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A B S T R A C T

The steady growth in e-commerce and grocery deliveries within cities strains the available
infrastructure in urban areas by increasing freight movements, aggravating traffic congestion,
and air and noise pollution. This research introduces the Two-Echelon Prize-Collecting Vehicle
Routing Problem with Time Windows and Vehicle Synchronization, where deliveries are carried out
by smaller low- or zero-emission vehicles and larger trucks. Given their capacity restrictions,
the smaller vehicles can only deliver small-sized orders and must be replenished via depot
locations or larger-sized trucks. Besides replenishing smaller vehicles at satellite locations,
larger trucks can deliver small orders and larger items. Managing these two types of fleets
in an urban setting under consideration of capacity limitations, tight delivery time windows,
vehicle synchronization, and selective order fulfillment is challenging. We model this problem
on a time-expanded network and apply network reduction by considering the time window
constraints. In addition, we propose a branch-and-price algorithm capable of solving instances
with up to 200 customers, which continuously outperforms a state-of-the-art general-purpose op-
timization solver. Moreover, we present several managerial insights concerning synchronization,
vehicles, and the placement of depot/satellite locations.

1. Introduction

The significant growth in e-commerce over recent years, as a result of changing consumer behaviors and lifestyles, has led to a
steady increase in urban freight movements, contributing to traffic congestion as well as air and noise pollution (Savelsbergh and
Van Woensel, 2016; Seidel and Wickerath, 2020; Aslan et al., 2021; Han et al., 2022). Adverse health effects linked to this pollution
demand the implementation of appropriate countermeasures that reduce the number of vehicles and mitigate the environmental
impact of logistics within cities (Wen et al., 2016; Mohri et al., 2024). In this context, one possible solution is the use of small vehicles
(SVs), such as electric vehicles and cargo bikes. However, while SVs are more environmentally friendly and maneuverable in urban
settings, their limited range and capacity pose challenges, particularly for larger orders (Ferrero et al., 2016). This necessitates a
hybrid approach, utilizing both small and large vehicles. In these hybrid settings, an integrated planning approach, where the big
vehicles (BVs) may be used as moving depots for the SVs, can present opportunities (Grangier et al., 2016). At the same time, this
requires a high level of synchronization between BVs and SVs at the replenishment points. Synchronized planning and integrated
decision-making approaches are thus crucial for the logistics transition in urban areas. An illustrative example of this problem
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context is provided by Getir, a leading on-demand delivery service, facing challenges related to vehicle synchronization and route
planning in their two-echelon delivery system. Inspired by this real-life context, this paper aims to address these practical challenges
by introducing the Two-Echelon Prize-Collecting Vehicle Routing Problem with Time Windows and Vehicle Synchronization, solving it
mathematically using a Branch & Price approach. In this problem setting, arising in last-mile delivery contexts of e-commerce and
e-grocery companies such as Getir, two vehicle types (BVs and SVs) are responsible for the delivery of customer orders, which vary
in size. Given the capacity limits of SVs, large customer orders are exclusively handled by BVs, while small orders can be handled
by both vehicle types. In addition to fulfilling customer orders, BVs may, furthermore, be used to replenish the SVs at specific
locations (e.g., parking and loading zones), which requires synchronization between vehicles due to the lack of storage capacity at
these locations. Reserving the right to reject (unprofitable) customer orders, the decision-maker at the delivery company adopts a
prize-collecting approach with the goal of maximizing total profit, by optimizing the vehicle routes while strategically choosing the
customers to visit. By modeling the Two-Echelon Vehicle Routing Problem (2E-VRP) as a prize-collecting problem, we are able to
better capture the strategic decision-making process of order prioritization arising in contemporary urban logistic systems, where
cost considerations often make it impractical for service providers to accept all orders. In these situations, certain orders may be
strategically deferred or canceled to optimize overall efficiency.

To the best of our knowledge, we are the first to study this problem, with the study of Anderluh et al. (2021) being the closest in
the literature while showcasing several key differences with respect to (i) the customer service, (ii) the replenishment of SVs, (iii) the
considered objective function, and (iv) the proposed solution method. First, they pre-assign customers to delivery zones, determining
which vehicle type may be used for delivery, whereas in our model the assignment of customers to vehicles is only restricted by
the capacity limits of the vehicles. Second, the model of Anderluh et al. (2021) restricts the replenishment of SVs to the use of big
vehicles at satellites, whereas our approach offers more flexibility by allowing for replenishment at both satellites (through BVs)
as well as the depot (without the aid of BVs). Third, contrasting to Anderluh et al. (2021), we adopt a prize-collecting approach
so that not all customers need to be served. Finally, unlike Anderluh et al. (2021), which models the problem as a multi-objective
problem and proposes a metaheuristic algorithm as the solution approach, in the present study, we model the problem to maximize
the total profit gained by satisfying the customer demands and develop a branch-and-price algorithm as an exact solution approach.
As such, the contributions of this paper are threefold:

1. Focusing on important practical developments in last-mile logistics, we introduce a complex new variant of the 2E-VRP,
addressing a real-life operational challenge faced by e-commerce and logistics companies. Presenting an innovative solution
for contemporary urban logistics systems, this variant features a unique distribution setting with overlapping echelons,
advanced vehicle synchronization, and selective order fulfillment, which captures the strategic decision-making process of
order prioritization in these systems.

2. From a methodological perspective, we model this problem on a time-expanded network and develop an exact solution ap-
proach based on a branch-and-price algorithm. Capable of solving instances with up to 200 customers, this solution approach
consistently outperforms state-of-the-art general-purpose optimization solvers while providing a flexible yet accessible way
of solving a highly complex practical problem.

3. Focusing on vehicle synchronization for the integration of low-emission vehicles within last-mile delivery settings, we provide
valuable managerial insights for e-commerce and e-grocery companies by examining how various factors, including the degree
of vehicle synchronization, the number and placement of depots and satellites, and fleet composition, impact the system
performance.

The remainder of the paper is organized as follows. Section 2 presents an overview of the related literature. Section 3 provides
a formal description of the problem. Section 4 introduces the problem’s notation and mathematical formulation of the problem,
while Section 5 describes the proposed branch-and-price algorithm for solving the problem. Numerical experiments are presented
in Section 6, and a general discussion and conclusion follow in Section 7.

2. Literature review

The topic of city logistics and, in this context, the study of 2E-VRPs has received growing attention within the scientific literature
of recent years. An overview of this literature is provided by the reviews of Cuda et al. (2015) and Sluijk et al. (2023), presenting
different research streams and problem variants. An important variant, which has been studied extensively, is the 2E-VRP with time
windows, where vehicles must adhere to certain time constraints at the customer locations. Most of the research conducted in this
area focuses on hard time constraints, setting strict delivery time windows at customer locations (e.g., Lehmann and Winkenbach
(2024), Li et al. (2020), Dellaert et al. (2019), Mhamedi et al. (2022)). Lehmann and Winkenbach (2024) consider a 2E-VRP with
time windows and mixed demand, and propose an efficient matheuristic which effectively solves medium and large instances. The
studies of Li et al. (2020) and Dellaert et al. (2019) both focus on such hard time constraints, with the former developing a heuristic
method based on a large neighborhood search and the latter proposing a branch-and-price algorithm. Mhamedi et al. (2022) further
contribute to the advancement of exact methods for this type of problem by developing a branch-price-and-cut algorithm, optimizing
the 2E-VRP with time windows, and introducing a novel route-based formulation. Alternatively to the use of hard time constraints,
some studies (e.g., Wang and Wen (2020)) employ soft constraints where time window violations incur a penalty cost. The use of
time-expanded networks, as applied in the studies of Lagos et al. (2020) and Boland et al. (2019), presents another approach for
incorporating time constraints. However, while effective in integrating time window requirements, this method faces challenges in
computational tractability due to the significant increase in network size, as noted by Belieres et al. (2021).
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Building on the 2E-VRP with time windows, the integration of synchronization decisions forms another interesting development
in the context of the 2E-VRP and city logistics. The notion of synchronization in the area of VRPs has been discussed in more detail
in the survey of Drexl (2012), presenting a classification of synchronization aspects by distinguishing between five main types
of synchronization, namely task, operation, movement, load and resource synchronization. To remove ambiguity and gain focus
regarding the concept of synchronization, the recent literature review of Soares et al. (2024) reduces this classification to two types
of synchronization: operation and movement synchronization. The latter focuses on the synchronization of task sequences, which
often relates to the simultaneous traversal of arcs (see, e.g., the VRP with trailers and transshipments (VRPTT) as described in Drexl
(2013)). Given the focus of this research, this section focuses predominantly on operation synchronization, concerned with the
temporary coordination of tasks, and, in particular, on synchronization as a requirement for transfer or cross-docking operations. In
the context of two-echelon routing problems, this coordination generally envisions the synchronization of activities and exchanges
between the first- and second-echelon vehicles in order to optimize the distribution process.

Minimizing fleet size as well as total travel costs,Grangier et al. (2016) propose, in this context, a variant of the 2E-VRP with
time windows and synchronization constraints that allows for multiple trips at the second echelon. Li et al. (2021) propose a
variant of 2E-VRP with bi-synchronization, satellites, multiple vehicles, and time window constraints. In their setting, the first
echelon represents inter-satellite deliveries, whereas the second echelon covers pickups and deliveries between customer locations
and satellite nodes. Their model considers synchronization in cargo collection satellites and cargo delivery satellites to minimize
the operating cost of both echelons. Enthoven et al. (2020) introduce a two-echelon distribution system that allows for both direct
delivery at the customer’s home as well as indirect delivery via collection points, while considering synchronization between trucks
and zero-emission vehicles at satellite locations. The goal in this system is then to minimize the combined travel and connection
costs under consideration of the customer preferences for specific delivery methods. Anderluh et al. (2017) consider another variant
of a 2E-VRP with satellite synchronization, minimizing total travel cost. In their problem, all customers are preassigned to an
echelon and served using the echelon’s vehicles, thus distinguishing between ‘‘bike customers’’ and ‘‘van customers.’’ Synchronization
between the vehicles takes place as the first-echelon vehicles (vans) may supply goods to the second-echelon vehicles (cargo bikes)
at transshipment points (satellites). Anderluh et al. (2021) build on this research by introducing a new set of customers in the
grey zone. The demand of these customers can be satisfied by vehicles of both echelons, while the demands of other customers
may only be satisfied by a specific vehicle type. The model aims to minimize the total transportation cost, consisting of time- and
distance-related as well as vehicle-related fixed costs.

The study of Anderluh et al. (2021) is the closest to ours in the literature. However, our approach offers greater flexibility
in customer-vehicle assignments. While larger demands are generally served by bigger vehicles, our model allows any vehicle to
serve any customer, provided capacity permits, offering a more adaptable solution to the 2E-VRP problem. In addition, we do
allow the replenishment of small vehicles to be carried out both at the depots as well as the satellite locations, which results
in more flexibility in order fulfillment. Further contributing to this flexibility, we consider a prize-collecting 2E-VRP, so that not
all customers need to be visited. For an overview of the field of prize-collecting routing problems, we refer the interested reader
to Balas (1989), Feillet et al. (2005), Vansteenwegen et al. (2011), Stenger et al. (2013), Long et al. (2019), and Trachanatzi
et al. (2020). Moreover, for a similar application we refer the reader to the study of Senna et al. (2024) addressing a variant
of the VRP with Time Windows and Multiple Deliverymen (VRPTWMD), which shows close similarities in the considered problem
context, yet does not account for any synchronization or explicit load transfer between vehicles. Focusing on the solution methods
that have been proposed in the existing literature, we observe a pervasiveness of heuristic algorithms, focusing either on single
solution-based (Belgin et al., 2018; Kancharla and Ramadurai, 2019; Anderluh et al., 2021; Enthoven et al., 2020; Li et al., 2021) or
population-based (Anderluh et al., 2017; Sahraeian and Esmaeili, 2018; Bevilaqua et al., 2019; He and Li, 2019) heuristics as solution
methods. In contrast to the research on heuristic methods, the literature on exact algorithms for 2E-VRP is still limited (Perboli
et al., 2011). In this context, according to Sluijk et al. (2023), the solution approaches can be divided into two major categories of
branch-and-cut-based (Perboli and Tadei, 2010; Dang et al., 2013; Jepsen et al., 2013; Liu et al., 2018; Bianchessi et al., 2018)
and decomposition-based approaches (Santos et al., 2013; Baldacci et al., 2013; Santos et al., 2015; Marques et al., 2020). In
the context of decomposition-based algorithms, Baldacci et al. (2013) accelerate the column generation process by using a Tabu
Search heuristic to quickly find routes with negative reduced costs, thus reducing the reliance on more time-consuming exact
labeling algorithms. Using route-based formulations and branch-price-and-cut algorithms, Santos et al. (2015) identify rounded
capacity cuts, multi-star, and strengthened comb inequalities. Compared to Baldacci et al. (2013)’s route-based model, Marques
et al. (2020) present exponentially more constraints that can be separated in polynomial time. The new formulation allows the
dynamic generation of variables associated with first-echelon vehicles despite enumerating routes for first-echelon vehicles (as in
most decomposition methods). In general, the branch-and-price algorithm has been widely used in the literature on routing problems
(see, for example, Dabia et al. (2013), Santos et al. (2015), Munari et al. (2019), Dellaert et al. (2019), Costa et al. (2019), Marques
et al. (2020), Wang et al. (2022), and Moreno et al. (2024), Diao et al. (2024)). However, the use of exact methods and, as such,
branch-and-price algorithms is still scarce in the context of highly complex 2E-VRPs with synchronization requirements, presenting
opportunities for new adaptations and developments.

3. Problem description

In this paper, we address a novel routing problem arising in the last-mile context, where a company, operating, e.g., in e-
commerce or e-groceries, aims to integrate two fleets of vehicles to promote the use of low-emission lightweight vehicles in its
delivery operations. Within the context of this problem, the delivery of customer orders is, as such, carried out by two different sets

Transportation Research Part C 171 (2025) 104987 

3 



I.E. Sakarya et al.

Fig. 1. An illustration of the problem.

of vehicles: (i) BVs and (ii) SVs. Based on observations from practical settings in food and pharmaceutical deliveries, where average
order volumes are comparatively small, the capacity of BVs is assumed to be large enough to satisfy all the visited customers during
the considered planning horizon. The capacity of SVs is, however, considered to be significantly lower, given the nature of these
vehicles. As customer orders may vary considerably in size, it is important to classify them according to the order size. Large-sized
orders exceed the SVs total capacity and can, as such, only be carried out by BVs, while small-sized orders can be delivered by both
vehicle types. All vehicles of a certain type start their delivery operations with full inventory from a specified location (referred to
as their origin) from which they can subsequently make multiple trips before returning to their origin at the end of the day. To
replenish, SVs can then receive inventory either directly, by returning to a depot location, or indirectly from a BV at a satellite
location. The transfer of goods between vehicles at satellite locations requires vehicle synchronization, i.e., both vehicles must be
at the location simultaneously, as these locations, in the form of, for example, parking and loading zones, do not have any storage
capacity. Waiting at satellite locations is allowed, and the service time associated with the transfer of goods at these locations is
considered fixed.

Promising overall fast delivery as well as convenient customer time windows, companies may choose in practice to reject certain
customer orders on a given day for economic reasons. As such, we assume a prize-collecting structure within our system, where
not all customers have to be satisfied. However, if a customer order is accepted, the customer must be served by a single vehicle,
prohibiting split or partial deliveries. Moreover, order delivery at customer locations needs to adhere to predefined customer time
windows. While vehicles may arrive at the customer locations before the start of a time window, they must wait until its official start
before commencing service. Service times at customer locations are considered known, yet may vary between customer locations
and the considered time stamp. The company aims to maximize the total profit by satisfying customer demands within their specified
time windows while minimizing total transportation costs, ensuring efficient yet reliable delivery operations.

The resulting decision problem can be classified as the Two-Echelon Prize-Collecting Vehicle Routing Problem with Time Windows
and Vehicle Synchronization. The two-echelon structure of the problem is illustrated by Fig. 1, which provides a simple representation
of the problem by presenting possible routes for both BVs (solid lines) and SVs (dashed lines) under consideration of vehicle
synchronization. In this context, we visualize several distinct features of our problem. Firstly, the BVs can serve both echelons’
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Fig. 2. Time-expanded network example - Before (a) and after (b) the network reduction.

customers, while the SVs only serve customers with small-sized demands. Secondly, SVs can replenish their inventory either at the
depots (SV route in the top left) or by meeting with a BV at a replenishment/satellite location (SV route in the bottom left), requiring
exact synchronization (i.e., arriving at a satellite location at the same time) between the vehicles. Lastly, Fig. 1 also shows that not
all customers have to be visited, and vehicles, especially SVs, continue their trips after replenishing their inventory at the depot or
satellite locations.

4. Mathematical formulation

In this section, we present the mathematical modeling approach and elaborate on the details of our mixed-integer programming
model. For this purpose, we first present the underlying network structure and the pre-processing steps we followed to reduce the
network in Section 4.1 before presenting the model in Section 4.2.

4.1. Time-expanded network and pre-processing

To omit time indices in our variables, implicitly control vehicle synchronization, and meet time window constraints, we define
our problem on a time-expanded, directed graph, generating copies of all vertices for each time step in the planning horizon. An
illustrative example of such a time-expanded network graph (i.e., before pre-processing) is shown in Fig. 2(a). The network in this
example consists of seven locations, which are depicted by multiple nodes representing different discrete time stamps in the planning
horizon (e.g., 12:00, 12:30, 13:00, 13:30, 14:00). The considered locations include an origin, a depot, a satellite, and four customer
locations. In the graphical representation of Fig. 2, a black line around the circles, representing customer nodes, indicates whether
the considered time stamp falls into the customer’s delivery time window, which may span multiple time stamps. In the example,
the time windows of customers 1 and 4 span across two time stamps, while the time windows of customers 2 and 3 only align with
a single time stamp. The notion of service times can be easily incorporated in this context by extending the time stamp with the
duration of the service, thus only allowing the vehicle to continue its journey after the service’s completion, reducing the available
travel time. For reasons of simplicity, we do not depict arcs in Fig. 2(a). However, it should be noted that arcs only connect nodes
of a time stamp 𝑡 with nodes of later time stamps 𝑡′ (i.e., 𝑡 < 𝑡′) while taking into account whether the distance between the nodes
can be traversed within the given amount of time (which in this example corresponds to 25 min between time stamps).

As a result, three different types of arcs may be considered: (i) direct arcs, representing the most direct path between two locations;
(ii) extended arcs, which take longer than the required travel time, symbolizing a situation where a vehicle arrives at a location but
skips the node with the earliest available time stamp, visiting the location at one of the subsequent time stamps, and (iii) waiting
arcs, which connect two nodes of the same location but at different time stamps for the purpose of waiting. The latter are exclusive
to depot, satellite and origin nodes as customer nodes may only be visited once (and waiting at customer locations is covered by
extended arcs).

Given that the size of the graph increases quickly with larger numbers of customers and/or time stamps, solving this type of
problem can quickly become computationally challenging. In order to address this, we propose a pre-processing procedure, removing
non-essential duplicate nodes, their corresponding arcs as well as other inefficient arcs (such as redundant waiting arcs) within the
network. Fig. 2(b) illustrates this procedure for our example graph from earlier. Since all vehicles must start and finish their journeys
at their origin and may not visit the origin nodes at any intermediate time in the planning horizon, we only keep the first and the last
time stamp nodes of the origin in the pre-processing step. Copies of the origin nodes at other time stamps are removed. Following
the same reasoning, the customer, depot, and satellite nodes of the first and last time stamps are consequently also removed from the
network. In addition, the pre-processing eliminates all copies of customer nodes outside the specified delivery time windows. When
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Table 1
Nomenclature.
Sets
𝐿 set of vehicle types indexed by 𝑙. For BVs, 𝑙 = 1, and for SVs, 𝑙 = 2
𝐾𝑙 set of vehicles of type 𝑙.
𝐾 set of all vehicles 𝐾 = 𝐾1 ∪𝐾2
𝑣𝑜,𝑙 origin node of vehicle type 𝑙 at first time stamp
𝑣𝑓 ,𝑙 origin node of vehicle type 𝑙 at last time stamp
𝑉𝑑 set of depot nodes in the time-expanded network
𝑉𝑠 set of satellite nodes in the time-expanded network
𝐶 set of unique customer IDs indexed by 𝑢
𝑉𝑐 set of all customer nodes in the time-expanded network
𝑉𝑢 set of all nodes corresponding to customer 𝑢 ∈ 𝐶 in the time-expanded network
𝑉 set of all nodes except the first and the last time stamps
𝑉 set of all nodes
Parameters
𝑀 significantly large number
𝑑𝑗 total volume of demand at node 𝑗
𝑝𝑗 revenue gained by visiting customer 𝑗
𝑐𝑙𝑖𝑗 cost of traveling from node 𝑖 to node 𝑗 by a vehicle of type 𝑙
𝛼𝑙𝑖𝑗 1, if there is an arc from node 𝑖 to 𝑗 for vehicle type 𝑙; 0, otherwise
𝑄 capacity of SVs
Decision variables
𝑥𝑖𝑗 𝑘 1, if vehicle 𝑘 arrives to node 𝑗 from node 𝑖; 0, otherwise
𝐼𝑗 𝑘 total vehicle load of vehicle 𝑘 just before visiting node 𝑗

a customer’s time window spans multiple time stamps, we keep a copy of the customer node for each of the relevant time stamps,
allowing vehicles to visit and serve the customer at any time stamp within the specified window while removing the remaining
nodes. This ensures that only feasible delivery options are considered in the model. This targeted reduction of nodes and arcs allows
us to effectively reduce the computational complexity of our problem. Other network reduction and arc elimination techniques have
been proposed by, for example, Irnich et al. (2010), Kramer et al. (2019), de Lima et al. (2022), and could be explored in future
research.

4.2. Model

The notation, parameters, and decision variables are provided in Table 1, followed by our mixed-integer programming
formulation.

max
∑

𝑖∈𝑉

∑

𝑗∈𝑉𝑐

∑

𝑘∈𝐾
𝑝𝑗𝑥𝑖𝑗 𝑘 −

∑

𝑙∈𝐿

∑

𝑘∈𝐾𝑙

∑

𝑖,𝑗∈𝑉
𝑐𝑙𝑖𝑗𝑥𝑖𝑗 𝑘 (1)

s.t. 𝑥𝑖𝑗 𝑘 ≤ 𝛼𝑙𝑖𝑗 ∀𝑖 ∈ 𝑉 , 𝑗 ∈ 𝑉 , 𝑘 ∈ 𝐾𝑙 , 𝑙 ∈ 𝐿 (2)
∑

𝑖∈𝑣𝑜,𝑙

∑

𝑗∈𝑉
𝑥𝑖𝑗 𝑘 = 1 ∀𝑘 ∈ 𝐾𝑙 , 𝑙 ∈ 𝐿 (3)

∑

𝑖∈𝑉
𝑥𝑖𝑗 𝑘 =

∑

𝑖′∈𝑉
𝑥𝑗 𝑖′𝑘 ∀𝑘 ∈ 𝐾 , 𝑗 ∈ 𝑉 (4)

∑

𝑖∈𝑉

∑

𝑗∈𝑣𝑓 ,𝑙
𝑥𝑖𝑗 𝑘 = 1 ∀𝑘 ∈ 𝐾𝑙 , 𝑙 ∈ 𝐿 (5)

∑

𝑖∈𝑉

∑

𝑗∈𝑉𝑢

∑

𝑘∈𝐾
𝑥𝑖𝑗 𝑘 ≤ 1 ∀𝑢 ∈ 𝐶 (6)

𝐼𝑗 𝑘 ≤ 𝑄 ∀𝑗 ∈ 𝑉 ,∀𝑘 ∈ 𝐾2 (7)

𝐼𝑗 𝑘 ≤ 𝐼𝑖𝑘 − 𝑑𝑖 +𝑀(1 − 𝑥𝑖𝑗 𝑘) ∀𝑖 ∈ 𝑉𝑐 ,∀𝑗 ∈ 𝑉 , 𝑘 ∈ 𝐾2 (8)

𝐼𝑖𝑘 − 𝑑𝑖 −𝑀(1 − 𝑥𝑖𝑗 𝑘) ≤ 𝐼𝑗 𝑘 ∀𝑖 ∈ 𝑉𝑐 ,∀𝑗 ∈ 𝑉 , 𝑘 ∈ 𝐾2 (9)
∑

𝑖∈𝑉

∑

𝑘∈𝐾2

𝑥𝑖𝑗 𝑘 ≤ |𝐾2|
∑

𝑖∈𝑉

∑

𝑘∈𝐾1

𝑥𝑖𝑗 𝑘 ∀𝑗 ∈ 𝑉𝑠 (10)

𝐼𝑗 𝑘 ∈ N ∀𝑗 ∈ 𝑉 , 𝑘 ∈ 𝐾 (11)

𝑥𝑖𝑗 𝑘 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝑉 , 𝑘 ∈ 𝐾 (12)

The objective function (1) aims to maximize the total profit, which is calculated based on the total revenue obtained from the
customers minus the total traveling cost of the vehicles. The revenue from visiting a customer is the summation of the profits of
all products included in the customer’s demand. Constraints (2) guarantee that the vehicles can traverse only the available arcs in
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the corresponding vehicle’s network. Constraints (3), (4) and (5) are network flow constraints, and they impose that all vehicles
start and end their trip in the first and last stamp at their origins. Constraints (6) ensure that split delivery is not allowed, and each
customer’s demand can be satisfied by at most one vehicle. Constraints (7) restrict the vehicle capacity of SVs. Constraints (8) and
(9) are inventory balance constraints, ensuring that only vehicles with a load larger or equal to the demand of the customer can
carry out the delivery; in other words, it prevents partial delivery. Constraints (10) are synchronization constraints, stating that
SVs need at least one BV in the satellite node to replenish their inventory. This condition suffices under the assumption that BVs
have sufficiently large capacities, which eliminates the need to track vehicle loads explicitly. Finally, constraints (11) and (12) are
integrality and binary constraints, respectively.

5. Branch-and-price algorithm

In this section, we present a branch-and-price (B&P) method (Barnhart et al., 1998) to solve the problem for larger instances. A
B&P method consists of a branch-and-bound algorithm where the lower bounds in the tree are computed by column generation.
Therefore, column generation is utilized to solve the LP-relaxation of the route-based reformulation of the proposed mathematical
model, called the master problem.

5.1. Master problem

We derive the master problem (MP) by decomposing the original formulation presented in Section 4.2 using a column generation
approach. While the original problem maximizes profit, we reformulate the master problem as a minimization problem (following
standard column generation conventions) by negating the objective function coefficients. This transformation allows us to directly
search for columns with negative reduced costs in the pricing problems. For this purpose, we define a vehicle’s route as a sequence
of customer, depot, and/or satellite nodes within our time-expanded network structure, which starts from the vehicle’s origin. In
this context, each customer location (represented by multiple nodes associated with a specific time stamp) can be visited by at most
one vehicle. The resulting route-based reformulation is then as follows:

min
∑

𝑙∈𝐿

∑

𝑟∈𝛹𝑙

σ𝑟𝛷𝑟 (13)

s.t.
∑

𝑙∈𝐿

∑

𝑟∈𝛹𝑙

∑

𝑗∈𝑉𝑢

𝐴𝑟𝑗𝛷𝑟 ≤ 1 ∀𝑢 ∈ 𝐶 (14)

∑

𝑟∈𝛹2

𝐴𝑟𝑗𝛷𝑟 − |𝐾2|
∑

𝑟∈𝛹1

𝐴𝑟𝑗𝛷𝑟 ≤ 0 ∀𝑗 ∈ 𝑉𝑠 (15)

∑

𝑟∈𝛹𝑙

𝛷𝑟 ≤ |𝐾𝑙| ∀𝑙 ∈ 𝐿 (16)

𝛷𝑟 ∈ {0, 1} ∀𝑙 ∈ 𝐿, 𝑟 ∈ 𝛹𝑙 (17)

where σ𝑟 is the total cost of the route 𝑟 ∈ 𝛹𝑙, which is defined as the total traveling cost minus the revenue obtained by satisfying
the demands of the customers, and 𝛹𝑙 is the set of routes for vehicle type 𝑙 ∈ 𝐿. We introduce the decision variables 𝛷𝑟, which will
take the value 1 if route 𝑟 is selected and 0 otherwise. In addition, the parameter 𝐴𝑟𝑗 is set to 1 if node 𝑗 is visited in route 𝑟, and 0
otherwise. In this proposed model, the objective function (13) aims to minimize the total cost associated with the routes/delivery
of products. Constraints (14) guarantee that each customer’s demand can be satisfied by at most one vehicle, taking into account
the different nodes of a specific customer in the time-expanded network. The replenishment of SVs at satellite nodes is defined
in constraints (15), which ensure synchronization. Constraints (16) ensure that the total number of routes for BVs and SVs is less
than/or equal to the number of BVs and SVs, respectively. Finally, constraints (17) define the decision variables as binary.

Enumeration of all routes is generally impractical and quickly becomes computationally challenging as the size of the problem
increases. To address this, we employ a column generation algorithm, solving a restricted version of the master problem (RMP) and
two distinct pricing problems at each node of the search tree. By definition, the RMP is an LP relaxation of the MP that considers
only a subset of the variables. This problem is solved to optimality in every column generation iteration. The pricing subproblems
then seek to find columns with negative reduced costs or to prove that no negative reduced cost columns exist. If the algorithm finds
negative reduced cost columns, those columns (or a subset of them) are added to the RMP before the next iteration; otherwise, the
column generation algorithm is terminated. Exploiting the structure of our problem, we consider two types of pricing subproblems,
one for BV routes and one for SV routes, which will be discussed in the following.

5.2. Pricing problems

Exploiting the structure of our problem, we consider two distinct pricing problems tailored to generate cost-effective routes per
vehicle type, i.e., one for BVs and one for SVs. The reduced cost of the columns for these pricing problems is given by Eq. (18) for
BVs and by Eq. (19) for SVs, where 𝜋(14)

𝑢 , 𝜋(15)
𝑗 , and 𝜋(16)

𝑙 (𝑙 ∈ {1, 2}) denote the dual variables associated with constraints (14),
(15), and (16) in the RMP, respectively.

min
𝑟∈𝛹1

{

σ𝑟 −
∑

𝑢∈𝐶

∑

𝑗∈𝑉𝑢

𝐴𝑟𝑗𝜋
(14)
𝑢 + |𝐾2|

∑

𝑗∈𝑉𝑠

𝐴𝑟𝑗𝜋
(15)
𝑗 − 𝜋(16)

1

}

(18)

Transportation Research Part C 171 (2025) 104987 

7 



I.E. Sakarya et al.

min
𝑟∈𝛹2

{

σ𝑟 −
∑

𝑢∈𝐶

∑

𝑗∈𝑉𝑢

𝐴𝑟𝑗𝜋
(14)
𝑢 −

∑

𝑗∈𝑉𝑠

𝐴𝑟𝑗𝜋
(15)
𝑗 − 𝜋(16)

2

}

(19)

The complete mixed-integer-programming formulations for the BV and the SV pricing problem are presented in Appendix A
and Appendix B, respectively. Solving these mixed-integer programming formulations of the pricing problems requires a high
computational effort. We reduce this effort by implementing a dynamic programming-based labeling algorithm, which considers
the pricing problem as a variant of the elementary shortest path problem with resource constraints (ESPPRC), for which we refer the
interested reader to the review of Irnich and Desaulniers (2005). The following subsection provides a detailed description of this
labeling algorithm for the case of SVs. The same algorithmic framework can be applied to the case of BVs by removing the capacity
constraints and using the corresponding dual values.

5.3. Labeling algorithm

In our study, the pricing problem is solved exactly using a forward labeling algorithm. This algorithm incrementally constructs
feasible routes across our time-expanded network without enumerating all possible paths. In this context, a label 𝐿, representing a
partial or complete path 𝑝(𝐿) in the network, is characterized by a tuple 𝐿 = (𝑐 , 𝑣, 𝑉𝐿, 𝑞), where 𝑐 denotes the reduced cost of the
path, 𝑣 the end vertex, 𝑉𝐿 the set of visited customers, and 𝑞 the total delivered quantity since the last replenishment, which is reset
after visiting a depot or satellite location. For clarity and easier representation of the components of a specific label 𝐿, we refer
to these components as 𝑐(𝐿), 𝑣(𝐿), 𝑉𝐿(𝐿), and 𝑞(𝐿) respectively. Enabling the reconstruction of complete paths at the end of the
algorithm, each label maintains a link to its predecessor. The algorithm initiates at the origin node (node 0 at time stamp 0) with an
initial label 𝐿0 = (−𝜋(16)𝑙 , 0, {0}, 0), representing the starting point. Label extension is then performed iteratively at each node 𝑖 ∈ 𝑉
along all arcs (𝑖, 𝑗) ∶ ∀𝑗 ∈ 𝑉 , resulting in a new label with the following properties:

𝑐(𝐿′) = 𝑐(𝐿) + 𝑐𝑖𝑗
𝑣(𝐿′) = 𝑗

𝑉𝐿(𝐿′) =
{

𝑉𝐿(𝐿) ∪ {𝑉𝑗}, if 𝑗 ∈ 𝑉𝑐
𝑉𝐿(𝐿), o.w.

}

𝑞(𝐿′) =
{

𝑞(𝐿) + 𝑑𝑗 , if 𝑗 ∈ 𝑉𝑐
0, o.w.

}

This determines the reduced cost and end vertex of the new label. Moreover, if 𝑗 is a customer node, the visited customer set
is updated to include the customer ID of node 𝑗 (denoted by 𝑉𝑗 , which maps each node 𝑗 in the time-expanded network to its
corresponding customer) and the demand of node 𝑗 is added to the total quantity delivered since the last replenishment. Otherwise,
the visited customer set remains the same as the predecessor label, and the delivered quantity is reset to 0, as non-customer nodes
only consist of depot and satellite nodes, at which the small vehicles get replenished.

Taking this into account, each resulting new label is then assessed with regard to its feasibility in terms of the vehicle’s total load
and the customers visited. Feasible labels are retained for further extension until the sink node is reached, while infeasible ones are
discarded. To manage the potentially large number of feasible labels and enhance computational efficiency, we implement a set of
dominance rules. In this context, we consider a label 𝐿1 to be dominant over a label 𝐿2 if the following dominance conditions are
met,

𝑣(𝐿1) = 𝑣(𝐿2) (20)

𝑐(𝐿1) ≤ 𝑐(𝐿2) (21)

𝑞(𝐿1) ≤ 𝑞(𝐿2) (22)

𝑉𝐿(𝐿1) ⊆ 𝑉𝐿(𝐿2) (23)

stating that (i) both labels must end at the same node, (ii) 𝐿1 must have a lower or equal reduced cost (including the revenue made
from visiting customers), (iii) a lower or equal load, and (iv) the set of customers visited by 𝐿1 must be a subset of those visited by
𝐿2. These conditions collectively ensure that, any feasible extension of 𝐿2 is known to be feasible for 𝐿1 and therefore 𝐿2 can be
discarded. However, as rule (23) is highly restrictive and computationally expensive to include in the algorithm, we modify this rule
by implementing the idea of unreachable nodes sets  , based on already visited customers and resource limitations, as introduced
by Feillet et al. (2004). More specifically,  is defined for each label, considering customer nodes that have already been visited
and therefore cannot be revisited, as well as customer nodes whose demand cannot be served due to insufficient inventory. As such,
this method effectively identifies nodes that cannot be feasibly visited in future extensions of the current path, replacing rule (23)
by:

(𝐿1) ⊆ (𝐿2) (24)

This new rule ensures that any infeasible extension of 𝐿1 is also infeasible for 𝐿2, thereby respecting rule (23).
Despite the improvements resulting from the introduction of formulation (24), solving the ESPPRC remains computationally

demanding. To address this, we introduce several acceleration strategies, transforming our labeling algorithm into a three-phased
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approach, in which we first relax the dominance rule (24). For this purpose, we remove for each label all nodes in their corresponding
unreachable vertex set from the neighbor set. While this significantly speeds up the algorithm and ensures the feasibility of generated
labels, this may lead to discarding potentially useful labels, rendering the solution suboptimal. If the columns generated in this phase
have negative reduced costs, these columns are incorporated into the RMP. Once the algorithm can no longer find solutions with
negative reduced costs, we transition to the second phase, in which we no longer remove the unreachable vertex set from the
neighbor set of labels, but instead focus on addressing only 2-cycle violations in the routes, solving a modified problem referred to
as the 2-cyc-SPPRC. In this phase, we add only the columns which are found to be elementary and have a negative reduced cost to the
RMP. In case this 2-cyc-SPPRC leads to a solution with non-negative reduced cost, the algorithm terminates as no elementary routes
with negative reduced cost remain. Conversely, if an elementary solution with negative reduced cost is found, it is incorporated into
the RMP for the subsequent iteration. For routes with 𝑘 cycles, where 𝑘 ≥ 3, the algorithm moves to the third phase.

In this final phase, we reinstate the full dominance rule (24) and solve the ESPPRC in its entirety. If the solution has a negative
reduced cost, the corresponding columns are added to the RMP. If no such solution is found, it indicates that there are no more
columns with negative reduced cost to be generated. This ensures that the solution obtained is optimal, thus concluding the labeling
algorithm. This approach is particularly effective since solving the ESPPRC to optimality in every iteration of the column generation
is unnecessary, except for the final iteration at each node of the branch and bound tree. Similar acceleration procedures have been
proposed by, for example, Costa et al. (2019) and Ghoniem et al. (2015). Preliminary experiments have shown that the absence of
heuristic pricing leads to a significantly worse performance, underscoring its importance in the algorithm’s overall efficacy.

5.4. Branching and computational considerations

In order to obtain integer solutions in case the LP relaxation yields fractional results, we employ the branching strategy proposed
by Desrosiers et al. (1984). This well-established strategy presents a simple approach, branching on the arc flow variables, denoted
as 𝑥𝑖𝑗 , taking the value of 1 if there is an arc between nodes 𝑖 and 𝑗 in the associated column with a fractional value. After enforcing
the branching decision, both the RMP and the pricing problems must ensure that the returned columns adhere to this decision.
To speed up the process of finding integer feasible solutions, we furthermore apply a mixed integer linear programming (MILP)
heuristic at the end of each CG iteration before we start branching (Munari et al., 2019). For this purpose, we impose the variables
in the RMP as integers and solve the resulting MILP. We use a general-purpose solver with a time limit (30 s in our study) to update
the bounds on the column generation tree. This approach, though simple, has been proven to positively impact the convergence of
the branch-and-price tree (Alvarez and Munari, 2017).

To obtain an initial solution to our problem, we propose a clustering-based algorithm that consists of three main steps. In this
algorithm, each cluster corresponds to a set of nodes of a route for BVs or SVs. In the first step, to generate a pre-specified number of
randomly selected but potentially good clusters, we first utilize a modified version of the Approximate Stability Assessment procedure
developed by Özener et al. (2013). In the second step, considering the vehicle’s capacity, a random constructive algorithm generates
routes for BVs and SVs. After the clusters are generated and associated routes and costs are calculated, the final step implements a
tractable set packing problem to decide the delivery schedules of the BVs and SVs. A detailed description of the individual steps of
this algorithm is presented in Appendix C.

6. Computational experiments

We conducted extensive numerical experiments to validate our problem formulation and test the performance of our solution
approach in comparison with a state-of-the-art general-purpose optimization solver. These experiments have, moreover, been
designed to investigate the effect of different instance structures on the algorithmic performance and the obtained solution structures.
The MILP formulation presented in Section 4.2 and the proposed B&P algorithm are coded in Python and Gurobi 9.5. All experiments
were executed on a machine equipped with an AMD EPYC 2.0 GHz Processor (with IBPB, 4 Cores) and 32 GB RAM.

6.1. Instances

We tested our method on two sets of instances. The first set consists of 100 randomly generated instances with up to five
vehicles (containing both SVs and BVs), five time stamps, two depots, and two satellite locations, considering up to 50 customers.
The second set of instances consists of larger instances adapted from the instances proposed by Solomon (1987), with 100 customers,
and Gehring and Homberger (1999), with 200 customers. Using these sources, we obtain 12 distinct geographical datasets (6 with
100 customers and 6 with 200 customers), based on which we create 720 instances. These instances can then be classified in two
ways; (i) based on the tightness of the considered time windows (where type 1 problems have tight time windows and type 2
problems have wide time windows) or (ii) according to the distribution of the demand locations resulting in random, clustered, and
mixed (i.e., random and clustered) instances. As these instances do not have predefined time slots for deliveries and do not consider
multiple depots and satellite locations, we adapt these instances slightly to fit our problem. For this purpose, we first transform
the continuous time window data provided by the Solomon instances into a discrete time stamp framework, by dividing the total
planning horizon, defined by the depot’s ready time and due date in the original instances, into equal intervals (creating either
10 or 20 timestamps depending on the instance setting). Each customer’s time window and service time are then mapped to these
timestamps by identifying all intervals that overlap with their ready time and due date, creating corresponding customer nodes
for each feasible timestamp. In this context, it should be noted that a customer’s time window may span multiple time stamps. To
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Table 2
Performances of algorithms.

Case Cust. T.S. Ins. Time (s) Gap #Opt #Feasible

MILP B&P MILP B&P MILP B&P MILP B&P

10 120 3682 1790 0.19 0.01 1 88 120 120100 20 120 3477 2148 0.22 0.06 11 60 119 120
10 60 3694 3219 0.19 0.02 1 6 18 60200 20 60 3788 3598 0.37 0.20 0 1 42 60

Total 360 – – – – 13 155 299 360

I

Average 3660 2689 0.24 0.07 – – – –

10 120 3008 108 0.05 0.00 32 120 120 120100 20 120 2116 851 0.08 0.01 52 113 120 120
10 60 3662 918 0.06 0.03 0 53 56 60200 20 60 3824 2823 0.16 0.11 1 20 58 60

Total 360 – – – – 85 306 354 360

II

Average 3153 1175 0.09 0.04 – – – –

10 240 3345 949 0.12 0.00 33 208 240 240100 20 240 2797 1500 0.15 0.04 63 173 239 240
10 120 3678 2069 0.13 0.03 1 59 74 120200 20 120 3806 3211 0.27 0.16 1 21 100 120

Total 720 – – – – 98 461 653 720

Total

Average 3406 1932 0.17 0.05 – – – –

address the issue of the missing depot and satellite locations, we then consider the given depot location as the origin location for
both SVs and BVs, while generating additional depot and satellite locations for our problem. When generating these locations, we
distinguish between two cases: Case I, where the depots are far from the center of the grid, and Case II, where the depots are in
the center of the grid. In both cases, the satellites are in/around the center, and the total number of depots and satellites is based
on the average number of customers per time stamp (|𝑉𝑑 | + |𝑉𝑠| ≤ 𝛼 |𝑉𝑐 |

|𝑇 | , 0.2 ≤ 𝛼 ≤ 0.3). For instance, if there are, on average, ten
customers per time stamp, possible combinations for depot-satellite number pairs are (1,1) or (1,2). The total number of vehicles is
also limited by the average number of customers per time stamp, such that |𝐾1|+ |𝐾2| ≤ 0.75 |𝑉𝑐 |

|𝑇 | . The ratio between the number of
BVs and SVs is 1∕1, 1∕2, and 1∕3. The number of time stamps in the planning horizon is set to either 10 or 20, which allows us to
assign, on average, 5, 10, and 20 customers per time stamp, depending on the size of the instance.

This setup results in a total of 720 instances, comprising 480 instances which were generated from the six base-instances
with 100-customers (considering 20 different parameter settings for each base instance-case-time horizon combination, resulting
in 6 × 2 × 2 × 20 instances), and 240 instances generated from our six base instances with 200 customers, (considering 10 different
parameter settings for each combination, which leads to 6 × 2 × 2 × 10 instances). The 100-customer instances can be further
divided into 240 instances with tight time windows and 240 with wide time windows, which can be further categorized into 120
instances for each depot location case. Similarly, the 200-customer instances are divided into 120 instances with tight time windows
and 120 with wide time windows, which can be further categorized into 60 instances for each depot location case. The generated
instances are available upon request.

6.2. B&P algorithm results

This section focuses on evaluating the performance of the proposed B&P algorithm. For this purpose, we solve the instances
presented in Section 6.1 with the B&P algorithm and the MILP model from Section 4.2, setting a time limit of 3600 s for both
methods. When applying both methods to the instances we generated randomly, we see that both methods can quickly solve these
relatively small instances, proving optimality. Therefore, we mostly used these instances to inspect, analyze, and understand the
behavior of our methods against the changes in the instance settings. The findings from this preliminary analysis show that the most
significant factors affecting the performance of the solution methods are the locations of the depots and satellites, their distances
to customer locations, the number of time stamps in the planning horizon, as well as the length of the considered time windows.
The results of both methods for the 720 larger-sized instances are, thus, structured according to these factors.

A comparison of the performance of the MILP and the B&P algorithm on the 720 larger-sized instances, taking into account the
different case settings, as well as the number of customers and time stamps, is shown in Table 2, while Table 3 presents a similar
comparison under consideration of the different time window lengths. Both tables present for this purpose the number of customers
(Cust.) in column 2, the number of time stamps (T.S.) in column 3, and the total number of instances (Ins.) within the specified
instance setting in column 4. The subsequent columns in each table focus on evaluating the performance of the MILP and the B&P
algorithm by comparing their average run times (Time), optimality gaps (Gap), and the number of optimal (#Opt) and feasible
(#Feasible) solutions found.

From these tables, we can observe that the B&P algorithm is considerably faster than the MILP in terms of run times, with
an overall average time saving of approximately 43% (equivalent to about 1500 s). The comparison between Case I and Case II,
presented in Table 2, shows, furthermore, that the B&P performs even better in Case II, with an average difference of around 2000
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Table 3
Performances of algorithms w.r.t. the length of demand time windows.

Window Cust. T.S. Ins. Time (s) Gap #Opt #Feasible

Length MILP B&P MILP B&P MILP B&P MILP B&P

10 120 3121 642 0.13 0.02 23 115 120 120100 20 120 2271 1093 0.15 0.04 54 97 120 120
10 60 3752 2165 0.08 0.02 0 31 38 60Tight

200 20 60 3737 3081 0.15 0.06 1 13 49 60

10 120 3586 1177 0.13 0.01 3 90 120 120100 20 120 3373 2049 0.16 0.04 10 68 117 120
10 60 3776 2215 0.09 0.02 0 29 37 60Wide

200 20 60 3860 3371 0.27 0.19 0 8 49 60

Table 4
Settings of the scenarios.

Scenario Case Synchronization

S1 I No
S2 II No
S3 I Yes
S4 II Yes

seconds. More generally, it can be seen that placing the depots far from the center of the grid (i.e., as in Case I) increases the overall
run times for both methods. A similar effect can be observed when the number of customers increases. In addition to being generally
faster, the B&P also outperforms the MILP in terms of solution quality, providing consistently lower optimality gaps. Overall, the
B&P provides an optimality gap of 5%, while the average optimality gap of the MILP is at 17%. At the more detailed level, the
results show that even for the more challenging larger instances with 200 customers the B&P still maintains a good performance.
Comparing the number of optimal and feasible solutions found by each method further highlights the superiority of the B&P. While
the MILP struggles to find feasible solutions for almost 10% of the instances, the B&P always finds a feasible solution. In terms of
optimal solutions, the B&P is able to prove optimality for 461 of the 720 instances, while the MILP provides optimal solutions for
only 98 instances. Aside from the results presented in Table 2, we also investigate the impact of the number of depots and satellites
on the performance of the B&P. Our findings indicate a general increase in both the optimality gaps and run times as the number of
depots and satellites increases, highlighting their essential role in the performance of both methods. Notably, the B&P significantly
outperforms the MILP in terms of both optimality gaps and run times, further demonstrating its efficiency and effectiveness.

Investigating the impact of the time window lengths on the performance of the B&P, Table 3 indicates, furthermore, that the
problem becomes more challenging as the length of the time window increases, showcasing an increase in the average run times for
long time windows. Despite the longer run times, the solution quality only seems to be affected in the case of the largest instances
(with 200 customers and 20 time stamps), for which wide time windows may trigger a substantial increase in the number of customer
node copies.

6.3. Managerial insights

This section presents valuable managerial insights into different aspects of the problem, particularly on the effect of synchro-
nization and the impact of the number of depots, satellites, and vehicles used.

Insights into the effect of synchronization

We compare four scenarios to investigate synchronization’s impact and potential benefits within different planning settings. In
this context, scenarios S1 and S2 assume a situation where no synchronization is allowed/possible, representing the planning setting
of Case I and Case II, respectively. For our experiments, we implement these scenarios by removing the synchronization-related
constraints ((15) in Master Problem), as well as the satellite nodes and associated arcs from the considered network structure.
Scenarios S3 and S4, in contrast, consider the situation with synchronization while again representing the setting of Case I and Case
II, respectively. These scenarios are overviewed in Table 4.

Highlighting differences in profit, the number of depot visits, and the revenue and cost associated with each vehicle type, Fig. 3
compares these four scenarios, presenting the results as a percentage of scenario S1. It must be noted that all results are based on
average values, considering only the instances that could be solved to optimality for all four scenarios. Comparing these results
shows that synchronization has an overall positive effect on the total profits in the system. This is in line with expectations, as the
consideration of synchronization offers more flexibility for planning the routes of the SVs. Comparing the results for the two cases,
it can be seen that synchronization’s positive effect is more pronounced when the depots are located far from the center (i.e., Case
I, as in scenario S3). In this case, synchronization leads to significant cost savings in the routing cost of the SVs, which can now be
replenished by BVs in the center instead of returning to the depots located far away. This quick replenishment in the center further
allows SVs to satisfy more customer orders, which is clearly visible from their increased revenues. This effect can also be seen in the
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Fig. 3. Comparison of different scenarios as a percentage of scenario S1.

drastic decrease in depot visits. Furthermore, this also affects the revenue of the BVs, as they now spend time visiting satellites to
replenish SVs instead of serving customers. In contrast, comparing scenarios S2 and S4, which both consider the Case II setting, we
observe that the effect of synchronization is significantly lower than for the Case I setting. This is a result of the central placement
of the depots, which reduces the benefits of using BVs to replenish SVs at satellites due to the short travel distance to the depots.
As such, SVs mainly get replenished at the depots so that BVs can focus on serving customers. However, even though the effect is
small, we can still see a positive effect of synchronization on the profit due to reduced depot visits and lower costs for both BVs
and SVs.

Insights into the effect of the number of depots and satellites

Comparing the results of the scenarios shown in Fig. 3, we observe that the placement of the depots plays an essential role
in synchronization and its potential impact on profit and cost savings. Based on our results, we identify the number of satellite
locations as another critical factor impacting the success of synchronization. More specifically, as the number of centrally located
satellites increases (i.e., more synchronization locations become available), the SVs’ cost decreases due to the shorter distances to
these replenishment locations. A similar effect can be observed for an increase in the number of centrally located depot locations,
resulting in a decrease in the SV cost due to closer replenishment facilities. However, unlike when increasing the number of satellite
locations in the center, increasing the number of centrally located depots reduces synchronization between vehicles. As a result of
this general lower need for synchronization, we can conclude that a simultaneous increase in the number of satellite locations does
not have a notable effect on the profit, revenue, and cost of the solutions.

Insights into the effect of the number of vehicles

Another critical factor for customer demand satisfaction and cost management in city logistics is the fleet size, i.e., the number
of available BVs and SVs (Anand et al., 2015). Hence, we try to understand the effect of the number of available BVs and SVs on
the solution structure under consideration of the placement of the depots. Comparing the optimal solutions for different numbers of
vehicles with respect to different performance indicators, Fig. 4 shows, in this context, that an increase in the number of BVs in Case
I leads to an increase in the total profit as the additional BVs can be used to satisfy more customer demands. This is accompanied
by an increase in the revenue of the BVs and a general increase in vehicle synchronization.

The use of synchronization in Case I is, however, mostly driven by the number of SVs. As the number of SVs increases, there
is a notable rise in synchronization, indicating a direct correlation between these two factors. Despite the significant effect of
synchronization and the revenue gained by the SVs, the effect of increasing the number of SVs on total profit is less clear. This
is because as synchronization increases, BVs focus on the replenishment of SVs instead of serving customer demands, affecting
the BVs’ revenue and, thus, the potential total profit. As such, increasing the number of BVs takes priority when trying to satisfy
customer demands and increase total profit, considering the fixed and other operating costs to be the same.
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Fig. 4. (Case I) Comparison of the solutions for different numbers of big vehicles (BV) with regards to different performance indicators represented as a
percentage of the case with only one BV (indicated by the dashed line).

In the case where the depot is centrally located, i.e., Case II, SVs replenish at the depots instead of satellite locations and focus on
the demand satisfaction as much as possible, which eliminates the need for synchronization (see Fig. 5). Consequently, increasing
the number of vehicles of any type directly correlates with an increase in the revenue of the considered vehicle type as well as the
overall profit.

7. Conclusions

This study introduces a new variant of the Two-Echelon Vehicle Routing Problem (2E-VRP) in which the echelons partially overlap,
both echelons’ vehicles make delivery to customers, and one echelon’s vehicles are replenished by using the other. The problem is
highly complex due to the synchronization between the vehicles and multi-trip between the depots, satellites, and customer nodes.
We formulate the problem mathematically on a time-expanded network and propose a branch-and-price algorithm to solve it. The
results from our computational experiments on a set of 720 instances, adapted from the literature, show that the branch-and-price
outperforms a state-of-the-art general-purpose optimization solver and provides optimal solutions and reasonable run times for
instances with up to 200 customers. However, the number of instances solved to optimality decreases as customers, time stamps,
depots, satellites, and time window lengths increase. In our computational experiments, we investigated the effect of the placement
of the depots on the performance of the algorithms as well as the solution structure.

In addition, we conduct deeper analysis to obtain valuable managerial insights, particularly emphasizing the effect of synchro-
nization and the impact of the number of satellites, depots, and vehicles used. As expected, the consideration of synchronization
provides more flexibility for planning vehicle routes and positively affects the total profit. This effect is, however, more pronounced
when depots are far from the center since synchronization, i.e., the replenishment of small vehicles (SVs) by big vehicles (BVs), can
significantly reduce the travel distances of the SVs, which no longer need to return to the depots.

The number of satellite and depot locations is another critical factor affecting the success of synchronization. More specifically,
an increase in the number of satellite locations will lead to an increase in synchronization and a decrease in the SV cost. In contrast,
increasing the number of centrally located depots reduces vehicle costs and the need for vehicle synchronization. In addition, we
observe a close link between the number of vehicles and the obtained total profit. In this context, we can see that increasing the
number of BVs takes priority in case depots are located far from the center, whereas increasing the number of SVs leads to more
synchronization without necessarily increasing profit, considering the fixed and operational costs to be the same.
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Fig. 5. (Case II) Comparison of the solutions for different numbers of big vehicles (BV) with regards to different performance indicators represented as a
percentage of the case with only one BV (indicated by the dashed line).

Future research could build on the findings in this research by incorporating stochastic elements, such as variable customer
demand and travel times, enhancing the practical applicability of the proposed solutions. In addition, from a methodological
perspective, the potential of other labeling algorithms, e.g., bidirectional labeling and branching strategies, could be explored.
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Appendix A. Single BV pricing problem

Pricing problem PP-y, in which the decision variable 𝑧𝑖𝑗 denotes if there is an arc between node 𝑖 and 𝑗, is provided below:
PP-y

min
∑

𝑖∈𝑉

∑

𝑗∈𝑉
𝑐1𝑖𝑗𝑧𝑖𝑗 −

∑

𝑖∈𝑉

∑

𝑗∈𝑉
𝑝𝑗𝑑𝑗𝑧𝑖𝑗 − 𝜋

(16)
1 −

∑

𝑖∈𝑉

∑

𝑗∈𝑉𝑐

𝜋(14)𝑗 𝑧𝑖𝑗

+
∑

𝑖∈𝑉

∑

𝑗∈𝑉𝑠

|𝐾2|𝜋
(15)
𝑗 𝑧𝑖𝑗 (25)

s.t. 𝑧𝑖𝑗 ≤ 𝛼1𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝑉 (26)
∑

𝑖∈𝑣𝑜,1

∑

𝑗∈𝑉
𝑧𝑖𝑗 = 1 (27)

∑

𝑖∈𝑉

∑

𝑗∈𝑣𝑓 ,1
𝑧𝑖𝑗 = 1 (28)

∑

𝑖∈𝑉
𝑧𝑖𝑗 =

∑

𝑖′∈𝑉
𝑧𝑗 𝑖′ ∀𝑗 ∈ 𝑉 (29)

∑

𝑖∈𝑉

∑

𝑗∈𝑉𝑢

𝑧𝑖𝑗 ≤ 1 ∀𝑢 ∈ 𝐶 (30)
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𝑧𝑖𝑗 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝑉 (31)

In PP-y, the objective function (25) aims to minimize the total delivery cost of a BV, which is calculated as the total traveling
cost minus the revenue gained by satisfying the demand of the customers. Constraints (26) ensure, in this context, that the BV can
traverse only available arcs, while constraints (27) and (28) impose that the BV leaves from and returns to its origin when starting
and ending its trip. Constraints (29) are general network flow constraints, constraints (30) make sure at most one node of a customer
location is visited, and constraints (31) define the decision variables as binary.

Appendix B. Single SV pricing problem

Pricing problem PP-x, in which 𝑤𝑖𝑗 decision variable denotes if there is an arc between node 𝑖 and node 𝑗, is given as follows:
PP-x

min
∑

𝑖∈𝑉

∑

𝑗∈𝑉
𝑐2𝑖𝑗𝑤𝑖𝑗 −

∑

𝑖∈𝑉

∑

𝑗∈𝑉
𝑝𝑗𝑑𝑗𝑤𝑖𝑗 − 𝜋

(16)
2 −

∑

𝑖∈𝑉

∑

𝑗∈𝑉𝑐

𝜋(14)𝑗 𝑤𝑖𝑗

−
∑

𝑗∈𝑉𝑠

∑

𝑖∈𝑉
𝜋(15)𝑗 𝑤𝑖𝑗 (32)

s.t. 𝑤𝑖𝑗 ≤ 𝛼2𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝑉 (33)
∑

𝑖∈𝑣𝑜,2

∑

𝑗∈𝑉
𝑤𝑖𝑗 = 1 (34)

∑

𝑖∈𝑉
𝑤𝑖𝑗 =

∑

𝑖′∈𝑉
𝑤𝑗 𝑖′ 𝑗 ∈ 𝑉 (35)

∑

𝑖∈𝑉

∑

𝑗∈𝑣𝑓 ,2
𝑤𝑖𝑗 = 1 (36)

∑

𝑖∈𝑉

∑

𝑗∈𝑉𝑢

𝑤𝑖𝑗 ≤ 1 ∀𝑢 ∈ 𝐶 (37)

𝐼𝑗 ≤ 𝐼𝑖 − 𝑑𝑖 +𝑀(1 −𝑤𝑖𝑗 ) ∀𝑖 ∈ 𝑉𝑐 , 𝑗 ∈ 𝑉 (38)

𝐼𝑖 − 𝑑𝑖 −𝑀(1 −𝑤𝑖𝑗 ) ≤ 𝐼𝑗 ∀𝑖 ∈ 𝑉𝑐 , 𝑗 ∈ 𝑉 (39)

0 ≤ 𝐼𝑗 ≤ 𝑄 ∀𝑗 ∈ 𝑉 (40)

𝑤𝑖𝑗 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝑉 (41)

In PP-x, the objective function (32) aims to minimize the total delivery cost of an SV, which is calculated as the total traveling
cost minus the revenue gained by satisfying the demand of the customers. Constraints (33) ensure that the SV can only traverse
arcs that are available to it, and constraints (34) require the SV to leave from the origin. Constraints (35) and (36) are network
flow balance constraints with the latter one ensuring that the SV returns to the origin at the end of its trip. Constraints (38) and
(39) are inventory balance constraints for the customer nodes with small-sized demands. Constraints (37) state that no more than
one customer node can be visited. Constraints (40) restrict the inventory of the SV and finally constraints (41) define the decision
variables as binary.

Appendix C. Initial solution

The steps of the proposed algorithm for the initial solution are presented as follows:
[Step 1] Iterative cluster generation

We generate different routing patterns for BV and SV by using an iterative clustering algorithm. In each iteration, a random
point is chosen on the map as the base point, and a probability is assigned for each customer concerning its distance from
the base point. The customers in each cluster are then chosen using a roulette wheel selection approach. Since we seek to
generate unique clusters when a repetitive cluster is generated, such a generation is denoted as a failure. The associated
clustering approach and the probability calculation used in the roulette wheel selection are inspired by Ekici et al. (2015). We
should note that we limit the number of unsuccessful trials terminating each vehicle type’s cluster generation to 25000×|𝐾𝑙|.

[Step 2] Determining the routes for BVs and SVs and the associated costs

After the clusters are generated, considering the capacities of the vehicles, we utilize a random constructive algorithm to
generate routes for BVs and SVs. Assuming 𝐼𝑐 𝑙 denotes the set of nodes on the cluster 𝑐 associated with vehicle type 𝑙, 𝑐 𝑠
denotes the ‘current node’ at the related iteration of the algorithm, CurrentCapacity stands for the available capacity of SV,
which at the start of the algorithm is equal to 𝑄, TotalCost stands for the delivery cost of the vehicles with the initial value
of 0. Finally, VisitedSites stands for the set of the nodes the vehicles visit. The proposed constructive algorithm sorts the nodes
on the clusters according to their distance from the current node. Following that, each node is added to the set of visited
nodes while controlling the feasibility of the solution. The steps of the constructive algorithm for BVs and SVs are presented
as follows:
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[Step 2.1] Using the following equation, calculate the score of choosing each node for being on each vehicle (𝑠𝑖𝑙) :

𝑠𝑖𝑙 =

⎧

⎪

⎨

⎪

⎩

𝜂1
𝑝𝑖

∑

𝑗∈𝐼𝑐 𝑙 𝑝𝑗
− 𝜂2

𝑐𝑙𝑐 𝑠,𝑖
∑

𝑗∈𝐼𝑐 𝑙 𝑐𝑙𝑐 𝑠,𝑗
, if 𝛼𝑙𝑐 𝑠,𝑖 = 1

−𝑀 , otherwise.
∀𝑖 ∈ 𝐼𝑐 𝑙 , 𝑙 ∈ 𝐿

[Step 2.2] Sort the nodes in 𝐼𝑐 𝑙 in a descending order of scores and call this array 𝐼 ′𝑐 𝑙.
[Step 2.3] If 𝑙 = 1:

For each the node 𝑗 in 𝐼 ′𝑐1 do:
If a generated random number is less than 𝜉, do the following updates:

𝑉 𝑖𝑠𝑖𝑡𝑒𝑑 𝑆 𝑖𝑡𝑒𝑠 ← {𝑗}
TotalCost = TotalCost - 𝑝𝑗 + 𝑐1𝑐 𝑠,𝑗
𝑐 𝑠 = 𝑗.

Else:
Calculate the score of different satellites and depots (𝑠′𝑖1) using the following equation:

𝑠′𝑖1 =

⎧

⎪

⎨

⎪

⎩

𝑐1𝑐 𝑠,𝑖
∑

𝑗∈𝑉𝑠∪𝑉𝑑
𝑐1𝑐 𝑠,𝑗 , if 𝛼1𝑐 𝑠,𝑖 = 1

−𝑀 , otherwise.
∀𝑖 ∈ 𝑉𝑠 ∪ 𝑉𝑑

Candidate = min𝑖{𝑠′𝑖1}
𝑉 𝑖𝑠𝑖𝑡𝑒𝑑 𝑆 𝑖𝑡𝑒𝑠 ← {𝐶 𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒}
TotalCost = TotalCost + 𝑐1𝑐 𝑠,𝑐 𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒
𝑐 𝑠 = 𝐶 𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒.

Else:
For each the node 𝑗 in 𝐼 ′𝑐2 do:

If 𝐶 𝑢𝑟𝑟𝑒𝑛𝑡𝐶 𝑎𝑝𝑎𝑐 𝑖𝑡𝑦 − 𝑑𝑗 ≥ 0, do the following updates:
𝐶 𝑢𝑟𝑟𝑒𝑛𝑡𝐶 𝑎𝑝𝑎𝑐 𝑖𝑡𝑦 = 𝐶 𝑢𝑟𝑟𝑒𝑛𝑡𝐶 𝑎𝑝𝑎𝑐 𝑖𝑡𝑦 − 𝑑𝑗
𝑉 𝑖𝑠𝑖𝑡𝑒𝑑 𝑆 𝑖𝑡𝑒𝑠 ← {𝑗}
TotalCost = TotalCost - 𝑝𝑗 + 𝑐2𝑐 𝑠,𝑗
𝑐 𝑠 = 𝑗

Else:
Calculate the score of different satellites (𝑠′𝑖2) using the following equation:

𝑠′𝑖2 =

⎧

⎪

⎨

⎪

⎩

𝑐2𝑐 𝑠,𝑖
∑

𝑗∈𝑉𝑠∪𝑉𝑑
𝑐2𝑐 𝑠,𝑗 , if 𝛼2𝑐 𝑠,𝑖 = 1

−𝑀 , otherwise.
∀𝑖 ∈ 𝑉𝑠 ∪ 𝑉𝑑

Candidate = min𝑖{𝑠′𝑖1}
𝑉 𝑖𝑠𝑖𝑡𝑒𝑑 𝑆 𝑖𝑡𝑒𝑠 ← {𝐶 𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒}
TotalCost = TotalCost + 𝑐2𝑐 𝑠,𝑗
𝑐 𝑠 = 𝐶 𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒.

[Step 3] Determining the clusters

In the third step, after the clusters are generated and their delivery costs are calculated, we decide on the delivery schedules
of the vehicles by solving a tractable set packing problem. We use 𝛥𝑙 to denote the set of clusters for vehicle type 𝑙 and 𝜌𝛿𝑙
to denote the total cost of the cluster 𝛿𝑙 which is calculated in Step 2. Also, we define the binary parameter 𝜓𝑖𝛿𝑙 , which takes
1 if node 𝑖 is visited on cluster 𝛿𝑙 and 0 otherwise. We choose the best cluster combination for vehicles while guaranteeing
that each node is on a vehicle or not selected. We solve the following set packing problem [SPP]. The decision variable is as
follows:

𝐻𝛿𝑙 =
{

1, if cluster 𝛿𝑙 is chosen for vehicle types 𝑙
0, otherwise. 𝛿𝑙 ∈ 𝛥𝑙 , 𝑙 ∈ 𝐿

We solve the following mathematical model to determine the best combination of clusters:

𝐒𝐏𝐏 ∶

min
∑

𝛿𝑙∈𝛥𝑙

∑

𝑙∈𝐿
𝜌𝛿𝑙𝐻𝛿𝑙 (42)

s.t.
∑

𝛿∈𝛥𝑙

𝐻𝛿 ≤ |𝐾𝑙| ∀𝑙 ∈ 𝐿 (43)

∑

𝛿∈𝛥𝑙

∑

𝑙∈𝐿
𝜓𝑖𝛿𝑙𝐻𝛿𝑙 ≤ 1 ∀𝑖 ∈ 𝑉𝑐 (44)

𝐻𝛿𝑙 ∈ {0, 1} ∀𝛿𝑙 ∈ 𝛥𝑙 , 𝑙 ∈ 𝐿 (45)
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In [SPP], the objective is to minimize the total delivery cost. Constraints (43) make sure that the number of the clusters for
each vehicle type are limited by the number of vehicles for that type. Constraints (44) guarantee that each customer node is
included in at most one of the chosen clusters. Constraints (45) are the binary restrictions.
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