Table IV. Hyper parameters and running time. is learning rate, is regularization term, K is the
number of latent factors, # iter is the number of iterations, and L is the history length.
Method Data set | Hyper parameters Train (min.) Test (sec.)
Matrix Factorization Algebra =0.005, #iter=120, K=16, =0.015 16.83 0.15
TFMAF Algebra =0.015, #iter=30, K=16, =0.015, L=8 108.84 9.17
TFF Algebra =0.001, #iter=60, K=16, =0.015, L=10 908.71 15.11
Matrix Factorization Bridge =0.01, #iter=80, K=64, =0.015 40.15 0.34
TFMAF Bridge =0.005, #iter=20, K=64, =0.015, L=10 629.07 51.06
TFF Bridge =0.0015, #iter=60, K=16, =0.005, L=5 466.01 6.61
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6. DISCUSSION AND CONCLUSION

Predicting student performance is an important task in educational data mining, where we can give the
students some early feedbacks to help them improving their study results. A good and reliable model which
accurately predicts the student performance may replace the current standardized tests, thus, reducing the
pressure on teaching and learning for examinations as well as saving a lot of time and e ort for both teachers
and students.

From educational point of view, the learner's knowledge improves and cumulates over time, thus, sequential
e ect is an important information for predicting student performance. We have proposed a novel approach
- tensor factorization forecasting - which incorporates the forecasting technique into the factorization model
to take into account the sequential e ect.

Indeed, factorization techniques outperform other state-of-the-art collaborative Itering techniques [Koren
2010]. They belong to the family of latent factor models which aim at mapping users (students) and items
(tasks) to a common latent space by representing them as vectors in that space. The performance of these
techniques are promising even we do not know the background knowledge of the domain (e.qg. the student/task
attributes). Moreover, we use just two or three features such as student ID, task ID and/or time, thus, the
memory consumption and the human e ort in pre-processing can be reduced signi cantly while the prediction
quality is reasonable. Experimental results have shown that a combination of factorization and forecasting
methods can perform nicely compared to previous works which only use factorization techniques.

Another advantage of this approach is that we can personalize the prediction for each student given the
task, and thus, besides predicting student performance, one could use the proposed methods to recommend
the tasks (exercises) to students when building a personalized learning system.

A simple forecasting technique, which is moving average, was incorporated into the factorization model.
However, applying more sophisticated forecasting techniques, e.g. Holt-Winter [Chat eld and Yar 1988;
Dunlavy et al. 2011], may produce better results.
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There is a growing number of courses delivered using e-learn ing environments and their online discussions play an impor tant
role in collaborative learning of students. Even in courses with a few number of students, there could be thousands of mes sages
generated in a few months within these forums. Manually eval uating the participation of students in such case is a signi  cant
challenge, considering the fact that current e-learning en vironments do not provide much information regarding the st  ructure of
interactions between students.There is a recent line of res earch on applying social network analysis (SNA) techniques to study
these interactions. And it is interesting to investigate th e practicability of SNA in evaluating participation of stud ents. Here we
propose to exploit SNA techniques, including community min  ing, in order to discover relevant structures in social netw orks we
generate from student communications but also information  networks we produce from the content of the exchanged messag es.
With visualization of these discovered relevant structures  and the automated identi cation of central and peripheral p  articipants,
an instructor is provided with better means to assess partic ipation in the online discussions. We implemented these new ideas
in a toolbox, named Meerkat-ED. Which prepares and visualize s overall snapshots of the participants in the discussion fo rums,
their interactions, and the leader/peripheral students. M oreover, it creates a hierarchical summarization of the dis cussed topics,
which gives the instructor a quick view of what is under discu ssion. We believe exploiting the mining abilities of this to  olbox
would facilitate fair evaluation of students' participati on in online courses.

1. INTRODUCTION

There is a growing number of courses delivered using e-learningngronments, especially in postsecondary
education, using computer-supported collaborative learning (CSCL) bols, such as Moodle ,WebCT and
Blackboard . Online asynchronous discussions in these environmenfgay an important role in collaborative
learning of students. It makes them actively engaged in sharing inforration and perspectives by interacting
with other students [Erlin et al. 2009]. There is a theoretical emphass in CSCL on the role of threaded
discussion forums for online learning activities. Even basic CSCL dols enable the development of these
threads where the learners could access text, revise it or reintpret it; which allow them to connect, build,
and re ne ideas, along with stimulating deeper re ection [Calvani et al. 2009]. There could be thousands of
messages generated in a few months within these forums, containing Igrdiscussion threads bearing many
interactions between students. Therefore the CSCL tools should mvide a means to help instructors for
evaluating participation of students and analyzing the structure of these interactions; which otherwise could
be very time consuming, if not impossible, for the instructors to bedone manually.

Up to now, current CSCL tools do not provide much information regarding the participation of students
and structure of interactions between them in discussion threadsln many cases, only some statistical infor-
mation is provided such as frequency of postings, which is not a usefmeasure for interaction activity [Erlin
et al. 2009]. This means that the instructors who are using these tools, @not have access to convenient in-
dicators that would allow them to evaluate the participation and interact ion in their classes [Willging 2005].
Instructors usually have to monitor the discussion threads manuallywhich is hard, time consuming, and
prone to human error. On the other hand, there exists a large body of remarch on studying the participa-
tion of students in such discussion threads using traditional reseah methods: content analysis, interviews,
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survey observations and questionnaires [de Laat et al. 2007]. These methotiy to detect the activities
that students are involved in while ignoring the relations between sudents. For example, content analysis
methods, as the most common traditional methods, provide deep inforration about speci ¢ participants.
However, they neglect the relationships between the participantsvhile their focus is on the content, not on
the structure [Willging 2005]. In order to fully understanding the p articipation of students, we need to under-
stand their patterns of interactions and answer questions like who isnvolved in each discussion, who is the
active/peripheral participant in a discussion thread [de Laat et al. 2007]. Numela et al. 1999 demonstrated
the practicality of social network analysis methods in CSCL, as a methd for obtaining information about
relations and fundamental structural patterns. Moreover, there is arecent line of work on applying social
network analysis techniques for evaluating the participation of studets in online courses like works done by
Sundararajan 2010, Calvani et al. 2009, de Laat et al. 2007, Willging 2005, Laghos and Zaphiris 2006, and
Erlin et al. 2009. The major challenges these works tried to tackle are: @racting social networks from asyn-
chronous discussion forums (might require content analysis), ndirg appropriate indicators for evaluating
participation (from education's point of view) and measuring these indcators using social network analysis.
As clari ed in the related works, Section 2, none of these works provids a complete or speci ¢ toolbox for
analyzing discussion threads. However, they attempted to address @nof these challenges to some extent.

Here, we elaborate on the importance of social network analysis for miningtuctural data in the eld of
computer science and its applicability to the domain of education. for nonitoring and evaluating participation
of students in online courses. We propose Meerkat-ED, a speci ¢ andrpactical toolbox for analyzing interac-
tions of students in asynchronous discussion forums of online coursddleerkat-ED analyzes the structure of
these interactions using social network analysis techniques inatling community mining. It prepares and visu-
alizes overall snapshots of participants in the discussion forums, #ir interactions, and the leader/peripheral
students in these discussions. Moreover, it analyzes the contewf the exchanged messages in this discussions
by building an information network of terms and using community minin g techniques to identify the topics
discussed. Meerkat-ED creates a hierarchical summarization of thesdiscussed topics in the forums, which
gives the instructor a quick view of what is under discussion in thee forums. It further illustrates how much
each student has participated in these topics, by showing his/her entrality in the discussions on that topic,
the number of posts, replies, and the portion of terms used by that stdent in the discussions. In the follow-
ing, we rst introduce some basic backgrounds of social network analysiand elaborate on its applications
in the context of on-line Education. We then present Meerkat-ED { our solution for social network analysis
of online courses in Section 3 and illustrate its practicability on our avn case study data in Section 4.

2. BACKGROUND AND RELATED WORKS

Social networks are formally de ned as a set of actors or network memberskom are tied by one or more type
of relations [Marin and Wellman 2010]. The actors are most commonly persons or orgarations, however,
they could be any entities such as web pages, countries, proteins, doments, etc. There could also be many
di erent types of relationships, to name a few, collaborations, frierdships, web links, citations, information
ow, etc. [Marin and Wellman 2010]. These relations represented by theedges in the network connecting
the actors and may have a direction (shows the ow from one actor to the oher) and a strength (shows how
much, how often, how important).

Unlike proponents of attribute based social sciences, social networlinalysts argue that causation is not
located in the individuals, but in the social structure [Marin and Wellman 2010]. Social network analysis
is the study of this structure. Rooted in sociology, nowadays, soeil network analysis has became an in-
terdisciplinary area of study, including researchers from anthroplogy, communications, computer science,
education, economics, criminology, management science, medicine, fiiglal science, and other disciplines
[Marin and Wellman 2010]. Social network analysis examines the structurend composition of ties in the
network to provides insights into: 1) understanding the central actors in the network (prestige); 2) detecting
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the individuals with the most outgoing connections (in uence), the most incoming connections (prominence),
and the least connections (outlier); 3) identifying the proportion of possible ties that actually exist (density);
4) tracking the actors that are involved in passing information through the network (path length); 5) nd-
ing the actors that are communicating more often with each other (communty), etc. The availability and
growth of large datasets of information networks makes community mining a ery challenging research topic
in social networks analysis. There has been a considerable amount of wodone to detect communities in
social networks [Palla et al. 2005], [Newman and Girvan 2004], [Chen et al. 2009], etc

2.1 Social Network Analysis of Asynchronous Discussions in @fliourses

In order to apply social network analysis techniques to assess parijgation of students in an e-learning

environment, we need to rst extract the social network from the e-learning course. Then we consider which
measures show an e ective participation, and nally report these measires in an appropriate way. Here, we
give an overview of the previous works related to each of these phases.

Extraction of Social Network. CSCL tools record log les
that contain the detailed actions that occurring within them.
Hence, log les include information about the activity of the
participants in the discussion forums [Nurmela et al. 1999].
de Laat et al. 2007, Willging 2005, Erlin et al. 2009 and Laghos
and Zaphiris 2006 used these log les to extract the social net-
work underneath of discussion threads. Laghos et al. stated
that they considered each message as directed to all partici-
pants in that discussion thread while others considered it as
only directed to the previous message. Gruzd and Haythornth-
waite 2008 and 2009, proposed an alternative and more com-
plicated way of extracting social networks, called named net-
work. They argue that using this common method (connecting
a poster to the previous poster in the thread) would result in
losing much of the connections. Their approach briey is: rst Fig. 1: This nanogram illustrates a comparison
using named entity recognition to nd the nodes of the net- ©Of participation of one group (blue lines) with
work, then counting the number of times that each name is t.he average partugpa_tlor_w of other groups (red
. . . . lines) using the nine indicators de ned by Cal-
mentioned in posts by others to obtain the ties, and nally ; .
L . . ; vani et al. 2009. Figure reproduced from [Cal-
weighting these ties by the amount of information exchanged . ot a1 2009].
in the posts. However, their nal reported results are not that
promising and even obtaining those results requires many man-
ual corrections during the process. Regarding what we should considas the participation in extracting the
social network, Hrastinski 2008 suggested that apart from writing, there areother indicators of participation
like accessing the e-learning environment, reading posts or the autity and quality of the writing. However,
all of these methods extracted networks just based on posts by studérwriting level).

Measuring the E ectiveness of Participation. Daradoumis et al. 2006 de ned high level weighted (showing
the importance) indicators to represent collaboration learning proces; task performance, group function-
ing, social support, and help services. They further divided thee indicators to skills and sub-skills, and
assigned every sub-skill to an action. For example, group functionings divided into: active participation
behavior, task processing, communication processing, etc. On the loér hand, communication processing is
itself divided into more sub-skills: clari cation, evaluation, il lustration, etc. and clari cation is then mapped
to the action of changing description of a document or url. In the educaion context, Calvani et al. 2009
de ned 9 indicators for measuring the e ectiveness of participation to compare di erent groups within a
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class; extent of participation (number of messages ), proposing attitud (number of messages with proposal
label), equal participation (variance of messages for users), extent ofote (portion of roles used), rhythm
(variance of daily messages per day), reciprocal reading (portion of meages that have been read), depth
(average response depth), reactivity to proposal (humber of direct aswers to messages with proposal label)
and conclusiveness (number of messages with conclusion label); allnsmarized in a nonagon graph which
shows the group interactions relatively to the mean behavior of all groug (Figure 1). However, for measuring
the e ectiveness of participation, most of the previous works simplyused general social network measures
(di erent centrality measures, betweenness, etc.), availablein one of the common general social network
analysis toolboxes. Sundararajan 2010, de Laat et al. 2007, Willging 2005, Erlin et al. 200%sed UCINET
[UCINET] and Laghos and Zaphiris 2006 used NetMiner [NetMiner].

3. SOCIAL NETWORK ANALYSIS FOR EDUCATION: MEERKAT-ED

In this section, we illustrate the practicability of social network analysis in evaluating participation of students
in online discussion threads. We present our speci ¢ social netwéranalysis toolbox, named Meerkat-ED, to
analyze online courses. Meerkat-ED is designed for assessing the peipation of students in asynchronous
discussion forums of online courses. It analyzes the structure of iatactions between students in these
discussions using social network analysis techniques. It explotommunity mining techniques in order to
discover relevant structures in social networks generated from sident communications and also information
networks produced from the content of the exchanged messages. With sialization of these discovered
relevant structures and the automated identi cation of central and peripheral participants, an instructor is
provided with better means to assess participation in the online décussions.

Meerkat-ED prepares and visualizes overall snapshots of participants the discussion forums, their inter-
actions, and the leader/peripheral students. It creates a hierarchial summarization of the topics discussed
in the forums using community mining, which gives the instructor a quick view of what is under discussion
in these forums. It further illustrates how much each student hasparticipated on these topics, by showing
his/her centrality in the discussions on that topic, the number of pogs, replies, and the portion of terms
used by that student in discussions on the topic. Meerkat-ED builds and analyzes two kinds of networks out
of the discussion forums:social network of the studentswhere links represent correspondence, andetwork
of the phrasesused in the discussions where links represent co-occurrence girases in the same sentence.
Interpreting the rst network shows the interaction structure of the students participated in the discussions.
Furthermore, centrality of students in this network corresponds to their leadership in the discussions. In-
terpreting terms network depicts the terms used in the discusion and the relations between these terms.
Finding the hierarchical communities in this network demonstrates the topics addressed in the discussions.
Choosing each of these topics outlines the students who participatein that topic and the extent of their
participation.

3.1 Interpreting Students Interaction Network

Interpreting the network of interaction between students helpsinstructors monitor the interaction structure

of students, and examine which students are the leaders in given disssions and who are the peripheral
students. Here, we rst describe how the network is extracted basd on the information from the discussion
threads. Then, we continue by bringing an analysis of leadership of thstudents based on their centrality in
this network. The student network shows the interaction between students in the discussion forums, where
the nodes represent students of the course and edges are the intetiac between these students (i.e. messages
exchanged). The edges are weighted by the number of messages passedvieen the two incident students.
This network could be built both directed or undirected (chosen by the instructor); in the directed model,
each message is considered connecting the author of the message to thehautof its parent message. The
leadership and in uence of students in the discussions could be copared by examining the centrality of
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nodes corresponding to them in the network; as the nodes' centrali measures their relative importance
within a network. Moreover, students could be ranked more explidly in a concentric centrality graph in
which the more central/powerful the node is, the closer it is to the center (Figure 4).

3.2 Interpreting Term Network

Interpreting the term network, depicts the terms used in the discussions and the relation between these
terms. Moreover, nding the hierarchical communities in this network, demonstrates the topics exchanged in
the discussions. Furthermore, choosing each of these topics would ttine the students who participated in
that topic and the extent of their participation. In the term network , nodes represent noun phrases occurring
in the discussions; and edges show the co-occurrence of these tsrim the same sentence. Each co-occurrence
edge contains the messages in which its incident terms occurred todper; and is weighted by the number
of sentences in which these terms co-occurred. For building tkinetwork, we need to rst extract the noun
phrases from the discussions, then build the network by setting e extracted phrases as nodes and checking
their co-occurrence in all the sentences of every message for creagithe edges.

We have used the OpenNlIp toolbox [OpenNlIp] for extracting noun phrass out of discussions. OpenNIp
is a set of natural language processing tools for performing sentence tdetion, tokenization, pos-tagging,
chunking, parsing, and etc. Using sentence detector in OpenNlIp, werst segmented the content of messages
to their consisting sentences. The tokenizer was used to break dm those sentences to words. Having the
tokenized words, we used the Part-Of-Speech tagger to determine #ir grammatical tags { whether they are
noun, verbs, adjective, etc. Then using the chunker, we groupedhtese words to the phrases, and we picked
the detected noun phrases, which are sequences of words surroungiat least one noun and functioning as
a single unit in the syntax. For obtaining better sets of terms to represent the content of the discussions,
pruning on the extracted noun phrases was necessary. We removed alié stopwords, and split the phrases
that have stop word(s) within into two di erent phrases. For exampl e the phrase "privacy and con dentiality"
is split into two terms: \privacy", and \con dentiality". To avoid hav  ing duplicates, the rst characters were
converted to lower case (if the other characters of the phrase are in¥eercase) and plurals to singular forms
(if the singular form appeared in the content). For instance \Patients" would be \patients" then \patient".

As nal modi cation, we removed all the noun phrases that just occurred once; which would prune most of
unwanted phrases.

The term Network could be further analyzed to group the terms co-occuring mostly together. These groups
represent the di erent topics discussed in the messages and coulik obtained by detecting the communities
in the term network. This idea is similar to work done in Chen et al. 2008. For creating the hierarchy of
the topics, we applied a community mining algorithm repeatedly to divide one of the current connected
components of the network, until the size of all components is smalleritan a threshold, or the division of
any of the components would result in a loose partitioning. We used FastMdularity [Clauset et al. 2004] as
the community detection algorithm, however it could be any other community mining approach. Based on
the detected term communities, the participation of students and tow wide their participation are could be
validated. In other words, students who participated in di erent t opics could be considered more active than
students that just talked about a smaller number of topics. This evalwation could be examined by selecting
each student and checking how many topics he/she participated in.

4. CASE STUDY

In this section, we validate the feasibility of Meerkat-ED and illustrate its practical application on our
own case study data. Here, Meerkat-ED is used for visualizing, monitorig and evaluating participation of
students in the discussion forums. The data set we have used is adiihed from a postsecondary course. The
course titled Electronic Health Record and Data Analysis, and was o ered h Winter 2010 at University of
Alberta. The permission to use the anonymized course data for researgburposes was obtained from all the
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students registered in the course, at the end of the semester so astrto bias the communications taking
place. This data is further anonymized by assigning fake names to stughts and replacing any occurrence of
rst, last or user name of the students in the data (including content of the messages in discussion forums)
with the assigned fake name. We also removed all email addresses frometldata.

In the chosen course, as is also usual in other courses, the instructmnitiated di erent discussion threads.
For each thread he posted a question or provided some information and asttestudents to discuss the issue.
Consequently students posted subsequent messages in the threagsponding to the original question or
to the response of other students. This course was o ered using Mode which is a widely-used course
management system. Moodle like other CSCL tools, enables interaain and collaborative construction of
content, mostly using its Forum tool which is a place for students toshare their ideas [Moodle]. Only using
Moodle, to evaluate student participation the instructor is limit ed to shallow means such as the number
of posts per thread and eventually the apparent size of messages. Thesinuctor would have to manually
monitor the content of each interaction to measure the extent of individual participation, which is hard, time
consuming and even unrealistic in large classes or forums with large vatue, where di erent participants can
be assigned to moderate di erent discussions and threads.

To assess participation, we build and analyze two kinds of networks fronthese information: the social
network of students and the network of the terms used by them. The istructor of the course denoted the
usefulness of the results of these analysis in evaluating the parijgation of students in the course. Like in
[Sundararajan 2010] where the authors noted that using SNA it was easy to ideify the workers and the
lurkers in the class, in this case study, the instructor reportedthat using Meerkat-ED it was easy to have an
overview of the whole participation and it was possible to identify in uential students in each thread as well
as identify quiet students or unvoiced opinions, something that wold have been impossible with the simple
statistics provided by Moodle. More importantly, focusing on the relationships in the graph one can identify
the real conduit for information rather than simply basing assessment ofpatrticipation on message size or
frequency of submissions. Learners who place centarly in the netwkras conduit for the information control
and can cause more knowledge exchange which is desirable in an online slaRegardless of the frequency of
messages, their size or content, if they do not have in uence, theiauthors remain marginal and sit on the
periphery of the network (See Figure 4). This role of conduit of informafon versus mariginal students can
change during the course of the semester or from one discussed threanlthe other. The systematic analysis
of centrality of participants per topic discussed provided by Meekat-ED allowed a better assessment of the
participation of learners at each discussion topic level.

4.1 Interpreting Students Interaction Network

As explained before, rst of all we have to extract the students network from the discussion thread. Figure 2
shows the visualized network of students in the course. The size dhe nodes corresponds to their degree
centrality in the network { the number of incident edges. This means that the bigger a node is, the more
messages the student represented by that node sent and receivetihe thickness of the edges in the net-
work represents the weight of interactions which is based on the numér of messages in the interaction of
communicating students. Choosing an edge would bring up a pop up winalv that shows these messages as
illustrated in Figure 3. The next step is to analysis the leadershipof the students based on their centrality in
this network. The nodes' centrality is depicted by the size of the nodes in the visualized network as illustrated
in Figure 2. Moreover, students could be ranked more explicitly in aconcentric centrality graph in which
the more central/powerful the node is, the closer it is to the center, as presented in Figure 4.

4.2 Interpreting Term Network

For this specic course, we extract the term network from the discussion forum. Figure 5 presents the
visualization of this term network, where the size of the nodes repgsents the frequency of their corresponding
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(a) Directed Network (b) Undirected Network

Fig. 2: Visualized Student Network: The left panel lists the  students in the course. The right panel shows the social netw ork of
interaction of students in the course. The size of nodes corr esponds to their centrality/leadership in the discussions . The width
of edges represents the weight of communication between inc ident nodes.

Fig. 3: Visualization of messages in an interaction: the int eraction window shows the messages passed between nodes inddent to
the selected edge: Chloe and Eric. Selecting each message flom the left panel would show its title, sender, receiver and ¢ ontent.

terms and the thickness of edges represents the weight of the co-agcences (i.e. the number of sentences
in which incident terms occurred together). Selecting an edge wdd show these messages as illustrated
in Figure 6. In this visualization the instructor would see a list of the discussion threads in the course
while selecting any set of those discussions/messages would bring the corresponding term network, along
with the list of terms occurring in them and the list of students t hat participated in these selected set of
discussions/messages. Selecting any of these terms would show thadents that used that term. Likewise,
selecting any of the students would outline the terms used by that tudent, as illustrated in Figure 5; which
is highlighting the terms discussed by the student named ChloeThe di erence between the number of
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Fig. 4: Comparing centrality of students: the students clos er to the center are more central in the student network, i.e. , have
participated more in the discussions of the course. Likewis e, the further from the center, the less the student was activ e; here
James is the least active student in the discussions and is pl aced on the outer circle.

Fig. 5: Visualized Term Network: The left panel lists the dis  cussion threads in the course. The middle panel shows the net work
of terms in the selected set of discussions. The upper right p anel shows list of students participated in the selected dis cussions,
along with some statistics about their participation such a s number of posts, replies, etc. The bottom right panel shows the
terms used in these discussions. Selecting each student, would outline the terms used by that student.

terms discussed by the students could help the instructor to corpare the participations of the students:
students who discuss more terms participate more as well. In ordera further analyzed the term Network,
as explained before, we group the terms co-occurring mostly togetheFigure 7a shows the detected topics
(term communities) in the network given in Figure 5. The green nodesshow the representative nodes of
communities. Each representative node, contains 10 most central tems of the terms in the community it
represents. The size of the representative nodes corresponds tfee number of terms in their communities;
while the size of the leaf nodes, terms, is related to their fregency, same as the term network. Similar to
the term network, here also one could select a set of terms, usuallyithin a topic, to see who participated
in a discussion with that topic and to what extent, as illustrated in Figure 7b.
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Fig. 6: Co-occurrence of terms: selecting a co-occurrence edge would bring up a pop op window that shows the messages thes e
incident terms co-occurred together in, highlighting the ¢ orresponding terms in the content.

(a) Term communities (Topics) (b) Term communities (Topics), zoomed

Fig. 7: Term communities (Topics): The gray circles outline  the communities boundaries and the green nodes represent th e
community representatives. Each community representativ. e is accompanied with its top 10 phrases in its community. The se
could be seen in the tooltip in the gure. Selecting each topi ¢, would outline the students who participated in a discussi on
with the topic, and the terms in that topic. Here, the topic is roughly about "patient, disclosure, con dentiality and so  ciety".

Moreover, students who participated in this topic and their ~ contribution could be seen in the upper right panel.

5. CONCLUSIONS

In this paper we elaborated the importance of social network analysis for mming structural data and its
applicability in the domain of education. we introduced social netwok analysis and community mining for
studying the structure in relational data. We illustrated the place and need for social network analysis in
study of the interaction of users in e-learning environments; thensummarized some recent studies in this
area. We also proposed Meerkat-ED, a speci c and practical toolbox for anaizing students interactions in
asynchronous discussion forums. Our toolbox prepares and visualizeserall snapshots of participants in the
discussion forums, their interactions, and the leaders/peripheraktudents. Moreover, it creates a hierarchical
summarization of the discussed topics, which gives the instructor auick view of what is under discussion.



30

Reihaneh Rabbany Khorasgani, Mansoureh Taka oli and Osmar Za ane

It further illustrates individual student participation in thes e topics, measured by their centrality in the
discussions on that topic, their number of posts, replies, and the pdion of terms used by them. We believe
exploiting the mining abilities of this toolbox would facilitate fai r evaluation of students' participation in
online courses.
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A Machine Learning Approach for Automatic Student Model
Discovery

Nan Li and Noboru Matsuda and William W. Cohen and Kenneth R. Koedinger, Carnegie Mellon
University

Student modeling is one of the key factors that a ects automa ted tutoring systems in making instructional decisions. A's tudent
model is a model to predict the probability of a student makin g errors on given problems. A good student model that matches
with student behavior patterns often provides useful infor mation on learning task di culty and transfer of learning be tween
related problems, and thus often yields better instruction . Manual construction of such models usually requires subst antial
human e ort, and may still miss distinctions in contentand | earning that have important instructional implications. | n this paper,
we propose an approach that automatically discovers studen t models using a state-of-art machine learning agent, SimSt udent.
We show that the discovered model is of higher quality than hu man-generated models, and demonstrate how the discovered
model can be used to improve a tutoring system's instruction  strategy.

1. INTRODUCTION

A student model is a set ofknowledge components (KCkencoded in intelligent tutors to model how students
solve problems. The set of KCs includes the component skills, conpts, or percepts that a student must
acquire to be successful on the target tasks. For example, a KC in algearcan be how students should proceed
given problems of the formNv=N (e.g. 3x = 6). It provides important information to automated tutoring
systems in making instructional decisions. Better student modés match with real student behavior. They
are capable of predicting task di culty and transfer of learning betwe en related problems, and often yield
better instruction. Traditional ways to construct student model s include structured interviews, think-aloud
protocols, rational analysis, and so on. However, these methods are ofteéime-consuming, and require expert
input. More importantly, they are highly subjective. Previous stu dies [Koedinger and Nathan 2004; Koedinger
and McLaughlin 2010] have shown that human engineering of these models oftegnores distinctions in
content and learning that have important instructional implications. Other methods such as Learning Factor
Analysis (LFA) [Cen et al. 2006] apply an automated search technique to discar student models. It has
been shown that these automated methods are able to nd better studet models than human-generated
ones. Nevertheless, one key limitation of LFA is that it carries out the garch process only within the space
of human-provided factors. If a better model exists but requiresunknown factors, LFA will not nd it.

To address this issue, we propose a method that automatically discove student models not depending on
human-provided factors. The system uses a state-of-art machine leaing agent, SimStudent [Matsuda et al.
2009], to acquire skill knowledge. Each skill corresponds to a KC that stdents need to learn. The model then
labels each observation of a real student based on skill application. We aeluated the approach in algebra
using real student data. Experiment results show that the discoered model ts with real student data better
than human-generated models, and provides useful insights in ndig better instructional methods.

In the following sections, we begin with a review of SimStudent. Ngt, we report experiment results that
demonstrate the bene ts of the SimStudent model over the human-geerated model. After this, we discuss
the possible improvements that can be made to a tutoring system sugged by the SimStudent model. In
closing, we discuss related work as well as future directions for thigork.

Author's address: Nan Li; email: nlil@cs.cmu.edu; Nobour M atsuda; email: Noboru.Matsuda@cs.cmu.edu; William W. Cohen
email: weohen@cs.cmu.edu; Kenneth R. Koedinger; email: ko edinger@cmu.edu; 5000 Forbes Ave, Pittsburgh, PA 15232
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2. A REVIEW OF SIMSTUDENT

SimStudent is an intelligent agent that inductively learns skills to solve problems from demonstrated solu-
tions and from problem solving experience. It is a realization of programring by demonstration [Lau and
Weld 1998] and employs inductive logic programming [Muggleton and de Raedt 1994] ame of its learning
mechanisms. For more details about SimStudent, please refer to Matsla et al. [2009].

2.1 Input

SimStudent is given a set offeature predicate symbolsaaind a set ofoperator symbolsas prior knowledge before
learning. Each predicate is a boolean function that describes relaticmamong objects in the domain (e.g(has-
coe cient -3x) ). Operators specify basic manipulations (e.g(add 1 2), (coe cient -3x) ) that SimStudent
can apply to objects in the problem solving interface, like numbersor character strings. Operators are
divided into two groups, domain-independent operators and domain-sp& ¢ operators. Domain-independent
operators (e.g.(add 1 2)) are basic manipulations that are applicable across multiple domains. Readtudents
usually have knowledge of these simple skills prior to class. Domaigpeci ¢ operators (e.g. (add-term 5x-
5 5), (coe cient -3x) ), on the other hand, are more complicated manipulations that are associatedvith
only one domain. From a learner modeling perspective, beginning stients may not know domain-speci c
operators and thus providing such operators to SimStudent may prodce learning behavior that is distinctly
di erent from human students [Matsuda et al. 2009]. Operators in SimStulent (whether domain-independent
or domain-speci ¢) have no explicit encoding of preconditions and ects. This matches the intuition that
human students often \know how" without \knowing when".

During the learning process, given the current state of the problen (e.g., -3x = 6), SimStudent rst tries
to nd an appropriate production rule (skill knowledge acquired by SimStudent) that proposes a plan for
the next step (e.g. (coe cient -3x ?coef) (divide ?coef)). If it nds one, it executes the plan, performs an
action in the system interface, and waits for feedback from the human usr/author/tutor. If the user provides
positive feedback, SimStudent continues to the next step. If not SimStudent records this negative feedback
and may try again. If SimStudent does not nd a production rule that generates a correct action, it requests
a demonstration of the next step, which the user performs in the inerface. SimStudent uses any negative
feedback to modify existing productions. It uses the next-stp demonstration, if provided, to learn a new
production rule.

In the experiments we describe here, the user/author/tutor role issimulated by a hand-engineered algebra
tutor [Koedinger et al. 1995], which provides SimStudent with feedlack and next-step demonstrations as
needed via an API. For each demonstrated step, the user/tutor speci & a tuple of hselection, action, inputi
(SAI tuple) for a skill. SimStudent is given a skill label (e.g. \divide") generated by the cognitive tutor,
which corresponds to the type of skill applied. \Selection" in the SAl tuple (e.g. -3x and 6 for -3x = 6) is
associated with elements in the graphical user interfaces (GUI). Itshows where a \focus of attention" is
|that is, where to look for relevant information. \Action" (e.g. entering  some text) indicates what action
to take with the \input" (e.g. (divide -3) for problem -3x = 6). In this example, the full plan might be to
rst retrieve coe cient and then to divide by it (e.g. (coe cient -3x ?coef) (divide ?coef) ), but the tutor
only demonstrates the nal action (e.g., (divide -3)) to SimStudent. Taken together, the given information
forms one record indexed by the skill label,R=Habel, hselection, action, inputii (e.g. R=hdivide, h(-3X, 6),
input text, (divide -3)ii ). In learning, SimStudent acquires one production rule for each skillabel, based on
the set of associated records gathered at that point.

2.2 Production Rules

The output of the learning agent is represented as production rulesEach production rule corresponds to
one knowledge component. The left side of Figure 1 shows an example of aoguction rule learned by
SimStudent. A production rule indicates \when" (precondition) t o apply a rule to what information found

\where" (focus of attention (FoA)) in the interface and \how" (operator se quence) the problem state should
be changed. For example, the rule shown in the left side of Figure 1 wadd be read as \given a left-hand side
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Original: Extended:
Skill divide (e.g. -3x = 6) Skill divide (e.g. -3x = 6)
FoAs: FoAs:
Left side (-3x) Left side ( -3, -3x)
Right side (6) it

Precondition: Pr

Left side (-3x) doesemhot
have constant term'm

Left side (-3x) does not
have constant term

Operator sequence: Operator sequence:
Get coefficient (-3) of left'~* * Getcoefficient{-3)-of ——eft
side (-3x) side{-3x)—
Divide both sides with the Divide both sides with the
coefficient (-3) coefficient ( -3)

Fig. 1. Original and extended production rules for divide in  a readable format.

(i.e. -3x) and a right-hand side (i.e. 6) of the equation, when the left-hand side does not have a constant
term, then get the coe cient of the term on the left-hand side and divide both sides by the coe cient." The
focus of attention of the production represents paths through the taskspeci ¢ GUI interface that retrieve
the items needed by the operator sequence. The precondition of a pdaction rule includes a set of feature
tests, representing preconditions for applying the rule. The opeator sequence speci es a plan to execute.

2.3 Learning Mechanism

SimStudent uses three di erent learning components for the thre parts of the production rules. The rst
component (the \where learner") learns how to focus attention on the rdevant aspects of the interface by
generalizing paths from the element for the interface as a whole to thepeci ¢ elements of the interface that
have the information needed to execute the operator sequence. Thdeenents in the GUI are organized in a
tree structure. In the algebra domain, the root node is a table node hat links to columns, and each column
has multiple cells as children. The \where learner's" task is to nd the right paths in the tree to reach the
nodes in the focus-of-attention (e.g.Cell 11 and Cell 21). A FoA (e.g. Cell 21) can be reached either 1) by
the path to its exact position (e.g. Cell 21) in the tree, 2) by a generalized path (e.g.Cell 22, Cell ??) to its
position. Therefore, given a set of FoAs from positive records, for eachgsition, the \where learner" searches
for one least general path that covers all of the FoAs at that position.

The second part of the learning mechanism is a precondition learner (te \when learner", which acquires
the precondition of the production rule using the given feature pralicates. The precondition learner utilizes
FOIL [Quinlan 1990], an inductive logic programming system that learns Hornclauses from both positive
and negative examples expressed as relations. For each rule, the prediion learner creates a new predicate
that corresponds to the precondition of the rule, and sets it as the targerelation for FOIL to learn. The
arguments of the new predicate are associated with the FoAs. Each trainig record serves as either a positive
or a negative example for FOIL. For example,(precondition-divide -3x 6) is a positive example for the new
predicate (precondition-divide ?FoA; ?FoA;). The precondition learner also computes the truthfulness of all
predicates bound with all possible permutations of FOA values, and serglit as input to FOIL. Given these
inputs, FOIL will acquire a set of clauses formed by feature prediates describing the precondition predicate.

The last component is the operator sequence learner (the \how learner’)For each positive record,R;,
the learner takes the FOAs, FOAs;, as the initial state, and sets the step,step, as the goal state. We say
an operator sequence explains a FoAs-step paihFoAs;, stepi, if the system takesFoAs; as an initial state
and vyields step; after applying the operators. For example, with the FoAs-step pair in the example,h(-3x,
6), (divide -3)i, the operator sequencécoe cient -3x ?coef) (divide ?coef) is a possible explanation for this
pair. The learner searches for the shortest operator sequence that ebgins all of the HFoAs, step pairs using
iterative-deepening depth- rst search.
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Fig. 2. Correct and incorrect parse trees for ! 3x.

Last, although SimStudent tries to learn one rule for each label, it might fail to do so (e.g., when no
operator sequence can explain all records). In that case, SimStudentérns a disjunctive rule just for the last
record. This e ectively splits the records into two clusters. Later, for each new record, SimStudent tries to
acquire a rule for each of the clusters with the new record, and stops kenever it successfully learns a rule
with one of the clusters, or creates another new cluster.

2.4 Extending SimStudent to Learn Deep Features

Previous study [Chi et al. 1981] has shown that one of the key di erences étween experts and novices is
that experts view the world in terms of deep features, whereas noees only see shallow features. Recently,
we have extended SimStudent to support acquisition of deep feat@s using Li et al. [2010]'s algorithm.
They model deep feature learning as a grammar induction problem. In te algebra domain, expressions are
modeled with a probabilistic context free grammar (PCFG), and the deep features (e.g., \coe cient") are
intermediate symbols in the grammar rules. Moreover, Li et al. [2010] shoed that student errors can be
modeled as incorrect parsing, as shown at the right side of Figure 2. Li et a[2010]'s deep feature learner
extends an earlier PCFG learner [Li et al. 2009] to support feature learnig and transfer learning.

The input of the system is a set of observation-feature pairs such als-3x, -3i. The output is a PCFG with
a designated intermediate symbol in one of the rules set as the target &ure. The learning process contains
two steps. The system rst acquires the grammar using Li et al. [2009]'s ajorithm. After that, the feature
learner tries to identify an intermediate symbol in one of the rulesas the target feature. To do this, the system
builds parse trees for all of the observation sequences, and picks thetermediate symbol that corresponds
to the most training records as the deep feature. To model transferdarning, Li et al. [2010] further extend
the feature learner to acquire PCFGs based on previously acquired lowledge. When the learner is given a
new learning task, it rst uses the known grammar to build parse trees for each new record in a bottom-up
fashion, and stops when there is no rule that could further merge two prse trees into a single tree. The
learner then switches to the original learner and acquires new grammarules as needed. Having acquired
the grammar for deep features, when a new problem is given to the systg the learner will extract the deep
feature by rst building the parse tree of the problem based on the acgired grammar, and then extracting
the subsequence associated with the feature symbol from the parseee as the target feature. However, this
model is only capable of learning and extracting deep features withoutising them to solve problems.

As we have mentioned above, SimStudent is able to acquire producain rules in solving complicated
problems, but requires a set of operators given as prior knowledge. Sonw the operators are domain-
speci ¢, and require expert knowledge to build them. On the othe hand, the feature learner acquires the
deep features that are essential for e ective learning, but is limied to information extraction tasks. In order
to both reduce the amount of prior knowledge engineering needed for BiStudent and to extend the deep
feature learner's capability, we integrated the deep feature learneinto SimStudent.

Extending Perceptual Learning. Previously, the FoAs encoded in production rules are always associ-
ated with paths to elements in the GUI (such as cells in the algebra eample). Intuitively, the deep features
discussed above represent perceptual information{however, it islomain-speci c, learned perceptual infor-
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mation. To exploit this information, we extend the perceptual hierarchy for the GUI to further include the
most probable parse trees from the learned PCFG in the contents of theelaf nodes. We implement this by
appending the parse trees to their associated leaf nodes, markindné appended nodes as type \subcell". In
the algebra example, this extension means that cells representinglgebraic expressions (e.g., those corre-
sponding to left-hand sides or right-hand sides of the equation) are tiked to parse trees for these expressions.
Using -3x as an example, the extended hierarchy includes the parse tree feBx as shown on the left side of
Figure 2 as a subtree connected to the cell node associated witBx. With this extension, the coe cient ( -3)
of -3x is now explicitly represented in the percept hierarchy. Hencef the extended SimStudent includes this
subcell as a FoA in production rules, as shown at the right side of Figue 1, the production rule would no
longer need the domain-speci c engineered operator \coe cient".

However, extending the percept hierarchy presents challengestthe original \where learner”. First of all,
since the extended subcells are not associated with GUI elementsye can no longer depend on the tutor
to specify FoAs for SimStudent. Nor can we simply put all of the subcel in the parse trees as FoAs: if we
did, the acquired production rules would contain redundant information that might hurt the generalization
capability of the \where learner". For example, for problem -3x=6, among all inserted subcells, only-3 is
a relevant FoA in solving the problem. Second, the paths to the releant FOAs are typically more diverse:
for example, for problems-3x=6 and 4x=8, the original where learner would not be able to nd one set of
generalized paths that explain both training examples, since-3x has eight nodes in its parse tree, whiledx
has only ve. To address these challenges, we extend the original \wherlearner" to support acquisition of
FoAs with redundant and non- xed length FoA lists.

To do this, SimStudent rst includes all of the inserted subcels as candidate FoAs, and calls the operator
sequence learner to nd a plan that explains all of the training exampks. The \where learner" then removes
all of the subcells that are not used by the operator sequence from the caidate FoA list. Since all of the
training records share the same operator sequence, the number of FoAsmained for each record should
be the same. Next, the \where learner" arranges the remained subcelldAs based on their orderings of
being used by the operator sequences. After this process, the \whe learner" now has a set of FoA lists
that contains xed number of FoAs ordered in the same fashion. We can then witch to the original \where
learner” to nd the least general paths for the updated FoA lists. In our example for skill \divide", as shown
at the right side of Figure 1, the FoAs of the production rule would contain three elements, the left-hand side
and right-hand side cells which are the same as the original rule, and a eccient subcell which corresponds
to the left child of the variable term. Note that since we removed the redundant subcells, the acquired
production rule now works with both -3x=6 and 4x=8.

Extending Precondition Acquisition. In addition to extending the feature learner, we also extend the
vocabulary of feature symbols provided to the precondition learnerAs implied by its name, the deep feature
learner acquires information that reveal essential features of the pralem state. It is natural to think that
these deep features could also be used in describing desiredusitions to re a production rule. Therefore, we
construct a set ofgrammar featuresthat are associated with the acquired PCFG. The set of new predicates
describe positions of a subcell in the parse tree. For example, weeaate a new predicate called \is-left-child-
of", which should be true for (is-left-child-of -3 -3x) based on the parse tree shown in the left side of Figure 2.
Importantly, these new predicates are not domain-speci ¢ (although they are specic to the PCFG-based
approach to deep feature learning). All of the grammar feature predicates & then included in the set of
existing feature predicates for the precondition learner to use lagr.

3. EXPERIMENT STUDY
3.1 Method

In order to evaluate the e ectiveness of the proposed approach, we caed out a study using an algebra
dataset. We compared the SimStudent model with a human-generated KGnodel by rst coding the real
student steps using the two models, and then testing how welltie two model codings t with real student
data.
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For the human-generated model, the real student steps were rst cded using the \action" label associated
with a correct step transaction, where an action corresponds to a mathematical operation(s) to transform
an equation into another. As a result, there were nine KCs de ned (cdled the Action KC model) { add,
subtract, multiply, divide, distribute, clt (combine like te rms), mt (simplify multiplication), and rf (reduce a
fraction). Four KCs associated with the basic arithmetic operations (i.e., add, subtract, multiply, and divide)
were then further split into two KCs for each, namely a skill to identify an appropriate basic operator and a
skill to actually execute the basic operator. The former is called a tansformation skill whereas the latter is a
typein skill. As a consequence, there were 12 KCs de ned (calleche Action-Typein KC model). Not all steps
in the algebra dataset can be coded with these KC models { some stepseambout a transformation that we
do not include in the Action KC model (e.g., simplify division). Th ere were 9487 steps that can be coded
by both KC models mentioned above. The \default" KC model, which were de ned by the productions
implemented for the cognitive tutor, has only 6809 steps that can be codedTo make a fair comparison
between the \default" and \Action- Typein" KC models, we took the int ersection of those 9487 and 6809
steps. As a result, there were 6507 steps that can be coded by both theefhult and the Action-Typein KC
models. We then de ned a new KC model, called the Balanced-Actionfypein KC model that has the same
set of KCs as the Action-Typein model but is only associated with thee 6507 steps, and used this KC model
to compare with the SimStudent model.

To generate the SimStudent model, SimStudent was tutored on how tsolve linear equations by interacting
with a Carnegie Learning Algebra | Tutor like a human student. We sele¢ed 40 problems that were used to
teach real students as the training set for SimStudent. Given all of he acquired production rules, for each
step a real student performed, we assigned the applicable produah rule as the KC associated with that
step. In cases where there was no applicable production rule, we ded the step using the human-generated
KC model (Balanced-Action-Typein). Each time a student encounters a step using some KC is considered
as an \opportunity" for that student to show mastery of that KC.

Having nished coding real student steps with both models (the SmStudent model and the human-
generated model), we used the Additive Factor Model (AFM) [Cen et al.2006] to validate the coded steps.
AFM is an instance of logistic regression that models student successsing each student, each KC, and the
KC by opportunity interaction as independent variables,

’ X X
Pi _ 4 kQij + kQxj ( kNik) @

In
1t p k k

Where:

i. represents a student i.
j. represents a step j.
k. represents a skill or KC k.
pi . is the probability that student i would be correct on step j.
i. Is the coe cient for pro ciency of student i.
k. is coe cient for di culty of the skill or KC k
Qy; - is the Q-matrix cell for step j using skill k.
k. is the coe cient for the learning rate of skill k;
Nik . is the number of practice opportunities student i has had on the skillk;
We utilized DataShop [Koedinger et al. 2010], a large repository that containsdatasets from various
educational domains as well as a set of associated visualization and analysisals, to facilitate the pro-

cess of evaluation, which includes generating learning curve visuahtion, AFM parameter estimation, and
evaluation statistics including AIC (Akaike Information Criterion) and cross validation.
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Fig. 3. Dierent parse trees for -3x and -x.

3.2 Dataset

We analyzed data from 71 students who used an Carnegie Learning Algebra | Tar unit on equation

solving. The students were typical students at a vocational-techntal school in a rural/suburban area outside
of Pittsburgh, PA. The problems varied in complexity, for example, from simpler problems like3x=6 to harder

problems like x/-5+7=2 . A total of 19,683 transactions between the students and the Algebra Tutor wee
recorded, where each transaction represents an attempt or inquiry mael by the student, and the feedback
given by the tutor.

3.3 Measurements

To test whether the generated model ts with real student data, we used AIC and a 3-fold cross validation.
AIC measures the t to student data while penalizing over- tting. We did not use BIC (Bayesian Information
Criterion) as the t metric, because based on past analysis across multile DataShop datasets, it has been
shown that AIC is a better predictor of cross validation than BIC is. The cross validation was performed over
three folds with the constraint that each of the three training sets must have data points for each student
and KC. We also report the root mean-squared error (RMSE) averaged ovethree test sets.

3.4 Experiment Result and Implications on Instructional Demisi

The SimStudent model contains 21 KCs. Both the AIC (6448) and the cross vatiation RMSE (0.3997)
are lower than the human-generated model (AIC 6529 and cross validation 0.4034).His indicates that the
SimStudent model better ts with real student data without over - tting.

In order to understand whether the dierences are signi cant or not, we carried out two signi cance
tests. The rst signi cance test evaluates whether the SimStudent model is actually able to make better
predictions than the human-generated model. During the cross validtion process, each student step was
used once as the test problem. We took the predicated error rates gersed by the two KC models for
each step during testing. Then, we compared the KC models' preditons with the real student error rate
(0 if the student was correct at the rst attempt, and 1 otherwise). Af ter removing ties, among all 6494
student steps, the SimStudent model made a better prediction han the human-generated KC model in
4260 steps. A sign test on this shows that the SimStudent model is sigeantly ( p < 0:001) better in
predicting real student behavior than the human-generated model.In the second test, due to the random
nature of the folding process in cross validation, we evaluated whethrethe lower RMSE achieved by the
SimStudent model was consistent or by chance. To do this, we repeatl the cross validation 20 times, and
calculated the RMSE for both models. Across the 20 runs, the SimStude model consistently outperformed
the human-generated model. Thus, a paired t-test shows the Sim8tent model is signi cantly (p < 0:001)
better than the human-generated model. Also note that di erences béween competitors in the KDD Cup
2010 (https://pslcdatashop.web.cmu.edu/KDDCup/Leaderboard) have also been in this range of thousands
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Fig. 4. Error rates for real students and predicted error rat es from two student models.

in RMSE. Therefore, we conclude that the SimStudent model is a bier student model than the human-
generated KC model.

We can inspect the data more closely to get a better qualitative undestanding of why the SimStudent
model is better and what implications there might be for improved instruction. Among the 21 KCs learned
by the SimStudent model, there were 17 transformation KCs and four typein KCs. It is hard to map the
SimStudent KC model directly to the expert model. Approximately speaking, the distribute, clt, mt, rf KCs
as well as the four typein KCs are similar to the KCs de ned in the expert model. The transformation skills
associated with the basic arithmetic operators (i.e. add, subtract, nultiply and divide) are further split into
ner grain sizes based on di erent problem forms.

One example of such split is that SimStudent created two KCs for divsion. The rst KC (simSt-divide)
corresponds to problems of the formAx=B , where both A and B are signed numbers, whereas the second
KC (simSt-divide-1) is speci cally associated with problems of the form -x=A , where A is a signed number.
This is caused by the di erent parse trees forAx vs -x as shown in Figure 3. To solveAx=B , SimStudent
simply needs to divide both sides with the signed numberA. On the other hand, since-x does not have-1
represented explicitly in the parse tree, SimStudent needsd see-x as -1x, and then to extract -1 as the
coe cient. If SimStudent is a good model of human learning, we expet the same to be true for human
students. That is, real students should have greater di culty in m aking the correct move on steps like-x =
6 than on steps like-3x = 6 because of the need to convert (perhaps just mentally}x to -1x. To evaluate
this hypothesis, we computed the average error rates for a relevant s@f problem types { these are shown
with the solid line in Figure 4 with the problem types de ned in for ms like -Nv=N, where the Ns are any
integrate number and the v is a variable (e.g.,-3x=6 is an instance of-Nv=N and -6=-x is an instance of
-N=-v). We also calculated the mean of the predicted error rates for each probm type for both the human-
generated model and the SimStudent model. Consistent with the hgothesis, as shown in Figure 4, we see
that problems of the form Ax=B (average error rate 0.283) are much simpler than problems of the form
-x=A (average error rate 0.719). The human-generated model predicts all prolfe types with similar error
rates (average predicted error rate forAx=B 0.302, average predicted error rate forx=A 0.334), and thus
fails to capture the di culty di erence between the two problem types (Ax=B and -x=A). The SimStudent
model, on the other hand, ts with the real student error rates much better. It predicts higher error rates
(0.633 on average) for problems of the formx=A than problems of the form Ax=B (0.291 on average).

SimStudent's split of the original division KC into two KCs, simSt -divide and simSt-divide-1, suggests
that the tutor should teach real students to solve two types of division problems separately. In other words,
when tutoring students with division problems, we should include two subsets of problems, one subset
corresponding to simSt-divide problems Ax=B ), and one speci cally for simSt-divide-1 problems ¢(x=A).
We should perhaps also include explicit instruction that highlights for students that -x is the same as-1x.
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4. RELATED WORK

The objective of this paper is using a machine learning agent, SimStient, to automatically construct student
models. There has been considerable work on comparing the quality of &tnative cognitive models. LFA
automatically discovers student models, but is limited to the spce of the human-provided factors. Other
works such as [Pavlik et al. 2009; Villano 1992] are less dependent on human lalgj, but may su er from
challenges in interpreting the results. In contrast, the SimStwlent approach has the bene t that the acquired
production rules have a precise and usually straightforward interpetation. Ba es and Mooney [1996] applies
theory re nement to the problem of modeling incorrect student behavior. Other systems [Tatsuoka 1983;
Barnes 2005] use Q-matrix to nd knowledge structure from student reponse data. None of the above
approaches use simulated students to construct cognitive models.

Other research on creating simulated students [Vanlehn et al. 1994; Chaand Chou 1997; Pentti Hietala
1998] also share some resemblance to our work. VanLehn [1990] created a learnsygtem and evaluated
whether it was able to learn procedural \bugs" like real students. Biswas et al. [2005]'s system learns causal
relations from a conceptual map created by students. None of the above appaches compared the system
with learning curve data. To the best of our knowledge, our work is the rst combination of the two whereby
we use cognitive model evaluation techniques to assess the quality afsimulated learner.

5. CONCLUSION AND FUTURE WORK

In this paper, we introduced an innovative application of a machine-earning agent, SimStudent, for an
automatic discovery of student models. An empirical study showed hat a SimStudent generated student
model was a better predictor of real students learning performancehtan a human-coded student model. The
basic idea is to have SimStudent learn to solve the same problems @b human students did and use the
productions that SimStudent generated as knowledge components to dify problem-solving steps. We then
used these KC coded steps to validate the models prediction. Urke the human-engineered student model,
the SimStudent generated student model has a clear connection beeen the features of the domain contents
and knowledge components. An advantage of the SimStudent approach of studemodeling over previous
techniques like LFA is that it does not depend heavily on the humanengineered features. SimStudent can
automatically discover a need to split a purported KC or skill into more than one skill. During SimStudents
learning, a failure of generalization for a particular KC results in learning disjunctive rules. Discovering such
disjuncts is equivalent to splitting a KC in LFA, however, whereas human needs to provide potential factors
to LFA as the basis for a possible split, SimStudent can learn such facatrs. The use of the perceptual learning
component, implemented using a probabilistic context-free grammaiearner, is a key feature of SimStudent
for these purposes as we hypothesized that a major part of human expest, even in academic domains like
algebra, is such perceptual learning.

Our evaluation demonstrated that representing the rules SimStudet learns in the student model improves
the accuracy of model prediction, and showed how the SimStudent niel could provide important instruc-
tional implications. Much of human expertise is only tacitly known. For instance, we know the grammar of
our rst language but do not know what we know. Similarly, most algebra experts have no explicit aware-
ness of subtle transformations they have acquired like the one aboveséeing-x as -1x). Even though such
instructional designers may be experts in a domain they have thus &ve some blind spots regarding subtle
perceptual di erences like this one, which may make a real di erace for novice learners. A machine learning
agent, like SimStudent, can help get past such blind spots by revealg challenges in the learning process
that experts may not be aware of.

The current study used a single dataset in a single domain. The generi& and validity of the proposed
student-modeling technique could be extended by training SirStudent with one dataset and applying a
discovered KC model to another dataset. For instance, the experim& dataset was from one high school.
An interesting future study would be to examine data from other schwls or grade levels, and evaluate
the generality of the proposal technique. We should also apply this apprach in other domains such as
stoichiometry, fraction addition and so on. The Pittsburgh of Science ofLearning Centers DataShop contains
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over 200 datasets in algebra and other domains that could be used for such cedataset or cross-domain
validation.
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Conditions for e ectively deriving a Q-Matrix from data with
Non-negative Matrix Factorization

MICHEL C. DESMARAIS, Polytechnique Monteal

The process of deciding which skills are involved in a given task is tedious and challenging. Means to automate it are highly desir-
able, even if only partial automation that provides supportive tools can be achieved. A recent technique based on Non-negative
Matrix Factorization (NMF) was shown to o er valuable results, especially due to the fact that the resulting factorization allows

a straightforward interpretation in terms of a Q-matrix. We investigate the factors and assumptions under which NMF can

e ectively derive the underlying high level skills behind assessment results. We demonstrate the use of di erent techniques to
analyse and interpret the output of NMF. We propose a simple model to generate simulated data and to provide lower and
upper bounds for quantifying skill e ect. Using the simulated data, we show that, under the assumption of independent skills,
the NMF technique is highly e ective in deriving the Q-matrix. However, the NMF performance degrades under di erent ratios

of variance between subject performance, item di culty, and skill mastery. The results corroborates conclusions from previous
work in that high level skills, corresponding to general topics like World History and Biology, seem to have no substantial e ect
on test performance, whereas other topics like Mathematics and French do. The analysis and visualization techniques of the
NMF output, along with the simulation approach presented in this paper, should be useful for future investigations using NMF
for Q-matrix induction from data.

1. INTRODUCTION

The construction of a Q-matrix from data is a highly desirable goal for tutoring systems. Not only would it
waive the expertise and labour intensive task of assigning which skills are involved in which task, but it would
also o er a more objective and replicable means of getting the correct skill-to-task mapping. Furthermore, it
might also allow a more e ective means to build Q-matrices, as machine learning methods often outperform
humans over a range of complex tasks.

However, the success in achieving this goal remains limited. Nowadays, we nd no reliable method to
automate the mapping of skills to tasks from data, but some progress has been made.

Working with log data from tutoring systems, data which is characterized by the fact that the knowledge
state of the student dynamically changes in the data as the student learns, Cen et al. [2006; 2005] have used
a technique known as Learning Factor Analysis (LFA) in order to bring improvements over an initially hand
built Q-matrix (also termed a transfer model). This technique was shown useful for bringing improvements
to the Q-matrix composed of ne-grained skills which are deemed necessary to complete certain exercises.

Inspired from the work of Tatsuoka [1983], Barnes [2006] developed a method of mapping skills to items
based on a measure of the t of a potential Q-matrix to the data. This method and the other methods
described below rely on static student knowledge states, as opposed to the dynamically changing knowledge
states of the LFA technique. Barnes method is fully automated and it was shown to perform at least as well
as Principal Component Analysis for skill clustering analysis. However, it involves an algorithm that does
not scale well to a Q-matrix that comprises 20 or more items.

Winters et al. [2005] investigated how a number of standard clustering techniques can e ectively match
skills to test items. They applied these techniques to a wide array of test outcomes, from SAT topics such as
Mathematics, Biology and French, to computer science exams, and to di erent trivia topics. Their ndings
show that for skills associated to topics within a single course, for example, the techniques were essentially
no better at classifying test items than random clustering. The same conclusion applies for topics like World
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history and Biology. However, the techniques were relatively successful at separating items that belongs to
totally di erent topics, such as Mathematics and French.

In this paper, we replicate parts of the study by Winters et al. [2005] and focus on one of the cluster
algorithms they used, Non-negative Matrix Factorization (NMF). We use visualization techniques to analyze
in greater details the results of the factorization. We propose a model to simulate student data and show
that the NMF technique is indeed e ective under certain assumptions. We use the simulation data model
parameters as a means to quantify and estimate the e ect of skills over the observed examinee performance
in some of the real data of Winters et al. original study. First, let us give some details about NMF.

2. NON-NEGATIVE MATRIX FACTORIZATION AND Q-MATRIX INTERPRETATION

Non-negative matrix factorization (NMF) decomposes a matrix into two smaller matrices. It is used for
dimensionality reduction, akin to Principal Component Analysis and Factor analysis. NMF decomposes a
matrix of n m positive numbers, V, as the product of two matrices:

V. WH 1)

The matricesW and H are respectivelyn r andr m, wherer is called the rank of the factorization. For
our purpose, matrix V represents the observed test outcome data fon question items andm respondents.
Therefore, the product of W and H reproduces the observed patterns of success/failures of the examinee
to the n items. The matrix W can be considered as a Q-matrix, whereakl can be considered as the skills
mastery for eachm examinee. In the case of a Q-matrix,r represents the number of skills, which can take
any value but should normally conform to: r < nm= (n + m) [Lee and Seung 1999].

Let us take an example to better explain NMF in our context. Assume the following Q-matrix, W,
composed of 3 skills and 4 items, and the following skills mastery matrixH, for 5 examinees:

Osk”lsl .
010 examlneesl
W=£2B001 =2 11101
_m% T T@00101A
=%100 % 01011
001

Given this Q-matrix and the skills mastered by the 5 examinees, the expected results are:

examineesl

s, 00101
V:WH:GE)%01011
£@11101
01011

For example, taking the rst item and the rst examinee, we have, from W, that item 1 requires skill 2,
but, from H, we see that examinee 1 only masters skill 1, therefore item 1 is failed by examinee 1. In fact,
examinee 1's only success is over item 3 since all other items require either skills 2 or 3.
It is important to emphasize that there are many solutions to V = WH . For example, the same results
as those above can be obtained with di erent Q-matrix and skills matrix:
K

examineesl

)
=

OS
" 00101 " 0%0 Oexamlneesl
2Bo1011& = BBt oogk2,02022
o § m%zl ¥@o0202A
=@11101 =2@0 1A " 00
01011 100
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Notice that the weights are changed as well as the ordering of rows and columns compared to the rst
solution. Nevertheless, it remains a valid factorization ofV that could be derived by some NMF algorithm.

Indeed, there are many NMF algorithms that were developed since its introduction by Lee and Seung
[1999] and they can yield di erent solutions. We refer the reader to Berry et al. [2007] for a more thorough
and recent review of this technique which has gained strong adoption in many di erent elds.

Whereas the other matrix factorization techniques often impose constraints of orthogonality among factors,
NMF imposes the constraint that the two matrices, W and H, be non-negative. This constraint makes the
interpretation much more intuitive in the context of using this technique for building a Q-matrix. It implies
that the skills (latent factors) are additive \causes" that contribute to the success of items, and that they
can only increase the probability of success and not decrease it, which makes good sense for skill factors.
Note that negative values in W can be interpreted as misconceptions and would lower the expected score
to items, but allowing negative values in the factorization also opens up the space of possible solutions and
raises the issue of convergence and of the multiplicity of solutions, making the interpretation of/ much
more speculative.

The non-negative constraint and the additive property of the skills bring a speci c interpretation of the
Q-matrix. For example, if an item requires skills a and b with the same weight each, then each skill will
contribute equally to the success of the item. This corresponds to the notion of @ompensatory or additive
model of skills.

In our study, we focus on high level skills, which we termtopic skills. However, if an item requires two
speci c lower level skills, such as mastery of the rulesa=b+ c=b= (a+ b=cand a=b b= a, a conjunctive
model would be necessary, indicating that a failure is expected if any skill is not mastered. The standard
interpretation of the Q-matrix corresponds to the conjunctive model, and the W matrix of NMF does not
correspond to this interpretation, unless and as mentioned, we assume that each item belongs to a single
skill and for which case the two interpretations are indiscernible.

A last remark on NMF: as mentioned above, the factorization can produce multiple solutions, even with a
sigle algorithm, which raises the issue of stability of the results. However, Schachtner et al. [2010] discuss this
issue and suggest that for binary data the problem may not appear at all. Nevertheless, we will assess the
extent to which the multiple solution issue impacts the validity and usefullness of the approach by running
multiple folds simulations.

3. Q-MATRIX EXTRACTION FROM SIMULATED DATA

Let us start with an assessment of the validity of the NMF technique to extract the Q-matrix from simulated
data and ascertain under which assumptions its e ectiveness can be shown.

For the sake maintaining the similarity with real data analyzed later in this paper, let us use a 4 skill
Q-matrix. Under the assumption that the topic (skill) is the only factor that a ects performance and that
each item depends on a single topic, the simulated data for 40 items and 100 examinees can be generated
from a matrix 40 100, P, where each column contains 40 probabilities, one probability per item, structured
as a sequence of 10 4 probabilities:

(P1;15 P1:2; 25 P;10; P2;1s 53 P2;10; P3;1s 175 Ps;10; Pa;1; 555 Pas0)

wherep;.1 to p1.10 are all equal, p2:1 t0 p2:10 are all equal, and so on. Each column contains therefore only 4
distinct and independent probabilities, one for each skill. These probabilities are generated from a random
variable, z, taken from a normal standard distribution and transformed into a probability by computing the
cumulative distribution function (the area [1 ;Zz]).

Given the probability matrix P, a data matrix having the same dimensions asP is generated,D, by
sampling a success or failuref 0; 1g using P;; as the probability of success and 1 P;; for failure. The
matrix D corresponds toV in equation (1). A sample of this data is provided in gure 1(a). By grouping
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@) Simulated item outcome data of 40 questions and (b) Image output of Q-matrix from NMF for 4 skills
100 examinees. and 40 question items.

Fig. 1. Simulated data (a) and the corresponding Q-matrix (b) under the assumption that topic is the only factor that a ects
success. Skill mastery follows a standard normal distribution. A perfect match from items to skills is obtained with this Q-matrix.

items in 4 contiguous groups of 10, the e ect of the di erent levels of skill is apparent: a high probability
of mastery will appear as a vertical pattern (single examinee) consisting mostly of pale square dots between
vertical stretches of 10 contiguous items, whereas a low probability appears as a pattern composed of mostly
dark red dots. No horizontal pattern is apparent since we do not de ne an item di culty factor in this
data. Similarly, no vertical pattern is apparent across the groups of 10 contiguous items because no general
ability factor is attributed to examinee (however, vertical patters are apparent within the 10 contiguous item
arrangement).

When NMF is applied to D the resulting W matrix can be considered as the Q-matrix. For simulated
data generated according to the procedure described above, the NMF algorithm is perfectly accurate in
assigning the contiguous items in the same group, as can be seen in gure 1(b) where we nd 4 bright
squares representing the clusters. The gure's image represent the values of the 404 W matrix in NMF
(transposed in this image) that directly represents what can be considered as a Q-matrix. Values are mapped
to color gradients ranging from pale yellow to dark red.

Items 1 to 10 can readily be assigned to skill 3, items 10 to 20 to skill 4, and so on. The pattern is
very obvious to the eye. A simple algorithm, that takes the maximum value for each item in the Q-matrix
of gure 1(b) as the main skill, can systematically and correctly classify all question items in the correct
skill cluster. These results are, for all practical purposes, deterministic, even though some variance could
theoretically occur (we report variance when it becomes substantial later).

The visual results of the Q-matrix leaves little doubt that, under the assumption that topic skill is the only
factor that a ects performance, the NMF technique is highly e ective. We now turn to real data and replicate
some experiments by Winters et al. [2005] to verify how the results come out under realistic conditions.
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4. Q-MATRIX EXTRACTION FROM REAL DATA

Winters et al. [2005] experimented with NMF over SAT Subject Test data (see CollegeBoard [2011}) The
data is broken down in 4 topics: (1) Mathematics, (2) Biology, (3) World History, and (4) French. These
topics are su ciently far apart that we can expect that they have strong intra-topic correlation and are
therefore discernible for clustering. The data is composed of a total of 297 respondents who completed the
40 question items tests over the Internet. The pro le of the respondents is unknown but they are probably
from the university student community.

This data has the same structure as the simulated data of section 3: 40 question items broken down into
4 topics of 10 items each. The results of the NMF algorithm over this data is reported in gure 2. Variation
in the di culty of each topic is apparent in gure 2(a), where items 1 to 10 show a higher success rate than
items 10 to 20. Individual item di culty is also apparent by the horizontal patterns, as can be expected.
Although we can discern some vertical patterns across item groups, it is far less apparent (except intra-topic
vertical patterns), suggesting that examinee ability does not span very much across topics.

Figure 2(b) shows the Q-matrix obtained from the SAT data. It is consistent with the results from Winters
et al. [2005]. Clustering of the Mathematics (items 1 to 10) and the French items (31 to 40) is relatively well
de ned, but not so with the Biology (21 to 30) and World History (31 to 40).

As mentioned, clustering is based on the simple algorithm which assigns each item to one of the 4 clusters
based on the maximum column value in matrix W . Given that we know the actual category of each item,
the accuracy of the clustering can be computed. This is obtained by a two step process. First, a contingency
table is compiled from the clustering algorithm. Next, the lines are reordered so that the sum of the diagonal
is maximized. The ratio of this sum over the total represents the accuracy of the assignment. An example of
the contingency table obtained is given below for the SAT data along with its reordering:

Cluster Cluster
Category | 1 2 3 4 Category | 1 2 3 4
11 5 5 00 Reordering 47110 0 0 O
2/ 0 0 10 © =) 11 55 00
311 0 1 8 2, 0 0 10 O
4,10 0 0 O 311 0 1 8

Note that the category and the cluster labels are irrelevant for measuring accuracy, but it it interesting to
note that in this example the values of 10 are the Mathematics and French categories/clusters. As mentioned,
the sum of the diagonal over the sum of all values represents the accuracy of this assignment:=3® = 0:825.

Let us now turn to another data set from Winters et al. [2005] for which the task of deriving a Q-matrix
from data was shown very challenging. They used used questions published from the Trivial Pursuit game
and assembled a test that mimics the 4 topic structure of the SAT with 10 questions on each of: (1) Arts
and entertainment, (2) Sports and leisure, (3) Science and nature, and (4) Geography. The results of our
replication of this experiment are reported in gure 3.

Winters et al. [2005] results over the Trivia data concurs with our experiment and show that the NMF is
no better than chance at correctly clustering items and building a Q-matrix. The most troubling ndings
from their experiments is that the Trivia results are similar to the results they obtain over a number of test
outcome from di erent computer science courses: \Nearly every course behaves the same as the trivia data.
Only our smallest data set, the Algorithms course data, showed any signi cant hint of topic structure." This

1The data sets from [Winters et al. 2005] were made available from  http://alumni.cs.ucr.edu/ ~titus/ . The simulation scripts
of this paper are available from http://www.professeurs.polymtl.ca/michel.desmarais/Papers/EDM2011/scripts.html
They are based on the NMF package from the statistical software R.
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Item outcome from SAT scores of 4 topics and a
sample of 100 examinees.

Image output of Q-matrix from NMF for 4 skills
and 40 question items.

(@ (b)

Fig. 2. NMF results over SAT data.

Item outcome from Trivia scores of 4 topics and a
sample of 100 examinees.

Image output of Q-matrix from NMF for 4 skills
and 40 question items.

@ (b)

Fig. 3. NMF results over Trivia data.

conclusion casts a gloomy picture for high level transfer models, where we aim to assess the mastery of topic
speci ¢ skills from similar topic skills.

However, statistical characteristics of the test data may also in uence what can be extracted from this
data. For example, skewness of the scores towards 0% or 100% will result in sparsity of success/failure that
can can negatively a ect the ability to extract a valid Q-matrix from the data. The Trivia data shows such
skewness towards low success rate and we can question whether this is not the source of the low accuracy.

In the next section, we investigate the in uence of the success rates and item and examinee variance over
the Q-matrix validity.
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5. INVESTIGATING THE PARAMETER SPACE OF SIMULATED STUDENT DATA

We turn back to simulated data to assess how the validity of the Q-matrix degrades under relaxed assumptions
and under di erent ratios variance ratios between the skill, item di culty, and examinee ability factors. This
will allow us to better quantify the e ect of the skill factor on examinee performance with respect to item
di culty and examinee ability.

First, we verify if NMF can extract the Q-matrix if we drop the unrealistic assumption set in section 3
and assume that item di culty and person ability each contribute to the probability of success of an item
by the same amount that topic skill can in uence the probability of success.

Recall that the matrix P, as de ned in section 3, contains independent normally distributed probabilities,
each probability representing the chances of success to items of a single topic and for a single examinee. To
account for the fact that item di culty also a ects item success, the probability of each item is modulated
by a random quantity that is normally distributed with the same mean and variance (0,1) as the topic skill
probability. Akin to item di culty, examinee ability is accounted for by a similar quantity added on an
examinee basis. Therefore, the probability of success by an examinem, to an individual item, n, belonging
to topic, q, is de ned as:

PXmng)=( m* nt q) (2

where ( x) is the cumulative distribution function of the standard normal distribution, and where ., »
and 4 are random Gaussian variables where the mean and standard deviation of, and  are:

m N (Y;Sm)
n N (Y;Sn)

The variable X is constrained to be the mean of the whole data (matrixD). Variables s, and s, are
respectively the individual examinee and item speci ¢ standard deviations. In the case of 4, the mean can
vary across each skill and is therefore de ned as:

a N (Xg;sq)

The parameter X4 is the speci c mean of a skill and the di erent values must be congruent with X (the
weighted sum of the mean for each skill times the number of items belonging to that skill must be equal
to X). sq is the inter-skill standard deviation, measured by averaging the standard deviations of cluster
means on an examinee basis.

Equation (2) can be considered as a simple model of examinee performance as a function of topic skill
mastery, item di culty, and examinee general ability (which spans across topics). In spite of its simplicity
compared to other means of generating simulated data (for eg., see [Desmarais and Pelczer 2010]), it remains
realistic for our context where we assume that topic skills are relatively independent, or at least this is an
assumption we want to investigate and therefore it makes sense that our model follows that same assumption.

Figure 4(b) displays the Q-matrix (W) obtained from applying NMF over the data generated according
to equation (2) with values of 0 for the mean and of 1 for the standard deviation for all parameters. The
raw data is displayed in gure 4(a).

Although we can visually appreciate that the clustering in the Q-matrix is not quite as sharp as in gure 1,
these results still yield a perfect match of item to skills using the simple algorithm outlined in section 4.

Figure 4 shows that, when the mean and variance of the dierent parameters in equation (2) are all
equal (standard normal), the Q-matrix from NMF perfectly matches the underlying Q-matrix. Of course,
as the e ect of the topic skill parameter, 4, becomes weaker compared to the other two parameters, the
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(a) ltem outcome. (b) Image output of Q-matrix from NMF.

Fig. 4. NMF results over random data from randomly distributed data according to equation (2), re ecting equal e ect of
topic, item di culty, and examinee ability over the probability of success.

accuracy of the item-skill match will become lower. This can be observed in table | where the link between
accuracy and parameter ratios is quanti ed.

Table | reports the accuracy results of 14 N-folds simulation experiments conducted with di erent param-
eters. For simplicity, we consider a single mean of 0 for 4. We also restrict the standard deviations to 1
for » and , given that they have the same e ect according to equation (2) and and that we are interested
in the values of the parameters respective to one another, therefore we can keep them xed and vasy only.
Note also that positive and negative values for the means, and , have symmetric e ect such that only
positive values are reported.

The rst experiment reports an accuracy of 0.36 when no topic skill is de necf. As the variance increases
(\S.d.": standard deviation column in the table), the accuracy over a 20-fold simulation gradually reaches 1
as its variance approaches that of the other two parameters. This trend is expected, but it quanti es, in
terms of relative variance, the relation between the e ect of the topic skill and the item and examinee e ect.
When the variance of the topic factor is comparable to that of item and examinee factors, the method yields
very high accuracy.

Experiments 6 to 9 show the results of variations over the means of , and . Experiment 7 shows
that when both means of ,, and |, are increased to 1 (inz score of the standard normal distribution),
the accuracy starts to drop slightly to 0.98. Only for means of 15 and 20 does the performance decrease
noticeably to 0:90 and Q81 respectively.

In experiment 10, the simulation parameters replicate those of the Trivia data set, whereas experiment 12
is done with parameters from the SAT data set. Experiments 11 and 13 report the accuracies of NMF over
the real data, corresponding respectively to gures 3 and 2.

For the Trivia data, the accuracy is comparable to the random, no topic skill condition. This results concurs
with the conclusion of Winters et al. [2005], namely that topic subject is not a determining factor that a ects

2|f we had a very large number of items, this number, 0 :36, would be close to 0:25, the theoretical accuracy of a random
match in a4 4 contingency table. However, the 40 items distribution in this table create an opportunity of over t for the
algorithm that decides which cluster is assigned to which skill. The dierence of 0  :11 (0:36 0:25) can be attributed to this
over- tting.
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Table I.
Experiments over the parameter space of skills, items, and examinee
(respectively 4, n,and mn in equation (2)).

Parameter space

Topic skill () Iltem ( n) Examinee ( m) Accuracy
Mean S.d. Mean S.d. Mean S.d. Nfolds Meanacc. S.d.acc.
1* 0 0 0 1 0 1 20 0.36 0.05
2 0 0.10 0 1 0 1 20 0.48 0.07
3 0 0.25 0 1 0 1 20 0.60 0.11
4 0 0.50 0 1 0 1 20 0.93 0.08
5 0 1 0 1 0 1 20 1 0
6 0 1 050 1 0.50 1 20 1.00 0.01
7 0 1 1 1 1 1 20 0.98 0.07
8 0 1 150 1 1.50 1 20 0.90 0.12
9 0 1 2 1 2 1 20 0.81 0.16
Trivia data parameters
10 0 0.12 -1.05 0.73 -1.05 0.45 20 0.75 0.12
11* n.a. 0.12 -1.05 0.73 -1.05 0.45 20 0.35 0.03
SAT data parameters
12 0 0.24 -0.33  0.86 -0.33 0.50 20 0.98 0.05
13*  n.a. 0.24 -0.33  0.86 -0.33 0.50 20 0.72 0.02
14** n.a. 0.24 -0.33 0.86 -0.33 0.50 20 0.96 0.05
* No topic skill e ect conditions
** Real data

*** Real data and scoring for the Mathematics and French topics only

test performance. Considering that they obtained similar results for topics from academic computer science
courses, these results are disconcerting.

However, we conjectured earlier that the low success rate of the Trivia data could explain the low accuracy
results obtained. This is only partly the case. When the simulations parameters are set to the same values
as the Trivia data, the accuracy obtained is Q75 (experiment 1¢) whereas the real data results are 85 (ex-
periment 11). Therefore, results of experiment 10 suggest that the gap between®b and Q35 is attributable
to the lack of skill e ect in this data.

Comparing the results to the accuracy reported on experiments 11 and 13 for real data, we observe that
for SAT data, the accuracy is lower than experiment 12 and somewhere between experiments 3 and 4, which
corresponds to a standard deviation of topic skill between 0.25 and 0.5 when, and , have a (0,1) standard
distribution. In other words, the skill e ect is a little less than half the item and examinee e ects.

If we look only at the clustering for Mathematics and French (experiment 14) which are the most separable
topics, then the accuracy goes up to 0.96, which is much closer to experiment 12. In terms of relative e ect,
the skill e ect between Mathematics and French is close to the 0.93 accuracy obtained in 4, for which the
standard deviation of skill e ect is 0.50 of the item and examinee parameters.

In summary, the Trivia data shows negligible e ect of topic skill, whereas the SAT data shows an e ect
that is essentially attributable to the Mathematics and French topics that can be clearly distinguished in the
Q-matrix derived with NMF. The topic skill e ect can be quanti ed as somewhere between 1=4 to 1=2 of the

SExperiment 10 has a relative skill-item s.e. of 0 :12=0:73 = 0:16, standing between experiments 2 and 3, and a relative skill-
examinee s.d. of 0:12=0:45 = 0:27, standing close to experiment 3. If the performance followed some additive function of each
of these ratios, we would expect the performance to be no better than that of experiment 3, 0  :60. Given that it stands higher
at 0:75, we have to conclude that the e ect of s.d. ratios over the performance is more complex, possibly a ratio of s.d. such as
topic/(item examinee).
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item and examinee e ect as measured by the standard deviation, and over=2 if we only take Mathematics
and French e ects alone.

6. DISCUSSION

In undertaking this exploratory work, we were hoping to show that the failure to nd an e ective Q-matrix

from some data sets, such as the Trivia data set, was due to highly skewed tests scores: either the scores are
too high or too low, and the raw data becomes too sparse of successes or failures to allow the NMF algorithm
to derive a reliable Q-matrix. Results from our experiments suggest that, in fact, this is only partly the case.

It still leaves open the suggestion that the topic skill factor has sometimes a negligible e ect on performance,
or at least a much lower e ect than we are generally are inclined to believe. From Winters et al.'s [2005]
previous results, we can expect this to be the case for many courses that divide their content according to
sub-topics.

Our results further indicate that for well delineated topic skills like Mathematics and French, the e ect is
relatively strong, in a range around half that item di culty and examinee ability according to the results
in table I, at least for highly separable topics like Mathematics and French. In this case, the accuracy of
matching items to skills with NMF is well in the range of 90%, which con rms the e ectiveness of this
technique under these conditions.

This study was conducted under the assumption that we know the number of skills for the clustering
and for building the Q-matrix. This is not the case in general. However, the visualization technique used
throughout this paper shows that for well delineated topic skills, clustering with NMF is easily perceived
through the human eye.
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Student Translations of Natural Language into Logic:
The Grade Grinder Corpus Release 1.0

Dave Barker-Plummer, Richard Cox and Robert Dale

Students nd logic hard. In particular, they seem to nd it ha rd to translate natural language sentences into their corre  sponding
representations in logic. As an enabling step towards deter mining why this is the case, this paper presents the public re lease of a
corpus of over 4.5 million translations of natural language (nl ) sentences into rst-order logic ( fol ), provided by 55,000 students
from almost 50 countries over a period of 10 years. The transl ations, provided by the students as fol renderings of a collection
of 275 nl sentences, were automatically graded by an online assessment tool, the Grade Grinder. More than 604,000 are in
error, exemplifying a wide range of misunderstandings and c onfusions that students struggle with. The corpus thus prov ides a
rich source of data for discovering how students learn logic al concepts and for correlating error patterns with linguis  tic features.
We describe the structure and content of the corpus in some de tail, and discuss a range of potentially fruitful lines of en quiry.
Our hope is that educational data mining of the corpus will le  ad to improved logic curricula and teaching practice.

1. INTRODUCTION

From a student's perspective, logic is generally considered a di alt subject. And yet it is an extremely
valuable and important subject: the ability to reason logically underpins the Science, Technology, Engineering
and Mathematics (stem) elds which are seen as central in advanced societies. We believeis in society's
interests to make logic accessible to more students; but to do thiswe need to have an understanding of
precisely what it is about logic that is hard, and we need to develop techiques that make it easier for
students to grasp the subject.

One key component skill in the understanding of logic is a facility fo manipulating formal symbol systems.
But such a skill is abstract and of little value if one does not also havethe ability to translate everyday
descriptions into formal representations, so that the formal skillscan be put to use in real-world situations.
Unfortunately, translating from natural language into logic is an area where $udents often face problems.

It seems obvious that the di culties students face in this translat ion task will, at least in part, be due
to characteristics of the natural language statements themselves. Forxample, we would expect it to be
relatively easy to translate a natural language sentence when the mappmfrom natural language into logical
connectives is transparent, as in the case of the mapping fronand to "', but harder when the natural
language surface form is markedly di erent from the corresponding logicalform, as in the translation of
sentences of the formA provided that B. However, evidence for this hypothesis is essentially anecdotal, dn
we have no quantitative evidence ofwhich linguistic phenomena are more problematic than others.

It is against this background that we present in this paper the release of publicly-available anonymised
corpus of more than 4.5 million translations of natural language (I ) sentences into rst-order logic (fol )
sentences, of which more than 604,000 (approximately 13%) are categorized by antomatic assessment tool
as being in error. For each item in the corpus, we know whanl sentence was being translated, and we have
both the fol translation the student provided, and a “gold-standard' answer reprsenting the class of correct
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answers! Students are identi ed by unique anonymised IDs, so the corpus aliws us to determine how many
previous attempts the student has made at the same exercise and thénte intervals between attempts, and
also to correlate any given student's performance across exercisesh& data thus makes possible a broad
range of analyses of student behaviors and performance. We are making therpus available to the wider
community in the hope that this will encourage research that leads to inprovements in the teaching of logic?

Section 2 explains the wider context in which this data has been caodicted, which has allowed us to gather
a very large corpus of data regarding student performance at various tasksnilogic learning. Section 3
then describes the focus of this paper|what we call the Translations Subcorpugin more detail. Section 4
describes the format of the data as it appears in the corpus. Section 5 pvides summary statistics over the
errors in the corpus, and makes some observations about the nature of theserors. Section 6 concludes with
some illustrative analyses and suggestions for ways in which this corpucan be exploited.

2. BACKGROUND

The data described here consists of student-generated solutions texercises inLanguage, Proof and Logic
(LPL; [Barwise et al. 1999]), a courseware package consisting of a textbook togetr with desktop applications
which students use to complete exercisesThe LPL textbook is divided into three parts covering, respectively,
Propositional Logic, First-Order Logic and Advanced Topics. The rst two par ts cover material typical of
introductory courses in logic. Students completing these two pars of the textbook will have been exposed
to notions of syntax and semantics of rst-order logic and a natural deduction{style system for constructing
formal proofs. Each of these areas of the course are supported by a number siftware applications which
provide environments where students can explore the concepts b taught.

The LPL textbook contains 748 exercises, which fall into two categories269 exercises which require that
students submit their answers on paper to their instructors, and 48%or which students may submit answers
to the Grade Grinder, a robust online automated assessment system #t has assessed approximately 2.75
million submitted exercises by more than 55,000 individual studentsin the period 2001{2010. This student
population is drawn from approximately a hundred institutions in alm ost fty countries. Figure 1 provides
statistics on how this data breaks down across the 10 years that the cormurepresents’

Student users of the system interact with the Grade Grinder by corstructing computer les that contain
their answers to particular exercises that appear in the LPL textbook These exercises are highly varied, and
make use of the software applications packaged with the book. Some focus ohet building of truth tables
using an application called Boole; some involve building blocks worldscenarios using a multimodal tool
called Tarksi's World, in which the student can write fol sentences and simultaneously build a graphical
depiction which can be checked against the sentences; and some reguthe construction of formal proofs
using an application called Fitch. The Grade Grinder provides us wih signi cant collections of data in all
these areas. The exercises of interest here are what we c#fhnslation exercises ; they form the basis of
the corpus whose release this paper describes, and we discuss thendetail in Section 3 below.

The Grade Grinder corpus is similar to some of the corpora in the PSLC Daashop repository [Koedinger
et al. 2010]. It shares with these the characteristics of being extenge (millions of data points) and longitu-

1Since the same information can be expressed by many dierent fol sentences, any answer that is provably equivalent to this
gold-standard answer is considered correct.

2A website is under development; in the interim, the corpus ma y be obtained by contacting the authors. A longer version of
this paper which describes the corpus in more detail is avail able as a technical report[Barker-Plummer et al. 2011].

3See http://pl.stanford.edu

4The "Domains' column shows the number of di erent internet ¢ ountry domains found in the email addresses of the student
population for the year in question; de nitively correlati ng these with countries is di cult since a student may use an e mail
address in a domain other than that of their home country, the international use of .com mail hosts being the most obvious
instance.
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Year Submissions  Students  Instructors Domains

2001 190,653 4,097 142 23
2002 237,942 5,219 152 26
2003 238,104 5,106 168 33
2004 251,898 5,473 196 28
2005 255,974 5,295 182 27
2006 266,208 5,295 207 31
2007 304,719 6,444 224 33
2008 322,273 7,174 243 31
2009 331,746 6,489 212 33
2010 352,262 7,404 217 23

Fig. 1. Grade Grinder Usage Statistics: 2001{2010

dinal (repeat submissions by students over a semester or longer). M@ver, it is not as ne-grained as many
DataShop datasets® For example, the DataShop Geometry tutor dataset contains data on studentsactions
and system responses at the level of knowledge components (skills @mncepts). In contrast, a Grade Grinder
submission represents the end-point of a student's work on an exeige. The corpus described here also di ers
from many DataShop corpora in that is not derived from an intelligent tutori ng system or cognitive tutor,
but from a blended learning packageconsisting of courseware, several desktop computer applications, and
an online grading system.

3. NATURAL LANGUAGE TO LOGIC TRANSLATIONS

As noted above, the exercises in LPL cover a range of di erent types ofogic exercises, and so the Grade
Grinder's collection of assessments is very large and varied. Oventie, we aim to make the various components
of this corpus available; as a rst step, we are making available what we blieve may be the most useful
component of the corpus, this being the part that is concerned with stidents' translations of natural language
sentences into logic.

Translation exercises ask the student to translate a number of what wewill call translatable sentences ,
writing their answers in a single le, which is then submitted to the Grade Grinder. We will refer to each
submission of a translated sentence as @manslation act . Figure 2 shows an example exercise that calls for
the student to translate twenty English sentences into the languageof fol . The student's response to such
an exercise is considered correct if it contains a translation act for eary translatable sentence in the exercise,
and every translation act corresponds to a correct translation. The LPL textbook contains 33 translation
exercises, involving a total of 275 distinct translatablenl sentences.

The Grade Grinder examines each submitted le, making a note of erros that are found within the
student's answers. The les are saved to the corpus, the errors araoted, and an email message is sent to
the submitter summarizing these errors. Currently, the Grade Ginder o ers only ag feedback[Corbett and
Anderson 1989], indicating only whether a submitted solution is correct The software makes no attempt to
diagnose the error that has been made, apart from reporting the di erencebetween a well-formed expression
of logic that is incorrect, and an ill-formed expression which is meanigless. Figures 3 and 4 respectively
give examples of the feedback for the submission of correct and incorresolutions to the exercise shown in
Figure 2. The feedback report in Figure 4 indicates that the student kas submitted an incorrect answer to
the second sentence, and an ill-formed expression in answer to thexth sentence. The solution for sentence
eighteen is also reported as ill-formed, since there is no text inhis slot of the solution.

Each student may submit solutions to the same exercise as many timeas desired. Once a student is
satis ed with their work, they may submit the work again, this time r equesting that a copy of the system's

SHowever, note the File Timestamps information discussed in  Section 4.
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0 Exercise 7.12 (Translation) Translate the following English sentences i nto fol . Your translations will use all of the propo-
sitional connectives.

(1) If ais a tetrahedron then it is in front of d.
(2) ais to the left of or right of d only if it's a cube .
(3) cis between either a and e or a and d.
(4) cis to the right of a, provided it (i.e., c) is small.
(5) cis to the right of d only if b is to the right of c and left of e.
(6) If eis a tetrahedron, then it's to the right of b if and only if it is also in front of  b.
(7) If bis a dodecahedron, then if it isn't in front of  d then it isnt in back of d either.
(8) cis in back of a but in front of e.
(9) eisin front of dunless it (i.e., e)is a large tetrahedron.
(10) At least one of a, c, and e is a cube.
(11) ais a tetrahedron only if it is in front of  b.
(12) b is larger than both a and e.
(13) a and e are both larger than c, but neither is large.
(14) d is the same shape asb only if they are the same size.
(15) ais large if and only if it's a cube.
(16) b is a cube unlessc is a tetrahedron.
(17) If eisnt a cube, either b or d is large.
(18) b or dis a cube if either a or c is a tetrahedron.
(19) ais large just in case d is small.
(20) ais large just in case e is.

Fig. 2. An example exercise (7.12) from LPL

Grade report for Oedipa Maas (oedipa@yoyodyne-industries  .com)
Submission ID: 11.076.18.28.21.L00-0002222

Submission received at: Thu Mar 17 18:28:21 GMT 2011
Submission graded at: Thu Mar 17 18:28:33 GMT 2011
Submission graded by: gradegrinder.stanford.edu

#### No instructor name was given. The report was sent only to the student.

The following files were submitted:
Sentences 7.12

EXERCISE 7.12

Sentences 7.12 (Student file: "Sentences 7.12")
Your sentences are all correct. Hurrah!

Fig. 3. Example feedback from the Grade Grinder: A translati  on exercise without errors

email response be sent to a named instructor. The e ect of this patten of interaction with the Grade Grinder
is that the corpus contains a trace of each student's progression from theinitial submission to their nal
answer.

We can categorize the translation exercises along three dimensions aslléws, and as summarized in
Figure 5.

Logical Language. The LPL textbook introduces the language of rst-order logic in stages, sarting with
atomic formulae in Chapter 1, then the Boolean connectives”, _ and: ) in Chapter 3, followed by conditional
connectives ( and $ ) in Chapter 7. These connectives together de ne the propositional fragrent of rst-
order logic. Finally, the universal and existential quanti ers (8,9) are introduced in Chapter 9 to complete
the language of rst-order logic. Exercises have correspondingly compielanguages according to the position
in which they appear.
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Grade report for Tyrone Slothrop (tyrone@yoyodyne-indust ries.com)
Submission ID: 11.076.18.30.56.L00-0002222

Submission received at: Thu Mar 17 18:30:56 GMT 2011

Submission graded at: Thu Mar 17 18:31:02 GMT 2011

Submission graded by: gradegrinder.stanford.edu

#### No instructor name was given. The report was sent only to the student.

The following files were submitted:
Sentences 7.12

EXERCISE 7.12

Sentences 7.12 (Student file: "Sentences 7.12")
We found problems in your sentences:

*** Your second answer, "~SameCol(a d)->Cube(a)", isn't we Il formed.

*** Your sixth sentence, "Tet(e)->(RightOf(e, b)->FrontO f(e, b))", is not
equivalent to any of the expected translations.

** Your fifteenth sentence, "Large(a)->Cube(a)", is not e quivalent to any
of the expected translations.

*** Your eighteenth answer, ™, isn't well formed.

** Your nineteenth sentence, "Large(a)->Small(d)", is no t equivalent to
any of the expected translations.

*** Your twentieth sentence, "Large(a)->Large(e)", is not equivalent to

any of the expected translations.
Fig. 4. Example feedback from the Grade Grinder: A translati  on exercise with errors

Domain Language. While the majority of the exercises in LPL use the language of the block world used
in Figure 2, eight translation exercises use one of two other languages. Inapticular we have a language
involving the care and feeding of various pets by their associated pedg In this language, it is possible to
give a translation for sentences likeMax fed Pris at 2:00. This language is used in six of the translation
exercises. The third language is used in only two exercises and isagsto make claims about numbers, such
as There is a number which is both even and prime

Supporting and Additional Tasks. Each of the exercises in the pet and number languages require only
the translation of sentences fromnl into fol . However, the use of the Tarski's World application provides
scope for variety in the blocks language tasks. For example, some exeresscall for students to complete their
translations while looking at a world in which the English sentencesare true; some call for them to verify the
plausibility of their answers by examining a range of worlds in which he sentences have di erent truth values;
and yet others call for the students to build a world making all of the English sentences truede nova These
alternatives represent a range of exercises in which thagencyof the student varies. The act of constructing,
from scratch, a blocks world that is consistent with a list of senterces (such as Example 7.15) requires more
engagement and “deeper' processing than one in which the student etks the truth of a sentence against a
pre-fabricated diagram (such as Example 7.1). The e ect of this variety n agency is one of many possible
analyses that could be carried out using this corpus.

Figure 5 lists the di erent translation exercises and their characteristics. The “Language' column indicates
the target language, which is full fol unless otherwise noted. In the exercises involving the blocks avid
language, the di erent kinds of agency that the students have are indiated. Looking at world indicates
that students are instructed to look at a world in which the sentences are true as they translate the sentences,
while with world check means that students are instructed to check their translations in peci ¢ worlds
after the exercise is completedWith world construction indicates that students are required to construct
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Exercise  Sentences Language Supporting Tasks
14 12 blocks (atoms)

3.20 10 blocks (Boolean) indirect + looking at world

3.21 12 blocks (Boolean) with world check in next exercise
7.11 10  blocks (Propositional) indirect + looking at world

7.12 20 blocks (Propositional)  with world check in next exer cise
7.15 12  blocks (Propositional)  with world construction

9.12,11.4, 14.4 10, 8, 7  blocks indirect + looking at world
9.16 16  blocks one existential + with world check
9.17 15  blocks one universal + with world check
9.18, 11.14, 11.40, 14.28 5,2,11,5 blocks looking at world, with world check
11.16 10 blocks skeleton translation given + with world chec k
11.17, 11.18, 11.19, 14.3 10, 5, 5,5 blocks with world check
11.20, 11.39 12,6 blocks looking at world

14.6 11  blocks incomplete information

14.8 2 blocks
14.27 2 blocks with world construction

1.9 6 pet (atoms)
3.23 6 pet (Boolean)
7.18 5 pet (Propositional)
9.19, 11.21, 11.41 10, 10,5 pet
9.13, 9.25 5,5 number

Fig. 5. Exercises involving English sentences (N=33)

(and submit) a world in which their sentences are true.Incomplete information means that not all relevant
aspects of the world that they are looking at can be seen (e.g., a block meébe obscured by a larger one).
The remaining annotations re ect other information given to the student. Indirect indicates that trans-
lations are given in the form “Notice that all the cubes are universal. Trarslate this'. In the exercises marked
with one existential/universal students are told that their translations have the speci ed form, while
skeleton translation given indicates that students are given a partial translation that they must complete.

4. THE DATA IN THE TRANSLATIONS SUBCORPUS

The Translations Subcorpus represents all of the solutions to translabn exercises submitted in the period
2001{2010. Translation exercises have in common that some number of sentencesishbe translated from
nl into fol . As noted above, we refer to the submission of a single answer to thednslation of a sentence
as atranslation act ; the corpus records a row of data for each translation act consisting of:

Unique ID.  The unique identi er of this translation act (an integer).
Submission ID.  The unique identi er of the submission in which this act occurs (an integer).
Subject ID.  The unique identi er of the subject performing this act (an integer).

Instructor ID. The unique identi er of the instructor to whom this submission was copied (an integer).
This eld can be empty if the submission was not copied to an instrucor.

Task. An indication of the task to which this is a response (for example, "Errcise 1.4, Sentence 7').

Status. One of the valuescorrect , incorrect , ill-formed , not-a-sentence , undetermined , missing
(explained further below).

Answer. The text of the subject's answer (a string).

Canonical. The canonicalized text of the subject's answer (a string), where caonicalization simply
involves removing whitespace from the answer, so that we can recogrmizanswers which di er only in the
use of whitespace.
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Field A Correct Act An Incorrect Act

ID 7982509 7982763
Submission 1D 3808583 4172630
Subject ID 68114 68114
Instructor 1D NULL NULL

Task 7.12.1 7.12.15
Status correct incorrect

answer Tet(a) ! FrontOf(a;d) Cube(a) ! Large(a)
canonical Tet(a) ! FrontOf (a; d) Cube(a) ! Large(a)
Timestamp 2009-05-02 14:01:24 | 2009-05-02 14:49:32
File Timestamps C1241297735665D1241298049184| suppressed|see text

Fig. 6. Example data for two translation acts from the corpus

Correct Incorrect Missing lll-formed Non-sentence  Undetermi ned Total
First 3,260,979 604,965 481,851 233,605 19,378 45,085 4,645,863
Submission 70% 13% 10% 5% 0.4% 0.9%
All 17,254,818 1,805,268 481,851 843,183 58,532 245,055  20,@8707
Submissions 83.40% 8.73% 2.33% 4.08% 0.28% 1.18%

Fig. 7. Total submitted translation acts, classied by stat  us

Timestamp. The time at which the submission was made.

File Timestamps.  An indication of timing data concerning the le in which this act appear s (explained
further below).

Corpus data for two translation acts are shown in Figure 6. Each is an answerd one task within Exer-
cise 7.12 (see Figure 2); the rst data column shows a correct answer fdBentence 7.12.1, and the second
represents an incorrect answer for Sentence 7.12.15.

The dierent Status values indicate di erent conditions that can occur when the studert's submitted
sentence is judged against the gold-standard answer. In addition taorrect and incorrect , a solution
may be ill-formed , indicating that the solution is not syntactically correct; not-a-sentence , indicating a
well-formed fol expression which does not express a claim (the closest analog fth is a sentence with an
unresolved anaphor); orundetermined , indicating that the Grade Grinder could not determine whether
the submitted answer was correct. Finally, a solution can bemissing . Because translations are packaged
together into submissions of solutions for an exercise which contains uitiple translation tasks, we code
a solution as missing if the subject submitted translations for some, but not all of, the sertences in the
exercise. A status ofmissing therefore represents a missed opportunity to submit a solution toaccompany
others that were submitted.

File Timestamps are an integral part of the Grade Grinder system, and record the times of ave and
read operations on the submissions le being constructed on the user'desktop. Each time a student opens
or saves a le, a timestamp for this operation is added to a collection wich is stored in the le. The
collection of timestamps serves as a " ngerprint' for the le, which allows the Grade Grinder to detect the
sharing of les between students. Since these timestamps are acate to the millisecond, it is extremely
unlikely that les constructed independently will share any tim estamps, and so two students submitting

les whose timestamps are the same have likely shared the le. Thisngerprinting mechanism is similar to
the more familiar checksum algorithms which are often used to ngerprint les; the di erence here is that
the timestamp ngerprints are not dependent on the content of the le. This is important since some LPL
exercise have a unique solution: consequently, arrival at the sameontent should not be considered evidence
of sharing of a le.
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Note that this timestamp data can be used to measure the amount of time thatsubjects spent considering
their answers at a more ne-grained level than is indicated by the time between submissions. In the case of
the rst answer in Figure 6, the timestamp indicates that this le was opened (the segment beginning with
C) and then saved (the segment beginning with D) about ve minutes later (313,519ms being the precise
di erence between the two numbers). The timestamp data for the ®cond answer contains fteen segments,
and so has been suppressed here because it is too large to display.

5. SOME SUMMARY DATA

The corpus contains a total of 4,645,563 initial submissions of translation acts Y students, with 604,965
(13%) considered to be in error by the Grade Grinder. The breakdown ofhese initial submissions as provided
by the Grade Grinder is shown in the upper half of Figure 7.

In fact, however, these numbers form a lower bound on the number ofranslation acts in the corpus. As
noted earlier, a typical interaction with the Grade Grinder consists in a sequence of submissions, each of
which may contain many translation acts. Initially, some of the translati ons in the submission will be correct
and others incorrect. In each subsequent submission, some of the mrect sentences will be corrected, while
the correct sentences will be resubmitted; nally, the studert may verify that all sentences are correct, and
the student will likely then resubmit the complete set copied to their instructor. We therefore store multiple
instances of the same translation acts.

The same phenomenon impacts on incorrect translation acts. If a studgnhas made a mistake in both
Sentencen and Sentencen + 1, a common behavior is to repeat the submission rst with a correcton for
Sentencen, but leaving the incorrect translation of Sentencen +1 unmodi ed from the previous submission,
only returning to this once a correct answer for Sentencen has been achieved. This results in multiple
instances of the same incorrect translation act. However, it is importamto observe that in some cases these
resubmitted incorrect answers may re ect deliberate acts, and sahe real number of intended translation
acts in the corpus may in fact be larger than our initial counts suggest. Weprovide all translation acts in
the distributed corpus, with the corresponding counts shown in he lower half of Figure 7. The distributed
corpus thus contains a total of 20,688,707 translation acts; this opens the door tadditional analyses that
would not be possible if only rst submissions were available.

Note that we count as errors only those translations that are assessed by ther@de Grinder as de nitely
incorrect. Expressions which are o ered as translations but which arenot well-formed expressions offol ,
and those which are well-formed but not sentences, are counted separdy. Of course, these expressions are
really di erent kind of errors, and may serve to shed light on studert behavior in other ways.

Among the translation exercises, the sentences most commonly mistratated on the student's rst attempt
are shown in Figure 8. In this gure, the column headedN represents the total number of translation acts
concerning this sentence, while the column headedrror/N is the proportion of these acts that are marked
as incorrect. The column headedCount applies to the distinct incorrect sentences, and indicates thewumber
of translation acts that result in this answer.

6. POTENTIAL ANALYSES OF THE CORPUS
We conclude by outlining a number of ways in which the Translations $ibcorpus can be analysed.

Sentence Features.What features of sentences are particularly di cult for all students (in the aggregate)
to translate? We report on work of this type in [Barker-Plummer et al. 2011]. We categorized the sentences
according to whether they contained shape, size and spatial predicase and then examined the error rates for
for eight resulting types of sentences. Sentences that mix shape drspatial predicates, and size and spatial
predicates are each harder to translate than sentences that contain alliree kinds of predicates.
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Task Answer N  Error/N  Count
11.39.4 Every small cube is in back of a particular large cube 3520 69.0%
11.39.4 Correct 9x (Large(x) » Cube(x) A8y ((Small(y) » Cube(y)) !
Incorrect  8x ((Cube(x) » Small(x)) !9 y (Cube(y) ~ Large(y) * BackOf(x;y))) 818
Incorrect  8x ((Small(x) » Cube&(x)) !9 vy (Large(y) * Cube(y) * BackOf(x;y))) 420
Incorrect  8x ((Cube(x) » Small(x)) !9 vy (Large(y) * Cube(y) » BackOf(x;y))) 281
Incorrect  8x 9y ((Cubeg(x) » Small(x)) ! (Cubegy) ~ Large(y) » BackOf(x;y))) 207
Incorrect  8x ((Small(x) » Cubeg(x)) !9 y (Cubg(y) » Large(y)  BackOf(x;y))) 164
11.20.1 Nothing to the left of a is larger than anything to the left of 9101 54.9%
11.20.1  Correct 9 x (LeftOf (x; @) ~ 8y (LeftOf (y; b) ! Larger(x;y)))
Incorrect  8x 8y ((LeftOf (x;a) » LeftOf (y; b)) !: Larger(x;y)) 941
Incorrect  8x (LeftOf (x;a) ! 8 y (LeftOf (y;b) I': Larger(x;y))) 913
Incorrect  :9 x (LeftOf (x; @) ~ 8y (LeftOf (y; b) ~ Larger(x;y))) 582
Incorrect  8x 8y ((LeftOf (x; a) » LeftOf (y;b)) !': Larger(x;y)) 406
Incorrect  8x (LeftOf (x;b) !:9 y (LeftOf (y;a) ~ Larger(y; x))) 307
3.215 Neither e nor a is to the right of ¢ and to the left of b 34608 54.4%
3.21.5 Correct : (RightOf (g; c) » LeftOf (e; b)) ~: (RightOf (a;c) © LeftOf (a; b))
Incorrect  : (RightOf (g;c) » RightOf (a; c)) ~: (LeftOf (e;b) ~ LeftOf (a; b)) 4681
Incorrect  : RightOf (e;c) ~: RightOf(a;c) ~: LeftOf (e;b) ~: LeftOf (a; b) 1777
Incorrect . (RightOf (e;¢) N LeftOf (e; b)) _: (RightOf (a;c) * LeftOf (a; b)) 1678
Incorrect  : (RightOf (e; ¢) _ RightOf(a; c)) ~: (LeftOf (e;b) _ LeftOf (a; b)) 1569
Incorrect . (RightOf (e; ¢) * RightOf (a; c) * LeftOf (e; b)  LeftOf (a; b)) 1345
3.235 2:00pm is between 1:55pm and 2:05pm 14747 50.4%
3.23.,5 Correct 1:55<2:00"2:00< 2:05
Incorrect  Between(2: 00;1 : 55; 2 : 05) 14546
Incorrect  Between(1: 55;2: 00; 2 : 05) 319
Incorrect  Between(2: 00;2: 05;1 : 55) 178
Incorrect  Between(2;1: 55; 2 : 05) 133
Incorrect 2:00< 2:05 91
11.40.3 There is a dodecahedron unless there are at least two large objects 3887 48.7%
11.40.3 Correct 19 x9y (x6 y” Large(x)  Large(y)) !9 z Dodedz)
Incorrect  9x 9y (Large(x) * Large(y) » x6 y) ! :9 z Dode(z) 84
Incorrect  9x 9y ((Large(x) » Large(y) » x6 y) !:9 zDode(z)) 67
Incorrect 9 x9 y9z (Dodec(x) ! :  (Large(y) * Large(z) " y 6 z)) 54
Incorrect  9x 9y ((Large(x) » Large(y) » x6 y) !9 z (Dodec(z) » z6 x" z6 y)) 48
Incorrect  8x 8y ((Large(x) N Large(y) » x6 y) !:9 z Dode((2)) 46

Fig. 8. The top ve erroneous answers to the each of the ve mos t error-prone tasks

Error Typology. Can the errors that students make in their translations be categorized acording to type?

In [Barker-Plummer et al. 2008] we examined the most frequent errors irthe solution of Exercise 7.12, and

discovered that the failure to distinguish between the conditioral and biconditional was a signi cant source of
error. Another signi cant source of error appears to be an expectation that rames will appear in contiguous
alphabetical order in a sentence (we call these “gappy' sentences)p, a sentence likea is betweenb and d'

is frequently mistranslated with c in place ofd.

Response to Errors. How do subjects go about nding solutions when their initial attempt i s incorrect? We
can ask whether the di culty of repair correlates with the subject, the sentence or with the particular error
that was initially made. We have carried out preliminary work [Barker- Plummer et al. 2009] investigating
the di erences between, on the one hand, translation tasks which areli cult to get right initially but which
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are easy to recover from, and on the other hand, those which are perhapsskeerror-prone, but hard to repair.
We think both aspects of the task contribute to the “di culty' of a tas k.

Exercise-Level Strategies.There is potential in the corpus for examining strategies that the students adopt
when they make multiple errors. Some students appear to attempt to x all of their incorrect sentences, and
others proceed one at a time. These strategies might correlate with sigess. We can detect di erences between
these strategies by looking at the sequence of submissions that ogsuafter the initial submission. In some
cases only one sentence will be modi ed in each subsequent subigisn; in others many may be altered.

Modality Heterogeneity of Task. Exercises di er in the extent to which they are linguistically and graphi-
cally heterogeneous. Some require translation fronml sentences tofol , whereas others require translation
followed by blocks world diagram building. In [Cox et al. 2008], we comparedtudents' constructed diagram-
matic representations of information expressed innl sentences to theirfol translations, and determined
that the error patterns di ered in their graphical versus their fol translations.

Agency in the Task. As discussed in Section 3, translation tasks vary in the degree of agencyék require
on the part of the student. Using the corpus it would be possible to analye variability in student performance
with agency, to see if these adjunct tasks have an e ect on translation acuracy.

Time Course. The timestamp information in the corpus makes it possible to ask how mgh time students
spend (re)considering their answers: does the bulk of time go toasticular tasks, or is it evenly distributed?

7. CONCLUSION

With the rst release of this corpus, we invite colleagues to exploitits potential for educational data mining.
Our hope is that further analyses will provide additional insights into student cognition in the di cult
domain of logic, and that ndings will inform improved educational practic e in logic teaching. In our own
work, we aim to (1) enrich the feedback that Grade Grinder provides b students, (2) investigate task agency
e ects upon learning outcomes, and (3) identify evidence-based impvements to the logic curriculum.
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In this paper, we proposed a new cognitive modeling approach : Instructional Factors Analysis Model (IFM). It belongs to a
class of Knowledge-Component-based cognitive models. Mor e speci cally, IFM is targeted for modeling student's perfo  rmance
when multiple types of instructional interventions are inv  olved and some of them may not generate a direct observation o f
students' performance. We compared IFM to two other pre-exi sting cognitive models: Additive Factor Models (AFMs) and
Performance Factor Models (PFMs). The three methods dier m  ainly on how a student's previous experience on a Knowledge
Component is counted into multiple categories. Among the th  ree models, instructional interventions without immediat e direct
observations can be easily incorporate into the AFM and IFM m  odels. Therefore, they are further compared on two importan t

tasks|unseen student prediction and unseen step predictio  njand to determine whether the extra exibility a orded by a ddi-
tional parameters leads to better models, or just to over tt  ing. Our results suggested that, for datasets involving mul tiple types
of learning interventions, dividing student learning oppo  rtunities into multiple categories is bene cial in that IFM out-performed

both AFM and PFM models on various tasks. However, the relati ve performance of the IFM models depends on the specic
prediction task; so, experimenters facing a novel task shou Id engage in some measure of model selection.

1. INTRODUCTION

For many existing Intelligent Tutoring Systems (ITSs), the system-student interactions can be viewed as a
sequence of steps [VanLehn 2006]. Most ITSs are student-driven. That,iat each time point the system elicits
the next step from students, sometimes with a prompt, but often without any prompting (e.g., in a free form
equation entry window where each equation is a step). When a studérenters an attempt on a step, the ITS
records whether it is a success or failurevithout the tutor's assistance and may give feedbacks and/or hints
based on the entry. Students' rst attempt records on each step are tken collected for student modeling.
Often times in ITSs, completion of a single step requires studerst to apply multiple Knowledge Components.
A Knowledge Component (KC)is: \a generalization of everyday terms like concept, principle, fat, or skill,
and cognitive science terms like schema, production rule, miscoegption, or facet" [VanLehn et al. 2007].
They are the atomic units of knowledge. Generally speaking, studentamodeling on conjunctive-KC steps
are more di cult than that on steps that require a single KC.

The three most common student modeling methods areKnowledge Tracing (KT) [Corbett and Ander-
son 1995],Additive Factor Models (AFM) [Cen et al. 2006; 2008], andPerformance Factor Models
(PEM) [Pavlik et al. 2009]. When performing student modeling we seek to castruct a cognitive model
based upon these observed behaviors and to apply the model to make plietions. Generally speaking, we
are interested in three types of predictions: type 1 is about howunseen studentswill perform on the observed
steps same as those in the observed dataset; type 2 is about how the santedents seen in the observed data
will perform on unseen stepsand type 3 is about how unseen students will perform on unseen step that
is, both. For the present purposes we classi e students or steps that appean the observed training data
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as seen and those that appear only in the unobserved test data as unseem this paper we will examine
prediction types 1 and 2 and leave type 3 for future work.

Previously KT and PFM have been directly compared both on datasets iwolved single-KC steps [Pavlik
et al. 2009] and those involved conjunctive-KC steps[Gong et al. 2010]. Redslhave shown that PFM is as
good or better than KT for prediction tasks under Bayesian Information Criteria (BIC) [Schwarz 1978] in
[Pavlik et al. 2009] or using Mean Squared Error (MSE) as criteria in [Gonget al. 2010]. For both BIC and
MSE, the lower the value, the better.

While PFM and KT have been compared on datasets involved conjunctiveKC step, prior applications of
AFM and PFM have mainly been with single-KC steps and indicated no ckar winner. More speci cally, while
AFM is marginally superior to PFM in that the former has lower BIC and cros s-validation Mean Absolute
Deviance (MAD) scores in [Pavlik et al. 2009], PFM performed better than AFM under MAD scores in
[Pavlik et al. 2011]. For MAD, same as MSE, the lower the value, the better On the other hand, previous
research have shown that AFM can, at least in some cases, do a ne job in naeling conjunctive KCs [Cen
et al. 2008]. Therefore, in this paper we will compare AFM and PFM directly on a dataset involving many
conjunctive-KC steps.

Moreover, most prior research on cognitive modelings was conducted on dagets collected from classical
student-driven ITSs. Some ITSs, however, are not always studentlriven in that they may involve other
instructional interventions that do not generate direct observations on student's performance. The dataset
used in this paper, for example, was collected from a tutor that, at each t&p chose to elicit the next step
information from students or to tell them the next step. In our view t hese tell steps should also be counted
as a type of Learning Opportunity (LO) as they do provide some guidance tostudents. Yet on the other
hand, these steps do not allow us to directly observe students' pormance. KT model is designed mainly for
student-driven ITSs in that its parameters are directly learned from the sequences of student's performance
(right or wrong) on each step. When there are multiple instructional interventions and some of them do
not generate direct observations, it is not very clear how to incorporatethese interventions directly into
conventional KT models. Therefore, in this paper we are mainly inteested in comparing AFM and PFM.

Our dataset was collected from an ITS that can eitherelicit the next step from the student or tell them
directly. Incorporating tell steps into AFM model is relatively e asy in that tells can be directly added to
total LO counts. The PFM, however, uses student's prior performancecounts, the success or failure, in the
equation. Since tells do not generate any observed performance, it isahd to include them in the PFM.
Therefore, we elected to add a new feature to represent instru@tnal interventions such as tells. As shown
later, the new model can be easily modi ed for modeling datasets wh multiple instructional interventions
and thus it is named as Instructional Factors Analysis Model (IFM).

To summarize, in this paper we will compare three models, AFM, PFM ar IFM, on a dataset involving
many conjunctive-KC steps and multiple instructional intervent ions. Previous research has typically focused
on how well the models t the observed data. In the following, we also nvestigated how well they perform at
making the predictions of unseen students' performance on seen gt (type 1) and seen students' performance
on unseen steps (type 2). Before describing our general methods irethils we will rst describe the three
models.

2. THREE MODELS: AFM, PFM, AND IFM

All three models, AFM, PFM, and IFM, use a Q-matrix to represent the relationship between individual
steps and KCs. Q-matrices are typically encoded as a binary 2-dimer@nal matrix with rows representing
KCs and columns representing Steps. If a given celQy; = 1, then step j is an application of KC k. Previous
researchers have focused on the task of generating or tuning Q-mates based upon a dataset [Barnes 2005;
Tatsuoka 1983]. For the present work we employed a static Q-matrix for all ou experiments. Equations 1,
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2, and 3 present the core of each model. Below the equations are the ddtd descriptions of each term used
in the three equations.

The central idea of AFM was originally proposed by [Draney et al. 1995] and intraluced into ITS eld by
[Cen et al. 2006; 2008]. Equation 1 shows that AFM de nes the log-odds of a studér completing a stepj
correctly to be a linear function of several covariates. Hergj is a studenti's probability of completing a step
j correctly, Ny is the prior LO counts. AFM models contain three types of parameters: stident parameters

i, KC (or skill) parameters |, and learning rates . While AFM is sensitive to the frequency of prior
practice, it assumes that all students accumulate knowledge in theame manner and ignores the correctness
of their individual responses.

PFM, by contrast, was proposed by [Pavlik et al. 2009] by taking the correchess of individual responses
into account. It can be seen as a combination of learning decomposition [B& and Mostow 2008] and AFM.
Equation 2 expresses a student's log-odds of completing a steg correctly based upon performance features
such asSi (the number of times studenti has previously practiced successfully relevant K&k) and Fi (the
number of times studenti has previously practiced unsuccessfully relevant Kk). PFM may also include
student parameters such as; and skill parameters, such as . Additionally, PFM employs parameters to
represent the bene t of students' prior successful applicationsof the skill ¢ and the bene t of prior previous
failures .

While PFM was originally proposed without a , it is possible to include or exclude these student pa-
rameters from either PFM or AFM. In prior work, Corbett et al. noted that m odels which tracked learning
variability on a per-subject basis, such as with outperform models that do not [Corbett and Anderson
1995]. Pavlik [Pavlik et al. 2009] further noted that the full AFM model seemed to outperform PFM with-
out which in turn outperformed AFM without . Pavlik et al. also hypothesized that PFM with  would
outperform the other models and they investigated it in their recert work. In this study, our analysis showed
that prediction is better with student parameters, especially for AFM models, thus we include ; in our
versions of both AFM and PFM.

From PFM, IFM can be seen as adding a new feature to represent the tl together with the success
or failure counts, shown in Equation 3. Equation 3 expresses a studerits log-odds of completing a step
j correctly based upon performance features includingSi , Fik, T (the number of times student i has
previously got told on relevant KC k). IFM also includes student parameters ;, skill parameters , «, «,
and the bene t of prior previous tells .

" X X
AFM: In % = i+ kQx +  Qx ( «Ni) (1)
' pi
TR o X . X . : . 2
PRM:  In == i+ kQu + Qi ( kS + «Fik) @)
' pi
! X X
IFM: ln% = 4+ kQqy + Qi ( kSk + kFik + kTik) (3)
M k k

Where:

i. represents a studenti.

j. represents a steq .

k. represents a skill or KCk.

p; . is the probability that student i would be correct on step;j .
i. is the coe cient for pro ciency of student i.
j . is coe cient for di culty of the skill or KC k.
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Qy - is the Q-matrix cell for step j using skill k.
k- Is the coe cient for the learning rate of skill k (AFM only);
Nik . is the number of practice opportunities student i has had on the skillk (AFM only);
k. is the coe cient for the bene t of previous successes on skillk (PFM & IFM);
Sik . is the number of prior successes studerit has had on the skillk (PFM & IFM);
k- is the coe cient for the bene t of previous failures on skill k (PFM & IFM);
Fik . is the number of prior failures studenti has had on the skillk (PFM & IFM);
k. the coe cient for the bene t of previous tells on skill k (IFM only);
Tik . the number of prior Tells student i has had on the skillk (IFM only);

3. TRAINING DATASET AND EIGHT LEARNING OPPORTUNITY MODES

The original dataset was collected by training 64 students on a natural-laguage physics tutoring system
named Cordillera [VanLehn et al. 2007; Jordan et al. 2007] over a period of four mohs in 2007. The physics
domain contains eight primary KCs including the weight law ( KC 1), De nition of Kinetic Energy ( KC ),
Gravitational Potential Energy ( KC 1), and so on. All participants began with a standard pretest followed
by training 7 physics problems on Cordillera and then a post-test. The pre- and post-tests are identical in
that they both have the same 33 test items. The tests were given onlia and consisted of both multiple-choice
and open-ended questions. Open-ended questions required thaidents to derive an answer by applying one
or multiple KCs.

In this study, our training dataset comprises 19301 data points resultedrom 64 students solving 7 training
problems on Cordillera. Each student completed around 300 training prok#m steps. Note that the training
dataset does not include the pre- or posttest. In other words, a data pait in our training dataset is either
the rst attempt by a student on an elicit step or a system tell duri ng his/her training on Cordillera only.

There are two types of steps in Cordillera. Theprimary steps are necessary problem-solving and conceptual
discussion steps. Thgusti cation steps, on the other hand, are optional steps that occur when students are
asked to justify the primary step they have just completed. The primary steps are designed to move the
solution process forward while the justi cation steps are designed @ help the students engage with the
domain knowledge in a deeper way. When collecting our dataset the Coillera system decided whether to
elicit or tell each step randomly. Thus, we have two types of LOs:elicit and tell for the primary steps; and
self-explain or explain for the justi cations.

Figure 1 shows a pair of sample dialogues taken from the cordillera systefor the same series of primary
steps with the same domain content. In dialogue (1.a) the system elect® elicit the students' answer (steps
2- 3), while in dialogue (1.b) the system chooses to tell the studenthie answer (steps 2). Similarly in Figure 2
we present a similar comparison between a pair of self-explain and elgn dialogues. As before both dialogues
cover the same domain content. In dialogue (2.a) the system asks the stedt to self-explain their answer
to the question in qualitative terms (steps 3-4). In dialogue (2.b) they are provided with a short qualitative
explanation (step 3).

For the primary steps, the average number of decisions ranges from 2.5 f&C ; to 31 for KC 5, for elicit
steps and ranges from 4 foKC ; to 47 for KC ¢ for the tell steps. Compared with primary steps, justi cation
steps are signi cantly less frequent in that the average number range from 0 for KC; to 3.5 for KC,; for
self-explain steps and ranges from 0 folKC ; to 2.5 for KC »o for explain steps.

In most of the prior research that we have surveyed the authors mainly sed datasets involving quantitative
problem-solving steps similar to the primary steps in Cordillera. So when counting LOs in this study, we
rst need to decide whether or not to include justi cation steps. Additionally, most previous research did not
include students' performance on the pretest when counting LOs. WMile this makes some sense as students
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(1.a) Elicit Version

(1) T: So let's start with determining the value of v1.

(2) T: Which principle will help you calculate the rock's instantaneo us magnitude of velocity at T1? f ELICIT g
(3) S: de nition of kinetic energy

(4) T: Let me just write the equation for you: KE1 = 0.5*m*v1/2.

(1.b) Tell Version

(1) T: So let's start with determining the value of v1.

(2) T: To calculate the rocls instantaneous magnitude of velocity at T1, we will apply the de nition of kinetic
energy. f TELL g

(3) T: Let me just write the equation for you: KE1 = 0.5*m*v1/2.

Fig. 1. Learning Opportunities on Problem-Solving Steps: E licit vs. Tell

(2.a) Self-Explain

(1) T: Can we infer the direction of the velocity of the rock at T1 fro m the rock's kinetic energy at T1? fELICIT g
(2) S:nope.

(3) T: Excellent! Please explain why. f Self-Explain g

(4) S:Only the magnitude of the velocity and not the direction of it is part of the de nition of kinetic energy.

(5) T: Excellent! Now that we know v1,

(2.b) Explain

(1) T: Can we infer the direction of the velocity of the rock at T1 fro m the rock’s kinetic energy at T1? fELICIT g

(2) S:nope.

(3) T: Excellent! This is because the kinetic energy only depends o n mass and the magnitude of velocity, not the direction
of velocity. f Explain g

(4) T: Now that we know v1,

Fig. 2. SelfExplain vs. Explain

receive no feedback indicating their successes or failures dog the test, it is still the case that they do
practice their skills. Secondly we need to decide whether or notd include student's pretest performance in
the LO counts.

In order to explore how di erent choices of LOs would impact di erent cognitive models, we de ned four
ways to count the LOs. In the primary mode we count only the primary steps within the ITS. In pretest-
primary we count the primary mode steps plus the pretest (each test itemd treated as one step for training).
Primary-Justify mode counts the primary and justi cation steps within the ITS alone. And nally the overall
mode counts all steps in both the pretest and ITS training.

Note that using di erent modes of LOs neither changes the size of the @ining dataset which is generated
along students' logs when training on Cordillera nor changes the numbeof parameters to be t. Using
pretest in the LO count means that various LOs do not start with O for the pretest-primary and overall
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modes but are based on the frequency of KC appearances (and, in the caseRFM, the accuracy) in the
pretest. For example, if a KCy is tested 20 times in the pretest and a student was correct 5 times ah
wrong 15 times, then the student's LOs onKC 4 for pretest-primary and overall mode would start with
LO =20; Success=5;Fail =15;Tell =0. For Primary and Primary-Justify modes, all LOs start with O.
Coupled with this variation we can also count LOs additively or logarithmically. Using logarithmic count
is inspired by the power law relationship between measures of parmance (reaction time or error rate) and
the amount of practice [Newell and Rosenbloom 1981]. But others [Heathcote et aR000] have argued that
the relationship is an exponential, which corresponds to additive conting. To summarize, we havef Primary,
Pretest-Primary, Primary-Justify, Overall g f count, In(count)g, a total of eight LO modes.

4. RESULTS

Two measures of quality, the Bayesian Information Criteria (BIC) and the cross-validation Root Mean

Squared Error (RMSE), are used to evaluate how well various instantiaed models perform. For both BIC

and cross-validation RMSE, the lower the value, the better. BIC [Stiwarz 1978] is a criterion for model
selection among a class of parametric models with di erent numbers oparameters. In prior research on the
evaluation and comparison of di erent cognitive models [Cen et al. 2006; Pavk et al. 2009; Gong et al. 2010]
the authors used BIC as a measure of success. In machine learning, hag it is conventional to use the

cross-validation RMSE, which is a more interpretable metric and, webelieve, a more robust measure. For
the purposes of this paper, we will report both BIC and RMSE.

4.1 AFM, PFM, vs. IFM.

First, we will investigate whether considering Tell and Explains into the LOs is bene cial. In traditional
cognitive modeling the focus is solely on steps where the studéeatperformance is observed. In the context
of Cordillera that means counting only the elicit and self-explain seps as both require students to apply
their knowledge without support and their performance can be direcly evaluated. For AFM models, we thus
compared the AFM algorithms shown in equation 1 by either including Tdls and Explains into Ny or by
excluding them out of Ny . The two resulted models are referred as AFM-Tell and AFM+Tell respectively.
Therefore, in this section we compared four models: AFM-Tell, AFM+Tell, PFM and IFM across eight LO
modes.

For each of the four models, its correspondingount LOs on correspondingf Primary, Pretest-Primary,
Primary-Justify, Overall g modes are de ned in Table I. For example, the IFM has three LO counts: pior
successSi , prior failures Fix , and prior tells Ty . Under the Primary-Justify mode (shown in the left bottom
of the table), Si = Success in (Elicit + Self-Explain) on the KC k, Fi = prior failure in (Elicit + Self-
Explain) on the KC k, and Ty = prior tells and explains on the KC k. Once the count mode is de ned, the
corresponding Ln(Count) mode is simply taking each count logarithmicaly. For example, under f Primary-
Justify, Ln(Count) g mode, we haveSy = In[Success in (Elicit + Self-Explain) on KC k], Fi = In[prior
failure in (Elicit + Self-Explain) on KC K], and Ty = In[prior tells and explains on the KC K].

For each model on each mode, we carried out a 10-fold cross-validation. Sugitocedure resulted in 8
(modes) 4 (models) = 32 BIC values and CV RMSE values. Table Il shows the comp&asons among the
four models when usingf Primary-Justify, Count g and f Primary-Justify, Ln(Count) g LO modes respectively.
It shows that across both modes, the IFM is more accurate (both lower BC and RMSE) than the PFM;
similarly, the latter is more accurate than AFM+Tell and AFM-Tell. Howe ver, it is harder to compare
AFM-Tell and AFM+Tell. For example, on f Primary-Justify, Count g mode, although AFM-Tell has lower
BIC than AFM+Tell 9037 vs. 9058, the latter has lower RMSE than the former: 4.456E-01 vs. 4.459E-01.
So on both f Primary-Justify, Count g and f Primary-Justify, Ln(Count) g modes, we have IFM> PFM >
AFM+Tell, AFM-Tell. Such pattern is consistence across all eight modes.



Instructional Factors Analysis: A Cognitive Model For Multiple Instructional Interventions

67

Table I. fPrimary, Pretest-Primary, Primary-Justify, Overall

g Learning Opportunity Modes

\ \ Primary | Pretest-Primary
AFM-Tell Nik Elicit Pretest+Elicit
AFM+Tell Nk Elicit+Tell Pretest+Elicit+Tell
PFM Sik Success(Elicit) Success in (Pretest + Elicit)
Fik Failure(Elicit) Failure in (Pretest + Elicit)
IFM Sik Success(Elicit) Success in (Pretest + Elicit)
Fik Failure(Elicit) Failure in (Pretest + Elicit)
Tik Tell Tell
\ Primary-Justify | Overall
AFM-Tell Nk Elicit + SelfExplain Pretest+ Elicit+SelfExplain
AFM+Tell Nj | Elicit+Tell + SelfExplain +Explain Pretest+ Elicit+Tell + SelfExplain+Explain
PFM Sik Success in (Elicit + Self-Explain) Success in (Pretest+ Elicit + Self-Explain)
Fik Failure in (Elicit + Self-Explain) Failure in (Pretest+ Elicit + Self-Explain)
IFM Sik Success in (Elicit + Self-Explain) Success in (Pretest+ Elicit + Self-Explain)
Fik Failure in (Elicit + Self-Explain) Failure in (Pretest+ Elicit + Self-Explain)
Tik Tell+ Explain Tell+ Explain

Table Il. Compare AFM-Tell, AFM+Tell, PFM and IFM on
f Primary-Justify, Count g and f Primary-Justify, Ln(Count) g mode

f Primary-Justify, Count g | fPrimary-Justify, Ln(Count) g
Model BIC | 10-fold RMSE || BIC | 10-fold RMSE
AFM-Tell 9037 4.460E-01 9037 4.459E-01
AFM+Tell 9117 4.470E-01 9058 4.456E-01
PFM 8474 4.235E-01 8461 4.236E-01
IFM 8347 4.217E-01 8321 4.211E-01

In order to compare the performance among four models, Wilcoxon Signed &ks Tests were conducted
on resulted BICs and RMSEs. Results showed that IFM signi cantly outperformed the PFMs across eight
modes: Z = ! 252, p = 0:012 for both BIC and cross-validation RMSE. Similarly, it was shown that
across all eight modes IFM beat corresponding AFM-Tell across eight modesigni cantly on both BIC and
RMSE: Z = ! 252, p = 0:012. Similar results were found between IFM and AFM+Tell in that the for mer
out-performed the latter across eight modes signi cantly on both BIC and RMSE: Z = ! 252, p = 0:012.

Comparisons between PFM and AFM-Tell and AFM+Tell showed that PFM beat s corresponding AFM-
Tell across eight modes signi cantly on both BIC and RMSE: Z = | 252, p = 0:012; and PFM also beat
AFM+Tell signi cantly on both BIC and RMSE: Z = ! 2:52,p = 0:012. Finally, comparisons between AFM-
Tell and AFM+Tell showed that adding Tells and Explains into LOs did n ot statistically signi cantly improve
the BIC and RMSE of the corresponding AFM model:Z = ! 0:28,p =0:78forBICandZ = ! 1.35,p =0:18
for RMSE respectively. Therefore, our overall results suggestedFM > PFM > AFM-Tell, AFM+Tell.

Next, we investigated which way of counting LOs is better, using logatihmic or additive tabulation?
Wilcoxon Signed Ranks Tests were conducted on comparing the BIC and RBE of the performances when
using Count versus using Ln(Count) on the same model and mode. Redsl showed using Ln(Count) per-
formed signi cantly better than using Count: Z = ! 2:27, p = 0:008 for BIC and Z = ! 2:33, p = 0:02
for RMSE respectively. This analysis is interesting in relation to a long-standing debate about whether the
learning curve is exponential (like additive tabulation) or a power law (logarithmic tabulation) [Heathcote
et al. 2000]. Our results appear to favor the power law.

Next, we investigated the impact of four LO modes. The BICs and RMSEs wee compared among the
f Primary, Pretest-Primary, Primary-Justify, Overall g modes regardless of Count and Ln(Count). A pairwise
comparisons on Wilcoxon Signed Ranks Tests showed that théPrimary-Justify g modes generated signi -



Min Chi et al.

cantly better models than using f Primaryg modesZ = ! 2:1, p = 0:036; the f Primary g modes generated
better models than usingf Pretest-PrimarygandfOverallgZ = ! 2:27,p=0:018 andZ = ! 2:521,p = 0:012
respectively. While no signi cant di erence was found betweenf Pretest-Primary g and f Overallg modes. Sim-
ilar results was found on RMSE. Therefore, it suggested that adding jus cation steps into LOs is bene cial

in that Primary-Justify mode beats Primary; however, adding pretest into the LOs did not produce better
models and it may even have resulted worse models: the bene t of alihg justi cation steps into LOs was
seemingly washed out by including pretest in the LOs in thatf Overallg modes generate worse models than
f Primary-Justify g and f Primary g.

To summarize, for modeling the training data, applying IFM model and using f Primary-Justify, Ln(Count) g
as LOs generated the best tting model. Additionally, comparisons among te IFM, PFM, AFM-Tell,and
AFM+Tell showed that IFM > PFM > AFM-Tell, AFM+Tell. In this paper, our goal is to compare cognitive
models on datasets involving multiple types of instructional interventions. As shown above, for AFM the tell
steps can be directly added into existing opportunity count Ny ; For the PFM model, however, there is no
direct way how tells should be incorporated. Therefore, in the folbwing we will mainly compare IFM and
AFM+Tell. For the convenient reasons, we will refer to AFM+Tell as AFM .

4.2 IFM vs. AFM for Unseen Student Prediction (Type 1)

Next we compared the AFM and IFM models on the task of unseen student preiction. In order to predict
unseen student's performance, Student ID was treated as a random faat in both AFM and IFM models.
Here we conducted Leave-one-student-out cross-validation. In other @rds, 64 students resulted in a 64-fold
cross validation. Thus, we have 8 (modes) 2 (AFM vs.IFM) BIC values and Cross-Validation RMSE values.

Table 11l shows the correpsonding BIC and RMSE values of AFM and IFM mocels usingf Primary-Justify,
Ln(Count) g mode. Table 1l shows that IFM generates better prediction models(both lower BIC and RMSE)
than AFM and the di erence is large. Such pattern is consistence acrossll eight modes.

Table Ill. AFM vs. IFM On Unseen Students
with Random E ect Student Parameters
[ Model | BIC [ 64-fold Cross-Validation RMSE |

AFM 8724 4.6144E-01
IFM 7952 4.1661E-01

To compare IFM and AFM across eight modes, Wilcoxon Signed Ranks Tests we conducted on both
BICs and cross-validation RMSEs. Consistent with the patterns show in Table Ill, results showed that
IFM is signi cant better than AFM across eight modes: Z = | 2:52, p = 0:012 for both BIC and cross-
validation RMSE. To summarize, IFM with random student parameter is a better model for predicting
unseens students' performances on seen steps than AFM model witlamdom student parameter. The best
performance was generated IFM model usind Primary-Justify, Ln(Count) g as LOs.

4.3 AFM vs. IFM for Unseen Step prediction (Type 2).

Finally we compared AFM and IFM models on the task of unseen step prediton. Here we used training
dataset and tested each models' prediction using students' postest performance. For each model on each
mode, we carried out a 10-fold cross-validation. Such procedure again nédged in 8 2 BIC values and CV
RMSE values.

Table IV shows the results on comparisons for the AFM and IFM models on badb f Primary-Justify,
Ln(Count) g and f Overall, Ln(Count) g modes. Across the eight LO modes, the performance of AFM reaches
its best when using f Primary-Justify, Ln(Count) g mode and IFM reaches its best when using Overall,
Ln(Count) g mode. Table Il shows that when usingf Primary-Justify, Ln(Count) g mode, the AFM is even
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more accurate (both lower BIC and RMSE) than the corresponding IFM mocel; while when usingf Overall,
Ln(Count) g LO mode, the IFM is more accurate (both lower BIC and RMSE) than the corresponding AFM.
Moreover, the best IFM model, using f Overall, Ln(Count) g LO mode, is still better than the best AFM
which using f Primary-Justify, Ln(Count) g LO mode. Thus, cross 8 modes on both AFM and IFM, the best
prediction model is still generated by IFM but using f Overall, Ln(Count) g LO mode.

Table IV. AFM vs. IFM On Predicting Post-test
Performance by f Primary-Justify, Ln(Count) g and f Overall,
Ln(Count) g modes

[ Mode [ Model | BIC [ 10-fold RMSE |
f Primary-Justify, Ln(Count) g | AFM 2414 4.6632E-01
IFM 2428 4.6791
f Overall, Ln(Count) g AFM 2443 4.7027E-01

IFM 2252 4.4529E-01

In order to compare AFM and IFM across eight modes, Wilcoxon Signed Ranks &sts were again conducted
on resulted 8 2 BIC and RMSE results. Result showed that IFM is marginally signi c ant better than AFM
across eight modesZ = ! 1:68, p = 0:093 for BIC and Z = ! 1:82, p = 0:069 for 10-fold CV RMSE
respectively. Previously, the best model for tting the traini ng dataset and type 1 predictions are generated
by IFM using fPrimary-Justify, Ln(Count) g LOs; on the task of predicting students' posttest performance
(type 2), however, the best model is still IFM but using f Overall, Ln(Count) g LO counts. To summarize, the
best performance of IFM is better than the best AFM and across the eight LOmodes and IFM is marginally
better than AFM model on type 2 prediction.

5. CONCLUSION

In this paper we investigated student modeling on a dataset involvirg multiple instructional interventions. We
proposed a cognitive model named IFM. We compared IFM with AFM and PFM on the training dataset.
We determined that including non-standard LOs such as tells and ex@ins as a separated parameter is
e ective in that the IFM models' out-performance PFM, AFM-Tell, an d AFM+Tell across all modes; but
for AFM modes, simply adding tells into AFM LO counts did not seemingly signi cantly improved the AFM
model's performance. This is probably because AFM gives a same learmjrrate for di erent instructional
interventions. For example, under thef Primary, Count g mode, the N, in AFM+Tell model is Elicit + Tell.
On one KC, KC,, the AFM had: the learning rate | = 0:011462. By contrast, the corresponding IFM
has three parameters: ¢ for benet of previous successes on skill k; i is the coe cient for the bene t of
previous failures, and  the coe cient for the benet of previous tells on skill k. For the same KC, the
IFM resulted ¢ = 0:083397; ¢y = ! 0:213746 = 0:031982. The values of the three parameters are quite
di erent from each other, which suggested the the benet of tells isin the middle of the bene t of success
and failure. Such patterns on learned parameters between AFM and IFM sbwed throughout our analysis.
It suggested that rather than using one learning rate parameters for di eent instructional interventions, it
is better to break them into categories and learn seperated parameters

In order to fully exploring the e ectiveness of three models, wefurther compared them on two prediction
tasks { unseen student prediction (type 1) and unseen step predi@on (type 2). Our results indicate that the
IFM model is signi cantly better than the AFM model on predicting u nseen student's performance on seen
steps (type 1) and marginal signi cant better on predicting seen stucents' performance on posttest (type 2).

Additionally, we examined the impact of including pretest performance in the LOs as well as qualitative
justi cation steps in the LOs. We found that the Primary-Justify mo de seems to be most e ective. Generally
speaking, models trained with logarithmic tabulation outperformed those trained with additive tabulation
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probably because the number of prior LOs counts in this study can be ralavely large. For example, the
average number of primary steps (including both elicits and tells)in the training data varies from 6 for KC 1
to 83 for KC 5.

Even though IFM model performed the best on modeling the training cata on both type 1 and type 2
predictions, its performance is heavily dependent upon the spéc prediction task being performed and the
way in which the speci c LOs were counted. For modeling the training data and type 1 prediction, it is the
best to using (Primary-Justify,Ln(Count)) mode; but for type 2 p redictions, it was best to include the pretest
data as well and thus using(Overall,Ln(Count)) mode for LO counts. Thus we conclude that, for datasets
involving multiple learning interventions, IFM is a more robust choice for student and cognitive modeling.
However the performance of IFM is heavily dependent upon the sped prediction task being performed and
the way in which the speci c LOs were counted. Experimenters famg a novel task should engage in some
measure of parameter- tting to determine the best t.
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In a previous study on a physics dataset from the Andes tutor, we found that the simple location
heuristic was better at making error attribution than the simple temporal heuristic when evaluated
on the learning curve standard. In this study, we investigated the generality of performance of the
simple location heuristic and the simple temporal heuristic in the math domain to see if previous
results generalized to other Intelligent Tutoring System domains. In support of past results, we
found that the simple location heuristic provided a better goodness of fit to the learning curve
standard, that is, it was better at performing error attribution than the simple temporal heuristic.
One observation is that for tutors where the knowledge components can be determined by the
interface location in which an action appears, using the simple location heuristic is likely to show
better results than the simple temporal heuristic. It is possible that the simple temporal heuristic is
better in situations where the different problem subgoals can be associated with a single location.
However, our prior results with a physics data set indicated that even in such situations the simple
location heuristic may be better. Further research should explore this issue.

Key Words and Phrases: Error attribution methods, Intelligent Tutoring Systems, learning curves, mathematics

1. INTRODUCTION

Increasingly, learning curves have become a standard tool for evaluation of Intelligent
Tutoring Systems (ITS) [Anderson, Bellezza & Boyle, 1993; Corbett, Anderson, &
O’Brien, 1995; Koedinger & Mathan, 2004; Martin, Mitrovic, Mathan, & Koedinger,
2005; Mathan & Koedinger, 2005; Mitrovic & Ohlsson, 1990] and measurement of
students’ learning [Anderson, Bellezza & Boyle, 1993; Heathcote, Brown, & Mewhort,
2002]. The slope of learning curves show the rate at which a student learns over time, and
reveals how well the tutor’s cognitive model fits what the student is learning. However,
these learning curves require a method for attributing error to the “knowledge
components” (skills or concepts) in the student model that the student is missing.
Knowledge components, concepts and skills will be used interchangeably in this paper. In
a previous study using data from the Andes Intelligent tutor [VanLehn et al., 2005], four
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alternative heuristics were evaluated - simple location heuristic (LH), simple temporal
heuristic (TH), model-based location heuristic (MLH) and model-based temporal
heuristic (MTH) [Nwaigwe et al., 2007]. When evaluated on the learning curve standard,
the two location heuristics LH and MLH, outperformed the temporal heuristics, TH and
MTH. However, the generality of performance of these heuristics in other ITS subject
domains needs to be tested.

In this study conducted in the mathematics domain, we investigated whether the
previous performance of the LH and TH generalized to other ITS domains. We
specifically asked if the LH was better than the TH at predicting student changes in error
rate over time. We used log data from a Cognitive Tutor on a Scatterplot lesson and
implemented the learning curves standard using the statistical component of Learning
Factors Analysis [Cen, Koedinger & Junker, 2005; Pirolli & Wilson, 1998].

Our intuition is that the LH may be the better choice for error attribution when
knowledge components (KCs) can be determined by the interface location where an
action occurs. To justify this, imagine that a worker has homes, H, and H, in which to
perform tasks A and B respectively. The worker goes to home H, and attempts task A but
fails. The worker abandons the failed task A and goes to home Hy, where he/she succeeds
at task B. The assumption is that tasks A and B are associated with different KCs. The
worker later returns to location H,, and this time, is successful at task A. The LH will
more rationally attribute the initial failed attempt at H, to the KC associated with task A
since its rule is to attribute error to the first successfully implemented KC at the initial
error location. The TH will however, wrongfully put blame on the KC associated with
task B since its method of error attribution is to blame the KC associated with the first
correctly implemented task.

Sometimes, TH might be a better choice for making error attribution. We believe this
to be the case when it is necessary to perform a set of tasks in a prescribed sequence. To
elaborate, imagine that homeschooler Bella is required to perform two tasks and in the
given sequence — eat breakfast (EB), and do schoolwork (DS) and in any of two
locations, L1 and L2 on the dining table of the family’s apartment. We again assume that
tasks EB and DS are associated with different KCs. Bella decides that she did not like
what Mom served for breakfast that morning and goes straight to her schoolwork, DS, at
location L1, skipping task EB. However, Bella fails at task DS due to hunger associated
distractions. Later, she abandons task DS and revisits and succeeds at task EB at location
L2. Bella then goes back location to L1 and completes task DS. In attributing blame, TH
will rationally blame the KC associated with task EB. However the LH will wrongfully
blame the KC associated with task, DS. These examples imply that it may be better to
apply heuristics in making error attribution.

Although an immediate purpose for error attribution is to drive learning curve
generation, the assignment of blame problem is more general and affects many aspects of
student modeling.

2. ERROR ATTRIBUTION HEURISTICS

A basic assumption of many cognitive models is that knowledge can be decomposed into
components, that each component is learned independently of the others and that
implementation of a step in the solution of a problem is an attempt to apply one or more
knowledge components (KCs). When correct solution steps are generated, either by an
expert system or a human expert, the step is often annotated with the KCs that must be
applied in order to generate the step. Thus, when a student enters that step, the system
can infer that the student is probably (but not necessarily) applying those KCs.
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An ITS system can be designed to anticipate and generate some incorrect steps and
associated goals, however, it is rare for expert systems or expert authors to anticipate and
generate a large number of incorrect steps and corresponding goals. Hence, when the
student enters an incorrect step, it is often not clear what KC(s) should have been applied,
so the system cannot determine which KC(s) the student is weak on. If the system simply
ignores incorrect steps, then it only “sees” successful applications of KCs. It cannot
“see” failures of a KC. It may see lots of incorrect steps, but it cannot determine and
record what KC(s) to blame for each error [VanLehn et al, 2005] and so, learning curves
cannot be generated. This suggests using heuristics.

The tutoring system usually has two clues available: the location of the incorrect step
on the user interface and the subsequent steps entered by the student. For instance, if a
student makes an error on a step at time 1 and at location A, the student will often attempt
to correct it immediately, perhaps with help from the tutor. So if the first correct step, at
time 2 is also at location A, and say, that the step is annotated with KC x, then it is likely
that the incorrect step at time 1 was a failed attempt to apply KC x. This heuristic allows
the system to attribute errors to KCs whenever the system sees a correct step immediately
following the target incorrect step, and both steps are in the same location on the user
interface.

However, it is not clear how to generalize this heuristic. What if the next correct step
is not in the same location? What if there are intervening incorrect steps in different
locations? In previous work using data from the Andes Physics Tutor, four automated
heuristics for making error attribution (LH, TH, MLH, MTH) were proposed and
evaluated guided by whether the heuristic was driven by location or by the temporal order
of events [Nwaigwe et al, 2007].

For every error transaction, LH attributes blame to the KC mapped to a subsequent
correct entry at the widget location where the error occurred [Anderson, Bellezza &
Boyle,1993; Koedinger & Mathan, 2004; Martin, Mitrovic, Mathan, & Koedinger, 2005]
while the TH ascribes blame to the KC that labels the first correct entry in time. When
there is no subsequent correct entry with a label of the error location, LH blames the KC
with the first correct entry in time, that is, it implements the behavior of TH. When the
tutor provides a choice of some KC to blame for an error, the MLH goes with the tutor’s
choice otherwise, it simply implements the LH. For an error transaction, MTH also goes
with the domain model’s choice if one exists, otherwise it implements the TH.

In this work, we examine the performance of the LH and TH in the mathematics
domain. Table I shows sample log transaction from the cognitive tutor for the scatterplot
lesson. The table illustrates how the LH and the TH can help resolve the error attribution
ambiguity. Columns in table 1 are described thus: “location” column indicates the place
on the interface (the interface widget) in which the student made an input; “Outcome”
indicates if an input is correct or not, while “Student Model KC” lists the system’s choice
of KC which the student should implement.

In row 1, the student makes an error at the location labeled, “var-Oval-1”. The system
however does not indicate the KC the student ought to be practicing. To resolve this
ambiguity, the LH uses the KC that labels a subsequent correct entry in the same location
—see row 5. That is, it chooses “choose variable”. On the other hand, the TH chooses the
KC that labels the first correct entry in time, irrespective of interface location. Its choice
is “label x-axis”. In row #2, the domain model blames the KC “choose variable” for the
student’s error. LH chooses “choose variable” since it is the first correctly implemented
KC at the location “var-Oval-1”. TH blames the KC “label x-axis” in this case.

In the prior study, the cognitive model generated by the LH was found to outperform
that of the TH and also, the tutor’s original model according to the learning curve



74 Adaeze Nwaigwe and Kenneth Koedinger

standard. In other words, the LH was better at making error attributions than the other
two cognitive models. Compared to the TH, we also found that the error attribution
method of the LH was more like that made by human coders. In this work, we conduct
our analysis in the math domain and compare the performance of the LH to that of the
TH based on the learning curve standard. Our goal is to see if the previous performance
of the LH and TH can be generalized to other intelligent tutoring system domains.

Table I. Table illustrating different error attributions made by the 2 methods

. Student ModelKC Error Attributions methods

i Location |Outcome
KC LH TH

1 var-Oval-1 incorrect choose variable  [label x-axis
2 \var-Oval-1 fincorrect |choose variable|choose variable label x-axis
3 ar-1val-1 [correct label x-axis label x-axis label x-axis
4 \var-Oval-1 [incorrect choose variable choose variable
5 var-Oval-1 |correct choose variable|choose variable choose variable

3. LEARNING CURVES

Learning curves plot the performance of students with respect to some measure of their
ability over time [Anderson, Bellezza & Boyle, 1993; Corbett, Anderson, O’Brien, 1995;
Koedinger & Mathan, 2004; Martin, Mitrovic, Mathan, & Koedinger, 2005; Mathan &
Koedinger, 2005; Mitrovic & Ohlsson, 1990]. For ITSs, the standard approach is to
measure the proportion of knowledge components in the domain model that have been
“incorrectly” applied by the student. This is also known as the “error rate”. Other
alternatives exist, such as the number of attempts taken to correct a particular type of
error. Time is generally represented as the number of opportunities to practice a KC or
skill. This in turn may be determined in different ways: for instance, it may represent
each new step a student attempts that is relevant to the skill, on the basis that repeated
attempts at the KC are benefiting from the student having been given feedback and as-
needed instruction about that particular skill and hence may improve from one attempt to
the next. If the student is learning the KC or skill being measured, the learning curve will
follow a so-called “power law of practice” [Mathan & Koedinger, 2005]. If such a curve
exists, it presents evidence that the student is learning the skill being measured or
conversely, that the skill represents what the student is learning.

3.1. THE LEARNING CURVES STANDARD
The power law applies to individual skills and does not take into account student effects.
The statistical component of Learning Factors Analysis (LFA) extends the power law to a
logistic regression model which accommodates student effects for a cognitive model
incorporating multiple knowledge components and multiple students [Cen, Koedinger, &
Junker, 2005], see equation 1. The following are the assumptions on which equation 1 is
based:

1. Different students may know more or less initially. An intercept parameter of

this model reflects each student’s initial knowledge.
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2. Students learn at the same rate. Thus, slope parameters do not depend on the
student. Slope parameters reflect the learning rate of each KC which the student
model encompasses and are independent of student effect. This assumption
made so as to reduce the number of parameters in equation 1 and is further
justified since equation 1 is focused on refining a cognitive model rather than on
evaluating students” knowledge growth [Draney, Pirolli & Wilson, 1995].

3. Some KCs are more likely known than others. An intercept parameter for each
KC captures initial difficulty of the skill.

4. Since some KCs are easier to learn than other, the model of equation 1 uses a
slope parameter to reflect this for each skill. Larger values for initial difficulty
reflect tougher skills.

In[p/(1-p)] = ¥ ™ Xi + T #Y; + 1 §Y|T;. Q)

where p — the probability of success at a step performed by student i that requires
knowledge component j; X; and Y; — the dummy variable vectors for students and
knowledge components respectively; T; — the number of practice opportunities student i
has had on knowledge component j; !; — the coefficient that models student i’s initial
knowledge; "j — the coefficient that reflects the initial difficulty of knowledge component
J where larger values of initial difficulty reflect tougher skills; # — the coefficient that
reflects the learning rate of knowledge component j, given its practice opportunity.

In this paper, the model of equation 1 is used to apply the learning curve standard.
Bayesian Information Criterion (BIC) [Wasserman, 2004] is used to estimate prediction
risk in the model while loglikelihood is used to measure model fit. Lower BIC scores,
mean a better balance between model fit and complexity.

4. DATA SOURCE

The data used for this research was collected as part of a study conducted in a set of 5
middle-school classrooms at 2 schools in the suburbs of a medium-sized city in the
Northeastern United States. Student ages ranged approximately from 12 to 14 years. The
classrooms studied were taking part in the development of a new 3-year cognitive tutor
curriculum for middle school mathematics [Baker, 2005; Baker., Corbett, Koedinger &
Wagner, 2004]. Data collected was from the study on these classrooms during the course
of a short (2 class periods) cognitive tutor unit on scatterplot generation and
interpretation. Scatterplots depict the relationship between two quantitative variables in a
Cartesian plane, using a point to represent paired values of each variable.

The scatterplot lesson consisted of a set of problems and for each problem, a student
was given a data set to generate a graph. The student then had to choose from a list, the
variables that were appropriate for use in the scatterplot (see figure 1); those that where
quantitative or categorical; and subsequently whether a chosen variable was appropriate
for a bar chart.

Next the student was required to label the X and Y-axis (see figure 2), and to choose
each axis bound and scale. The student was then required to plot points on the graph by
clicking on the desired position on the graph. Finally, the student was required to answer
a set of interpretation questions to reason about the graph’s trend, outliers, monotonicity,
and extrapolation and in comparison with other graphs. In our dataset, students solved a
maximum of six problems and a minimum of two in the scatterplot lesson.
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Figure 1 Scatterplot lesson interface for choosing variable type [Baker, 2005]

Figure 2 Interface for graph creation in the scatterplot lesson [Baker, 2005]
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5. METHODOLOGY

The algorithms for the LH and TH used in this research was implemented in pure java 1.6
and designed to process student log data in MS Excel format. Both algorithms used
sequential search. Log data from the cognitive tutor unit on scatterplot generation and
interpretation served as input to the programs. The output from each program was the
choice of KC codes made by the heuristic being implanted as explained in section 2.

To analyze the cognitive model of each heuristic according to the learning curve
standard, the data output from each program was then fit to equation 1 to derive learning
behavior. The coefficients of equation 1, initial KC difficulty ("";), initial student difficulty
(1) and KC learning rate (#) were used to describe learning behavior for each heuristic. If
the intercept of a KC was higher, then, its initial difficulty was lower. Further, if the slope
of each KC was higher, then, the faster students learned that skill. For the model of each
heuristic, BIC score was used to estimate prediction risk while loglikelihood was used to
measure model fit.

6. RESULTS AND DISCUSSION

Table 11 summarizes the results of the learning curve standard for the student models for
both the LH and TH. The results show that the simple location heuristic, LH (BIC score:
7,510.12) shows better fit to the learning curve standard compared to the simple temporal
heuristic, TH (BIC scores: 7,703.58). This means that the model of the LH is more
reliable and so, a prediction error is more likely to occur if one used the TH model.
Loglikelihood score was also better for the LH (-3,370.37) than for the TH (-3,464.93),
indicating that the LH model was a better fit to the data than the competing TH model.
This shows how the different error attribution methods affect the result.

Table II. Results of the Learning Curve Standard

TH LH
logLikelihood -3,464.93 -3,370.37
BIC 7,703.58 7,510.12
Learning Rate (!;) | Mean (Std) 0.09 (0.09) 0.133 (0.11)
Initial KC | Mean (Std) -1.81 (0.94) 0.08 (1.10)
Difficulty (')
Initial Student | Mean (Std) 2.03 (0.61) -0.00 (0.63)
Difficulty (#)
# of KCs 17 17
# of transactions across entire | 16,291 16,291
scatterplot lesson
# of students 52 52
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Table 11l. Knowledge Component Details for the two Heuristics
Simple Temporal Heuristic | Simple Location Heuristic
(TH) (LH)

Knowledge Ave | I Ave | " I
Component (KC) Opp | (Initial (learning | Opp | (Initial (learning

difficulty) | rate) difficulty) | rate)
CHOOSE-VAR-TYPE-
CAT 6.6 -1.449 0.076 6.6 0.048 0.244
MMS-VALUING-
DETERMINE-SET-
MAX 6.9 -0.793 0 6.2 1.275 0
MMS-VALUING-
DETERMINE-SET-
MIN 6.3 -0.361 0.031 6.2 1.587 0.063
QUANTITATIVE-
VALUING-FIRST-BIN | 6.1 -2.642 0.159 5.5 -0.565 0.163
QUANTITATIVE-
VALUING-SECOND-
BIN 5.6 -0.947 0 5.4 0.879 0.052
MMS-VALUING-
LABELSUSED 6.9 -2.625 0.049 5.8 -0.942 0.219
CHOOSE-VAR-TYPE-
NUM 18.2 | -1.044 0.038 16.2 | 0.799 0.044
MMS-VALUING-
DETERMINE-SCALE | 53.1 | -0.069 0.007 50.2 | 2.364 0
MMS-VALUING-
LABELSUSED-PLUS2 | 5.9 -1.99 0.063 5.8 -0.805 0.187
TEST-SLOPE 3.3 -2.213 0.131 3.3 0.238 0
CHOOSE-OVERALL-
REL 5.0 -3.175 0.257 5.2 -0.865 0.149
EXTRAPOLATE 1.7 -2.093 0 15 0.206 0
CHOOSE-OK-BG 115 | -1.708 0.198 11.4 | 0.263 0.215
CHOOSE-X-AXIS-
QUANTITATIVE 4.3 -2.572 0.274 3.2 -0.719 0.314
CHOOSE-Y-AXIS-
QUANTITATIVE 3.7 -2.618 0.018 3.2 -1.884 0.276
MMS-VALUING-
DETERMINE-MIN 6.3 -3.053 0.119 5.8 -1.106 0.139
MMS-VALUING-
DETERMINE-RANGE | 6.3 -1.357 0.147 6.1 0.584 0.196

Generally, we observed that, the LH performed better than the TH when the student
failed to successfully complete an attempted step and subsequently attempted and
succeeded at a different step. As shown in table I, the student unsuccessfully attempted a
step at location “var-Oval-1” (trn # 1 & 2). The student subsequently went to location
“var-1val-1”, attempted and succeeded at the new step. While the TH incorrectly blamed
“label x-axis” which is the KC associated with the new step at location “var-1val-1”, the
LH more rationally blamed “choose variable” which is the KC that should be associated
with the step at location “var-Oval-1”. Because the LH uses location for error attribution,
it correctly assigns blame to the KC associated with the error. TH however, wrongfully
blames the first subsequent KC that the student correctly attempts. Of the 16,291
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transactions in our dataset, error transactions recorded were 5,733. Of the latter, the LH
and TH differed on 1,583 (36%) transactions with respect to error attribution choices.

We also found that both the LH and the TH had the tendency to yield the same result
when the student succeeded at a step, even after multiple attempts, prior to attempting
and succeeding at a new step. This was the case 64% of the time.

In table 111, average practice opportunity, initial KC difficulties and learning rates are
given for KCs and used to describe learning behavior for each heuristic. For example, for
the KC “CHOOSE-VAR-TYPE-CAT”, the learning rate (!;) for the LH was more than 3
times that of the TH. Judging by KC initial difficulty (*";), “CHOOSE-VAR-TYPE-CAT”
appeared more difficult for the model of the TH (-1.449) than for the model of the LH
(0.244). The average practice opportunity measured for that skill (6.6), was the same for
each heuristic. The latter means that on the average, each student had approximately 7
opportunities to practice the KC “CHOOSE-VAR-TYPE-CAT”.

From table Il1, for the most part, KC learning rate was higher for the skills in the
cognitive model of the LH compared to that for the TH. The trend for initial KC
difficulty was in the opposite direction as seen for KCs such as “MMS-VALUING-
DETERMINE-SET-MIN”, “QUANTITATIVE-VALUING-SECOND-BIN”, etc.
Generally, KCs in the cognitive model for TH appeared more difficult to students
initially, when compared to similar KCs in the cognitive model of the LH.

From table Il, the mean learning rate for the LH was 0.133(+0.11) which evaluated
higher than that of the TH, 0.09(+0.09). The mean initial KC difficulty for the LH and
TH were 0.08(+1.1) and -1.84(+0.94) respectively. The reason for the latter seems to be
due to more errors being attributed to later opportunities in the TH than the LH. These
results thus illustrate the effects of error attribution.

7. CONCLUSION

In this paper, we investigated the generality of performance of two alternative methods
for making error attribution in intelligent tutoring systems - the simple location heuristic
and the simple temporal heuristic. Our study was carried out in the mathematics domain
using data from a cognitive tutor unit on scatterplot generation and interpretation. In
support of previous results obtained in the physics domain, we found that the simple
location heuristic was better at predicting students’ changes in error rate over time
compared to the simple temporal heuristic. This work shows that simpler, easier-to-
implement methods can be effective in the process of making error attribution.

One observation is that for tutors where the KCs can be determined by the interface
location (or widget) in which an action appears it is likely that the LH will show better
results than the TH. This feature is mostly true of the scatterplot tutor. It is possible that
the TH is better in situations where the different problem subgoals can be associated with
a single location. However, our prior results with a physics data set indicated that even in
such situations the LH may be better. Further research should explore this issue.

We also intend to investigate whether the use of the simple location-based heuristic
may improve on-line student modeling and associated future task selection. The
availability of datasets from the Pittsburgh Science of Learning Center’s ‘DataShop’ (see
http://learnlab.org) will facilitate the process of getting appropriate data.
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Items, skills, and transfer models: which really
matters for student modeling?

Y. GONG ANDJ. E. BECK
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Student modeling is broadly used in educational data mining and intelligent tutoring systems for making
scientific discoveries and for guiding instruction. For both of these goals, having high model accuracy is
important, and researchers have incorporated a variety of features into student models. However, since different
techniques use various features, when evaluating those approaches, we could not easily figure out what is key
for a high predictive accuracy: the model or the features. In this paper, to establish such knowledge, we
performed empirical studies varying which features the models considered such as items, skills, and transfer
models. We found that item difficulty is a better predictor than skill difficulty or student proficiencies on the
transfer model. Moreover, we evaluated two versions of the PFA model; the one with item difficulty resulted in
slightly higher predictive accuracy than the one with skill difficulty. In addition, prior work has shown that
considering student overall proficiencies, not just those thought to be important by the transfer model, works
substantially better on ASSISTments data. However, in this study, we failed to find consistency of this
phenomenon on the data collected from the Cognitive Tutor.

Key Words and Phrases: Performance factors analysis, item difficulty, student performance, predictive accuracy

1. INTRODUCTION

Student modeling has been broadly used in educational data mining and applications of
intelligent tutoring systems (ITS) for discovering scientific truth about student knowledge,
performance, behaviors and motivations, with the goal of leading to a better
understanding of students. A wide array of research has been conducted based on student
modeling, such as research related to !Gaming the system™ [2, 10], the impacts of student
non-academic strengths on learning [1, 11], and the effect of item order on student
learning [16]. Furthermore, a good student model is also indispensable for a successful
ITS. Given the effectiveness of ITS [9, 15], findings such as one-to-one tutoring is better
than classroom tutoring [3], and that a step-based computer tutor was not outperformed
by human tutors [7], give us a sense that a reason for an ITS#s success is its ability to
provide individualized tutoring (one-to-one tutoring). Such tutoring relies on the support
of an accurate student model in order to understand students.

Our research interest in this paper lies in student modeling. We simply wish to study
what makes a good student model. There is more than one criterion for judging the
goodness of a student model [21]. In this study, we focus on the student model#s
predictive accuracy. Although student models are frequently evaluated, it can be difficult
to know what aspect is responsible for a success or failure. As a result, knowledge as to
what makes an accurate student model is insufficient. Our goal in this study is to use the
same student modeling framework for different evaluations, to construct guidance about
what features (student model components) are important for designing an accurate
student model.

There are many potential features that can inform a student model. In this study,
items, skills and transfer models were chosen for evaluation, as those are the most
commonly used components across different student modeling techniques. In addition, it
is also meaningful to examine complete student models constructed with those features,
as knowledge about whether and how much multiple features can contribute higher
accuracy is also significant. Therefore, we evaluated a series of student models.

1.1. STUDENT MODELING FRAMEWORK

Authors# addresses: {Y. Gong, J. E. Beck}, Computer Science Department, Worcester Polytechnic Institute,
U.S.A. E-mail: {ygong, josephbeck}@wpi.edu.
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Performance Factors Analysis (PFA) is a student modeling approach proposed by Pavlik,
et al. in 2009 [19]. It takes the form of logistic regression with student performance as the
dependent variable. We chose PFA as our framework as, relative to Bayesian networks,
logistic regression is more flexible to incorporate more (or different) predictors.

It is particularly important to note that there are two student models, both of which
were named as Performance Factors Analysis. Both models were designed based on the
reconfigurations of Learning Factors Analysis [4] by dropping student variable and
considering a student#s prior correct and incorrect performances. The two models vary in
their independent variables. The model presented in [20] estimates item difficulty (i.e.
one parameter per question); the other [19] estimates skill difficulty (i.e. one parameter
per skill. Note that in the original paper [19], the authors used the term !knowledge
components (KC)" while we use the term !skills™). In this paper, we refer to the first
model as the PFA-item model; the other is represented as the PFA-skill model.

m(i, j required _skills,q questions,s, f) | (s f

Iy i i,j)
j required _skills
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much error the model makes in predicting each data point, compared to a model that uses
the mean of the those data to predict. A 0 indicates the model does no better than simply
predicting the mean; a 1 indicates prefect prediction. A negative value of Efronts R?
indicates that the model has more error than a model that just simply guesses the mean
for every prediction. AUC of the ROC curve evaluates the model#s performance on
classifying the target variable which has two categories. In our case, it measures the
model#s ability to differentiate students# positive and negative responses. AUC of 0.5 is
the baseline, which indicates random prediction.

In the result section, we report the comparative results by providing the R? and AUC
measurements across all four folds. To test the differences of the means, we also
performed paired two-tailed t tests using the results from the crossvalidation with degrees
of freedom of N-1, where N is the number of folds (i.e. df=3).

2. STUDENT MODEL COMPONENTS
Many student model components could be important for enabling a student model to
achieve high accuracy in predicting student performance.

Student proficiencies on required skills are widely used in many student modeling
techniques [4, 5, 19, 20]. Since the transfer model is responsible for providing which
skills are required to solve a problem, we refer to Tusing student proficiencies on required
skills to predict” as lusing transfer models to predict”. The transfer model is often treated
as the primary component in student modeling, so is the first component we considered.

Our question was simple: how much variance do transfer models account for?
Specifically, how much can a model#s predictive accuracy benefit from observing a
student#s prior performances on required skills? To answer this question, we designed a
model that solely considers student proficiencies on the transfer model. We accomplished
the model on the basis of the PFA-item model by removing the predictor, item difficulty

(
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2.1. RESULTS
In this section, we examine the predictive power provided by different student model
components, including item difficulty, skill difficulty and student proficiencies on the
skills in the transfer model. Since each of our models only consider a single feature, the
results of testing the model can be attributed to that component.

With respect to modeling item difficulty, we were forced to make a compromise when
designing the models. Due to a characteristic of the Cognitive Tutor data, it is not
sensible to use the question#s identity. In the Cognitive Tutor, a question can have
multiple steps, each of which typically requires different skills. Therefore, in the
Cognitive Tutor, if a question identity occurs multiple times in the student performance
records, we cannot simply assume that they concern the same question. For example, a
record might be the first step of a question, while another record with the same question
identity might be the tenth step of the question. The difficulties of the two steps are
probably not the same as they involve different skills and different aspects of the question.
For modeling skill difficulty, there is no difficulty, but it presents clear problems for
modeling item difficulty. A solution is to build a new question identity combining the
original question identity and the skills required in a step [18]. For instance, if the
original question id is Q1 and the first step of the question requires 'Addition”, we can
build a new question id, Q1-Addition; while if the tenth step requires 'Using small
numbers”, we have another question id, Q1-UsingSmallNumbers. However, this way
results in a very large number of question identities, over 8000 in our data, and it causes a
severe computational problem for logistic regression and an inability to fit the model
within SPSS, even with increased memory. Therefore, we made a pragmatic decision:
for each step, we represented its difficulty using the summation of the difficulty of the
original question and the difficulties of the required skills in that step. In this way, the
computational cost is greatly reduced and an approximate difficulty for the step can be
estimated. The corresponding equation is shown Equation 3.

m(i, j,q questions,s, f) O ()

j required _skills
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predictor, instead item difficulty is an even more powerful predictor of student
performance. This finding is also consistent with the finding in the study using the data
gathered from ASSISTments [13], suggesting that item difficulty can cover more
variance of student performance is a general phenomenon across different computer
tutors and different populations.

Table I also shows the results of comparing skill difficulty and student proficiencies
on the transfer model. The results of the two metrics do not agree with each other, but
both differences are found to be reliable: p=0.03 in R? and p=0.02 in AUC; therefore, it is
still uncertain about whether skill difficulty or student proficiency is more important for
predicting student performance.

3. STUDENT MODELS

Aside from getting knowledge about how components perform in isolation, it is also
important to understand the predictive accuracy of complete models using multiple
features, such as the full PFA-item model (Equation 1). It makes sense to examine a
complete model as a whole for the following two reasons. First, from a scientific point of
view, it is interesting to find out whether different features account for unique variation in
predicting student behavior, or whether one feature largely subsumes another. Second,
from a practical point of view, knowing whether adding a certain feature is a positive step
for improving the model#s predictive accuracy helps design a compact, yet effective
student model.

3.1. THE TWO VERSIONS OF THE PFA MODEL
We examine the two PFA models, PFA-item and PFA-skill, because direct comparisons
between these two have never been performed.

When the PFA-skill model was presented, the designers of the model, using data from
Cognitive Tutors, performed evaluations against a well-established student model,
Knowledge Tracing, and found that on the student population of Cognitive Tutor, the
PFA-skill model is somewhat superior to KT [19]. On the other hand, our prior work
applied the PFA-item model to another tutor, ASSISTments, and found that the PFA-item
model was markedly superior to KT [12]. Since there have been no studies comparing
PFA-item and PFA-skill at the same time and on the same population, we are unsure
about the reason for this difference of results.

3.2. A VARIANT OF THE PFA MODEL: THE OVERALL PROFICIENCIES
MODEL

We proposed the overall proficiencies model, a variant of the PFA-item model, in prior
work [13]. This model incorporates the idea that student proficiencies on all skills, not
just those the transfer model thinks are required for a particular item, could be important
for better predicting student performance on the item. Prior work found that this model
performed significantly better than the PFA-item model on ASSISTments data [13]. In
this study, we wanted to extend this model to another tutoring environment, Cognitive
Tutor, and another population, students of Cognitive Tutor. Since there are many
differences between the two systems, we aimed to use this study to better understand the
overall proficiencies model.

We had two hypotheses to support the reasonableness of the overall proficiencies
model. The first is that the assumption of using transfer models to predict might not
always hold, as transfer models assume that only student proficiencies on the required
skills have impact on question solving. In other words, student proficiencies on non-
required skills are independent of student performance on the problem. However, it is not
always true for all ITSs, perhaps due to the possibility that there are relationships
between required skills and non-required skills, which are not well captured by the
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transfer model; or perhaps problems involve a broader range of skills than the subject
matter expert believed and encoded in the transfer model. Second, since in some student
modeling techniques, student ability is viewed as a factor helpful for producing higher
model accuracy [4, 17], we assume that a student#s overall proficiencies can be treated as
a sign to reflect the student#s overall ability. Thus using those is able to provide the
model more information about the student, so as to enable the model to reach higher
predictive accuracy.

The overall proficiencies model is built based on the PFA-item model. We modified
the PFA-item model#s predictors by replacing REQUIRED_skills with ALL_skills the
subscript on the
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per original question identity). If we implemented the model in its original way, it would
have around 8000+ parameters (each per created question identity). As a consequence of
having additional parameters, the PFA-item model is prone to overfitting. To demonstrate
overfitting, in Table Il we report the R? on the training data for each fold. For each
model, we compared the R? values on training data with the R? values on test data. We
found that compared to the PFA-skill model, the PFA-item model#s performance dropped
considerably. Given that the two models performed closely on the test data, the better
performance on training data of the PFA-item model did not transfer to test data,
suggesting overfitting occurred. However, perhaps with a larger dataset the models#
training- and test-set performances would be more similar.

Table 111 Model performance (R?) on training data

PFA-item PFA-skill Overall proficiencies
Fold 1 0.229 0.185 0.234
Fold 2 0.284 0.241 0.286
Fold 3 0.231 0.187 0.232
Fold 4 0.237 0.192 0.240
Mean 0.245 0.201 0.248

In this study, we also applied the overall proficiencies model on the Cognitive Tutor
data. Interestingly, the model did best in all four folds on the training data, shown in the
last column of Table I1l, but performed the worst on the test data, shown in the last two
columns of Table II. Furthermore, the results in Table Il have more variability than the
PFA-item and PFA-skill models, indicating that the overall proficiencies model
performed even more unstably on different students. The results suggest that the overall
proficiencies model on the Cognitive Tutor data has serious overfitting problems, and is
not suitable for their student records, at least with amount of data used in this study. More
discussions about the potential reasons are presented in the section of future work.

4. CONTRIBUTIONS
This study performed explorations of student modeling and contributed basic knowledge
to the community.

First, we provided insights in terms of what student model components matter for
building an accurate student model of student performance. Different student model
components have been used in various student modeling techniques [4, 5, 13, 19, 20], yet
thorough inspections of the effectiveness of those components on producing accurate
predictions were missing. As a replication and extension of our prior work [13], this work
considered one more student model component, skill difficulty, and also tested student
model components on another population: students of Cognitive Tutor. Similar to our
previous finding, item difficulty is more accurate for predicting student performance than
student proficiencies on skills related to the problem. The finding is important, especially
given that student proficiencies on related skills are widely used in almost all well-
established student modeling techniques. However, using item difficulty can result in a
painful model fitting process, depending on the number of items in the data set. Take
PFA as example, logistic regression is particularly time-consuming in the presence of a
large number of predictors. Therefore, we suggest that although item difficulty works
better for forming an accurate student model, decisions should be made based on concrete
characteristics of the data, especially given that, for the Cognitive Tutor data, item
difficulty only slightly outperformed skill difficulty.

Second, Performance Factors Analysis refers to two different models. In this paper we
differentiated them as the PFA-item model and the PFA-skill model. The PFA-skill
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model was evaluated against KT and found to be somewhat better [19]; while the PFA-
item model was compared with KT as well, but shown with substantially better
performance [12]. The direct comparison between the two models has never been
performed, leading to uncertainty about their relative performance. In this study, we
found that on the Cognitive Tutor data, the PFA-skill model is slightly worse than the
PFA-item model, yet with much fewer parameters estimated. The PFA-item model by
contrast, for our data set, estimates a large number of parameters. Even with the restricted
to be computationally tractable method, it still produced 900+ more parameters, which
resulted in a relative 3% improvement. In addition, the PFA-item model is more prone to
overfitting. Our results suggest that the PFA-skill model is a good option for predicting
student performance data similar to the Cognitive Tutor data.

Finally, we proposed a variant of the PFA model, the overall proficiencies model, in
our prior work and showed that the model works substantially better than PFA-item on
ASSISTments data [13]. Therefore, applying the model to data from a different tutor
environment and a different student population helps achieve a deeper understanding of
this new model. We found that the similar trend was not observed on Cognitive Tutor
data, as the overall proficiencies model performed poorly on the test data, indicating that
the model cannot be generalized on those held-out students. The results suggest the
overall proficiencies model does not universally result in a stronger model fit. We have a
number of hypotheses for what characteristics would be, so the detailed conditions that
make the model perform better are still uncertain for us.

5. FUTURE WORK AND CONCLUSIONS
This study creates several unanswered questions that motivate further research work.

To establish the fundamental knowledge with respect to what component matters for a
student model, broader inspections of the components involving different experimental
populations and different tutors are still needed, especially given the uncertainty of
whether skill difficulty and student proficiencies on the transfer model is able to produce
more accurate prediction. In addition, since ASSISTments has several different features
from Cognitive Tutor in its pedagogical policies, transfer models, student population, etc.,
it is meaningful to test the PFA-skill model on the ASSISTments data to see whether it is
comparable to the PFA-item model, or whether the differences between the tutors cause
one model to outperform the other.

We have no clear answers to explain what major differences between the Cognitive
Tutor data and the ASSISTments data cause so different predictive performances of the
overall proficiencies model. As we hypothesized in prior study [13], there were at least
two potential reasons for the success of the model.

First, the transfer model used in ASSISTments might not be specific enough to
explicitly designate all associations between a question and its required skills. Thus,
student proficiencies on non-required skills are not independent of the proficiencies on
required ones. In other words, there might be relationships between required and non-
required skills. Given that the model performed poorly on the Cognitive Tutor data, we
think it is due to the following two conditions of the Algebra Cognitive Tutor.

1. The comprehensiveness and correctness of the transfer model.

In fact, the domain expert of ASSISTments intensively encoded a smaller range of
skills in the transfer model, assumed that the prerequisite skills are required by default,
and thus did not indicate them in the transfer model. Therefore, in ASSISTments, if a
question requires Pythagorean Theorem, it is highly likely that it also requires equation
solving and square root, but the relationships are not captured by the transfer model. The
Cognitive Tutor by contrast, has much more meticulous representation. For example, it
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has skills such as 'Remove constant”" in equation solving, !'Remove coefficient" in
equation solving, 'Entering a given", etc. Those skills are all hidden beneath a single skill
Tequation solving" in ASSISTments. Specifically, there are 104 mathematical skills in
ASSISTments, covering five strands of middle school Math: algebra, geometry,
measurement, number sense and data analysis. By contrast, the Cognitive Tutor has 110
skills just for algebra. The comprehensive transfer model of Cognitive Tutor might be a
reason to cause the overall proficiencies model to lose its advantage to deal with
implicitly existing relationships between required and non-required skills. An additional
factor is the degree of knowledge engineering. The Cognitive Tutors# transfer models
have been refined over years of experiments, while ASSISTments transfer models were
made similarly to most ITS: a subject-matter expert designed them. Although we lack
data, we suspect the Cognitive Tutor#s transfer models are more accurate, and this factor
could certainly impact which student modeling approach works better.

2. The way of tutoring

In ASSISTments, a student enters a single answer to an item, and only has to answer
subsidiary !scaffolding™ questions in the event the student answers a main question
incorrectly. In contrast, in the Cognitive Tutor, no scaffolding questions (steps) are
allowed to be skipped. A main question in ASSISTments typically asks higher abstract-
level skills, i.e. ask all detailed skills at once; while its scaffolding questions test more
specific skills. Thus, flexibly accessing to scaffolding questions causes the model to miss
chances to observe student performance associated with fine-grained skills. Consider that
if a student makes a successful practice on a skill, it is likely that the student#s knowledge
on many other skills benefits from it as well, and just simply we don#t have the chance to
observe that. Contrariwise, Cognitive Tutor forces a question to be broken down into
steps, so it is not possible for the model to miss any observations of a student practicing
on any skills; a correct response of a skill probably has little impact on other skills.

Second, since scaffolding questions are not always used, there were fewer
observations of students solving problems that test individual skills in the ASSISTments
tutor [13]. Therefore, the student overall proficiencies provides useful evidence to the
model to enable the model to more accurately predict. For the Cognitive Tutor data used
in this study, due to solving each step being mandatory, there were many more
observations for each skill. In addition, within the Cognitive Tutor there was more
intensive usage by students. Specifically, for fine-grained algebra skills of the Cognitive
Tutor, there were approximately ~100 observations per student per skill; in ASSISTments,
with its 104 coarser-grained skills, there were on average fewer than 10 observations per
student per skill. Therefore, for the Cognitive Tutor data, dense evidence for a student#s
performance on those fine-grained skills might also be a reason for the poor performance
of the overall proficiencies.

In summary, this study explored what matters for a student model in terms of
producing higher accuracy in predicting student performance. Consistent with our prior
finding, for predictive accuracy. item difficulty outperformers transfer models, the most
widely used student model components, as well as skill difficulty. The comparisons
between the PFA-item and the PFA-skill models brought up an insight that the PFA-skill
model is slightly worse than the PFA-item model, but has fewer parameters, a smaller
problem of overfitting, and is much more computationally tractable. We extended the
overall proficiencies model to the data collected from Cognitive Tutor and found it
performed worse than the PFA-item model, suggesting that the overall proficiencies
model works well only under certain conditions of an ITS, an area that needs additional
exploration.
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Avoiding Problem Selection Thrashing with
Conjunctive Knowledge Tracing
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One function of a student model in tutoring systems is to select future tasks that will best meet student needs. If
the inference procedure that updates the model is inaccurate, the system may select non-optimal tasks for
enhancing studentsd learning. Poor selection may arise when the model assumes multiple knowledge
components are required for a single correct student behavior. When the student makes an error, a deliberately
simple model update procedure uniformly reduces the probability of all components even though just one may
be to blame. Until now, we have had no evidence that this simple approach has any bad consequences for
students. We present such evidence. We observed problem selection thrashing in analysis of log data from a
tutor designed to adaptively fade (or reintroduce) instructional scaffolding based on student performance. We
describe a conjunctive knowledge tracing approach, based on techniques from Bayesian networks and
psychometrics, and show how it may alleviate thrashing. By applying this approach to the log data, we show
that a third (441 of 1370) of the problems students were assigned may have been unnecessary.

Key Words and Phrases: Knowledge tracing, tutor log data analysis, Bayesian inference, blame assignment

1. INTRODUCTION

While educational data mining is often applied to discover patterns of students learning in
data collected from instructional software, educational data mining can also be useful for
identifying weaknesses in the tutoring systems that generated the data. This work
presents an example of such identification revealed from analysis of the data and
provides a detailed remedy based on Bayesian inference.

Student modeling depends on an accurate estimate of student knowledge to make
effective instructional decisions. Making accurate inferences about what students know is
challenging in situations where multiple knowledge components (skills, concepts, etc.)
must be brought to bear, but where there is only one observation of student performance.
If the student performs correctly, the credit assignment is straightforward. All the
components get credit, because we have positive evidence that the student knows all the
required components. However, if the student performs incorrectly, it is not necessarily
appropriate to blame all the components. Any one or more of the components could be at
fault. Determining which ones to blame is not straightforward. The Bayesian network
[Millan et al. 2001] and psychometrics [Junker and Sijtsma 2001] literatures indicate how
probability theory can be applied to address this problem. In this paper, we show how
these ideas can be combined with Bayesian Knowledge Tracing [Corbett and Anderson
1995] to produce a Oconjunctive knowledge tracing0 approach.

Consider a simple example to illustrate the blame assignment problem. Imagine a
tutor for teaching children to evaluate simple arithmetic expressions like 03*4+50. The
student model could have knowledge components for each mathematical operator:
addition, subtraction, multiplication, and division. The problem 03*4+50 requires both
multiplication and addition (we say Oproblem0 here, but this argument applies more
generally to any Ostep0 in a problem solution that is performed as a separate observable
action). If a student gets this problem step correct, we have evidence that they know both
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the multiplication and addition components. If the student is incorrect, it could be that the
student does not know multiplication and does not know addition, but it is also possible
that the student knows addition but not multiplication or even multiplication but not
addition. Consider the case where we have evidence from previous problems that the
student is near mastery on addition, but has been struggling with multiplication. For
example, the student has been successful on most problem steps that involve addition
alone, like 014+30, but has struggled on problems that involve multiplication alone, like
04*80. In such a case, if a student makes an error on 03*4+50, it is less likely to be a
failure of addition and more likely a failure of multiplication. That is, the student is less
likely to have been wrong because of not knowing addition and more likely to have been
wrong because of not knowing multiplication.

In such a case, it does not seem appropriate to reduce the probability that the student
knows addition as much as we would reduce the probability that the student knows
multiplication. Nevertheless, equal blame assignment is simpler and was implemented as
part of the original development kit for Cognitive Tutors [Corbett and Anderson 1995]
and is currently used in practice in the widely distributed Carnegie Learning Cognitive
Tutors [Ritter et al. 2007]. We pursue the problem of assigning blame in proportion to
how likely it is that a knowledge component caused the error. Bayesian analysis provides
a principled solution [cf. Millan et al. 2001, Junker and Sijtsma 2001].

We want a solution that not only works for two knowledge components (KCs) in
combination, but one that generalizes to multiple KCs. For instance, in a harder problem
step like 8-3*6, the student model might have two more KCs like Ofollowing order of
operationsO and Odealing with negative numbers0. In this case, we want to distribute the
blame appropriately across all four KCs depending on prior estimates of the KC
difficulties. KCs with a higher prior probability of being known should receive less blame
than KCs with lower probability. Pardos, Heffernan and Ruiz discuss this multiple-KC
problem [Pardos et al. 2008]. Their proposed solution is to use additional diagnostic
follow-up questions to determine the incorrect KC, and ignore the initial incorrect
response to the question as a whole. Similarly, Cognitive Tutor interfaces are typically
engineered so that correctness data on multiple individual steps in a problem solution
strategy are available [Corbett and Anderson 1995]. However, in both approaches, the
fine-grained diagnostic questions or steps (call them Oscaffolds0) still sometimes have
multiple KCs associated with them. Perhaps more importantly, in situations when this
scaffolding is faded and a full question is given, neither approach provides an integrated
diagnosis of the knowledge needed both for the relevant steps and for composing the
steps together [Heffernan and Koedinger 1997]. A more elegant solution would be useful.

2. REVIEW OF KNOWLEDGE TRACING

Knowledge tracing is the student model update procedure used in Cognitive Tutors
[Corbett and Anderson 1992]. For each knowledge component (KC), there is a two state
hidden Markov model wherein there is a probability that the student is initially in either
the known state (we use K; to represent this probability for Oknowing0 KC, or Know-
KC,) or the unknown state (1-K;). There are three other parameters per KC: a slip
probability (S) that a student will be incorrect even though they know the KC, a guess
probability (G) that a student will be correct even though they do not know the KC, and a
learning transition probability (T) that the student will learn at a particular tutoring
opportunity and thus transition from the unknown to the known state. Because the
challenge of the multiple-KC problem is in blame assignment, we only review here how
the probability the student knows a KC is updated after an error observation (see Reye
[1998] for a complete set of equations for knowledge tracing and related alternatives).
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P(Know-KC, |Eror) = P(ErrorlKnow-KC;) x P(Know-KC;) | P(Errop)
- s x K, / K *S+(1—K)*(1—G) (1)

The simplistic generalization of Equation 1 to the case where multiple KCs are
involved on an incorrect step is to update each KC in the same way, that is, all required
components are fully and equally blamed.

Table 1. Example Consequences of Alternative Knowledge Tracing (KT) Approaches
Knowledge Estimates
KCs Required Standard KT  Conjunctive KT
Step Add  Mult Correct Add Mult  Add Mult
0.960 0.300 0.960 0.300

3*4+5 1 1 0 0.700 0.270 0.955 0.297
6+3 1 0 1 0.938 0.270 0.993 0.297
T7+4 1 0 1 0.990 0.270 0.999 0.297
4*7+3 1 1 0 0.893 0.267 0.999 0.287
Table | illustrates the results of standard knowledge tracing (see Standard KT

columns) for a situation like the one described above. This simplified example is intended
to clarify the process and consequences of the simplistic rule for blame, but, as we
describe below, this example has the essential character of actual student data collected
by an intelligent tutor in school use. The example assumes the student has mastered the
knowledge component Add (K; = .96) but not Multiply (K, = .3). The probabilities of
slipping, guessing, and learning parameters are set at 0.05, 0.2, and 0.25, respectively, for
both KCs in this example. When a student makes an error on a problem step involving
both Add and Multiply, like 03*4+50, the estimates of knowing Add and Multiply are
updated as follows. The estimate for Add (K;) is updated according the formula above
(.05*.96 / [.96*.05 + (1-.96)*(1-.2)]) to be 0.6. Knowledge tracing has a Markov property
such that KCs have a probability of transitioning from the unknown state to the known
state, that is, of being learned at each opportunity to learn. The transition probability in
this example is 0.25 and when we apply it (.6 + (1-.6)*.25) we get a new value for K; =
0.7. The analogous computations yield a new value for the Multiply, K, = 0.27.

The key point is that the Add KC drops significantly, to 0.70 b exactly as much as if
the student had made an error on a problem step involving addition only (like 5+7). A
sensible response of an intelligent tutor to this updated student model is to help the
student get Add back up to mastery (a .95 threshold is used in Cognitive Tutors) by
giving the student further practice (and as-needed instruction) on a problem involving
Add (e.g., 06+30). In fact, in this scenario, a student would have to get two problems
involving Add right before getting back to mastery b see the 6+3 and 7+4 rows in Table
I. The first raises the estimate to .938, still below a .95 mastery threshold, and the second
to .990. If the student subsequently gets another problem with both KCs (e.g., 04*7+30)
wrong, the estimate for Add would again drop back below mastery. Another problem
involving Add would then be selected. This would be wasting student time and energy if,
in fact, they got the combined problem (03*4+50) wrong because of not knowing
Multiply. In fact, the tutor and student might continue to thrash with the tutor repeatedly
giving unneeded easy problems after the student errs on a harder problem.

Gong, Beck, & Heffernan [Gong et al. 2010] mentioned limitations of the knowledge-
tracing algorithm when a problem or step is coded with multiple knowledge components.
They were not addressing the issue, like we are, of on-line updates of the student model
estimates of the probability a component has been learned. Others [Millan et al. 2001,
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Junker and Sijtsma 2001] have presented relevant applicatoins of Bayesian inference to
address conjunctive combinations of skills and we build on that work.

3. CONJUNCTIVE KNOWLEDGE TRACING FOR FAIR BLAME ASSIGNMENT
The algorithm we present modifies knowledge tracing by changing the equations that
deal with updating the student model after a student error (see Eq 1). The equations for
updating after correct student responses are kept the same.

We present the case for two KCs first and generalize below to the case where multiple
KCs are needed. Both the P(Error|Know-KC;) and P(Error) equations need to be
modified. We use K; and K; to indicate the probabilities that KC; and KC; are known, S;
and S, for their slip parameters, and G, and G, for their guess parameters. We start with
P(Error), because it is simpler. An observed error can result from an unobserved error
either in the execution of KC; or in the execution of KC,. An error in the execution of a
KC occurs either when the KC is known but the student slips (e.g., K;*S;) or when the
KC is unknown and the student does not guess correctly (e.g., (1-K)*(1-G,)). This
formulation is shown in Equation 2.

P(Emon = KiS:1+(1 — Ki)(1 — G1) + K252 + (1 — Ko)(1 — Go)-
[KiS1+(1 = K)(1 = G)IIKS: + (1 = Ko)(1 = Gy )

We can find P(Error|Know-KC,) by plugging K;=1 into the Equation 2 above and the
result is shown in Equation 3.

P(EmorKnow-KC,) = S: + KbSo+(1 — Ko)(1 — Go)- [S111KeSo + (1 — Ko)(1 — G)]
=5 + (1 — S)IKsSo + (1 — Ko)(1 — G)] (3)

An alternative formulation of Equation 2 that is easier to compute and easier to
generalize to many KCs is shown in Equation 4.
P(Enor) = 1 — P(Correct)
= 1-[K(1= 8)+(1 = K)GiIK( - $5) + (1 — K)G,] ()

Equation 4 computes the probability of error as one minus the probability of correct
performance. To get a step correct requires that both KC; and KC, are executed correctly,
which can be computed as the product of the probabilities of executing each KC correctly
(this approach assumes KC execution is independent). Correct execution of a KC occurs
either when the KC is known and the student does not slip (e.g., Ki(1-S;)) or when the
KC is unknown and the student guesses correctly (e.g., (1-K;)G,).

The combined update formula (Equation 5) gets applied for each KC, as was done in
the example above. Applying this approach to the example above, we get the values
shown in the 0Conjunctive KCO columns in Table I. After the student made an error on
03*4+50, the estimate for Add (K;) was updated according to the formulas above to 0.94.

P(Know-KC, |Error)

= P(Enor|Know-KC;) * P(Know-KC;) / P(Enon)
= Eq.3 * P(Know-KC;) / Eq4 (5)
= (.05+(1—=.05)[.3%.05+(1 —.3)(1 —.2)]) = .96 / 1-[.96(1 — .05)+(1 —.96).2][.3(1 — .05)+(1 — .3).2]

Applying the learning (or transition) probability (.94 + (1-.94)*.25) yields a new value for
K, = 0.955. The analogous steps yield a new value for the Multiply, K, = 0.297. Unlike
Standard Knowledge Tracing, the estimate for Add, at 0.955, stays above the mastery
threshold of .95 and thus the tutor would not assign a potentially unnecessary addition
problem. The potential is thus reduced for unproductive cycling back and forth or
thrashing between hard and easy problems that may occur with standard knowledge
tracing (as illustrated in Table I).

The key insight for blame assignment with two KCs is that the probability of being
incorrect given that KC; is known is no longer just the probability of slipping on KC;.
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There is also a chance that the student made an error in executing KC,. To generalize to
multiple KCs, we need the P(Error|[Know-KC,) formula to account for the possibility that
an error can result from failure to execute on any of the other needed KCs.

First, Equation 6 shows the general equation for P(Error) when we use the 1-
P(Correct) formulation (as anticipated in Equation 4) and compute P(Correct) as the
product of executing all of the N KCs correctly:

P(Enor) 1 - P(Correci)
= 1 - [IXIK( - S)+(1 - K)G] ©)

Now, for the general equation of P(Error|Know-KC;j) we need to a way to compute the
disjunction (logical or) of executing incorrectly all of the required KCs besides KC;.
Because conjunctions are simpler to compute than disjunctions, we use the
transformation in Equation 7 to formulate Equation 8.

P(A orB orQC) not (not P(A) and not P(B) and not P(C))
1- [1— P(AI1 - P(B)I[1 — P(O)] (7)

Equation 8 replaces the term in Equation 3 for incorrect execution of K, with the
disjunction of incorrect execution of all the required KCs but KC;. Thus, note the use of
Oexcluding KC;0 in Equation 8. And note, as per Equation 7, the use 01-0 both outside
and inside the product ().

P(E rmror| Know-KC))
= Sj+(1 = 5) % (1 = ickcs exctuding k11 — K1 = S +(1 = K)Gl]) (8)

Finally, Equation 9 is the Conjunctive Knowledge Tracing alternative to blame
assignment in Standard Knowledge Tracing (Equation 1) and it completes the
generalization from two KCs (Equation 5) to any number of KCs.

P(Know-KC; |Enron)
P(Eror|Know-KC,) + P(Know-KC;) |/ P(Enon 9)
Eq8 * K / Eq6

4. CONJUNCTIVE KNOWLEDGE TRACING ON REAL DATA
In the introduction, we illustrated the possibility of a thrashing problem that can result
from unfair blame assignment whereby a student is repeatedly assigned a hard problem
(which they get wrong) and then unnecessary easy problems (which they tend to get
right). We turn to a demonstration of this thrashing problem in real student use of a tutor.
We then describe how use of Conjunctive Knowledge Tracing can alleviate this problem.
The data come from 120 students working on a geometry area unit of the Bridge to
Algebra Cognitive Tutor and, in particular, from an experiment to test a new KC model
produced through a human-machine discovery method [Stamper and Koedinger 2011].
This implementation of the tutor used standard knowledge tracing, but we did make a
change to the problem selection algorithm designed to create a better learning experience.
The original problem selection tries to find problems that have the most opportunities for
the student to address their least-mastered KCs (along with other factors, like minimizing
the number of mastered KCs and encouraging variety). In the usual situation where there
is only one KC per problem step this has been a reasonable approach. However, when
there are multiple KCs per step, this current "maximize unmastered™ algorithm criteria for
problem selection will prefer problems that involve more unmastered KCs per step
(harder problems) over problems that have fewer unmastered KCs per step (easier
problems). In order to create a gentle slope in the learning trajectory, we modified the
original problem selection algorithm to select problems that have as few unmastered KCs
(but at least 1) as possible. Thus, students are more likely to be given easier (but not
mastered) problems first and then, once these appear to be mastered, more complex
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problems are selected. If, in turn, evidence from poor performance on complex problems
suggests weaknesses in specific component KCs, easier problems will be selected again
to bolster student mastery before returning to hard problems. The intention, then, is to
adjust difficulty (fading or reintroducing scaffolding) to optimally adapt to student needs.
This change revealed the thrashing problem and a practical weakness of standard
knowledge tracing when multiple KCs are required on a step. The goals of the change in
problem selection were to adaptively fade and Ounfade0 (reintroduce) scaffolding based
on student performance. Fading occurs in transition from Oscaffolded problems, which
tend to have 1 KCs per step, to Ounscaffoldedd problems, which tend to have key steps
with multiple KCs. It is adaptive in that the transition occurs after students have
demonstrated mastery of the KCs in the scaffolded problems. Scaffolding may be
reintroduced based on evidence of too much failure on unscaffolded problems.

4.1. Results: Problem selection thrashing from poor blame assignment

Similar to the arithmetic example above, we modified a geometry area unit of the Bridge
to Algebra Cognitive Tutor to include a mix of harder problem types in which some steps
require many KCs (e.g., setting and executing subgoals to find a square area, circle area,
and the difference) and easier problem types in which steps require just one or a few KCs
(e.g., subtracting two areas). Four types of problems culminated with the student finding
the area of an irregular shape (e.g., the left-over area when a circle is cut from a square)
from the regular shapes that make it up. To aid understanding of the example of real
student performance shown in Table Il, we describe these problem types. The easiest
problem type, called an Oarea scaffold problem0 and displayed as Easy in Table Il, gives
the areas of the component shapes to focus students( attention on how to combine them to
find the irregular shape rather than on finding component areas themselves. The student
need only recognize the need for area composition (the Comp KC in Table Il) and
perform the addition or subtraction (AddAreas and SubtrAreas KCs in Table I1). The
slightly less easy Otable scaffold0 problems (displayed as Easy0 in Table I1) require the
student to find the regular areas on their own, but explicitly prompt (or scaffold) the
student to do so with a labeled column in a table interface widget where the areas are to
be entered. While these problems require area computations (see the Area KC in Table
I1), those computations are separate steps in the interface and so the Area KC is not
involved in the Ocomposition0 step to compute the irregular area that is displayed in
Table 1. In the harder Ono scaffold0 problems, students are asked to enter only the final
irregular area (requiring up to four KCs in a single step) without any interface support to
first find the component areas.

Turning to the student performance data, we found that the new problem selection
algorithm described above worked well in that the easiest problem type (area scaffold)
tended to be selected before the somewhat less easy problem type (table scaffold) and
these before the hardest problem types (problem scaffold and no scaffold). However, we
were surprised at how many of the easier problems students were given. On closer
inspection we found the kind of cycling between easy and hard we illustrated above.

Table Il provides an example from one of the students. The results are displayed
starting after the student has been successful on two Easy problems and failed on a Hard
problem. Before describing this example in more detail, first note how the student keeps
getting assigned many Easy problems (and succeeds at them). These problems were
assigned based on standard knowledge tracing (SKT), but, if conjunctive knowledge
tracing (CKT) had been used, the five problems in the bolded row numbers (5, 8, 10, 12,
and 14) would not have been assigned. In these rows, all of the CKT estimates are above
0.95 whereas some of the SKT estimates are not (see the bolded numbers). SKT assigns



Avoiding Problem Selection Thrashing with Conjunctive Knowledge Tracing 97

these Easy problems because when errors are made on Hard problems, it attributes too
much blame to easy KCs (SubtrAreas & AddAreas) that should be primarily attributed to
hard KCs (SubGoal).

Table I1. Problem selection thrashing from poor blame assignment in real student data.

Standard KT Estimates Conjunctive KT Estimates

Row Prob Corr [Comp Subtr Add Area Sub [Comp Subtr Add Area Sub

Type Areas Areas Goal Areas Areas Goal
1 098 100 062 062 049|098 1.00 086 086 0.70
2 Easy' 0 [098 1.00 098 1.00
3 Easy' 1 |089 098 094 0.99
4 Easy 1 098 0.62 0.99 0.86
5 Easy 1 [1.00 0.91 1.00 0.97
6 Hard 0 [1.00 1.00 100 0.4911.00 1.00 1.00 0.70
7 Had 0 [1.00 098 100 0.38(1.00 1.00 1.00 0.68
8 Easy 1 |[099 087 1.00 1.00
9 Had O 0.97 098 0.35 1.00 1.00 0.67
10 Easy 1 |1.00 0.86 1.00 1.00
11 Easy' 0 |1.00 0.98 1.00 0.99
12 Easy 1 |1.00 0.90 1.00 0.98
13 Hard O 0.97 100 0.34 1.00 1.00 0.58
14 Easy 1 [1.00 0.85 1.00 1.00
15 Hard 1 0.97 097 0.34 1.00 1.00 0.51
16 Hard 1 0.99 099 0.79 1.00 1.00 0.88

Going through Table Il in more detail, row 1 shows the KC estimates for SKT and
CKT just before this sequence begins. Row 2 shows that an Easy problem was selected
next. The estimates of only the KCs that are required for the composition step in that
problem are shown. Even though the required KCs are above the 0.95 mastery threshold
(at 0.98 and 0.997 respectively), the selection of an Easy problem is appropriate because
there are other Area steps (not shown) in this problem (indicated as Easy0, rather than just
Easy) that are not above mastery (at 0.62). The student gets this composition step wrong
(indicated by 0 in the Correct column). The updates for the relevant KCs can be seen in
row 3 for both SKT (now 0.89 and 0.98) and CKT (now 0.94 and 0.99). Another Easy
problem is selected (row 3), which is appropriate according to both models as the
Compose KC is below .95 in both (.89 and .94). The student gets it right.

Now two easy problems are selected (rows 4 and 5) where area addition (AddAreas)
is needed instead of area subtraction (SubtrAreas). The SKT estimate of AddAreas is
below mastery for both problems, but goes above mastery before the second problem for
the CKT estimate (see the bolded .97 vs. .91 in row 5). If problem selection had been
driven by CKT, this problem would not have been selected and, arguably, the students0
time would not have been wasted practicing mastered skills. (Note that the difference in
the AddAreas estimates in Row 1 is caused by the difference in blame attribution on the
one Hard problem the student saw before the data shown in Table Il.) Rows 6-8 more
clearly illustrate this difference in blame attribution. The student gets two consecutive
Hard problems wrong and the SKT estimate of SubtrAreas drops to 0.87. However, it is
likely that the student0s difficulty is not with SubtrAreas, but with the SubGoal KC
(knowing to find the areas of an irregular shape by finding the areas of the regular shapes
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that make it up). Indeed, the CKT model puts most of the blame for these errors on
SubGoal and little blame on SubtrAreas (which does drop slightly from .998 to .997).

4.2. Results: Fair blame assignment saves instructional time

To demonstrate that the example above is not idiosyncratic to the one student, we
repeated the analysis illustrated above for all 120 students. We focused on the data from
the first curriculum section where some steps are coded with multiple KCs (this is section
3 in Geometry Area unit). We used CKT to produce new KC estimates on each problem
solved by each student as illustrated in Table Il. We then identified the problems where
all KCs involved were above the 0.95 mastery level according to the CKT estimates D
like the 5 bolded problems in Table Il. Of the 1370 problems, 441 or about 1/3 involved
only mastered KCs according to CKT! If the problem selection had been driven by CKT,
these problems would not have been given to students. These problems are likely to be
unnecessary and are taking student time away from learning more difficult skills. (While
the problem selection algorithm is designed to avoid giving mastered problems, 15 of the
1370 problems selected using SKT were mastered D still far below 441.)

Some of the 120 students, those with more prior knowledge, finished this section in as
few as four problems (by getting all steps correct). Many others struggled and, like the
student shown in Table Il, got stuck in this thrashing between too many easier problems
they tended to be able to solve and too few harder problems that exercised the
composition (or subgoaling) skills they needed to acquire. The student in Table Il is
typical of these struggling students and, according to conjunctive knowledge tracing, five
of the sixteen problems this student was given were unnecessary. For 33 of the struggling
students, the tutor ran out of relevant problems and moved them on to the next section
even though some KCs had not been mastered.

Current cognitive tutors have many steps coded with multiple KCs, for instance, in the
algebra tutor some steps are coded with broad arithmetic skill categories (e.g., large vs.
small numbers, rationals vs. whole numbers) in addition to the target algebraic skill.
However, multiple KC coding occurs less often than it should. Doing so has often been
avoided through the use of highly scaffolded interfaces, which have the downside of not
assessing students in the unscaffolded context. Further, many steps that are currently
coded with a single KC may be better modeled with mutiple KCs [cf. Yudelson, Pavlik,
and Koedinger, 2011].

5. DISCUSSION & CONCLUSIONS

We have presented an illustration of the problem of assigning blame when multiple
knowledge components are required for an action and the student performs it incorrectly.
A simple approach, currently used in practice, is to blame all components equally even
though it may be just one (or some subset) that the student has not yet mastered. Until
now, there has appeared to be little consequence to this simple approach. However, when
we modified the problem selection algorithm to facilitate fading and unfading of
problems with scaffolding, we found a negative consequence in the form of thrashing in
problem selection. In the data from the Geometry Cognitive Tutor we found that real
students were being assigned too many easy problems and not enough hard ones. Based
on prior Bayesian student modeling work [Junker and Sijtsma 2001; Reye 1998;
VanLehn et al. 1998], we adapted the standard knowledge tracing algorithm to create
Conjunctive Knowledge Tracing (CKT), which provides a practical solution to fair blame
assignment. CKT has the potential to make much better use of students( time in curricula
that provide students with an adaptive learning trajectory from simple problems isolating
key components of knowledge to difficult problems where multiple skills or concepts are
required to produce a single response.
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Alternative solutions to the blame assignment problem have been proposed [Conati,
Gertner and Vanlehn 2002; Pardos and Heffernan to appear; Reye 1998; VanLehn, Niu,
Siler and Gertner 1998]. One simpler approach is to only blame the Ohardest0 KC, that is,
the one with the lowest current probability. There are two potential limitations of this
approach. First, if KCs are truly conjunctive and independent, such an approach will
overly penalize the hardest KC and under penalize the others. We can see the difference
in penalty in the KC values displayed in Row 1 of Table Il (these values results from a
failure on a hard problem just before this excerpt begins). Blaming only the hardest KC,
which is SubGoal in this case, would yield a value of 0.49 (same as SKT would produce
for this KC) whereas CKT vyields a value of 0.70 (shown under Subgoal in the
Conjunctive KT section). Thus, this blame-the-hardest approach could result in
inappropriately requiring students to practice too many (harder) problems requiring the
over-penalized KC and too few (easier) problems requiring the under-penalized KCs. A
second limitation of the blame-the-hardest approach is that it does not facilitate the
possibility of Ounfading0, that is, of returning to scaffolded problems in the case that
repeated failure on unscaffolded problems suggests (even with the softer penalty that
CKT produces) the need to revisit easier problems.

Another simpler approach is to concatenate multiple KCs into a single combined KC.
This approach has the downside that the student model has no information about
knowledge overlap in related tasks and thus cannot be used in problem selection for the
kind of gradual fading of scaffolding (going to harder problems when the student is
ready) or reintroduction of scaffolding (going back to easy problems if needed) that is
possible with CKT.

A more complex approach to the multiple-KC problem is to use a complete Bayesian
network for the student model [e.g., Conati et al. 2002]. One immediate point of contrast
with CKT is in the high effort required to engineer a student model as a Bayesian
network. CKT can be relatively simply added to an existing model-tracing or constraint-
based tutor as a plug-in, replacing the existing Knowledge Tracer if present. On the other
hand, a full Bayesian network can represent dependencies between KCS and is not
restricted to modeling KC learning only in terms of students direct experiences with those
KCs. A Bayes net gives a modeler more freedom to hypothesize more complex
interrelationships, like the learning of one KC enhancing another. Such freedom,
however, may come at the loss of parsimony relative to the more constrained CKT
approach whereby a set of KCs and a few direct computations on the KC parameter
estimates may well represent all task difficulty and learning transfer relationships.

CKT is one solution within the broader space of Bayesian networks and Markov
models for student modeling. As already mentioned, past work [Junker and Sijtsma 2001;
Millan, Agosta and Pérez de la Cruz 2001] has articulated the multiplicative combination
of noisy components. We have adapted this approach into the standard knowledge tracing
by maintaining the Markov transition probability, but replacing the blame assignment
with this multiplicative combination. Others have also incorporated the independence
assumption and thus the multiplicative combination of components, but have put the
noise (guess and/or slip parameters) at the level of the conjunction (sometimes called a
Onoisy-ANDO) rather than at the level of the components [Conati et al. 2002]. In the
psychometrics literature [Junker and Sijtsma 2001], the difference in whether the noise
parameters are at the component level or the conjunction level is characterized by the
contrast between the DINA (deterministic inputs noisy AND) and NIDA (noisy inputs
deterministic AND) models. CKT is an extension of NIDA (adding the transition
probability), with a slip and guess parameter for each conjunct in the AND. While the
CKT and NIDA models have more parameters per AND relation than DINA, they can
have fewer parameters in an overall student model in the case that there more AND
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relations than components. For instance, there are four (2n-n-1) possible AND
relationships of three (n) components. Whether or not these theoretical differences make
any practical difference will require future empirical comparison.

Whether and when CKT provides a more or less effective user model than more
complex formulations such as Bayes nets will have to await future research.
Nevertheless, an important contribution of this paper is the empirical evidence that
comparing such alternatives is worth it. The problem selection thrashing we observed
indicates that fair blame assignment can be a real problem and better solutions may have
significant impact on student users of tutoring systems. The need for such a solution
comes about in situations where we want a tutoring system to make dynamic and
adaptive decisions about the fading of scaffolding or the Ounfading0 or reintroduction of
scaffolding. Such capability would seem to be an important feature of a truly adaptive
tutoring system and one that can be driven by educational data mining.
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Electronic traces of activity have the potential to be an invaluable source to understand the strategies followed
by groups of learners working collaboratively around a tabletop. However, in tabletop and other co-located
learning settings, high amounts of unconstrained actions can be performed by different students simultaneously.
This paper introduces a data mining approach that exploits the log traces of a problem-solving tabletop
application to extract patterns of activity in order to shed light on the strategies followed by groups of learners.
The objective of the data mining task is to discover which frequent sequences of actions differentiate high
achieving from low achieving groups. An important challenge is to interpret the raw log traces, taking the user
identification into account, and pre-process this data to make it suitable for mining and discovering meaningful
patterns of interaction. We explore two methods for mining sequential patterns. We compare these two methods
by evaluating the information that they each discover about the strategies followed by the high and low
achieving groups. Our key contributions include the design of an approach to find frequent sequential patterns
from multiuser co-located settings, the evaluation of the two methods, and the analysis of the results obtained
from the sequential pattern mining.

Keywords and Phrases: Collaborative Learning, Sequence Mining, Hierarchical Clustering, Interactive
Tabletops

1. INTRODUCTION

Recently, the need to explore, share and manipulate tangible data, in situ, has brought
forth the development of new user interfaces offering large display areas and multiple
input capabilities. These groupware interfaces are becoming available for educational
purposes in the form of whiteboards, multi-display settings and horizontal tabletops.
Interactive tabletops offer the potential for new ways to support collaborative learning
activities by enabling face to face interactions between students and, at the same time,
providing a great opportunity to investigate groups! learning processes by capturing their
physical actions. This paper reports our work in the context of Digital Mysteries
[Kharrufa et al. 2010], a tabletop collaborative learning tool for the development of
students! problem-solving skills. When using this tool, students have to examine the
information they are provided with and formulate an answer to a posed question (the
mystery). The students! cognitive processes become evident through their physical
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The evolution from static to dynamic electronic learning environments has stimulated the research on adaptive item sequencing. A prerequisite for
adaptive item sequencing, in which the difficulty of the item is constantly matched to the knowledge level of the learner is to have items with a
known difficulty level. The difficulty level can be estimated by means of the item response theory (IRT), as often done prior to computerized
adaptive testing. However, the requirement of this calibration method is not easily met in many practical learning situations, for instance, due to the
cost of prior calibration and due to continuous generation of new learning items. The aim of this paper is to search for alternative estimation
methods and to review the accuracy of these methods as compared to IRT-based calibration. Using real data, six estimation methods are compared
with IRT-based calibration: proportion correct, learner feedback, expert rating, paired comparison (learner), paired comparison (expert) and the Elo
rating system. Results indicate that proportion correct has the strongest relation with IRT-based difficulty estimates, followed by learner feedback,
the Elo rating system, expert rating and finally paired comparison.

Key Words and Phrases: IRT, proportion correct, learner feedback, expert rating, paired comparison, graded response model and Elo rating

1. INTRODUCTION

Most e-learning environments are static, in the sense that they provide for each learner the same information in the
same structure using the same interface. One of the recent tendencies is that they become dynamic or adaptive. An
adaptive learning environment creates a personalized learning opportunity by incorporating one or more adaptation
techniques to meet the learners’ needs ancemetes (Brusilovsky 1999). One of those adaptation techniques is
adaptive curriculum/item sequencing, in which the sequencing of the learning material is adapted to learner-, item-,
and/or context characteristics (Wauters, Desmet & Van den Noortgate 2010). Hence, adaptive item sequencing can be
established by matching the difficulty of the item to the proficiency level of the learner. Recently, the interest in
adaptive item sequencing has grown, as it is found that excessively difficult items can frustrate learners, while
excessively easy items can cause learners to lack any sense of challenge (e.g. Pérez-Marin, Alfonseca & Rodriguez
2006, Leung & Li 2007). Learners prefer learning environments where the item selection procedure is adapted to their
proficiency, a feature which is already present to a certain extent in computerized adaptive tests (CATS; Wainer
2000).

A prerequisite for adaptive item sequencing is to have items with a known difficulty level. Therefore, an initial
development of an item bank with items of which the difficulty level is known is needed. This item bank should be
large enough to include at any time an item with a difficulty level within the optimal range that has not yet been
presented to the learner. In CAT, the item response theory (IRT; Van der Linden & Hambleton 1997) is often used to
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generate such a calibrated item bank. IRT is a psychometric approach that emphasizes the fact that the probability of a
discrete outcome, such as the correctness of a response to an item, is function of qualities of the item and qualities of
the person. Various IRT models exist, differing in degree of complexity, with the simplest IRT model stating that a
person’s response to an item depends on the person’s proficiency level and the item’s défietltylore complex

IRT models include additional parameters, such as an item discrimination parameter and a guessing parameter.
Obtaining a calibrated item bank with reliable item difficulty estimates by means of IRT requires administering the
items to a large sample of persons in a non-adaptive manner. The sample size recommended in the literature varies
between 50 and 1000 persons (e.g. Kim 2006, Linacre 1994, Tsutakawa & Johnson 1990). Because IRT has been a
prevalent CAT approach for decades, it seems logical to apply IRT for adaptive item sequencing in learning
environments that consist of simple items. However, the difference in data gathering procedure of learning and testing
environments has implications for IRT application in learning environments. In many learning environments, the
learners are free to select the item they want to make. This combined with the possibly vast amount of items provided
within the learning environment leads to the finding that many exercises are only made by few learners (Wauters et al.
2010). Even though IRT can deal with structural incomplete datasets (Eggen 1993), the structure and huge amount of
missing values found in the tracking and logging data of learning environments can easily lead to non-converging
estimations of the IRT model parameters. In addition to this, the maximum likelihood estimation procedure
implemented in IRT has the disadvantage of being computationally demanding.

Due to these impediments that go together with IRT based calibration, we are compelled to search for alternative
estimation methods to estimate the difficulty level of items. Some researchers have brought up alternative estimation
methods. However, the accuracy of some solutions were not compared to IRT based calibration and the various
methods were not compared in a single setting. The purpose of this study is to review the accuracy of some alternative
estimation methods as compared to IRT-based calibration in a single setting.

2. EXPERIMENT

2.1 Related Work

2.1.1 Item Response Theory. To estimate the item difficulty, the IRT model with a single item parameter
proposed by Rasch (Van der Linden & Hambleton 1997) is used. The Rasch model models the probability of
answering an item correctly as a logistic function of the difference betivegrerson’s proficiency level (!) and the
item difficulty level ("), called the item characteristic function:
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The IRTbased estimation of the difficulty level will be estimated on the basis of the learners’ data obtained in this

study. In addition to that, IRT-based calibration conducted on preliminary examinee data by Selor, the selection
agency of the Belgian government, serves as true difficulty parameter values.

2.1.2 Proportion Correct. A simple approach to estimate the difficulty level of items is to calculate the
proportion of correct answers by dividing the number of learners who have answered the item correctly by the number
of learners who have answered the item. To obtain the item difficulty parameter, the proportion correct scores has to
be converted as follows:
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where ; denotes the item difficulty level of item n; represents the number of learners who have answered item
correctly, and\; represents the number of learners who have answered item

The advantage of this approach is that the item difficulty can be calculated online due to the easy formula which
does not require many computational resources. Furthermore, the item difficulty can be updated after each
administration. The lower the proportion of students who have answered the item correctly, the more difficult the item
is. Johns, Mahadevan and Woolf (2006) have compared the item difficulty level obtained by IRT estimation with the
percentage of students who have answered the item incorrectly, and found a high correlation (r=0.68).

2.1.3 Learner Feedback. Some researchers have appliedrner's feedbackn order to provide adaptive
sequencing of courseware in e-learning environments (e.g. Chen, Lee & Chen 2005, Chen, Liu & Chang 2006, Chen
& Duh 2008). After a learner has studied a particular course material, he is asked to answer two simple questions:
“Do you understand the content of the recommended course material?” and “How do you think athiffiditie of
the course materials?After a learner has given feedback on a 5-point Likert scale, scores are aggregated with those
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of other learners who previously answered this question by taking the average of the scores. The new difficulty level
of the course material is based on a weighted linear combination of the course difficulty as defined by course experts
and the course difficulty determined from collaborative feedback of the learners. The difficulty parameters slowly
approach a steady value as the number of learners increases.

In this study the procedure of Chen et al. (2005) for adjusting the difficulties of the items is slightly altered. The
course difficulty as defined by course experts is not taken into account. Instead, the difficulty estimates are solely
based on the collaborative feedback of the learners. After an item is presented, the learner is asked a feedback
question How difficult did you find the presented itefh?The learner answers on a 5-point Likert scale (Likert,
1932), ranging from2 (“very easy”) overl (“easy”), 0 (“moderate”), 1 (“difficult”) to 2 (“very difficult”). The item
difficulty based on learner feedback is then given by the arithmetic mean of the scores.

2.1.4 Paired Comparison. Another method, already used in CAT, to estimate the difficulty level of new items is
paired comparison (Ozaki & Toyoda 2006, 2009). In order to prevent content leaking, experts are asked to assess the
difficulty of items through one-to-one comparison or one-to-many comparison. In this method, items for which the
difficulty parameter has to be estimated, are compared with multiple items, of which the item difficulty parameter is
known. The underlying thought that prompts this item difficulty estimation approach is Thurstone’s paired
comparison model. While Thurstone (1994) modelled the preference judgment foriabjectobject, Ozaki and
Toyoda (2006, 2009) modelled the difficulty judgment of iteorer itemj.

In this study a similar procedure of the one employed by Ozaki and Toyoda (2009) is adopted to estimate the
difficulty level by means of paired comparison. After an item is presented, the learner has to judge where the
presented item should be located in a series of 11 items ordered by difficulty level from easy to difficult. This means
that the raters have to make a one-to-many comparison with 11 items of which the item difficulty parameter is known.
The probability that itemis more difficult than item Jaccording td\ raters is expressed as:
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Where ; is the difficulty of itemi judged by the raterdy, is the difficulty parameter of item 1 as estimated by the
preliminary IRT analysis, conducted by Selor.

In this study 11 items are presented simultaneously and the raters have to select one out of 12 datkgories:
1<i<2,..., 104<11, 114. Because the 11 items are ordered according to their difficulty level from easy to difficult,
the idea of the graded response model (Samejima, 1969) can be adopted to extract the boundary response function of
each category as:
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The final estimation of; is obtained by maximizing the log likelihood, while fixibg, i.e. the difficulty parameters
of item 1 to 11 as estimated by the preliminary IRT analysis.

2.1.5 Expert Rating. Another approach to obtain item parameter estimates is allowing subject domain experts to
estimate the value of the difficulty parameter (Yao 1991, Linacre 2000, Fernandez 2003, Lu, Li, Liu, Yang, Tan & He
2007). There is some evidence in the measurement literature that test specialists are capable of estimating item
difficulties with reasonable accuracy (e.g., Chalifour & Powers 1989), although other studies found contradictory
results (Hambleton, Bastari & Xing 1998). As indicated by Impara and Plake (1998), a distinction has to be made
between the ability of experts to rank order items accurately with reference to the difficulty level, and the ability of
experts to estimate the proportion of persons who will answer the items correctly. Experts seem to be capable
conducting the former task, but have difficulties conducting the latter where they have to be able to conceptualize the
reference group and predict how well such persons will perform on each item.

Hence, two methods for obtaining expert ratings were included in this study: a paired comparison method and an
evaluation on a proportiocorrect metric. The formula’s to obtain the item difficulty parameter estimates based on
these two methods are described in the subsections “Paired Comparison” and “Proportion Correct” respectively.

2.1.6 Elo Rating. The Elo Rating approach (Brinkhuis & Maris 2010) for estimating the item difficulty level is
an educational implementation of the Elo Rating system used for rating chess performances and sports (Elo 1978). In
sport, for example, two players compete with each other, resulting in a win, a loss or a draw. These data are known as
paired comparison data, for which the Elo rating system is developed. In the educational field, a person is seen as a
player and an item is seen as its opponent. The Elo Rating formula expresses the new rating after an event as a
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function of the pre-event rating, a weight given to the new observation and the difference between the actual score on
the new observation and the expected score on the new observation. Brinkhuis and Maris (2010) estimated the
expected score on the new observation by means of the Rasch model. The formula implies that when the difference
between the expected score and the observed score is high, the change in both the person’s knowledge level and the
item difficulty level will be high. Because the estimation of the difficulty level becomes more stable when more
persons have answered an item, the weight given to new observations decreases when the rating of items is based on
many observations. The same is true for the rating of the persons. Wherngpef#te person’s knowledge level is

based on a large amount of answered items, the weight given to new observations decreases.

In this study, the Elo Rating system implemented by Brinkhuis and Maris (2010) was used to estimate the item
difficulty level. This Elo Rating system enables continuous measurement, since the rating is updated after every
event. The formula for updating the item difficulty level, and on the same time the person’s knowledge level, is given
by:

GLUYE9:; F g

where , is the new item difficulty rating after the item is answered by a pergds,the pre-event ratingV is the
weight given to the new observatiovi,is the actual observation (score 1 for incorrect, O for correct) Yaiglthe
expected observation which is estimated on the basis of the Rasch model. Hence, the formula for updating the item
difficulty level after a correct response becomes:
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where! y is the estimated person’s knowledge level before that person has answered this spedifi¢hisrstudy,
the weight has been set to 0.4. Preliminary analysis have shown that a weight of 0.4 results in good estimates as it is
not too large, resulting in too much fluctuation, and it is not too small, resulting in an nearly invariant difficulty
estimate.

Next to the comparison of the different alternative estimation methods with IRT-based calibration, we are
interested whether the alternative estimation methods that are based on the binary response data of the learners, i.e. 1
for a correct response and O for an incorrect response, are sample dependent. If the correlation between these methods
and the true difficulty parameter values are lower than the correlation between these methods and the difficulty
parameter values obtained on the basis of IRT-calibration with the data gathered in this study, then these alternative
methods are somewhat sample dependent. Furthermore, on the basis of the study of Impara and Plake (1998) it is
hypothesized that the correlation between the true difficulty parameter values and the ones obtained by means of
expert rating will be lower than the correlation between the true difficulty parameter values and the ones obtained by
means of paired comparison conducted by the experts.

2.2 Method

2.2.1 Participants. Students from ten educational programs in the Flemish part of Belgitien(12“ Bachelor
Linguistics and Literature- K.U.Leuven; £ 2" and 3th Bachelor Teacher-Training for primary educatidtatho
Tielt; 18 and 2“ Bachelor Teacher-Training for secondary educatidtatho Reno; T and 2° Bachelor of Applied
Linguistics— HUB and Lessius; and®Bachelor Educational Scieneek.U.Leuven) were contacted to participate in
the experiment. Three hundred eighteen students decided to participate. Sixteen teachers French from the above
mentioned educational programs were contacted as experts. Thirteen experts decided to participate.

2.2.1 Material and Procedure. The study took approximately half an hour. The learning material consisted of
items on French verb conjugation, supposedly measuring one single skill. The instructions, consisting of information
on the login procedure for the learning environment and on the proceedings of the experimental study were sent to the
participants by email. Once logged into the learning environment, the procedure for students was different from the
procedure for experts.

Students were given an informed consent. Next, they completed the pretest used as an example. This pretest
consisted of one item with three subquestions. First, the student had to fill in the correct French verb conjugation.
Second, the student wasked: “How difficult did you find the previous item?” and the student has to answer on a 5
point Likert scale, ranging from2-(“Very easy”) to 2 (“Very difficult”). Finally, the studenwvas asked to judge
where the presented item should be located in the given series of 11 items ordered by difficulty level from easy to
difficult. After the pretest sample, students completed the actual test, which consisted of 25 items each with three
subquestions.
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Experts completed the pretest used as an example. This pretest consisted of one item with three subquestions.
First, the expert had to fill in the correct French verb conjugation. Second, the expert was asked: “What is, according
to you, the percentage of students that will answer this item correctly after completing secondary education?”. Finally,
the expert was asked to judge where the presented item should be located in the presented series of 11 items ordered
by difficulty level from easy to difficult. After the pretest sample, experts completed the actual test, which consisted
of 25 items each with three subquestions.

2.3 Results

The inter-rater agreement for the classification of the item difficulty was calculated by means of the intraclass
correlation coefficient (ICC; Shrout & Fleiss 1979). Shrout and Fleiss (1979) report the magnitude for interpreting
ICC values where ICC<0.40 = "poor”, 0.4@EC#0.59 = “fair’, 0.60#CC<0.74 = “good”, and ICC$0.74=
“excellent”. The interrater agreement for the classification of the item difficulty by students was fair (ICC[3,1]=0.42

for learner feedback; ICC[3,1]=0.43 for paired comparison). The inter-rater agreement for the classification of the
item difficulty by experts was good (ICC[3,1]=0.68 for expert rating and for paired comparison). The inter-rater
agreement for the classification of the item difficulty for paired comparison by experts and learners combined was fair
(ICC[3,1]=0.44). The inter-rater agreement, when considering the mean of the paired comparison feedback given by
learners and the mean of the paired comparison feedback given by experts, was excellent (ICC[3,1]=0.88).

The criterion used to evaluate the efficacy of the item difficulty estimation methods was the Pearson correlation
between the estimated item parameter and its corresponding true parameter. The true difficulty parameter value for
each item was estimated in advance by Selor, using examinee data for conducting the IRT analysis. Additionally the
Pearson correlation was measured between the estimated item parameter and its corresponding IRT difficulty
parameter value based on calibration with the data gathered in this study. The Pearson correlation between the
estimated item difficulty parameter and the true item difficulty parameter is a measure for the strength of their linear
relationship.

Detailed correlation results for the item difficulty estimates are shown in table I.

Table I. Pearson correlation matrix of the item difficulty estimates for the different estimation methods.

Item Difficulty Estimation Method
Item - -
Difficulty _ Palred_ Palred_
Esti : IRT - Proportio | Learner Expert Comparis | Comparis Elo
stimation True . .
Study n Correct | Feedback| Rating on on Rating
Method
(Learner) | (Expert)
True 1.00
IRT -Study .90 1.00
Proportion | g4 1.00 1.00
Correct
Learner
Feedback 0.88 0.88 0.88 1.00
Expert 0.80 0.80 0.80 0.95 1.00
Rating
Paired
Comparison 0.62 0.50 0.50 0.58 0.5 1.00
(learner)
Paired
Comparison 0.56 0.44 0.44 0.53 0.51 0.98 1.00
(Expert)
Elo Rating 0.85 0.92 0.92 0.81 0.73 0.45 0.3 1.00
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The results of the Pearson correlation between the estimated item difficulty parameter and the true item difficulty
parameter indicates that proportion correct has the strongest relg@®)=0.90, p<0.01), followed by learner
feedback1((23)=0.88,p<0.01), Elo ratingrn(23)=0.85p<0.01), expert ratingr(23)=0.80,<0.01), paired comparison
based on learners’ feedba@k23)=0.62,p<0.01) and paired comparison based on expert dga)€0.56,p<0.01).

The Pearson correlation between the estimated item difficulty parameter and the difficulty parameter estimated by
means of IRT with the data of the 318 students in this study shows similar results. The correlation with proportion
correct is the highestr(@3)=1.00, p<0.01), followed by Elo rating r(23)=0.922, p<0.01), learner feedback
(r(23)=0.88,p<0.01), expert ratingr(23)=0.80,p<0.01), paired comparisdrased on learners’ feedba@k23)=0.50,

p<0.05) and finally paired comparison based on expert dgtd)E0.44 p<0.05).

The difference between the correlation coefficient of proportion correct with the true difficulty parameter value
and the correlation coefficient of proportion correct with the difficulty parameter value estimated by means of IRT
with the data of this study is significant (t(22)=-19.p80.05). The difference between the correlation of the Elo
rating system with the true difficulty parameter value and the correlation of the Elo rating system with the difficulty
parameter value estimated by means of IRT with the data of this study is also significant (t(22p=<@@8), The
correlation coefficient of proportion correct with the IRT calibration based on the study data differs significantly from
the correlation coefficient of the Elo rating system with the IRT calibration based on the study data (t(22)=20.7485,
p<0.05). The significance disappears when proportion correct and the Elo rating system are compared with the true
difficulty parameter value (t(22)=1.4650.16).

There is no significant difference between the correlation of the true item difficulty parameter values with the ones
obtained by means of expert rating, and the correlation of the true item difficulty parameter values with the ones
obtained by means of paired comparison based on expert ratings (t(22p=08&%,). The difference between the
correlation coefficient of learner feedback with the true difficulty parameter value and the correlation coefficient of
expert rating with the true difficulty parameter value is significant (t(22)=2%@,05). However, the difference
between the correlation coefficient of paired comparison based on learner feedback with the true difficulty parameter
value and the correlation coefficient of paired comparison based on expert rating with the true difficulty parameter
value is not significant (t(22)=1.8p=0.08).

3. DISCUSSION

As the tracking and logging data of many learning environments fail to contain the required amount and structure of
data needed for IRT estimation, this article searches for appropriate alternative methods to estimate the difficulty level
of items. Based on the response data and the judgment data of a sample of learners and experts, the difficulty level of
twenty five items was estimated by means of six estimation methods: (1) IRT calibration based on the study data, (2)
proportion correct, (3) learner feedback, (4) expert rating, (5) paired comparison (based on learners’ judgment and
based on experts’ judgment), andl {{6e Elo rating system.

The findings indicate that proportion correct has the strongest relation with the true difficulty parameter values,
followed by learner feedback, the Elo rating system, expert rating and paired comparison. Furthermore, proportion
correct also has the strongest relation with the difficulty estimates obtained with IRT calibration on the study data,
followed by the Elo rating system, learner feedback, expert rating and paired comparison. Considering the alternative
estimation methods that are based on the binary response of the learners (correct vs. incorrect response to an item), it
is shown that IRT calibration, proportion correct and the Elo rating system do not differ. The high correlation found
between IRT calibration (both true difficulty parameter and IRT calibration on the study data) and proportion correct
is not surprising as the total score is a sufficient statistic for the Rasch model. Furthermore, it is clear that proportion
correct and the Elo rating system are sample dependent as they correlate higher with the IRT calibration on the study
data than with the true difficulty parameter values.

Results contradict the postulation of Impara and Plake (1998) that experts perform better in estimating the
difficulty by rank ordering the items than by estimating the proportion of persons who will answer the items correctly.
Furthermore, findings indicate that learners perform better on judging the difficulty of items than experts. However,
this difference disappears when learners and experts need to rank order the items according to their difficulty level. It
needs to be considered that the estimation by means of learner feedback is based on a larger sample than the
estimation by means of expert rating, which could explain the difference between learner feedback accuracy and
expert rating accuracy. The finding that the correlation of paired comparison with the true difficulty parameter is
moderate could be due to the small sample size, resulting in some outlier estimations. The paired comparison data are
analyzed by means of the graded response model, which is a more complex IRT model than the Rasch model, and
hence may need a larger sample size to obtain reliable item difficulty estimates.
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Even though this study indicates that the difficulty of items can be estimated on the basis of alternative estimation
methods, it should be considered that the size of the item set that was used to compare the alternative estimation
methods was rather small. We recognize that a total number of twenty five items is limited, but considering raters
fatigue, we were compelled to keep the item set rather small. Furthermore, we made sure that the twenty five items
covered a broad range of difficulty.

Future research will focus on the sample size requirement for reliable difficulty estimates. The different alternative
estimation methods will be compared for different sample sizes. If results would indicate that alternative estimation
methods provide reasonable accurate difficulty level estimates, these estimation methods could be used to provide
adaptive curriculum sequencing. Those alternative estimation methods could also be used to make IRT estimation
more efficient by using the estimates as prior in a Bayesian estimation method. A limitation of this study, which
should be tackled in future research, is the fact that even though some of the alternative item difficulty estimation
methods seem to be a viable alternative for IRT-based calibration in this study, no generalization can yet be made to
other domains and to items requiring more than one skill.
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Learning Classifiers from a
Relational Database of Tutor Logs

JACK MOSTOW, JOSE GONZALEZ-BRENES, BAO HONG TAN
Carnegie Mellon University, United States

A bottleneck in mining tutor data is mapping heterogeneous event streams to feature vectors with which to train
and test classifiers. To bypass the labor-intensive process of feature engineering, AutoCord learns classifiers
directly from a relational database of events logged by a tutor. It searches through a space of classifiers
represented as database queries, using a small set of heuristic operators. We show how AutoCord learns a
classifier to predict whether a child will finish reading a story in Project LISTEN!s Reading Tutor. We
compare it to a previously reported classifier that uses hand-engineered features. AutoCord has the potential to
learn classifiers with less effort and greater accuracy.

1. INTRODUCTION

Intelligent tutors! interactions with students consist of streams of tutorial events. Mining
such data typically involves translating it into tables of feature vectors amenable to
statistical analysis and classifier learning [Mostow and Beck, 2006]. The process of
devising suitable features for this purpose is called feature engineering. Designing good
features can require considerable knowledge of the domain, familiarity with the tutor, and
effort. For example, manual feature engineering for a previous classification task
[Gonzalez-Brenes and Mostow, 2010] took approximately two months.

This paper presents AutoCord (Automatic Classifier Of Relational Data), an
implemented system that bypasses the labor-intensive process of feature engineering by
training classifiers directly on a relational database of events logged by a tutor. We
illustrate AutoCord on data logged by Project LISTEN!s Reading Tutor, which listens to
children read stories aloud, responds with spoken and graphical feedback [Mostow and
Aist, 1999], and helps them learn to read [see, e.g., Mostow et al., 2003]. To illustrate
AutoCord, we train a classifier to perform a previously published task [Gonzalez-Brenes
and Mostow, 2010]: predict whether a child who is reading a story will finish it.

The rest of the paper is organized as follows. Section 2 describes how we represent
event patterns. Section 3 explains how AutoCord discovers classifiers. Section 4
evaluates AutoCord. Section 5 relates AutoCord to prior work. Section 6 concludes.

2. REPRESENTATION OF EVENTS, CONTEXTS, AND PATTERNS
We now summarize how we log, display, generalize, and constrain Reading Tutor events.

2.1 The structure of data logged by the Reading Tutor

The events logged by the Reading Tutor vary in grain size. As Figure 1 illustrates,
logged events range all the way from an entire run of the program, to a student session, to
reading a story, to encountering a sentence, to producing an utterance, down to individual
spoken words and mouse clicks. Figure 1 shows a screenshot of the Session Browser
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[Mostow et al., 2010], which displays logged Reading Tutor data in human-readable,
interactively expandable form.

) listen_2007_2008 Table: listen_2007_2008.story_encounter

- | Student fGMS-6-1992-04-21 [] Activity_Set ="
- | Sminute(s) long: Session 2007-09-11 15:03:00 N
47 second(s) later, 4 minute(s) long: student picked Level D story: [0 Bookmark =

®37 second(s) later, 7 second(s) long: Tutor displayed happened [7] Delayed_activity ="

- no audio: 2 second(s) later, 1 second(s) long: -
B "o audio: 2 second(s) later, 1 second(s) long: HAPPEMED
| 20 second(s) later, 5 second(s) long: Tutor displayed do
- |, 56 second(s) later, 7 second(s) long: Tutor displayed Even the

[ Delayed_Activity_Time = T™ULL'
[ End_Time ='09/11/2007 03:08:20 PM'

[ Exit_Through = 'user_reaches_end_of_activity’
Figure 1: Session Browser!s partially expanded event tree (left); partial record for
the highlighted story_encounter event (right).

Figure 1 displays a story encounter in the temporal hierarchy of the session in which
it occurred. Each line summarizes the database record for an event. The highlighted
story encounter "#tstudent picked Level D story#t$ is represented as a row in the
story_encounter table, with the field names and values listed on the right side of Figure 1.
For example, the Exit_through field is a label that shows how the story encounter ended,
and its value user_reaches_end_of _activity indicates that the student finished the story, so
the story encounter is a positive example of story completion. All other values indicate
different outcomes, such as clicking Back or Goodbye, timing out, or crashing.

The fields User_ID, Machine_Name, Start_time, and Sms are common to all types of
events, including story encounters and sentence encounters. As their names suggest, they
respectively identify the student and computer involved in the event, and when it started,
with the milliseconds portion in its own field. Events with non-zero durations also have
corresponding End_time and Ems fields.

Here the user has partially expanded the tree of events by clicking on some "+$ icons.
The structure of the tree indicates parental and fraternal temporal relations among events.
A child event is defined as starting during its parent event; siblings share the same parent.
The indentation level of each event reflects these relations. For instance, the highlighted
story encounter is a child of the session summarized on the preceding line, and is
therefore indented further. The story encounter!s children are the sentence encounters
shown below it, displayed at the same indentation level because they are siblings.

2.2 Inferring a pattern from a set of related events

In Figure 1, the user has selected the highlighted events by clicking on them with the
CTRL key down. Given such a constellation of related events, the Session Browser!s
AutoJoin operator [Mostow and Tan, 2010] generalizes it into a pattern of which it is an
instance. To infer a pattern from a single instance, AutoJoin heuristically assumes that
repetition of a constant unlikely to recur by coincidence, such as a user ID, is a
requirement of the pattern. AutoJoin represents the inferred pattern as a MySQL query
[MySQL, 2004] that can retrieve instances of the pattern. An example of such a query is:

SELECT * FROM
utterance u,
story_encounter st,
sentence_encounter se

WHERE .
(st.Machine_Name = se.Machine_Name) AND |dentify sentence
(st.Start_Time = se.Story_Encounter_Start_Time) AND er:lcounter as part of
(st.User_ID = se.User_ID) AND the story encounter.

(st.Start_Time = se.Start_Time) AND Ensure it is the first
sentence encounter.
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(st.Machine_Name = u.Machine_Name) AND

(st.User_ID = u.User_ID) AND

(se.sms = u.Sentence_Encounter_sms) AND
(st.Start_Time = u.Sentence_Encounter_Start_Time) AND

(se.End_Time = u.End_Time) } Etrtlsure it isft'[]he last
utterance of the

sentence encounter.

Identify utterance as
part of the sentence
encounter.

2.3 Operationality criteria for learned queries

Given a target concept such as "stories the student will finish reading,$ AutoCord
searches for queries that maximize the number of positive instances retrieved and
minimize the number of negative instances. In addition, the query must satisfy
operationality criteria [Mostow, 1983] that constrain the information used in the query.
These constraints vary in form and purpose.

One type of operationality constraint limits the query to information available at the
point in time where the classifier will be used. For instance, a story encounter!s
End_Time field tells us when the encounter ends, but obviously the Reading Tutor can
only log this information once the encounter actually ends, so the trained classifier cannot
use it to help predict whether a child will finish a story. Similarly, we use the
Exit_through field of a story encounter to label it as a positive or negative example of
story completion, but the trained classifier cannot use it to make predictions, since that
information is only available once the encounter ends. As Yogi Berra famously said,
"lItls hard to make predictions, especially about the future.$ More subtly, if we want to
use the trained classifier a specified time interval after a story encounter starts, we should
train and test it on data representative of what will be available then. To simulate such
data, we restrict the training and test sets to story encounters lasting at least this long, and
we exclude events logged after this amount of time elapsed since the story encounter
started. We implement these constraints by adding the following two clauses to a query:
I AND (UNIX_TIMESTAMP(st.End_Time) " UNIX_TIMESTAMP(st.Start_Time) >= [limit])

AND (se.Start_Time <= DATE_ADD(st.Start_Time, INTERVAL [limit] SECOND))
Here, [limit] is the time limit in seconds, say 10. Then the training and test sets include
only story encounters that lasted at least 10 seconds, and the training and test procedures
can only consider events that occurred within these story encounters! first 10 seconds.

Operationality criteria may also restrict what sort of classifier is useful to learn. For
instance, to apply to future data, we may not want the trained classifier to be specific to
any particular student or computer. We enforce this constraint by excluding user 1Ds and
machine names from the query. Similarly, if we want the classifier to predict story
completion based solely on the student!s observed behavior rather than traits such as age
or gender, we exclude those fields from the query.

Finally, operationality criteria may pertain to the protocol for training and testing the
classifier. Even if we preclude the trained classifier from mentioning specific students, it
may still implicitly exploit information about them, improving classification performance
on the training set % and inflating performance on a test set that includes the same
students. To ensure that the training and test sets have no students in common, the
queries that generate them include mutually exclusive constraints on the user_id, e.g.:

(st.User_ID <="mDS8-8-1998-09-22") /* Use training set */
or
(st.User_ID > 'mDS8-8-1998-09-22") /* Use test set */

Although these clauses mention a specific user_ID, despite the constraint against doing
so, we do not consider them part of the learned classifier itself, just a way to split the data
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into training and test sets. We could use a more complex constraint to implement a more
sophisticated split, e.g. to stratify by gender, encoded by the first letter of the user_ID.

3. APPROACH

We formulate AutoCord as a heuristic search through a space of classifiers represented as
database queries. Section 3.1 outlines the overall search algorithm. Section 3.2 describes
the search operators.

3.1 Search Algorithm

AutoCord searches through a space of classifiers by hill climbing on their accuracy. In
the pseudo-code below, step 1 starts with a query to retrieve the entire training or test set.

Pseudo-code for AutoCord(initial query)
1. Q
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value of the Exit_through field of the story encounters in the training set. When we
consider story completion as being positive, we interpret a value of
user_reaches_end_of activity as a positive label, and all other values as negative labels.
If we now consider quitting as being positive instead, we could interpret the value
user_reaches_end_of activity as a negative label. In this way, we could train queries
representative of quitting. It is possible for the same example to have multiple labels if it
is checked against more than one classifier, each of which represents a different category.
An evaluation metric for accuracy would need to penalize such cases appropriately.

Next, we describe AutoCord!s operators. To illustrate them, we do a walkthrough of
the search algorithm, starting from the following initial query:

SELECT * FROM story_encounter st /* st is alias for story_encounter */
WHERE (st.User_ID <='mDS8-8-1998-09-22") /* Use training set */

3.2 Contrast Operator

The Contrast operator adds a single constraint that best distinguishes positive from
negative examples. It generates this constraint based on a split in the distribution of
values for a field. For example, if all positive examples have values below 5 for a
particular field, and if all negative examples have values above 5 for that field, then the
split value 5 perfectly separates positive from negative examples. To find the field that
can provide the best split, AutoCord calculates the frequencies of values for each column
of the results table retrieved by the initial query. It computes two sets of frequencies %
one for positive examples and another for negative examples. To illustrate, consider the
following results table:

Row # New Word Count | Initiative Student_Level 1+
1 4 Student A
2 6 Student C
3 7 Student C

Figure 2: An example of a table of results retrieved

All the fields come from the story_encounter table, and each row represents a story
encounter. The rest of the fields are omitted for brevity. Assume the first two rows are
positive examples, while the third is a negative example. The calculated frequencies are:

New Word _Count | Initiative Student_Level FE
Positive | 4: once, 6: once Student: twice | A: once, C: once
Negative | 7: once Student: once | C: once

In this case, the Contrast operator finds that the best split occurs in the
New_Word_Count field, with a split value of 6. Thus it adds the new constraint
New_Word_Count <= &6! since only the positive examples satisfy this constraint.
However, in general, when it is not possible to find a perfect split, the operator will
choose one that separates as many positive examples as possible from the negative
examples. The Contrast operator considers the mathematical relations =, !=, <, <=, >,
and >=.

3.3 Extend Operator

The Extend operator essentially captures the relational structure of positive examples. To
do so, it first picks a random positive example (which is a row) from the results table.
Recall that a row in the results table represents a collection of events. Next it randomly
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picks an event in the chosen row. For that event, it will then either pick a random child,
sibling, or parent event. With the existing events in the input query and the newly picked
event, the Extend operator then applies AutoJoin and adds the resulting constraints to the
input query.

We illustrate the Extend operator on the initial query shown at the end of Section 3.1.
This query only represents story encounters, so it retrieves a table of results where each
row represents a single story encounter. Suppose the Extend operator randomly picks one
such story encounter and then one of its children, namely a sentence_encounter.
Applying AutoJoin to these two events might yield this query:

SELECT * FROM story_encounter st, sentence_encounter se
WHERE
(st.User_ID <="'mDS8-8-1998-09-22") /* Use training set */
AND  (st.Machine_Name = se.Machine_Name) /* Added by Extend operator */
AND  (st.User_ID =se.User_ID)
AND  (st.Start_Time =se.Story_Encounter_Start_Time)

AutoJoin adds the last three constraints because both events have the same values for the
fields Machine_Name, User_ID, and Start_Time.

3.4 Aggregate Operator

The Aggregate operator generates additional pseudo-fields for the Contrast operator to
work on. The pseudo-fields of an event refer to the aggregated fields of the event!s
children. We shall illustrate the idea of pseudo-fields using the figure below.

. listen_2007_2008
By Student fBK5-7-1991-10-14
B 5 minute(s) long: Session 2007-09-13 16:18:20
-l 6 gecond(s) later, 5 minute(s) long: tutor picked Level C story: Sandy and the Fine Tree, by Katherin

-- 3 minute(s) later, 3 second(s) long: Tutor displayed On good days, Becky figured it out fast,
& b no audio: 766 ms later, 2 second(s) long: OM GOOD DAYS BECKY FIGURED — QUT FAST
-- ifimmediately, 5 second(s) long: Tutor displayed Soon Sandy and his people were learning guite we
=S =0 second(s) later, 5 second(s) long: Tutor displayed He pawed the soft dirt with his front legs u

Figure 3: The highlighted sentence_encounter events of the story_encounter event.

Figure 3 highlights the three children of the story_encounter event "6 second(s) later, 5
minute(s) long: tutor #£$. These children are sentence_encounter events. As its name
suggests, the Aggregate operator aggregates the values of each sentence_encounter field
over these children and adds them as pseudo-fields of the story encounter event to
provide additional information about it. For instance, the aggregated field
AVG(se.Word_Count), where "se$ refers to each sentence_encounter, represents the
average word count of the sentences in a story_encounter, reflecting its reading level.

For efficiency reasons, AutoCord precomputes the aggregated fields for all events in
the training set before the search starts and stores them in a separate temporary table for
each parent-child relation and specified time limit. The following example query
calculates the table for the story_encounter/sentence_encounter relation:

CREATE TEMPORARY TABLE ‘story_encounter-sentence_encounter_agg AS

SELECT st.*, AVG(se.Word_Count) AS _AVG_Word_Count,

[other aggregated fields ! ]

FROM

story_encounter st,
sentence_encounter se
WHERE st.Machine_Name = se.Machine_Name
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AND st.User_ID =se.User_ID

AND st.Start_Time = se.Story_Encounter_Start_Time

AND se.Start_Time <= DATE_ADD(st.Start_Time, INTERVAL [limit] SECOND)

AND UNIX_TIMESTAMP(st.End_Time) - UNIX_TIMESTAMP(st.Start_Time) >= [limit]

GROUP BY st.Machine_Name, st.User_ID, st.Start_Time, st.sms

Recall that the last two constraints impose the time limit operationality criterion. Also
note that the GROUP BY clause is necessary for the aggregation to work correctly.
Currently, AutoCord supports only the MIN, MAX, AVG, SUM, COUNT, and STDDEV
aggregator functions, and only on numeric-valued fields, except for COUNT, which
simply counts the number of rows it aggregates over. It applies each aggregator function
to every field of the child event, as indicated by [other aggregated fields].

Using an aggregated field in a constraint requires a join to the temporary table, e.g.:

I FROM
story_encounter st,
‘story_encounter-sentence_encounter_agg st-sentence_encounter_agg’
WHERE (st.User_ID <='mDS8-8-1998-09-22") /* Use training set */
AND (UNIX_TIMESTAMP (st.End_Time) " UNIX_TIMESTAMP(st.Start_Time) >= [limit])
AND (st.Machine_Name = "st-sentence_encounter_agg .Machine_Name)
AND (st.User_ID = ‘st-sentence_encounter_agg .User_ID)
AND (st.Start_Time = ‘st-sentence_encounter_agg .Start_Time)
AND (st.sms = "st-sentence_encounter_agg .sms)
AND (‘st-sentence_encounter_agg’."_STDDEV_Word_Count™ >='0.4")

The last constraint, added by the Contrast operator, selects story encounters whose
sentence lengths vary enough to have standard deviation of at least 0.4. Such variation
might make stories more interesting, or simply reflect harder stories read by better
readers likelier to complete them.

4. EVALUATION

Section 2.3 discussed how to restrict the amount of information the search algorithm can
look at for each story encounter in the labeled training set. In this way, the algorithm can
only learn from events available from the start of the story encounter up to the specified
time limit. In other words, the algorithm cannot "peek into the future$ of a story
encounter. Imposing a time limit also provides a means to test the classifier!s ability to
predict the outcome of a story encounter at various points in time before the story ends.

80
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We modified the search algorithm slightly to restricting the information available.
More specifically, we modified the Extend operator so that whenever it adds a new event
to the current query, the new event start time starts before the specified time limit. We
similarly constrained the Aggregate operator to include only such child events too. We
ran the modified search algorithm for various time limits ranging from 10 to 590 seconds
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in increments of 20 seconds, which corresponds roughly to the average duration of a
sentence encounter. After each run, we got a query suitable for the specified time limit.
The graph above shows the percentage of story encounters in the test set (shown on the y-
axis) that lasted at least a certain number of seconds (shown on the x-axis).

We executed the queries generated by the algorithm, one by one, and for each one,
calculated its accuracy and precision. It is not meaningful to compare the values of these
two metrics, but to save space we plot them both on the y-axis of the same graph below
against the time limit in seconds on the x-axis. We include majority class accuracy as a
baseline for comparison. The majority classifier always outputs the label assigned to the
majority of the story encounters in the training set, so its accuracy for a specified time
limit is simply the percentage of story encounters with that label in the test set for that
limit. We circle the points where the difference in classification accuracy between the
trained query and majority class is statistically significant at p < .05. To account
conservatively for statistical dependencies among data points from the same student, we
test whether this difference exceeds zero by more than a 95% confidence interval defined
as twice the weighted standard error of the per-student difference, weighting by the
number of data points per student.

For comparison, we trained two types of queries, one with completed stories as
positive examples and the other with uncompleted stories as positive examples. The
graph below shows the corresponding accuracy and precision when uncompleted stories
are treated as positive examples. Accuracy is similar, but precision is less consistent.

Gonzélez-Brenes and Mostow [2010] applied
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it differently. They expressed their time limit as a number of sentence encounters before
a story encounter ended, rather than as a number of seconds after it started.

5. RELATION TO PRIOR WORK

Mining relational data sits at the intersection of Machine Learning with classical
Artificial Intelligence methods that rely on formal logic, an area called Inductive Logic
Programming (ILP). Notable examples of ILP algorithms that learn from data expressed
as relations using formal logic representations include FOIL [Quinlan, 1990] and Progol
[Muggleton, 1995]. Like FOIL, AutoCord inputs positive and negative examples in
relational format, and hill-climbs to distinguish between classes. FOIL uses negation and
conjunction operators and outputs Horn clauses, whereas AutoCord uses the logical
conjunction AND to combine all constraints. It uses negation only to negate the equality
relation in the Contrast operator, not for an entire constraint. Also, AutoCord assumes
that relations describe events, works on SQL queries directly, and outputs SQL queries.

ILP methods can sometimes achieve high classification accuracy [Cohen, 1995], but
are sensitive to noise [Brunk and Pazzani, 1991], and fail to scale to real-life database
systems with many relations [Yin et al., 2006]. In contrast, AutoCord!s direct use of
SQL queries enables it to operate directly on large event databases thanks to efficient
retrieval from suitably indexed tables of events.

Provost and Kolluri [1999] reviewed literature on how to scale ILP approaches. They
suggested that integrating data mining with relational databases might take advantage of
the storage efficiencies of relational representations and indices. We believe AutoCord is
the first ILP system to learn a classifier from databases by operating directly in SQL.

Other approaches to scale relational learning include CrossMine [Yin et al., 2006],
which reduces the number of relations by using a "virtual join$ in which the tuple IDs of
the target relation are attached to the tuples of a non-target relation. CrossMine employs
selective sampling to achieve high efficiency on databases with complex schemas. In
contrast, AutoCord operates on all training data available to eliminate sampling bias.

A more recent perspective on ILP, Relational Mining, focuses on modeling relational
dependencies. For example, it has been used to classify and cluster hypertexts, taking
advantage of their relational links between instances [Slattery and Craven, 1998].
AutoCord!s Extend operator also exploits relational links between events.

Modeling the database without an explicit feature vector contrasts with work that uses
feature induction. For example, a feature vector can be expanded using conjunction
operators to improve accuracy [McCallum, 2003]. Alternatively, Popescul and Ungar
[Popescul, 2004] proposed modifying SQL queries systematically, which is similar to
what AutoCord does, but their method involved generating cluster 1Ds that can be used as
features in logistic regression.

6. CONCLUSION
This paper proposes, implements, and tests an automated process for training classifiers
on relational data logged by an intelligent tutor. Unlike many machine learning
techniques, it does not require defining a feature vector first. Future work includes:
Evaluating on more tasks: So far we have applied AutoCord only to predicting story
completion. We need to evaluate it on other classification tasks, such as characterizing
children!s behavior according to whether they or the Reading Tutor picked the story
[Gonzalez-Brenes and Mostow, 2010], or what events tend to precede a software crash.
Adding more operators: For example, event duration is useful for predicting story
completion [Gonzalez-Brenes and Mostow, 2010], but is not an explicit database field.
To address this limitation, a Derive operator would compute simple combinations of
existing fields, e.g., end_time " start_time, to use as additional fields.
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Combining queries: Due to the Extend operator!s nondeterministic nature, different
runs of AutoCord can generate different queries, varying in the information they use and
the classification accuracy they achieve. Picking the best one or combining them into an
ensemble of classifiers could improve accuracy.

Operationality criteria: AutoCord enforces specific operationality criteria ad hoc by
adding clauses to the query or by excluding particular fields or constants from it. Future
work might invent a general way to express operationality criteria in machine-
understandable form and translate them into enforcement mechanisms automatically.

Generalizing to other tutors: AutoCord relies on the schema of the Reading Tutor
database for reasons of efficiency and expedience rather than due to intrinsic limitations.
Moreover, although its implementation uses MySQL, its method should apply to any
relational database system. Generalizing AutoCord to apply to similarly structured data
from other tutors would multiply its potential impact.
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A Framework for Capturing Distinguishing User
Interaction Behaviours in Novel Interfaces

S. KARDAN, C. CONATI
University of British Columbia, Canada

As novel forms of educational software continue to be created, it is often difficult to understand a priori which
ensemble of interaction behaviours is conducive to learning. In this paper, we describe a user modeling
framework that relies on interaction logs to identify different types of learners, as well as their characteristic
interaction behaviours and how these behaviours relate to learning. This information is then used to classify
new learners, with the long term goal of providing adaptive interaction support when behaviours detrimental to
learning are detected. In previous research, we described a proof-of-concept version of this user modeling
approach, based on unsupervised clustering and class association rules. In this paper, we describe and evaluate
an improved version, implemented in a comprehensive user-modeling framework that streamlines the
application of the various phases of the modeling process.

Key Words and Phrases: Student Modeling, Clustering, Associative Rule Mining

1. INTRODUCTION

Advances in HCI continuously aid the creation of novel interfaces to support education
and training. Because of the novelty of these interfaces, it can be difficult to judge a priori
which ensemble of user interaction behaviours are conducive to learning. Our long-term
goal is to devise automatic techniques to analyze logs of the interactions with a novel
application and identify classes of user types, their identifying behaviours and how these
behaviours relate to learning. In addition, we want to use this information to create a user
model, i.e., to automatically identify the behaviours of new users, and enable the
application to provide adaptive support during interaction if the behaviours are associated
with suboptimal task performance.

In previous work, we described a proof-of-concept user modeling approach that uses
unsupervised clustering and class association rules to identify relevant user
types/behaviours from an existing dataset, and relies on these to classify new users. In
this paper, we refine that proof-of-concept into a comprehensive user-modeling
framework that streamlines the phases necessary to generate a user classifier from an
initial dataset of raw interaction logs. In [1] the initial approach was evaluated on an
environment to support learning of Al algorithms via the exploration of interactive
simulations. Here, we evaluate the new user modeling framework on the same
environment but on a larger dataset (65 students vs. 24), thus providing more convincing
evidence on the approach effectiveness.

After discussing related work, we illustrate the general user modeling approach,
including improvements from previous versions. Next, we discuss an empirical
evaluation of the framework and conclude with a discussion of future work.

2. RELATED WORK

Association rules have been widely used for off-line analysis of learners! interaction
patterns with educational software. e.g., to discover (i) error patterns that can help
improve the teaching of SQL [14]; (ii) similarities among exercises for algebra problem
solving in terms of solution difficulty [6]; (iii) usage patterns relevant for revising a web
based educational system spanning a complete university course [7].

Authors! addresses: S. Kardan and C. Conati, Department of Computer Science, University of British Columbia,
2366 Main Mall, Vancouver, BC, V6T174, Canada. E-mails: skardan@cs.ubc.ca, conati@cs.ubc.ca
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Most work on using association rules for on-line adaptation has been done within
research on recommender systems. In [4], for instance, association rule mining is used to
match the user type with appropriate products. The main difference with our work is that
in [4] there is no on-line classification. Users are "labelled# based on clusters built off-
line and the labels are used to guide recommendations when these users utilize the
system. In contrast, we perform online classification of new users, with the goal of
eventually providing real-time adaptation. Similarly, associative classification is used in
[20] to classify user requirements and generate personalized item recommendation in an
e-commerce application. The main difference with our work is that the approach in [20]
needs labelled data, while ours can work with unlabelled datasets.

The work by Romero et al ([16]) is the most similar to the research described here, in
that the authors aim to use clustering and sequential pattern mining to recognize how
students navigate through a web-based learning environment, classify them and use some
teacher tuned rules for recommending further navigation links accordingly. The
evaluation of this work focused on analyzing the quality of the rules generated by
different algorithms, but no results have yet been presented on the classification accuracy
of the proposed approach.

3. GENERAL USER MODELING FRAMEWORK

Behavior Discovery
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Figure 1: general User Modeling Approach.

Our user modeling approach consists of major phases: Behaviour Discovery (Figure 1A)
and User Classification (Figure 1B). In Behaviour Discovery, raw unlabeled data from
interaction logs is preprocessed into feature vectors representing individual users in terms
of their interface usage. These vectors are the input to an unsupervised clustering
algorithm that groups them according to their similarity. The resulting clusters represent
users who interact similarly with the interface. These clusters are then analyzed to (i)
identify if/how they relate to learning and then (ii) isolate in each cluster those behaviours
that are responsible for this performance. In [3] we introduced the use of Class
Association Rules [18] to identify the interaction behaviour characteristics of each
cluster.

Understanding the effectiveness of a user!s interaction behaviours is useful in itself for
revealing to developers how the application can be improved e.g. [10]. However, we also
want to use these behaviours to guide automated adaptive support during interaction.
Thus, the clusters and behaviours identified in the Behaviour Discovery phase are used to
build an on-line classifier user model. In the User Classification phase (Figure 1B), this
classifier is used to assess the performance of a new user based on her interaction
behaviours. This assessment will eventually guide adaptive interventions that encourage
effective interaction behaviours and prevent detrimental ones.
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To test this approach, we generated a proof-of-concept version based on off-the shelf
components and simplistic parameter settings. Following the encouraging results we
obtained with this initial version [1], we have refined all framework components and
implemented them in a Python-based unifying framework that streamlines the application
of the various phases of the user modeling process. In the next few sections, we describe
the most salient improvements we have made to the framework.

3.1 DATA EXTRACTION

The first step in behaviour discovery phase is to create a set of data-points from user
interaction logs. Currently, our data-points are vectors of features consisting of statistical
measures that summarize the user!s actions in the interfaces (e.g. action frequencies; time
interval between actions). Another approach is to create data-points from sequence
mining. This approach is useful when actions order is important to identify relevant
behaviours, and has been successfully applied when there are few high-level types of
actions (e.g. a successful attempt on the first step of a problem, asking for hints, etc.) e.g.
in [12,17]. These conditions do not apply to the test-bed educational environments we
have used so far (described later), i.e. interactive simulations with many fine-grained
interface actions that can be done in any order, which makes looking for recurring
sequences in user actions computationally expensive without much added value.

3.2 USER CLUSTERING

In the initial version of our user-modeling approach, for clustering we used a standard
implementation of the k-means algorithm [5] available in the Weka data mining package
[9]. To refine the clustering step, we first experimented with other clustering algorithms
available in Weka, including Hierarchical Clustering and Expectation Maximization [5].
None of these alternatives, however, substantially outperformed k-means. We thus
decided to retain k-means as the clustering algorithm for our approach, but devised a
method to ensure faster convergence to a good set of clusters.

One of the issues when using the k-
means is setting good initial centroids,
so that the algorithm can quickly
converge to a stable set of clusters with
small inter-cluster error. The
implementation available in Weka
: I-FF-F3 tended to converge slowly on the dataset
E5835E88888888¢8 | we used as a test-bed for this research
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Figure 2 - Convergence of GA K-means compared ~ (GA) to initialize the centroids in k-
to Random Seeding (K=2) means, based on an approach suggested

in [11]. This approach relies on using "chromosomes# to mold initial cluster centroids as
needed. These chromosomes represent different initial values for each feature and of the
initial centroids. Through mutation and crossover, in each iteration, new initial centroids
are generated and the ones with lower corresponding inter-cluster error for the resultant
clusters are retained for next iteration.

In our user modeling tasks, we have 21 continuous features, so the method proposed in
[11] is inefficient because it requires chromosomes with too many extra bits to discretize
the features without major loss of information. We thus changed the approach in [11] as
follows. We generate a random population of 100 initial chromosomes, each used to
generate a set of centroids that initialize a different run of k-means. We then select the
half of the chromosomes that led to clusters with the lowest inter-cluster error and use
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these to generate the next generation using crossover (i.e. selecting two chromosomes and
choosing the upper half bits of one chromosome and the lower half of the other
chromosome to form a new one) and mutation (i.e. selecting a chromosome and
randomly changing one of its bits). We repeat the process until there is no improvement
for a certain number of generations or we reach the maximum number of iteration limit.
Our experimental results show that, although this approach does not guarantee finding the
global minimum for the inter-cluster error, it converges faster than the standard random
seeding method. Figure 2 for instance, compares the performances of GA k-means and
the k-means from Weka on the dataset that is the test-bed for this research (averaged over
30 different runs). GA k-means converges after 100 iterations, while the standard seeding
method does not reach that same error level even after 1500 iterations (here, iterations are
the number of times that basic k-means is used for both cases).

3.3 ASSOCIATION RULE MINING TO DESCRIBE USER BEHAVIOURS

In our user modeling framework, association rule mining is used to identify the
interaction behaviours that characterize each of the clusters found in the clustering phase.
We use the Hotspot algorithm [9] to perform association rule mining on our clusters.
Hotspot inspects the training data and generates the association rules corresponding to a
class label (a specific cluster, in our case) in the form of a tree. For instance, two sample
generic rules derived from the same tree branching could be as follows:

If Action A frequency = High
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and generating overly specific rules too detailed to capture meaningful patterns (having
too many bins). While in [3] we chose a simple binary discretization, here we
experimented with higher number of bins and empirically set the maximum number of
bins to 7. In online user classification, as explained in the next section, the number of
user actions observed is limited and it is possible that the feature values calculated for a
user fall in different adjacent bins overtime, higher number of bins makes the classifier
more tolerant to these fluctuations (i.e. a minor change in a feature value does not trigger
a changing the label assigned to the user).

3.4 USER CLASSIFICATION

In the user classification phase, as new users interact with the system they are classified
in real-time into one of the clusters generated by the behaviour discovery phase, based on
which association rules match their behaviours. The use of association rules to construct a
classifier is called Associative Classification Mining or Associative Classification [18].
Algorithms for Associative Classification usually, generate a complete set of class
association rules (CARs) from training data, and then prune this initial set to obtain a
subset of rules that constitute the classifier. When a new unknown object (a user in our
case) is presented to the classifier, it is compared to a number of CARs and its class is
predicted based on a measure that summarizes how well the user matches the CARs for
each class. In the first version of our approach, the classification measure was simply the
number of CARs satisfied for each cluster. This means that all rules were considered
equally important for classification, failing to account for the fact that some rules with
limited class support (i.e., applicable to fewer members of the class compared to others)
should be considered with caution when deciding the class label of a user. In the current
version, we improved the classification measure based on an approach that assigns a
value to each rule, and calculates class membership scores based on the values of the
satisfied rules that apply to a class (e.g. [19]). We used a variant of this approach where,
instead of calculating membership scores based only on the satisfied rules, all of the
CARs that represent a cluster are used. The rationale behind this choice is that, in our
user modeling task the rules that do not apply to the new instance are also important for
determining the final label. For instance, it is important to penalize the score of a class ¢
when a major rule (which applies to most of the cls members) is not satisfied by a new
instance, even if a less distinctive rule for c applies to it. Accordingly, the membership
function we adopted returns a score S, for a given class A as follows:
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First, the preprocessing module reads the time stamped action logs and calculates the
feature vectors. Next, the GA k-means clustering module generates the clusters and
assigns labels to each user. The discretization module finds the optimal number of bins
and discretizes the feature vectors (this module uses Weka to run the rule-based
classifiers for finding the best number of bins). The discretized dataset is passed, along
with the generated clusters, to the rule generation module for association rule mining
and rule pruning. This module uses the Hotspot algorithm from Weka and, for each
cluster, looks for the optimal settings from a set of predefined values for each of the three
Hotspot parameters (i.e. minimum support, confidence improvement threshold and
branching factor). The last module (classifier) parses the generated rules and builds a
classifier that gets a new feature vector and returns the computed label. We implemented
a classifier evaluation module that uses LOOCYV and all the aforementioned modules to
evaluate the classifier on available datasets, as follows.

For each fold of the LOOCV, a sub-module of classifier evaluation feeds the test
user!s data into the classifier trained on the reduced dataset, by incrementally updating
the feature vector representing the interaction behaviours of this user. Predictions are then
made for the incoming vector as described earlier. A second sub-module computes the
accuracy of the classifier by checking (after each action in the user!s log) whether the test
user is correctly classified into its original cluster.

5. EVALUATION

We validated the current user-modeling framework on the Alspace CSP applet, the same
interactive system we used to test previous versions. However, a larger dataset was
generated for testing, which is described after illustrating the CSP applet.

5.1 THE AISPACE CSP APPLET

The Constraint Satisfaction Problem (CSP) Applet is part of a collection of interactive
visualizations for learning common Artificial Intelligence algorithms, called Alspace [2].
Algorithm dynamics are demonstrated on graphs by using color and highlighting, and
state changes are reinforced through textual messages (see Figure 3 for an example).

File Edit View CSPOptions Help
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Figure 3 - CSP applet with example CSP problem

Win {1}
Bin {2}

A CSP consists of a set of variables, their domains and a set of constraints on legal
variable-value assignments. The goal is to find an assignment that satisfies all constraints.
The CSP applet illustrates the Arc Consistency 3 (AC-3) algorithm for solving CSPs
represented as networks of variable nodes and constraint arcs. AC-3 iteratively makes
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individual arcs consistent by removing domain values inconsistent with a given constraint
until all arcs have been considered and the network is consistent. Then, if there is still a
variable with more than one value, a procedure called domain splitting is applied to that
variable to split the CSP into disjoint cases so that AC-3 can recursively solve each case.
The CSP applet provides mechanisms for interactive execution of the AC-3 algorithm,
accessible through the toolbar shown at the top of Figure 3 or through direct manipulation
of graph elements. Here we provide a brief description of these mechanisms necessary to
understand the results of applying our student modeling approach to this environment:
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HL and LL clusters in our experiment, where we report the preconditions for each rule
but leave out the consequence. The table also shows, for each rule, its level of confidence
(conf), and support within its cluster (class cov). These rules were generated by
discretizing the feature vectors in our dataset into seven mutually exclusive ranges (bins),
as explained earlier.

Direct Arc Click frequency appears in Rulel for the HL cluster, with value in the
highest bin, while it appears in Rule 3 for LL with the lowest value, indicating that LL
members use Direct Arc Click much less than HL members. The high class coverage of
Rulel for HL (100%) indicates that high frequency of Arc Click pertains to all high
learners, and thus it would be beneficial to trigger this behaviour for students who
otherwise would not engage in it. Low values of Direct Arc Click Pause average and
standard deviation in Rulel and Rule2 for LL suggest that, even when they do select arcs
proactively, LL students consistently spend little time thinking about this action!s
outcome. Finally, the high level of confidence of Rulel for HL (100 %) indicates that,
this rule will have high impact in classifying new users as per equation (1).

The above observations suggest, for instance, the following adaptation rules for the

CSP applet. IF user is classified as a LL and is using Direct Arc
Click very infrequently Then give a hint to prompt this action ;
IF user is classified as a LL and pauses very briefly after a
Direct Arc Click Then intervene to slow down the student

Table I. The representative rules for HL and LL clusters
Rules for HL cluster”:
Rulel: Direct Arc Click frequency = Highest (Conf =100%, Class Cov = 100%)

Rule5: Domain Split frequency = Highest and Auto AC frequency = Lowest and Fine Step
Pause Avg = Highest (Conf = 50%, Class Cov = 50%)



A Framework for Capturing Distinguishing User Interaction Behaviors in Novel Interfaces 167

classifier and compare it against: (i) a baseline that always predicts the most likely label
(LL in our dataset); (ii) the best achieving classifier among various complex classifiers
available in Weka, i.e., the Random Subspace meta-classifier using C4.5 as the base
classifier; (iii) the classifier obtained with the earlier version of the framework [1] (old
rule-based classifier in Figure 4). Note that all these four classifiers use the categories
learned via the unsupervised process described in sections 3.1 though 3.4. We also want
to compare our approach against a fully supervised approach that starts from categories
defined based on the available learning gains. For this, we calculated the median of the
learning gains and labelled the students above the median as high learners and others as
low learners. We then trained and tested a C4.5 classifier with these new labels.

Figure 4 shows the overtime average accuracy of these five classifiers, both in terms of
percentage of correct classifications for the individual clusters (LL and HL), and overall.
The new rule-based classifier has the highest overall accuracy, and the differences with
the other classifiers are statistically significant (p <.001), with a large effect size (d > 3).
For each cluster, the accuracy of new classifier is comparable with the best competitor,
but no other classifier achieves the same accuracy in both clusters.
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Figure 4 - The overtime average accuracy of different classifiers compared to the new rule-based classifier

Figure 5, shows accuracy of the new classifier as a function of the percentage of observed
actions, both overall and for the individual clusters.
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Figure 5 $ Accuracy of the new rule-based classifier as a function of the percentage of observed actions

For comparison, we include the overall accuracy of the baseline, which is the best
performing classifier after ours. The new rule based classifier reaches a relatively high
accuracy in early stages of the interaction which is very important when the goal is to
provide adaptive interventions to improve the user experience with the educational
software. The overall accuracy of the new classifier becomes consistently higher than all
the other classifiers before observing 20% of user actions, and accuracy on each cluster
goes above 80% after seeing about 50% of the actions, while the baseline consistently
misclassifies high learners throughout.
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6. CONCLUSION AND FUTURE WORK

In this paper, we describe a user modeling framework that uses unsupervised clustering
and Class Associating Mining to discover and recognizes relevant interaction patterns
during student interaction with educational software. The framework improves a previous
proof-of-concept approach by adding functionalities for more efficient clustering and
more principled selection of some of the required parameters. An empirical evaluation of
the framework provides evidence that it can both cluster users into meaningful groups, as
well as classifying new users accurately. More importantly, the framework generates
rules that provide a fine grained description of common behaviours for users in different
clusters. These rules appear to be suitable to guide adaptive interventions targeted at
improving interaction effectiveness. The next step of this work will be to add these
adaptive interventions to the educational software we have been using as a test-bed for
this research, an interactive simulation to help students understand an algorithm for
constraint satisfaction. We also plan to use the framework for generating classifier user
models for other educational software developed in our lab, including interactive
simulations for other Al algorithms and an educational game for mathematical skills.
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How to Classify Tutorial Dialogue?
Comparing Feature Vectors vs. Sequences

JOSE P. GONZALEZ-BRENES, WEISI DUAN, AND JACK MOSTOW
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A key issue in using machine learning to classify tutorial dialogues is how to represent time-varying data.
Standard classifiers take as input a feature vector and output its predicted label. It is possible to formulate
tutorial dialogue classification problems in this way. However, a feature vector representation requires mapping
a dialogue onto a fixed number of features, and does not innately exploit its sequential nature. In contrast, this
paper explores a recent method that classifies sequences, using a technique new to the Educational Data Mining
community " Hidden Conditional Random Fields [Quattoni et al., 2007]. We illustrate its application to a data
set from Project LISTEN's Reading Tutor, and compare it to three baselines using the same data, cross-
validation splits, and feature set. Our technique produces state-of-the-art classification accuracy in predicting
reading task completion. We consider the contributions of this paper to be (i) introducing HCRFs to the EDM
community, (ii) formulating tutorial dialogue classification as a sequence classification problem, and (iii)
evaluating and comparing dialogue classification.

Key Words and Phrases: Project LISTEN, Feature Vectors, Sequence Classification, Reading Task Completion

1. INTRODUCTION

Researchers in education have long distinguished a student trait, a characteristic that is
relatively constant, from a student state, a characteristic that changes thorough time
[Reigeluth, 1983]. In this paper, we discuss how to train a classifier to represent time-
varying characteristics of student states.

We illustrate our discussion with an example. Suppose we are classifying computer-
student!dialogues!using!thelsingle!feature!#turn!duration$. Figure 1 shows the duration of
each of the turns in a dialogue (9s, 8s, 5s, 7s, and 6s respectively). Conventional
classifiers, like logistic regression or decision trees, rely on a fixed-size feature vector as
an input; hence, we have to decide a priori how many features we are going to include.
But, how to map into a fixed-size feature vector a dialogue that may vary in number of
turns? One approach is to extract features from a window, either from the beginning or
the end of the dialogue [Gonzélez-Brenes and Mostow, 2011]. There are (at least) two
alternative approaches: (i) averaging the value of the features in the window " in our
example, it would be a single feature with value 6.0; or (ii) having a feature for every turn
"™ in our example, three features with values 5, 7 and 6. Once we transform dialogues into
feature vectors, we can train conventional classifiers on them.

0PEOEREE S

window
Figure 1: Dialogue described by a single feature

Mapping dialogues into feature vectors does not innately capture or exploit the
sequential nature of dialogue. Furthermore, it is not clear how appropriate the window
strategy is, since short windows may exclude important information, whereas long
windows may have too many missing values. In this paper, we consider the alternative
approach of classifying over the entire dialogue using sequences, by applying Hidden
Markov Models, and we introduce a recent technique, Hidden Conditional Random Field
(HCRF) [Quattoni et al., 2007].

Authors laddresses:!J.P.!Gonzélez-Brenes, e-mail: joseg@cs.cmu.edu; W. Duan, e-mail: wduan@cs.cmu.edu; J.
Mostow, e-mail mostow@cs.cmu.edu. , Project LISTEN, RI-NSH 4103, 5000 Forbes Avenue, Carnegie Mellon
University, Pittsburgh, PA 15213-3890, USA.
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The rest of this paper is organized as follows. Section 2 discusses relation to prior work.
Section 3 describes the different feature vector and sequence classifiers we consider to
classify dialogues. Section 4 presents empirical results on a classification task to predict
whether a student will complete a reading task. Section 5 concludes.

2. RELATION TO PRIOR WORK

Previous work on representations of data in language technologies has relied on feature
vectors using bag of word representations, n-grams, or their projections into latent space
[Wallach, 2006]. Alternatively, kernels have allowed richer representations. For
example, for text classification, the String Kernel [Lodhi et al., 2002], represents
documents in a feature space of all of the substrings of length k. A similar feature vector
representation would involve a prohibitive amount of computation, since the size of the
feature vector space grows exponentially with k. Sequence Kernels have been used for
speaker verification to map the audio signal sequence into a single feature vector using
polynomial expansions [Louradour et al., 2006]. We are unaware of alternative
classification approaches for dialogue other than using feature vectors.

Classification of sequences can be categorized in three different ways [Xing et al.,
2010]: feature vector based classification, model based classification, and distance based
classification. In the rest of this section, we discuss previous approaches to dialogue
classification in these categories.

2.1 Feature Vector Based Dialogue Classification

As discussed earlier, sequences can be mapped into fixed-size feature vectors. As far as
we know, all of the previous approaches in classification of tutorial dialogue have
ignored the sequential nature of dialogue, constraining dialogue into a fixed-size
representation.  For example, predicting dialogue completion has been studied
extensively in the literature, relying on a feature vector representation [Gonzalez-Brenes
et al., 2009; Gonzalez-Brenes and Mostow, 2010; Gonzalez-Brenes and Mostow, 2011;
Hajdinjak and Mihelic, 2006; Mdller et al., 2008; Mdller et al., 2007; Walker et al., 2001].

2.2 Model Based Dialogue Classification

Model based classification models sequences directly, for example using Hidden Markov
Models (HMMs). In this paper, we advocate for model based approaches over using
feature vectors.

HMMs have been used extensively in language technologies, for example in topic
segmentation [Eisenstein et al., 2008]. In the dialogue community, to our knowledge,
HMMs have been used only to segment dialogue [Stolcke et al., 2000], but not to classify
it as we do here. A growing body of work has investigated how to use policy learning to
improve tutorial effectiveness [Ai et al., 2007; Beck, 2004; Beck and Woolf, 2000; Boyer
et al., 2010; Chi et al., 2008; Chi et al., 2010]. Policy learning often relies on Markov
Decision Processes (MPDs) [Singh et al., 1999] to learn a strategy that maximizes the
expected value of a specified reward function. MDPs are very similar to HMMs in that
the input is a sequence. However, learning a strategy for what to do at each point in a
dialogue is a different problem than learning a classifier. Although speech is traditionally
modeled as a sequence of phonemes [Gunawardana et al., 2005], we believe we are the
first to model dialogues without using feature vectors. We do not know of any previous
use of HCRFs in the Educational Data Mining community.

2.3 Distance Based Classification

Distance-based methods for sequence analysis rely on a distance function to measure the
similarity between two sequences. Dialogue System Difference Finder [Gonzalez-Brenes
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et al., 2009] defines a distance function between dialogues described by feature vectors.
We are unaware of distance functions between dialogues that model dialogues as
sequences.

3. DIALOGUE CLASSIFICATION

In this section, we discuss the classification algorithms we considered to model tutorial
dialogue behavior using either feature vectors or sequences. For feature vector
classification we considered Maximum Entropy Classification [Berger et al., 1996] and
Random Forest [Breiman, 2004]. We used Maximum Entropy Classification, often called
Logistic Regression, as a baseline because of its recent success in classifying tutorial
dialogue [Gonzéalez-Brenes and Mostow, 2011]. Random Forest, often called Ensemble
of Decision Trees, has provided good empirical results in the EDM community, having
being used in the winning submission of the Educational Data Mining Challenge at
SIGKDD 2010.

Alternatively, for classifying sequences, we use the popular Hidden Markov Model
(HMM) approach [Rabiner, 1989]. We also introduce to the EDM community a recent
technique called Hidden Conditional Random Fields (HCRFs), which have been applied
to other domains [Gunawardana et al., 2005; Sy Bor, 2006]; for details of their
implementation, see [Quattoni et al., 2007].

Maximum Entropy, and HCRF can be formulated under an approach called risk
minimization [Obozinski et al., 2007], where the parameters are estimated by maximizing
the fit to the training data while penalizing model complexity (number of features).
Better fit to the training data favors classification accuracy in the training set, but risks
over-fitting the model to the data. Conversely, low model complexity sacrifices
classification accuracy on the training set in hopes of generalizing better to unseen data.
Both Maximum Entropy and HCRF are log-linear and discriminative " they model the
differences between class labels without inferring generative models of the training data.
However, they differ in the way they calculate the fit to the training data: HCRFs use a
latent variable (a hidden state) to model input sequences, while logistic regression uses
feature vectors. To penalize complexity, they both rely on regularization penalties. The
two most popular regularization penalties are the L; norm and the L, norm of the feature
vector [Ng, 2004]. The L; norm selects fewer features than the L, norm, and hence it is
used when interpretability of the model is desired, or when the number of features
exceeds the number of data points. Conversely, when the number of features is small
compared to the training data, the L, norm offers better predictive power [Zou and Hastie,
2005]. The trade-off between fit to the training data and model complexity is controlled
by a so-called regularization hyper-parameter, often optimized during cross-validation
using a held-out set of development data.

Random Forest is an ensemble of decision trees. To avoid over-fitting, each tree is
grown using only a random subset of the features and a random subset of the training data.
The training procedure grows each tree greedily, selecting the best decision split at each
node, and stopping when each leaf has five data points, with no pruning. During testing,
Random Forest returns the class predicted by the largest number of decision trees.
Random Forest does not assume that the data belongs to any particular distribution, and
hence it is considered a non-parametric approach.

An HMM is a generative classifier. Thus to distinguish between two classes, it requires
two models: one for the positive class, and one for the negative class. Like an HCRF, an
HMM models its input as a sequence, and uses