A combinatorial approach to multi-skill workforce scheduling

Murat Firat, Cor Hurkens

Beta Working Paper series 327
Manuscript Number: JOSH678

Title: A combinatorial approach to multi-skill workforce scheduling

Article Type: Paper

Keywords: project scheduling; multi-skill workforce scheduling; mixed integer programming

Corresponding Author: Mr. Murat Fırat, M.S.

Corresponding Author's Institution: Eindhoven University of Technology

First Author: Murat Fırat, M.S.

Order of Authors: Murat Fırat, M.S.; Cor Hurkens, Ph.D.
A combinatorial approach to multi-skill workforce scheduling

Murat Firat †* Cor Hurkens †

Abstract

This paper deals with scheduling complex tasks with an inhomogeneous set of resources. The problem is to assign technicians to tasks with multi-level skill requirements. Here the requirements are merely the presence of a set of technicians that possess the necessary capabilities. An additional complication is that a set of combined technicians stays together for the duration of a work day. This typically applies to scheduling of maintenance and installation operations. We build schedules by repeated application of a flexible matching model that selects tasks to be processed and forms groups of technicians assigned to combinations of tasks. The underlying mixed integer programming (MIP) model is capable of revising technician-task allocations and performs very well, especially in the case of rare skills.

Keywords: project scheduling, multi-skill workforce scheduling, mixed integer programming.

1 Introduction

As specialization in production and maintenance increases, the importance of skill management in employee scheduling grows significantly. Especially when activities require skills from several specialization fields at different levels, skill management becomes more challenging. Multi-skilled employee scheduling can be encountered for example in companies having operations like maintenance, construction and installation in which the work is carried at different physical locations. Then it makes sense to keep a combined group of workers together for a workday.

We developed an approach to this problem based on a hybrid combination of MIP models and applied it on maintenance instances provided by France Telecom. Since the problem instances of France Telecom have been used as a test bed for a computational challenge held in 2007, we can compare the performance of our method to other approaches tackling the same problem.

In each of the problem instances, we are given a set of tasks to be performed. For each workday, tasks are combined for being performed by assigned technicians without interruption. Among tasks, there may be precedence relations requiring that a certain task \(p \) must be completed before another task \(q \) can be processed. In this case we say \(p \) precedes \(q \) or \(q \) succeeds \(p \). A task can be processed by a set of technicians provided that the collective capabilities of this group are above a certain threshold. The capabilities or skills required by tasks and supplied by technicians, are described in terms of domains and levels.

*Corresponding author: m.firat@tue.nl. Supported by France Telecom/TUE Research agreement No. 46145963.
†Department of Mathematics and Computer Science, TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
Some tasks can be outsourced by hiring external companies. An outsourced task can be discarded and need not be scheduled. If a task is outsourced, then so must the ones succeeding it. Each task has an outsourcing cost and outsourcing is limited by a budget.

Besides the tasks, we are given a list of technicians with their availabilities on each workday. Technicians grouped on a certain workday to carry out a task must stay together for the duration of a workday. The group may perform different tasks but one at a time. Any travel or setup time in between tasks is disregarded.

The value of a schedule is measured by the makespan and a weighted sum of completion times. For this purpose tasks are partitioned in different priority classes. The latest completion time of tasks under a priority class is considered and the weighted sum of these completion times is taken. Evidently the most urgent tasks have highest weights. All tasks within a priority class have the same weight.

The proposed combinatorial approach is composed of three parts: preprocessing, finding lower bounds and constructing schedules. In the preprocessing part we calculate several characteristic properties of tasks. In the second part, lower bounds of the schedule costs are calculated by solving a simplified problem in which skill requirements and precedence relations of tasks are relaxed and preemption is allowed. The problem of calculating lower bounds and deciding which tasks to outsource is formulated as a MIP model. This model assumes that priority classes are handled sequentially. We run the lower bound model for all possible priority permutations. We follow the idea that smaller lower bound values promise low-cost schedules.

We construct schedules by finding simultaneous technician-task assignments and define a bipartite graph in which many-to-one type matchings correspond to technician-task assignments. Matchings are restricted by skill requirements, precedence relations and total durations. The problem of finding matchings is formulated as a MIP model. The proposed algorithm starts the construction of a day schedule with an initial matching phase and proceeds to the second phase in which the partially constructed schedule is extended by adding more tasks and reallocating technicians flexibly. The idea of finding simultaneous technician-task assignments was first introduced by Hurkens (2009) in the 2007 ROADEF Challenge and this approach was ranked first in the final stage among 11 qualified participants. In this paper we improved the idea of Hurkens (2009) by introducing several measurements for tasks and a more flexible MIP model for constructing day schedules.

The paper is organized as follows. In Section 2 we give a detailed description of the problem under consideration. Section 3 gives an overview of the studies in the literature related to our problem. Our solution approach is explained in details in Section 4 and computational results are presented in Section 5. Conclusions and further discussion are included in Section 6.

2 Problem description and notation

2.1 Tasks

The problem under consideration has been defined by France Telecom in the 2007 ROADEF Challenge (Dutot et al. 2006). In the problem, a set \(J = \{1, \ldots, n\} \) of tasks is given. Each task has a fixed duration not longer than a workday. For a task \(j \in J \), let \(d_j \) denote its duration. We have \(d_j \in \{1, 2, \ldots, H\} \) where \(H = 120 \) is the number of time units in a workday. Precedence relations of task \(j \) enforce that all tasks in \(\text{Pred}(j) \) must be completed before the task \(j \) starts.
A task $k \in \text{Pred}(j)$ is said to be a \textit{predecessor} of task j and their precedence relation is denoted by $k \rightarrow j$. It is also said that task j is a \textit{successor} of task k. Moreover the urgency of task j is represented by $P(j) \in \{1, 2, 3, 4\}$ denoting its priority class.

Tasks require certain skill qualifications. The requirements are specified as the number of technicians needed for each level of specialization. We will use the term \textquote{\textit{skill domain}} for a specialization field in the rest of the paper. The degree of expertise is represented by levels in each skill domain. The skills required to perform a task are expressed by a skill requirement matrix. Let task j have skill requirement matrix $RQ_j \in \mathbb{R}^{L \times S}$ where S (L) is the set of skill domains (skill levels). Entries of RQ_j specify how many technicians are needed for the corresponding skill domain-skill level pair. For example, $RQ_j^{(2,1)} = 2$ means that task j requires (at least) 2 technicians that have a competence in domain 1 of level 2 or higher. Skill requirements are cumulative in the sense that any requirement in higher level is carried to lower levels. Therefore we have:

$$l' \leq l \Rightarrow RQ_j^{(l',s)} \geq RQ_j^{(l,s)}, \quad \forall j \in J, l, l' \in \mathbb{L}, s \in \mathbb{S}$$

As mentioned in the introduction, external companies can be hired to perform some tasks. The cost of outsourcing a task j is denoted by c_j.

\subsection*{2.2 Technicians}

We are given a set $T = \{1, \ldots, m\}$ of technicians to perform the tasks. Technicians have availability periods specified as follows:

$$A(t, d) = \begin{cases}
1 & \text{if technician } t \text{ is available on day } d, \\
0 & \text{otherwise.}
\end{cases}$$

Skills of technicians are expressed with skill vectors and skill matrices. Entries of a skill vector specify the technician’s level of expertise in skill domains. Skill matrix entries show whether a technician is qualified for a particular skill domain-skill level pair. If a technician is qualified at a skill level, then that technician is also qualified at lower levels in the same skill domain. Let technician t have skill vector $SV_t \in \{0, 1, \ldots, |L|\}^{|S|}$ and skill matrix $SM_t \in \{0, 1\}^{|L| \times |S|}$. The skill level of t in skill domain s is given by $SV_t^{(s)}$ and for the skill matrix we have the following:

$$SM_t^{(l,s)} = \begin{cases}
1 & \text{if } l \leq SV_t^{(s)}, \\
0 & \text{otherwise.}
\end{cases}$$

For example, in a problem instance with $|L| = |S| = 3$, a technician having the skill vector $(3, 0, 2)$ has the following skill matrix:

$$\begin{pmatrix}
1 & 0 & 1 \\
1 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix}$$
2.3 The concept of a workday

In our problem, the time axis is partitioned into intervals of length H. These successive intervals represent workdays. Within a certain time interval (workday), the technicians performing a certain task must work together during this interval. Another important restriction is that the processing of each task must stay within a time interval.

2.4 Properties of schedules

A schedule defines the set of tasks performed, the time at which tasks are completed and the assignments of technicians to these tasks. The technician-task assignment is represented by defining a set of teams for each workday. A team has a number of technicians to perform the assigned tasks. Let τ denote a team. Then the set $T(\tau)$ denotes its technicians and $J(\tau)$ denotes the set of tasks assigned to τ. In a feasible schedule the following conditions must hold for each team τ:

$$\sum_{t \in T(\tau)} SM_t^{(l,s)} \geq RQ_j^{(l,s)}, \quad \forall (l,s) \in \mathbb{L} \times \mathbb{S}, \quad \forall j \in J(\tau)$$

$$\sum_{j \in J(\tau)} d_j \leq H$$

No preemption is allowed while performing a task. Let CT_j be the completion time of task j. Precedence relations enforce the following:

$$CT_j - d_j \geq CT_k, \quad \forall k \in Pred(j), \quad \forall j \in J$$

There is budget B for outsourcing tasks. The total cost of outsourced tasks must not exceed B. Let Ω denote the set of outsourced tasks. We follow the convention that the set $\{k \in J \mid \Omega \cap Pred(k) \neq \emptyset\} \subseteq \Omega$, that is, successors of outsourced tasks are outsourced as well.

The makespan of a priority class p is defined by $C_p = \max\{CT_j \mid P(j) = p, j \notin \Omega\}$. The overall makespan is the length of the schedule and denoted by $C_0 = \max\{CT_j \mid j \in J \setminus \Omega\}$. Note that outsourced tasks do not contribute to the schedule cost. Priority class 0 is an artificial priority class that is used to include the overall makespan in the quality evaluation of schedules and of course every task belongs to priority class 0. The cost of a schedule is calculated by the weighted sum of priority makespans $\sum_p w(p)C_p$ and in the benchmark instances of France Telecom the weights are as follows:

<table>
<thead>
<tr>
<th>p</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w(p)$</td>
<td>1</td>
<td>28</td>
<td>14</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

3 Literature review

The problem considered in this paper is a generalization of the resource constraint project scheduling problem, shortly RCPSP, with some additional aspects and it has been shown to be NP-Hard by Blazewicz et al. (1983). A basic review of the state of art in RCPSP is provided by Brucker et al. (1999). A survey of variants of RCPSP has been recently a published by Hartmann and Briskorn (2009).
3.1 Use of skills

In our problem the duration of a task does not vary with the skills of assigned technicians and skills do not change as no learning or forgetting effect is considered, so skills are homogeneous and static in the terminology of Heimerl and Kolisch (2009). Li and Womer (2009) and Bellenguez and Neron (2007) assume workers are “unary resources” which means that while processing a task they can only work in one skill domain. In our problem we assume that technicians contribute simultaneously in all possible domains while processing a task. Let us call this assumption on resources *simultaneous skill use*. Valls et al. (2009), Heimerl and Kolisch (2009), Drezet and Billaut (2008) and Ballou and Tayi (1996) also make the *simultaneous skill use* assumption.

3.2 Interpretation of expertise in a skill domain

The majority of studies encountered in the literature treat human resources as skilled or unskilled in skill domains. To the best of our knowledge, there are few studies that consider skill (or expertise) levels of employees in a skill domain (Bellenguez and Neron 2007, Valls et al. 2009). Some studies assume that employees have skill efficiencies (Gutjahr et al. 2008, Wu and Sun 2006) or competence scores (Yoshimura et al. 2006, Heimerl and Kolisch 2009). The drawback of scoring employee expertise rather than leveling is the difficulty in expressing skill requirements of tasks clearly. In case of scoring the expertise, if a task requires an expert, then its skill requirement is merely a high value in a domain. This high demand may be satisfied by collecting many non-expert employees. On the other hand if expertise is expressed by levels in a domain, then a task requiring an expert can only be satisfied by assigning the needed expert. Gutjahr et al. (2008), using both skill efficiency and competence score for employees, limit the number of employees that can be assigned to a task and define special variables for experts to handle this issue in their nonlinear MIP model. The authors also suggest a transformation function for mapping competence scores to skill efficiencies when employee competence are assumed to be dynamic. Yoshimura et al. (2006) use a specific parameter for experts or so-called “project leaders” in order to select an expert for each project. Ballou and Tayi (1996) use skill efficiencies as cost coefficients representing the appropriateness of workers to tasks.

3.3 Outsourcing

Outsourcing is an option for some tasks to get performed by external resources. Heimerl and Kolisch (2009), Wu and Sun (2006) and Bassett (2000) consider explicitly using external resources and they minimize the cost occurring due to outsourcing. In our case, we have an outsourcing budget and we try to maximize the number of outsourced tasks with the hope to construct low-cost schedules.

3.4 Solution approaches

In multi-mode RCPSP (or MM-RCPSP), there are multiple ways (or modes) to perform activities (or tasks, jobs) and each mode is defined by a duration and certain amounts of resources (Reyck and Herroelen 1999, Bellenguez and Neron 2007). In multi-skilled workforce scheduling problem (or MSPSP), a combination of employees who can perform a task and the time they
need to perform that task corresponds to a mode in MM-RCPSP. The skills of employees define
the dedicated amount of resources. Depending on the assumptions, the duration of perform-
ing a task by an employee combination may be fixed (Bellenguez and Neron 2007, Ballou and
Tayi 1996, Drezet and Billaut 2008) or may vary with skill efficiencies (Valls et al. 2009, Heimerl
and Kolisch 2009, Gutjahr et al. 2008, Wu and Sun 2006). However, as Drezet and Billaut
(2008), Heimerl and Kolisch (2009) and Bellenguez and Neron (2007) point out, it is not suit-
able to model MSPSP by MM-RCPSP, since the number of modes for tasks increases explosively.
Therefore the branch and bound methods proposed to solve RCPSP or MM-RCPSP (see Min-
gozzi et al. (1998) and Brucker et al. (1999) for more details) are not practical for MSPSP.
Below, we list the main solution approaches proposed in the literature:

- **Exact methods**: Branch and bound (Bellenguez and Neron 2007, Buddhakulsomsiri and
 Kim 2006, Heilmann 2003),

- **Heuristic methods**: MIP-based combinatorial approach (Hurkens 2009), Tabu search
 (Drezet and Billaut 2008), Genetic algorithm (Wu and Sun 2006, Yoshimura et al. 2006, Valls
 et al. 2009, Cai and Li 2000), Constraint programming based hybrid approach (Li and
 Womer 2009), MIP-based approach (Heimerl and Kolisch 2009), (so-called) High-performance
 local search heuristic (Estellon et al. 2009).

- **Meta-heuristic methods**: Priority-based rules, ant colony optimization and genetic algo-
rithm (Gutjahr et al. 2008), adaptive large neighborhood search with several destroy and repair
methods (Cordeau et al. 2009).

3.5 Other solution approaches for our problem

Cordeau et al. (2009) participated in the 2007 ROADEF Challenge and tied for second place
with Estellon et al. (2009). Cordeau et al. (2009) present a mathematical model for the precise
definition of our problem and report that it can not be solved for large instances optimally
in reasonable time. They develop a meta-heuristic method that consists of a construction
heuristic and an adaptive large neighborhood search with several destroy and repair methods.
The solution strategy is viewed as a standard simulated annealing algorithm with a complex
neighborhood search due to the acceptance criterion of the solutions. Their results are included
in the computational results section.

Estellon et al. (2009) designed a local search scheme in which a greedy algorithm is employed
to obtain a feasible solution and this solution is improved by a local search strategy. The authors
use a methodology including three key points, search strategy, moves and evaluation of moves.
They also point out that a careful implementation increases the convergence speed of local-
search heuristics and stochastic elements are useful to improve the diversification.

As mentioned in the introduction, Hurkens (2009) considers the same problem and proposes
a two-phase MIP-based solution methodology. In the first phase, a MIP model determines
the tasks to be outsourced and calculates lower bound for the schedule cost discarding the
outsourced tasks. The lower bounds are found by relaxing skill requirements and precedence
relations of tasks and by allowing pre-emption. In the second phase, a strategy of assigning
simultaneously multiple tasks and technicians is followed. A partially constructed schedule is
extended by that assignment strategy. The assignment problem is formulated as an integer
linear programming model.
4 Constructing schedules with flexible matching models

A preparation phase is conducted to calculate the necessary parameters to be used in the construction phase. Our combinatorial algorithm builds day schedules. Construction of a day schedule starts with finding many-to-one type technician-task assignments. We call this initialization “initial matching”. The initialized partial schedule includes teams with single tasks in their workloads. Next, workloads are increased by adding more tasks and reallocating technicians to teams. A team can receive tasks until either the total duration of its workload reaches the length of a workday or the remaining tasks cannot be performed due to skill requirements or precedence relations. Initial matching and extension of partial day schedule is performed by using two mixed integer linear programming models. The first one is called the “Initial Matching Model” or the IMM and the second one, called the “Flexible Matching Model” or the FMM, extends the schedule by iteratively adding more tasks and adapting the teams flexibly.

4.1 Preparation Phase

Before we construct schedules, we conduct some preprocessing steps and compute lower bounds for schedule cost and make the outsourcing decision.

4.1.1 Preprocessing of the data for a single task

Let MT_j denote the minimum number of technicians required by task j and let MH_j denote the man-hour demand of task j. It is necessary to know MT_j for two reasons. Firstly, lower bounds are calculated using man-hour demands of tasks and we have $MH_j = MT_j d_j$. Secondly, efficiency of assignments during schedule construction is maintained by punishing the excess in number of technicians from MT_j. A simple integer programming model is used to calculate MT_j. The binary decision variable x_t becomes 1 if technician t is assigned to the task j and 0 otherwise. The constraints of the model enforce that skill requirements of task j are met.

$$MT_j = \min \left\{ \sum_{t \in T} x_t : \sum_{t \in T} SM_t(l,s) x_t \geq RQ_j(l,s), \forall (l,s) \in L \times S; \ x_t \in \{0,1\} \right\}$$

A task is said to be hard if its required skills are not common among technicians. Hence hardness of a task depends on the skill distribution in the technician group as well as the required skill levels. For example a task requiring moderate skill levels may be “relatively” hard for a technician group, if there are few technicians specialized in the fields of demand. Let $SM_T = \sum_{t \in T} SM_t$ be the total skill of the technician group. Then the relative hardness h_j of task j is given by the following:

$$h_j = \max \left\{ \frac{RQ_j(l,s)}{SM_T(l,s)} \mid (l,s) \in L \times S : SM_T(l,s) \neq 0 \right\}$$
Note that $0 \leq h_j \leq 1$ for feasible problem instances. The ratio $RQ_j^{(l,s)}/SM_T^{(l,s)}$ has small value for common skill levels among technicians. The value of h_j gives a sign for the relative expertise requirement and the extreme case $h_j = 1$ shows that task j can not be performed when certain experts are unavailable. We give the following definition for such tasks:

Definition A task j with $h_j = 1$ is called a “special” task.

Task j is said to likely cover task k if the expertise required by task k but not required by task j, is common within the technician group. Then the possibility that the team having task j in its load can also perform task k is high. Let $\alpha_{jk}^{(l,s)}$ be the pairwise comparison of skill requirements of tasks j and k for skill level (l,s). Pairwise coverage relations are defined between the tasks if the sum of their durations is less than or equal to a workday length. Note that if task j dominates the skill requirement of task k or $\alpha_{jk}^{(l,s)} \geq 0$ for all (l,s), then task j covers task k. If we have $RQ_j^{(l,s)} < RQ_k^{(l,s)}$ for some (l,s) and if these skills are common within the technician group, then it is more likely that a team performing task j can also perform task k. Pairwise comparison for each skill level between task j and k is given as follows:

$$
\alpha_{jk}^{(l,s)} := \begin{cases}
0 & \text{if } RQ_j^{(l,s)} = RQ_k^{(l,s)} = 0 \\
1 & \text{if } RQ_j^{(l,s)} \geq RQ_k^{(l,s)} \text{ and } RQ_j^{(l,s)} \neq 0 \\
\frac{SM_T^{(l,s)}}{SM_T^{(l,s)}_{\text{max}}} & \text{if } RQ_j^{(l,s)} < RQ_k^{(l,s)}
\end{cases}
$$

where $(SM_T)_{\text{max}} = \max_{(l,s) \in L \times S} \{SM_T^{(l,s)}\}$. The coverage of task j over task k is accepted, if the average value of entry-wise comparisons is greater than 0.9:

$$
\gamma_{jk} := \begin{cases}
1 & \text{if } \frac{\sum_{(l,s)} \alpha_{jk}^{(l,s)}}{\sum_{(l,s)} \text{sign}(\alpha_{jk}^{(l,s)})} > 0.9 \\
0 & \text{otherwise}
\end{cases}
$$

Finally the coverage of task j is given below:

$$
cov_j = \sum_{k \neq j, d_j + d_k \leq H} \gamma_{jk}
$$

The proposed combinatorial algorithm treats tasks in decreasing order of their weights. The weight of a task j is a combined measure of the following criteria: hardness h_j, coverage cov_j, resource use MT_j, duration d_j and precedence relations. The weight function in a general form we use is as follows:

$$
w_j = A(\bar{h}_j + \overline{cov}_j + MT_j + \overline{d}_j) + BMT_j \overline{d}_j + C \sum_{k:j \rightarrow k} MT_k \overline{d}_k + D\bar{h}_j \overline{cov}_j
$$

where “-” is used to interpret that all criteria are normalized. Values of coefficients A, B, C and D are determined in such a way that contributions of all expressions have the same order of magnitude. In the combinatorial algorithm, a task of high weight is selected with high probability.
4.1.2 Lower bounds

Lower Bounds for RCPSP are found in the literature by several methodologies. Some of them are linear programming based lower bounds (Mingozzi et al. 1998), destructive approach (Heilmann and Schwindt 1997), Lagrangian relaxation of the corresponding integer programming formulation (Möhring et al. 2003) and destructive approach combined with constraint programming techniques (Brucker and Knust 2000). The mentioned lower bound techniques for RCPSP are not directly applicable to our problem because of its special aspects. We find lower bounds of our problem by solving a simplified problem which is formulated as a MIP model. This method was first proposed by Hurkens (2009) and in this section we provide a brief explanation. For further details we refer to the author.

In the simplified problem, skill requirements and precedence relations are relaxed and the schedule is pre-emptive. The simplified problem amounts to finding the minimum time needed to meet the cumulative man-hour demand considering technician availabilities only. If we let $J(p) = \{j \in J | P(j) = p\}$ denote the subset of tasks in priority class p, then man-hour demand of tasks in $J(p)$ can be expressed as:

$$MH_{J(p)} = \sum_{j \in J(p)} MH_j$$

A MIP model, called the Lower Bound Model, is used to compute the minimum aggregated times by selecting the best choice of tasks to outsource. Note that outsourcing decreases man-hour demand of tasks.

In the real case we handle priority classes sequentially. Although the priority weights suggest the ordering $\{1, 2, 3, 4\}$, we consider all priority permutations of practice: $\{1, 2, 3, 4\}$, $\{1, 3, 2, 4\}$, $\{2, 1, 3, 4\}$, $\{2, 3, 1, 4\}$, $\{3, 1, 2, 4\}$, $\{3, 2, 1, 4\}$. It is important to note that depending on the number of tasks of priority classes any priority sequence may turn out to include the optimal schedule. The reason why priority class 4 is kept as the last one is that its weight is zero, so it has no effect on the objective of our problem.

4.2 Construction Phase

Having found lower bounds and the tasks to outsource in the preparation phase, the combinatorial algorithm proceeds to constructing alternative schedules for every priority permutation. The priority permutation with smallest lower bound value is considered first. Alternative schedules are constructed by changing several strategies and by varying several parameters in our matching models. The term “matching” denotes many-to-one type technician-task assignment. Two matching models used by combinatorial algorithm are formulations of many-to-one type technician-task assignments on a bipartite graph. The first (also simpler) one is used for initialization of day schedules. The second one extends an initialized day schedule by adding as many tasks as possible.

4.2.1 Initial Matching

Constructing a day schedule starts with parallel assignments of technicians to candidate tasks. Candidate tasks correspond to so-called eligible activities by Brucker et al. (1999). The parallel assignment of technicians to tasks is superior to selecting a single task and building a team for
Table 1: Sets, indices, parameters, and variables of the IMM

<table>
<thead>
<tr>
<th>Sets included in the model</th>
</tr>
</thead>
<tbody>
<tr>
<td>J' set of tasks, $J' \subseteq J$</td>
</tr>
<tr>
<td>T' set of technicians, $T' \subseteq T$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>j task index, $j \in J'$</td>
</tr>
<tr>
<td>t technician index, $t \in T'$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_j weight of task j</td>
</tr>
<tr>
<td>$SM_{t,(l,s)}$ competence of technician t in domain s at level l</td>
</tr>
<tr>
<td>$RQ_{j,(l,s)}$ number of skilled technicians required by task j in domain s at level l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{t,j}$ binary variable indicating whether technician t is assigned to task j</td>
</tr>
<tr>
<td>y_j binary variable indicating whether task j initializes a team</td>
</tr>
</tbody>
</table>

that task, since parallel assignment has a more global view compared to the latter one. For example, the constructive heuristic of Cordeau et al. (2009) constructs a team for a selected seed task and continues building teams for other ones. In our opinion this assignment procedure misses the global view of skills compared to parallel assignment. The effect of starting with a global view of skills is more remarkable in problem instances where expertise is rare.

In the first part of the construction phase, the partial day schedule is initialized by finding parallel technician-task assignments. We create a bipartite graph where the left partition represents a subset of technicians and the right partition represents a subset of tasks (See Figure 1). Then the parallel technician-task assignments correspond to many-to-one type matchings. The problem of finding the simultaneous assignments is formulated as an integer linear programming model. The goal is to maximize the weighted number of team initializations. Weights of tasks represent their power to initialize a team.

In principle we aim to find the optimal initial matching on the complete set of available technicians and candidate tasks. Due to the time limit imposed by the problem definition we settle for a heuristic solution by repeatedly applying the IMM to a subset of technicians and a subset of tasks. The number of technicians and tasks is determined in such a way that the solution of the model can be obtained in a reasonably short time using a commercial solver like CPLEX 11.0. Therefore the initial matching model is run several times if necessary. Note that after the initial matching the partial day schedule consists of teams with a single task in their load.

Table 1 shows the notation, parameters and decision variables of the IMM. The mathematical formulation of the IMM is as follows:
Technicians (Skills) Tasks (Loads) Initialized Teams

\[
\text{maximize } \sum_{j \in J'} w_j y_j \\
\text{subject to: } \\
\sum_{j \in J'} x_{tj} \leq 1 \quad \forall t \in T' \quad (1) \\
\sum_{t \in T'} SM_t^{(l,s)} x_{tj} \geq RQ_j^{(l,s)} y_j \quad \forall (l, s) \in L \times S, \forall j \in J' \quad (2) \\
y_j, x_{tj} \in \{0, 1\} \quad \forall j \in J', \forall t \in T'
\]

Constraints (1) enforce that a technician can be matched to at most one task. If a task initializes a team, then constraints (2) guarantee that it must be matched to a number of technicians such that its skill requirements are met. Note that a task with a relatively high weight may get more technicians than necessary. Although it might seem as an inefficiency, in the extension phase the FMM reallocates technicians in order achieve the possible maximum weighted packing of tasks in the day schedule. When no technician is left for assigning to tasks or all candidate tasks are assigned to technicians, the initial matching is completed. The initialized day schedule has teams with single tasks in their workloads.

Figure 1 illustrates team initializations with an example IMM of 5 technicians and 3 tasks. According to the solution of the model, it turns out that 2 teams are initialized by \(j_1\) and \(j_3\). In the partial schedule team \(\tau_1\) (\(\tau_2\)) has load with duration \(d_1\) (\(d_3\)). After the initial matching,
the partial schedule has the following technicians groups $T(\tau_1) = \{t_4, t_2\}$ and $T(\tau_2) = \{t_1\}$. Schedule construction will continue with extending the partial schedule by:
- adding more tasks to the initialized teams
- merging similar teamloads to let some technicians contribute to other teams
- letting some tasks initialize teams
- recombining the technicians of teams to adapt to the new skill requirements

The following subsections explain what kind of MIP model we use for extending the partial schedule and how the mentioned cases may occur.

4.2.2 Extending the partial day schedule

After a day schedule has been initialized, it is extended by iteratively scheduling more tasks. Adding more tasks to the schedule is not trivial, since some tasks may require slightly or even completely different skills than the skills of available teams. Therefore more tasks can be added to the partial schedule if technicians are easily reallocated among teams depending on the skill requirements of candidate tasks. Rearranging technician combinations of teams is achieved by letting their technicians be conditionally available.

Generalization from “technicians and tasks” to “skills and loads”:

In a partial day schedule a team can be considered from different points of view. First, a team can be perceived as a combination of skills if technicians are considered. Second, a team can also be perceived as a load if its workload is considered. Therefore from the first (second) point of view a team represents a skill (load). Moreover unassigned individual technicians (candidate tasks) can be perceived as skills (loads). These observations lead us to consider every element of the partial schedule as “skill” and as “load”. Skills and loads are grouped as shown in Table 2. Instead of technicians and tasks we will have skills and loads in the matching model to extend the partial day schedule.

The skills and the loads of teams are called “active”, since they are actively comprising the partial schedule. The technicians who were not assigned in the partial schedule to any task are called “passive” skills. Similarly, the candidate tasks are called “passive” loads. Individual technicians of team are called “latent” skills. As mentioned above, latent skills are conditionally available and they play an important role in scheduling candidate tasks (passive skills) by determining skill combinations of loads flexibly.

Similar to the IMM, we define a bipartite graph in which the left partition includes skills and the right partition includes loads. In this bipartite graph, skill-load assignments correspond to many-to-one type matchings. Teams are represented in the left partition by their skills and in the right partition by their loads. In addition we have skills of unassigned technicians in the left partition and loads of candidate tasks in the right partition. The possible extension cases that can appear in a solution are listed below:
Table 2: Types of Skills and Loads

<table>
<thead>
<tr>
<th>Skills</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>active</td>
<td>total technician skills in a team</td>
</tr>
<tr>
<td>passive</td>
<td>unassigned technician</td>
</tr>
<tr>
<td>latent</td>
<td>conditionally available technician</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Loads</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>active</td>
<td>workload of a team</td>
</tr>
<tr>
<td>passive</td>
<td>candidate task</td>
</tr>
</tbody>
</table>

Case 1 an active skill is matched with:

a) an active load: \textit{merging} team load

b) a passive load: \textit{extending} team load

Case 2 an active load is matched with:

a) passive and/or latent skills: \textit{recombining} technicians

b) skills including an active skill: \textit{merging}

Case 3 a passive load is matched with:

a) passive and/or latent skills: \textit{initializing} a team

b) skills including an active skill: \textit{extending} team load

As seen above a load can be matched with \textit{any} skill combination as long as the current schedule configuration allows. This is the key aspect of our matching model resulting in high flexibility. Each technician, no matter in a team or not, becomes a potential skill for candidate tasks. Candidate tasks may be added to the partial schedule by joining a teamload (Case 1a) or by initializing a team (Case 3a). While joining to a teamload, a candidate task may bring some additional technicians to the team, if necessary.

The condition for a latent skill to be in other matchings is that the active load of its team is matched with skills. In other words, matching an active load with skills leads to an opportunity of using some of its technicians in other matchings. Generally speaking, matching of active loads to skill combinations is triggered by passive loads (candidate tasks), since they mainly contribute to the objective of matching model. The higher weight a candidate task has, the more power to force the current partial schedule to find the needed skill combination. In light of this fact we have the following observation:

\textbf{Observation} A candidate task with sufficiently high weight may force teams to merge or recombine their technicians, thereby making an expert technician available.

Case 1a, merging, generally leads to an increase in overall efficiency of the partial schedule. For example, let two tasks with similar skill requirements have initialized teams in the initial matching. After merging in the extension phase they can be performed by one technician group and the second technician group can be used in initializing teams or extending loads of other teams. Figure 2 and Figure 3 illustrate examples of extending the partial schedule of the example in Figure 1. In order to show all possible cases, we illustrated two different scenarios corresponding to two different solutions obtained with different parameter settings.

In Figure 2 (and 3) the flexible matching model includes 2 teams \((\tau_1, \tau_2)\) with technicians \(T(\tau_1) = \{t_4, t_2\}\) and \(T(\tau_2) = \{t_1\}\), 2 unassigned technicians \((t_3, t_5)\) and one candidate task \((j_2)\). Latent skills are shown in black boxes and linked to their current teams. The first two indices
of partitions belong to active skills and loads. There is no edge drawn between an active skill and an active load of the same team, since this matching does not make any sense and it is forbidden in the model.

In scenario 1 (Figure 2), the active load of τ_2 is matched to a new skill combination including the active skill of τ_1 and passive skill of t_5. This matching is an example of merging (Case 1a) and the combined load is performed by the newly matched skill combination. Matching active load of τ_2 allowed t_1 to be in the initialized team of j_2 (Case 3a) together with technician t_3.

In scenario 2 (Figure 3), τ_1 recombined its technicians (Case 2a) by being matched to passive skills of unassigned technicians t_3, t_5 and latent skill of technician t_2 who was in the previous combination as well. The number of technicians of τ_1 seems increased by one and this increase can be explained as an adjustment to have technician t_4 in the extended team τ_2 (Case 1b) as we now have j_2 in one load.

Due to its mentioned flexibility aspects, we call the bipartite matching model the flexible matching model, or the FMM. The main contribution of this study is introducing this model. Hurkens (2009) extends the partial day schedule using two different matching models iteratively, where the first one is used to assign multiple tasks simultaneously, and the second one is used to find efficient recombination of technicians. The FMM contains both steps and more.

Forbidden edges:

In the FMM some edges may cause infeasibility and some are useless. Those edges are detected in advance and they are not allowed to be in any matching. These edges can be listed...
Case 2a: *recombining technicians*

- selected load: 1 \((y_1 = 1) \)
- skill combination: 3 \((x_{31} = 1) \)

- 4 \((x_{41} = 1) \)

- 5 \((x_{51} = 1) \)

Case 1b: *extending teamload*

- selected load: 3 \((y_3 = 1) \)
- skill combination: 2 \((x_{23} = 1) \)

- 6 \((x_{63} = 1) \)

Figure 3: Extending partial schedule with the FMM (Scenario 2)
Table 3: Sets, indices, parameters and variables of the FMM

Sets included in the model
- Δ: set of all skills in the left partition
- Λ: set of all loads in the right partition
- T: set of active skills
- W: set of team loads
- F: forbidden edges, $F \subseteq \Delta \times \Lambda$
- M: set of edges between skill and load of the same team

Indices
- σ, σ': skill index, $\sigma, \sigma' \in \Delta$
- λ, λ': load index, $\lambda, \lambda' \in \Lambda$

Parameters
- $T(\sigma)$: set of latent skills of active skill σ
- w_λ: weight associated to load λ
- mt_λ: the number of technicians used for performing all tasks in load λ
- $SM_{s,l}^{(l,s)}$: skill value of σ in domain s at level l
- $RQ_{s,l}^{(l,s)}$: number of skilled technicians required by λ in domain s at level l

Variables
- $x_{\sigma \lambda}$: binary variable indicating whether σ is assigned to λ
- y_λ: binary variable indicating whether λ assigned to a skill combination
- z_λ: inefficiency penalty of λ

as follows:
- the edges between active load and active skill of the same team,
- the edges that lead to a total duration of a teamload longer than a work day
- the edges that result in violation of a precedence relation
- the edges that cause a delay in an already completed priority class

Punished matchings:
The number of teams included in the FMM is limited. Therefore a matching although it seems profitable for the subset of the partial schedule may not be so for the complete partial schedule. The immediate example is a matching of active skill and passive load in which an active skill (technician group of a team) has more technicians than needed for the passive load (candidate task). The FMM has penalty variables to detect and prevent these matchings.

4.2.3 Mathematical formulation of the FMM (Flexible Matching Model)
The FMM finds many-to-one type assignments on a bipartite matching model whose left (right) partition represents skills (loads). The sets, indices, parameters and variables are listed in Table 3.

Note that $|T| = |W| = |M|$, since each team has its skill in T and its load in W with corresponding indices $(\sigma, \lambda) \in M$. The weight function of loads is defined as follows:

$$w_\lambda := \begin{cases}
0 & \text{if } \lambda \in W \\
 w_j & \text{if } \lambda \notin W \text{ where } j \in J \text{ is the single task of load } \lambda
\end{cases}$$
maximize \[\sum_{\lambda} w_{\lambda} y_{\lambda} - z_{\lambda} \]

subject to:

\[\sum_{\lambda} x_{\sigma \lambda} \leq 1, \quad \forall \sigma \in \Delta \quad (3) \]
\[\sum_{\sigma \in T} x_{\sigma \lambda} \leq 1, \quad \forall \lambda \in \Lambda \quad (4) \]
\[x_{\sigma \lambda} = 0, \quad \forall (\sigma, \lambda) \in F \quad (5) \]
\[\sum_{\sigma' \in T(\sigma)} \sum_{\lambda'} x_{\sigma' \lambda'} + y_{\lambda} \leq 1, \quad \forall (\sigma, \lambda) \in M \quad (6) \]
\[\sum_{\sigma' \in T(\sigma)} \sum_{\lambda'} x_{\sigma' \lambda'} \leq |T(\sigma)| y_{\lambda}, \quad \forall (\sigma, \lambda) \in M \quad (7) \]
\[\sum_{\sigma} SM_{\sigma}(l,s) x_{\sigma \lambda} \geq RQ_{\lambda}^{(l,s)} y_{\lambda}, \quad \forall (l, s) \in L \times S, \forall \lambda \in \Lambda \quad (8) \]
\[\sum_{\sigma \in T} |T(\sigma)| x_{\sigma \lambda} + \sum_{\sigma \in \Delta \setminus T} x_{\sigma \lambda} - m_{t_{\lambda}} \leq z_{\lambda}, \quad \forall \lambda \in \Lambda \quad (9) \]
\[x_{\sigma \lambda}, y_{\lambda} \in \{0, 1\}, \quad z_{\lambda} \geq 0 \]

A skill can be assigned to at most one load (constraints (3)). A load may be matched to at most one active skill according to constraints (4). It can be matched to any number and any combination of passive and latent skills though. Having constructed the set \(F \) in advance, edges in \(F \) are forbidden by constraints (5).

In the FMM, a team has an active skill \(\sigma \in T \) and latent skills \(T(\sigma) \) in the left partition and has a load \(\lambda \in \mathbb{W} \) in the right partition. According to constraints (6), a team can contribute to extending the day schedule in one of the following ways: either its active skill is matched to a load or its active load is matched to skills. In the former case, the matched load is added to team’s workload and technicians of the team stay together. Some additional technicians may join to team as well, if some other latent or passive skills are also assigned to matched load. In the latter case, a skill combination is assigned to active load (constraints (8)) and latent skills of the team may be used in other matchings (constraints (7)). Inefficiency variables \(z_{\lambda} \) try to avoid the assignments that have an unnecessarily high number of technicians (constraints (9)). Here \(m_{t_{\lambda}} = MT_j \) for a passive load \(\lambda \) with candidate task \(j \) and \(m_{t_{\lambda}} = |T(\sigma)| \) for an active load \(\lambda \) currently assigned to \(\sigma \). For instance, if a load of a candidate task with \(MT = 2 \) is assigned to a team skill of 5 technicians, then this assignment is penalized by constraints (9) on the value of \(z_{\lambda} \). Note that inefficiency is not forbidden in the FMM, but discouraged by penalizing.

The objective function is the sum of the weights of selected loads and the inefficiency drop. The candidate tasks contribute the objective by their weights and influence the allocation of skills among teams. Note that a task with sufficiently high weight can even cause some inefficiency to get scheduled.
4.2.4 Strategies applied in constructing alternative schedules

In this section we explain the strategies applied to find alternative schedules. We have observed in experiments that each of those strategies may lead to a best solution.

Efficiency in Initial Matching: When the formulation of the FMM is carefully examined, it is not difficult to see that if \(T = \emptyset \), the FMM boils down to the IMM plus efficiency constraints. So one of our strategies is adding efficiency constraints to the Initial Matching. This strategy is especially beneficial in instances where the average duration of tasks is close to workday length.

Fully loaded teams: While extending the partial day schedule some teams may reach a workload with total duration of a workday. As a strategy, we include a few of those fully loaded teams in the FMM in the hope to lower their skills excess by making some of their technicians conditionally available for candidate tasks. Fully loaded teams can contribute to extending partial schedule by recombining their technicians.

Number of teams in the FMM: In order to obtain the optimal solution of the FMM in a reasonably short time, a fixed number of teams are included. So we have \(|T| = |\mathbb{W}| \in \{3, 4, 5, 6, 7, 8\}\). As long as time limit allows, we construct schedules for each fixed number. In large instances usually a few of them can be used.

Selection of candidate tasks: Candidate tasks are included in the FMM in sequential order according to their priority classes. As a strategy we allow some of the special tasks in succeeding priority classes to be in the FMM. This way we aim to avoid the delays of the priority makespan due to rare expertise.

4.3 An overview of the combinatorial algorithm

In the preparation phase, key properties of tasks are measured and a lower bound value of each priority permutation is calculated. The construction phase starts building alternative schedules from the priority permutation having the smallest lower bound. Throughout the construction phase we keep track of the schedule having lowest cost among the ones previously constructed. This incumbent schedule is updated whenever a schedule with lower cost is encountered. If the cost of the incumbent schedule is lower than or equal to the lower bound value of a priority permutation to which the algorithm just proceeded, then that priority permutation is neglected. It is clear that no schedule constructed under that priority permutation can have lower cost than the cost of the incumbent schedule. Since the priority permutations are considered in nondecreasing order with respect to their lower bound values, neglecting a priority permutation means that the remaining priority permutations should also be neglected. So the combinatorial algorithm finalizes schedule construction and outputs the incumbent schedule.

Alternative schedules are constructed by varying some parameters and changing strategies in our matching models within the allowed time. The flowchart of the combinatorial algorithm can be seen in Figure 4. After the preparation phase, constructing alternative schedules starts by picking a priority permutation with smallest lower bound value. Next the maximum number of teams in the FMM and the strategies to follow are chosen. A partial schedule is started by running the IMM and it is extended iteratively using the FMM. If no solution of the FMM contains a matching, then we finalize the day and check whether all tasks are scheduled. If there
Read instance data

Preprocessing:
- Hardness, coverage, min. resource use etc.
Lower bounds for each priority permutation:
- Outsourcing decision
- Nondecreasing order of priority permutations

Pick a priority permutation with smallest lower bound

Cost of incumbent schedule less than lower bound?

All parameters and strategies used?

Set parameters and strategies

START SCHEDULE CONSTRUCTION
- Outsource tasks

Select technicians and tasks for the IMM
Solve the IMM
Initialize teams

Finalize the day
Proceed to next day

Lowest schedule cost?

Update incumbent schedule

Time limit exceeded?

YES

NO

YES

NO

Output the incumbent schedule

STOP

Figure 4: Flowchart of the Combinatorial Algorithm
are more tasks to schedule, then the next day starts. Otherwise the schedule is finalized and compared to the incumbent schedule. The incumbent schedule is updated if the newly found schedule has lower cost. The construction phase ends when either the time limit is exceeded or all promising priority permutations have been considered. Finally the incumbent schedule is given as output.

Cordeau et al. (2009) and Estellon et al. (2009) argue that the combinatorial algorithm proposed by Hurkens (2009) is an application of local search with large neighborhood exploration. However both in our algorithm and Hurkens’ algorithm, alternative schedules are constructed making use of MIP models and the constructed schedules are not modified by any destruct and repair methods with the hope to improve the solution quality. The strategy of both algorithms is to obtain good quality solutions with the simultaneous technician-task assignments. Therefore both algorithms can not be classified as local search algorithms, rather they are constructive heuristics employing MIP models for simultaneous technician-task assignments.

5 Computational results

5.1 On the rare expertise in problem instances

Three sets of problem instances were provided by France Telecom in the 2007 ROADEF Challenge. The descriptive statistics of the instances can be seen in Table 4. The number of skill domains (levels) varies from 3 to 40 (2 to 7). Data set A includes relatively small instances compared to B and X. There is no remarkable difference between data set B and X in terms of number of technicians and number of tasks, however those data sets do differ in the number of special tasks (for definition see section 4.1.1).

The costs of schedules constructed by the FMM and other heuristics are given in Table 5. The first column shows the problem instance and the next four columns report the results found by FMM, Hurkens (2009), Cordeau et al. (2009) and Estellon et al. (2009). In each column, the first entries are schedule costs and second entries are the relative difference in percentage that is defined as the difference of a schedule cost to the best schedule cost ever found (note that best schedules are listed in the column with title “N. BEST”). The column with label “O. BEST” shows the best results found in the evaluation of the 2007 ROADEF Challenge and “N. BEST” reports the ever best schedules that we are aware of. The last column labeled “LB” list the lower bound values for each instance.

It is seen in the last column of Table 4 that data set X includes instances with a higher number of special tasks. The average number of special tasks of the instance groups A, B and X are 1.3, 2.4 and 7.2 respectively. This hints that data set X instances have a heterogeneous skill distribution among technicians and therefore rare expertise is observed. The challenge in the instances of rare expertise can be realized by checking the gap between the best found schedules and lower bounds. In Table 5 we see that the gap between best schedules and lower bounds is smaller in data sets A and B compared to data set X. This may show either the weakness of lower bounds or the situation that the reported approaches are not much successful in handling rare expertise or maybe both. However it is remarkable that most of the best schedules (7 out of 10 in the O. BEST column) of X instances are due to Hurkens (2009). It can be concluded that the combinatorial algorithm introduced by Hurkens (2009) is promising for rare expertise instances. If the N.BEST column is examined, it is seen that the FMM found 7 best schedules
Table 4: Problem instances A, B and X

<table>
<thead>
<tr>
<th>Instance</th>
<th>Data set A</th>
<th>Data set B</th>
<th>Data set X</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$</td>
<td>T</td>
<td>$</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>100</td>
<td>5</td>
</tr>
</tbody>
</table>

SP: Special Tasks, definition of a special task can be found in Section 4.1.1.

In data set X and 6 of them are among Hurkens’ best schedules. In our opinion this is the result of the increased flexibility in our combinatorial algorithm. The flexibility in finding new skill combinations leads to more efficient packing of special tasks and higher utilization of the rare expertise. Moreover in some instances like X9 and X10 the gap between best schedule and lower bound is decreased remarkably. As an improved version, the FMM found better schedules in 9 X instances compared to Hurkens’ combinatorial algorithm.

If all data sets are considered, it seems reasonable to conclude that data sets B and X are better representatives of the real case instances due to the high number of technicians, tasks and skill domains. Moreover rare expertise is also a situation companies encounter in their operations. In instances with a small number of technicians, tasks and skill domains, schedule costs are sensitive to individual assignments, whereas in large instances the number of feasible schedules are high and the schedules are not sensitive to individual assignments. Therefore in our opinion, large instances are better to test the reliability of the algorithms.

5.2 On the performances of heuristics

It is remarkable that the FMM has an average difference of 1.3% in data set X whereas it is 5.9%, 12.3% and 14.5% for Hurkens (2009), Cordeau et al. (2009) and Estellon et al. (2009) respectively. Cordeau et al. (2009) outperforms the other algorithms in data set A, however their average distance shows a high increase rate from A to B and from B to X. Hurkens (2009) has a slight increase from A to B and stays almost at the same level from B to X. The FMM starts with the “highest” average distance in data set A and draws a slight increase from A to B. However in both B and X it outperforms the others. The decrease in gap from B to X shows that in the instances of rare expertise, the FMM can find compact schedules and experiences less skill excess in assignments. Particularly, the instances X1, X5, X9 and X10 are sensitive to expert availabilities due to the high number of special tasks. Estellon et al. (2009) underline also those instances and emphasize the gap between the combinatorial approach by Hurkens (2009) and the other solution approaches.
Table 5: Results of problem instances A, B and X

<table>
<thead>
<tr>
<th>Instance</th>
<th>FMM (%)</th>
<th>Hurkens (%)</th>
<th>Cordeau (%)</th>
<th>EsGaNo (%)</th>
<th>O. BEST</th>
<th>N. BEST</th>
<th>LB</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>2340 0.0</td>
<td>2340 0.0</td>
<td>2340 0.0</td>
<td>2340 0.0</td>
<td>2340</td>
<td>2340</td>
<td>2310</td>
</tr>
<tr>
<td>A2</td>
<td>4755 0.0</td>
<td>4755 0.0</td>
<td>4755 0.0</td>
<td>4755 0.0</td>
<td>4755</td>
<td>4755</td>
<td>2100</td>
</tr>
<tr>
<td>A3</td>
<td>12600 6.1</td>
<td>11880 0.0</td>
<td>11880 0.0</td>
<td>11880 0.0</td>
<td>11880</td>
<td>11880</td>
<td>11340</td>
</tr>
<tr>
<td>A4</td>
<td>14040 4.4</td>
<td>13452 0.0</td>
<td>13452 0.0</td>
<td>13452 0.0</td>
<td>13452</td>
<td>13452</td>
<td>10680</td>
</tr>
<tr>
<td>A5</td>
<td>30555 1.1</td>
<td>29355 0.0</td>
<td>29355 0.0</td>
<td>29355 0.0</td>
<td>29355</td>
<td>29355</td>
<td>26940</td>
</tr>
<tr>
<td>A6</td>
<td>20055 6.7</td>
<td>20280 7.9</td>
<td>18795 0.0</td>
<td>18795 0.0</td>
<td>18795</td>
<td>18795</td>
<td>17640</td>
</tr>
<tr>
<td>A7</td>
<td>31920 4.5</td>
<td>32520 6.5</td>
<td>30540 0.0</td>
<td>30540 0.0</td>
<td>30540</td>
<td>30540</td>
<td>25558</td>
</tr>
<tr>
<td>A8</td>
<td>17790 0.5</td>
<td>18960 7.1</td>
<td>17700 0.0</td>
<td>20100 13.6</td>
<td>17700</td>
<td>17700</td>
<td>16216</td>
</tr>
<tr>
<td>Average</td>
<td>3.7</td>
<td>3.2</td>
<td>0.1</td>
<td>1.8</td>
<td>3.7</td>
<td>3.7</td>
<td>1.8</td>
</tr>
<tr>
<td>B1</td>
<td>34620 2.1</td>
<td>35460 4.6</td>
<td>37200 9.7</td>
<td>33900 0.0</td>
<td>34395</td>
<td>33900</td>
<td>31875</td>
</tr>
<tr>
<td>B2</td>
<td>17070 7.6</td>
<td>18300 15.3</td>
<td>17070 7.6</td>
<td>16260 2.5</td>
<td>16005</td>
<td>16005</td>
<td>14280</td>
</tr>
<tr>
<td>B3</td>
<td>16320 2.0</td>
<td>16965 6.0</td>
<td>18015 12.6</td>
<td>16005 0.0</td>
<td>15870</td>
<td>15870</td>
<td>13965</td>
</tr>
<tr>
<td>B4</td>
<td>26910 13.2</td>
<td>27015 13.6</td>
<td>23775 0.0</td>
<td>24330 2.3</td>
<td>23775</td>
<td>23775</td>
<td>16800</td>
</tr>
<tr>
<td>B5</td>
<td>92400 4.2</td>
<td>94200 6.2</td>
<td>117540 32.5</td>
<td>88680 0.0</td>
<td>89700</td>
<td>89700</td>
<td>79530</td>
</tr>
<tr>
<td>B6</td>
<td>29115 6.3</td>
<td>30510 11.4</td>
<td>27390 0.0</td>
<td>27675 1.0</td>
<td>27615</td>
<td>27615</td>
<td>24180</td>
</tr>
<tr>
<td>B7</td>
<td>32340 0.0</td>
<td>33060 2.2</td>
<td>33900 4.8</td>
<td>36900 14.1</td>
<td>33300</td>
<td>33300</td>
<td>25290</td>
</tr>
<tr>
<td>B8</td>
<td>35400 10.1</td>
<td>32160 0.0</td>
<td>33240 3.4</td>
<td>36840 14.6</td>
<td>33030</td>
<td>33030</td>
<td>31890</td>
</tr>
<tr>
<td>B9</td>
<td>28080 0.0</td>
<td>28080 0.0</td>
<td>29760 6.0</td>
<td>32700 16.5</td>
<td>28200</td>
<td>28200</td>
<td>25680</td>
</tr>
<tr>
<td>B10</td>
<td>35040 1.0</td>
<td>35040 1.0</td>
<td>35400 2.8</td>
<td>41280 19.0</td>
<td>34680</td>
<td>34680</td>
<td>32370</td>
</tr>
<tr>
<td>Average</td>
<td>4.6</td>
<td>6.0</td>
<td>7.9</td>
<td>7.0</td>
<td>4.6</td>
<td>4.6</td>
<td>7.0</td>
</tr>
<tr>
<td>X1</td>
<td>147600 0.0</td>
<td>151980 3.0</td>
<td>159300 7.9</td>
<td>180240 22.1</td>
<td>151140</td>
<td>147600</td>
<td>136680</td>
</tr>
<tr>
<td>X2</td>
<td>7800 7.4</td>
<td>9090 25.2</td>
<td>8280 14.0</td>
<td>8370 15.3</td>
<td>7260</td>
<td>7260</td>
<td>5700</td>
</tr>
<tr>
<td>X3</td>
<td>48720 0.0</td>
<td>50400 3.4</td>
<td>50400 3.4</td>
<td>50760 4.2</td>
<td>50040</td>
<td>48720</td>
<td>36060</td>
</tr>
<tr>
<td>X4</td>
<td>64600 0.0</td>
<td>65640 1.6</td>
<td>66780 3.4</td>
<td>68960 6.7</td>
<td>65000</td>
<td>64600</td>
<td>58230</td>
</tr>
<tr>
<td>X5</td>
<td>145860 0.0</td>
<td>147000 0.8</td>
<td>157800 8.2</td>
<td>178560 22.4</td>
<td>147000</td>
<td>145860</td>
<td>139955</td>
</tr>
<tr>
<td>X6</td>
<td>9690 2.2</td>
<td>10440 7.7</td>
<td>9900 4.4</td>
<td>10440 10.1</td>
<td>9480</td>
<td>9480</td>
<td>6150</td>
</tr>
<tr>
<td>X7</td>
<td>34080 2.9</td>
<td>33120 0.0</td>
<td>47760 44.2</td>
<td>38400 15.9</td>
<td>33240</td>
<td>33240</td>
<td>25410</td>
</tr>
<tr>
<td>X8</td>
<td>23220 1.6</td>
<td>23580 1.6</td>
<td>24060 3.6</td>
<td>23800 2.5</td>
<td>23640</td>
<td>23640</td>
<td>17600</td>
</tr>
<tr>
<td>X9</td>
<td>128340 0.0</td>
<td>136020 6.0</td>
<td>152400 18.7</td>
<td>154920 20.7</td>
<td>134760</td>
<td>128340</td>
<td>98805</td>
</tr>
<tr>
<td>X10</td>
<td>122220 0.0</td>
<td>131700 7.8</td>
<td>140520 15.0</td>
<td>152280 24.6</td>
<td>137040</td>
<td>122220</td>
<td>87210</td>
</tr>
<tr>
<td>Average</td>
<td>1.3</td>
<td>5.9</td>
<td>12.3</td>
<td>14.5</td>
<td>1.3</td>
<td>1.3</td>
<td>7.8</td>
</tr>
<tr>
<td>Overall</td>
<td>3.2</td>
<td>5.1</td>
<td>6.8</td>
<td>7.8</td>
<td>3.2</td>
<td>3.2</td>
<td>7.8</td>
</tr>
</tbody>
</table>
6 Conclusions and future research

In this paper, we proposed a combinatorial algorithm that is using a Flexible Matching Model as a core engine for a multi-skill workforce scheduling problem. The scheduling problem was defined by France Telecom in the 2007 ROADEF Challenge. The opportunity of outsourcing some tasks is one aspect of our problem that distinguishes it from the similar ones defined in the literature. Technicians must work in a team for a workday and they use skills in all domains simultaneously while performing tasks. These properties of our problem make it not possible to use previously proposed methodologies without any modifications.

The main contribution of this study is introducing flexibility in the combinatorial algorithm that was firstly proposed by Hurkens (2009). Moreover we propose relative key measurements for tasks in a multi-skill requirement framework. The flexibility in matching models resulted in better packing of the tasks that require experts who are rare in the available technicians group. The FMM decreased the gap between best schedules and lower bounds of the problem instances in which rare expertness has been detected. Especially, our results are remarkably superior in cases of high number of technicians, tasks and skill domains besides the rare expertise.

The proposed matching model is a tool that provides a broad range of flexibility. This flexibility allows to construct a high number of schedules. As it can be seen in its mathematical formulation, weights of tasks are important parameters to obtain good quality solutions. There is no unique measurement for the weight of a task, but we proposed a measurement to include rare expertise concerns. We believe that our matching models are proper tools to test the success of these measurements. It will be useful to further explore the following points:

- decision on selection of teams and tasks to include in our matching models (e.g. randomization)
- developing new measurements or improving already proposed ones
- necessary modifications needed for adapting our matching model for the other versions of multi-skill workforce scheduling problems.

7 Acknowledgments

This research is supported by France Telecom/TUE Research agreement No. 46145963. We are grateful to Alexandre Laugier and Anne-Marie Bustos for their cooperation and help in testing various versions of the algorithm. Thanks are also due to Gerhard J. Woeginger for helpful discussions on the interpretation of MIP models.
References

Ballou, D., Tayi, G., 1996, “A decision aid for the selection and scheduling of software main-
tenance projects”, IEEE Transactions on Systems Man and Cybernetics Part A Systems
and Humans, Vol 26, No.2, pp. 203-212.

Bassett M., 2000, “Assigning projects to optimize the utilization of employees time and expert-

resource constraints: classification and complexity”, Discrete Applied Mathematics, Vol 5,
pp. 11-24.

scheduling: notation, classification, models, and methods”, European Journal of Operati-
onal Research, Vol 112, No.1, pp. 3-41.

Brucker, P., Knust, S., 2000, “A linear programming and constraint propagation-based lower

scheduling problems with resource vacations and activity splitting”, European Journal of
Operational Research, Vol 175, No.1, pp. 279-295.

Cai, X., Li, K. N., 2000, “A genetic algorithm for scheduling staff of mixed skills under multi-

resource-constrainted project scheduling problem”, Management Science, Vol.38, pp. 1803-
1818.

Drezet, L-E., Billaut, J-C., 2008, “A project scheduling problem with labour constraints and
time-dependent activities requirements”, International Journal of Production Economics,

Dutot, P., Laugier, A., Bustos, A., 2006, “Technicians and interventions scheduling for teleco-
munications”, Problem description of ROADEF 2007 Challenge.

Estellon, B., Gardi, F., Nouioua, K., 2009, “High-Performance local search for task scheduling

Gutjahr, W. J.; Katzensteiner, S., Reiter, P., Stummer, C., Denk, M. , 2008, “Competence-
driven project portfolio selection, scheduling and staff assignment”, Central European Jour-

<table>
<thead>
<tr>
<th>nr.</th>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>327</td>
<td>2010</td>
<td>A combinatorial approach to multi-skill workforce scheduling</td>
<td>Murat Firat, Cor Hurkens</td>
</tr>
<tr>
<td>326</td>
<td>2010</td>
<td>Stability in multi-skill workforce scheduling</td>
<td>Murat Firat, Cor Hurkens, Alexandre Laugier</td>
</tr>
<tr>
<td>324</td>
<td>2010</td>
<td>Near-optimal heuristics to set base stock levels in a two-echelon distribution network</td>
<td>R.J.I. Basten, G.J. van Houtum</td>
</tr>
<tr>
<td>323</td>
<td>2010</td>
<td>Inventory reduction in spare part networks by selective throughput time reduction</td>
<td>M.C. van der Heijden, E.M. Alvarez, J.M.J. Schutten</td>
</tr>
<tr>
<td>322</td>
<td>2010</td>
<td>The selective use of emergency shipments for service-contract differentiation</td>
<td>E.M. Alvarez, M.C. van der Heijden, W.H. Zijm</td>
</tr>
<tr>
<td>321</td>
<td>2010</td>
<td>Heuristics for Multi-Item Two-Echelon Spare Parts Inventory Control Problem with Batch Ordering in the Central Warehouse</td>
<td>B. Walrave, K. v. Oorschot, A.G.L. Romme</td>
</tr>
<tr>
<td>320</td>
<td>2010</td>
<td>Preventing or escaping the suppression mechanism: intervention conditions</td>
<td>Nico Dellaert, Lydie Jeunet.</td>
</tr>
<tr>
<td>319</td>
<td>2010</td>
<td>Hospital admission planning to optimize major resources utilization under uncertainty</td>
<td>R. Seguel, R. Eshuis, P. Grefen.</td>
</tr>
<tr>
<td>317</td>
<td>2010</td>
<td>Teaching Retail Operations in Business and Engineering Schools</td>
<td>Lydie P.M. Smets, Geert-Jan van Houtum, Fred Langerak.</td>
</tr>
<tr>
<td>316</td>
<td>2010</td>
<td>Design for Availability: Creating Value for Manufacturers and Customers</td>
<td>Pieter van Gorp, Rik Eshuis.</td>
</tr>
<tr>
<td>314</td>
<td>2010</td>
<td>Ambidexterity and getting trapped in the suppression of exploration: a simulation model</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Tales of a So(u)rcerer: Optimal Sourcing Decisions Under Alternative Capacitated Suppliers and General Cost Structures</td>
<td>Osman Alp, Tarkan Tan</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>In-store replenishment procedures for perishable inventory in a retail environment with handling costs and storage constraints</td>
<td>R.A.C.M. Broekmeulen, C.H.M. Bakx</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>The state of the art of innovation-driven business models in the financial services industry</td>
<td>E. Lüftenegger, S. Angelov, E. van der Linden, P. Grefen</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Design of Complex Architectures Using a Three Dimension Approach: the CrossWork Case</td>
<td>R. Seguel, P. Grefen, R. Eshuis</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Effect of carbon emission regulations on transport mode selection in supply chains</td>
<td>K.M.R. Hoen, T. Tan, J.C. Fransoo, G.J. van Houtum</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Interaction between intelligent agent strategies for real-time transportation planning</td>
<td>Martijn Mes, Matthieu van der Heijden, Peter Schuur</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Internal Slackening Scoring Methods</td>
<td>Marco Slikker, Peter Borm, René van den Brink</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Practical extensions to the level of repair analysis</td>
<td>R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Ocean Container Transport: An Underestimated and Critical Link in Global Supply Chain Performance</td>
<td>Jan C. Fransoo, Chung-Yee Lee</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Capacity reservation and utilization for a manufacturer with uncertain capacity and demand</td>
<td>Y. Boulaksil; J.C. Fransoo; T. Tan</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>Spare parts inventory pooling games</td>
<td>F.J.P. Karsten; M. Slikker; G.J. van Houtum</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>Capacity flexibility allocation in an outsourced supply chain with reservation</td>
<td>Y. Boulaksil, M. Grunow, J.C. Fransoo</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>An optimal approach for the joint problem of level of repair analysis and spare parts stocking</td>
<td>R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>Responding to the Lehman Wave: Sales Forecasting and Supply Management during the Credit Crisis</td>
<td>Robert Peels, Maximiliano Udenio, Jan C. Fransoo, Marcel Wolfs, Tom Hendrikx</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>An exact approach for relating recovering surgical patient workload to the master surgical schedule</td>
<td>Peter T. Vanberkel, Richard J. Boucherie, Erwin W. Hans, Johann L. Hurink, Wineke A.M. van Lent, Wim H. van Harten</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>An iterative method for the simultaneous optimization of repair decisions and spare parts stocks</td>
<td>R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten</td>
<td></td>
</tr>
</tbody>
</table>
Fujaba hits the Wall(-e)

Pieter van Gorp, Ruben Jubeh, Bernhard Grusie, Anne Keller

Implementation of a Healthcare Process in Four Different Workflow Systems

R.S. Mans, W.M.P. van der Aalst, N.C. Russell, P.J.M. Bakker

Business Process Model Repositories - Framework and Survey

Zhiqiang Yan, Remco Dijkman, Paul Grefen

Efficient Optimization of the Dual-Index Policy Using Markov Chains

Joachim Arts, Marcel van Vuuren, Gudrun Kiesmuller

Hierarchical Knowledge-Gradient for Sequential Sampling

Martijn R.K. Mes; Warren B. Powell; Peter I. Frazier

Analyzing combined vehicle routing and break scheduling from a distributed decision making perspective

C.M. Meyer; A.L. Kok; H. Kopfer; J.M.J. Schutten

Anticipation of lead time performance in Supply Chain Operations Planning

Michiel Jansen; Ton G. de Kok; Jan C. Fransoo

Inventory Models with Lateral Transshipments: A Review

Colin Paterson; Gudrun Kiesmuller; Ruud Teunter; Kevin Glazebrook

Efficiency evaluation for pooling resources in health care

P.T. Vanberkel; R.J. Boucherie; E.W. Hans; J.L. Hurink; N. Litvak

A Survey of Health Care Models that Encompass Multiple Departments

P.T. Vanberkel; R.J. Boucherie; E.W. Hans; J.L. Hurink; N. Litvak

Supporting Process Control in Business Collaborations

S. Angelov; K. Vidyasankar; J. Vonk; P. Grefen

Inventory Control with Partial Batch Ordering

O. Alp; W.T. Huh; T. Tan

Translating Safe Petri Nets to Statecharts in a Structure-Preserving Way

R. Eshuis

The link between product data model and process model

J.J.C.L. Vogelaar; H.A. Reijers

Inventory planning for spare parts networks with delivery time requirements

I.C. Reijnen; T. Tan; G.J. van Houtum

Co-Evolution of Demand and Supply under Competition

B. Vermeulen; A.G. de Kok

Toward Meso-level Product-Market Network Indices for Strategic Product Selection and (Re)Design Guidelines over the Product Life-Cycle

B. Vermeulen, A.G. de Kok

An Efficient Method to Construct Minimal Protocol Adaptors

R. Seguel, R. Eshuis, P. Grefen

Coordinating Supply Chains: a Bilevel Programming Approach

Ton G. de Kok, Gabriella Muratore

Inventory redistribution for fashion products under demand parameter update

G.P. Kiesmuller, S. Minner

Comparing Markov chains: Combining aggregation and precedence relations applied to sets of states

A. Busic, I.M.H. Vliegen, A. Scheller-Wolf
<table>
<thead>
<tr>
<th>Page</th>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>273</td>
<td>2009</td>
<td>Separate tools or tool kits: an exploratory study of engineers' preferences</td>
<td>I.M.H. Vliegen, P.A.M. Kleingeld, G.J. van Houtum</td>
</tr>
<tr>
<td>272</td>
<td>2009</td>
<td>An Exact Solution Procedure for Multi-Item Two-Echelon Spare Parts Inventory Control Problem with Batch Ordering</td>
<td>Engin Topan, Z. Pelin Bayindir, Tarkan Tan</td>
</tr>
<tr>
<td>269</td>
<td>2009</td>
<td>Similarity of Business Process Models: Metics and Evaluation</td>
<td>Remco Dijkman, Marlon Dumas, Boudewijn van Dongen, Reina Kaarik, Jan Mendling</td>
</tr>
<tr>
<td>266</td>
<td>2009</td>
<td>Restricted dynamic programming: a flexible framework for solving realistic VRPs</td>
<td>J. Gromicho; J.J. van Hoorn; A.L. Kok; J.M.J. Schutten</td>
</tr>
</tbody>
</table>

Working Papers published before 2009 see: http://beta.ieis.tue.nl