Growth of wurtzite InN on bulk In2O3(111) wafers

Citation for published version (APA):

DOI:
10.1063/1.4761985

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Dec. 2019
Growth of wurtzite InN on bulk In$_2$O$_3$(111) wafers

Sergey Sadofev, a,b YongJin Cho, b,Oliver Brandt, a Manfred Ramsteiner, a Raffaella Calarco, a,c Henning Riechert, a Steven C. Erwin, b Zbigniew Galazka, b Maxym Korytov, b Martin Albrecht, b Reinhard Uecker, b and Roberto Fornari b

Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D-10117 Berlin, Germany
Center for Computational Materials Science, Naval Research Laboratory, Washington, D.C. 20375, USA
Leibniz-Institut für Kristallzüchtung, Max-Born-Str. 2, D-12489 Berlin, Germany

(Received 28 August 2012; accepted 8 October 2012; published online 22 October 2012)

A single phase InN epitaxial film is grown on a bulk In$_2$O$_3$(111) wafer by plasma-assisted molecular beam epitaxy. The InN/In$_2$O$_3$ orientation relationship is found to be (0001) || (111) and [1100] || [112]. High quality of the layer is confirmed by the small widths of the x-ray rocking curves, the sharp interfaces revealed by transmission electron microscopy, the narrow spectral width of the Raman E^h_2 vibrational mode, and the position of the photoluminescence band close to the fundamental band gap of InN. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4761985]

Among the group III-nitrides, InN is considered as the most attractive candidate for high-speed and high-power electronics due to its narrow band gap, small effective mass, and large electron saturation velocity. 1 Despite its evident potential, direct integration of InN into electronic devices remains challenging. The low thermal stability and consequently high dissociation rate of InN create a number of difficulties strictly limiting the maximal growth temperature. 2–4
In addition, heteroepitaxial InN layers grown on common substrates suffer from the high density of extended defects, often considered as a source of a high residual carrier concentration and a mobility far below their maximal predicted values. 5 InN has been predominantly grown on buffered sapphire, Si, and SiC wafers. 6,7 In all these cases, the in-plane lattice mismatch $\Delta a/a$ between InN and the template is significantly larger than 10%. Recently, we demonstrated InN films grown on bulk ZnO substrates where $\Delta a/a$ is reduced to 8.89%. 8 The drawback of InN/ZnO heterosystem is the chemical instability of the interface. The chemical reaction between InN and ZnO leads to the formation of different phases including In$_2$O$_3$ inclusions in the substrate and voids, as well as high doping by ZnO dissociation and subsequent O incorporation, a process which becomes more pronounced at higher growth temperature. 9 To this end, a direct growth of InN on body-centered cubic (bcc) In$_2$O$_3$ is of obvious interest. In addition, the lattice constants of bcc-In$_2$O$_3$ ($a = 10.117\,\AA$) 9 and wurtzite InN ($a = 3.5365\,\AA$) 10 are related by a factor of 4 with a mismatch of $\approx1\%$ in the (111) crystallographic plane. This coincidence lattice makes bcc-In$_2$O$_3$ an interesting alternative substrate for InN. There have been several reports on epitaxial films of cubic In$_2$O$_3$ employed as intermediate layers for the growth of zincblende and wurtzite InN on sapphire. 11–13 However, only recently In$_2$O$_3$ has been synthesized in the form of bulk single crystals at the Leibniz-Institut für Kristallzüchtung. 14 Here, we present a study of the structural and optical properties of InN directly grown on a bulk bcc-In$_2$O$_3$(111) wafer focusing on interface-related phenomena.

The samples are prepared in a molecular beam epitaxy (MBE) system custom-built by CreaTec equipped with standard solid-source effusion cells and a Veeco rf plasma source providing active nitrogen. $5 \times 5 \times 0.3\,\text{mm}^3$ slices of a bulk single-crystal bcc-In$_2$O$_3$(111) 14 are used as substrates. After chemo-mechanical polishing, the In$_2$O$_3$(111) wafers show a flat and featureless surface morphology with a mean roughness of 0.22 nm over 10 μm2. After decreasing in chemical solvents, the substrates are mounted with In to a Si wafer used as a sample holder. InN layers are deposited at a substrate temperature of 350 – 450°C measured by a thermocouple placed behind the sample holder. Nominally, slightly N-rich conditions with a N/In flux ratio of ≈1.05 and an absolute N flux of 0.62 monolayer/s are selected in order to avoid accumulation of In droplets on the film surface. Here, we focus on a specific 1 μm-thick sample grown at 400°C with a nitridation of the wafer for 30 s at the growth temperature to induce the formation of InN analogously to the conversion of Al$_2$O$_3$ to AlN by nitridation. High-resolution x-ray diffraction (XRD) measurements are conducted with Cu $K\alpha_1$ radiation using a Philips X-Pert MRD diffractometer equipped with a four-crystal Ge(220) monochromator and a channeling Ge(220) three-reflection analyzer. Raman spectra are taken at 300 K in a $z(x,-z)$ backscattering configuration (z is parallel to the c-axis) with the 632.8 nm line of a He-Ne laser as excitation source. Room temperature photoluminescence (PL) is excited with the 643 nm emission from a laser diode and detected with an InSb photodiode. The PL spectra are corrected for the response of the setup. Cross-sectional samples for transmission-electron microscopy (TEM) are prepared by plan parallel mechanical polishing down to a sample thickness of about 10 μm followed by ion milling with a Gatan PIPS$^\text{TM}$ under liquid nitrogen cooling. TEM is performed in an aberration corrected FEI TITAN 80-300.

In$_2$O$_3$ crystallizes in rhombohedral and cubic phases. The cubic phase has the bixbyte structure with the space group Ia$\bar{3}$. The unit cell contains 32 In atoms and 48 O
This complex crystal structure can be understood as a distorted version of a hypothetical parent crystal in which the In atoms define a simple fcc lattice and the O atoms occupy all tetrahedral interstitial sites. The distortion in bixbyite arises because one fourth of these O atoms are missing, forming an ordered-vacancy crystal structure. Figure 1(a) depicts a conventional unit cell of the undistorted parent crystal with every fourth O missing.

Each of the 48 O atoms in the In$_2$O$_3$ unit cell has approximately tetrahedral coordination to four In neighbors (one on the 8b site and three on the 24d sites). Hence, all In-O bonds are approximately oriented along the four {111} directions. This stacking is analogous to the stoichiometric double layers of zinc-blende semiconductors and suggests that the surface formed by cleaving along the dashed planes in Fig. 1(b) leads to a reasonable approximation of the real In$_2$O$_3$(111) surface. Figure 1(c) shows a top perspective view of one complete trilayer. The topmost layer consists of undercoordinated O atoms, shown as large red spheres. These form a nearly planar, nearly hexagonal lattice in 1:1 registry with the atomic layers of bulk InN (0001). The registry is incomplete, however, because the 1/4 O vacancies intrinsic to bulk In$_2$O$_3$ are also present (open red circles) on this stoichiometric In$_2$O$_3$(111) surface. The fate of these surface vacancies during the deposition of InN is an interesting open question with potentially important consequences for growth.

The XRD data of the sample under investigation are summarized in Figure 2. The $\omega - 2\theta$ scan is dominated by the In$_2$O$_3$ 222 and InN 0002 reflections. ϕ-scans recorded across the 1012 InN [Fig. 2(b)] and 440 In$_2$O$_3$ [Fig. 2(c)] reflections provide the in-plane epitaxial relationship between wurtzite InN and cubic In$_2$O$_3$ as InN [1100] $|$ In$_2$O$_3$ [112] in agreement with the above discussion. No other orientations or phases of InN are detected in extended texture maps (not shown). The full width at half maximum (FWHM) of rocking curves recorded in symmetric and quasi-symmetric (skew) geometry across the on-axis 0002 and off-axis 1012 reflections are 570 and 674 arcsec, respectively. These values are comparable with the best values reported for InN epitaxial layers grown by MBE.7,8

Raman spectra acquired from the top and backside of the sample, as well as a reference spectrum of the In$_2$O$_3$ wafer, are shown in Fig. 3. Consistent with the selection rules for the wurtzite structure, the spectrum of the InN layer exhibits E'_2 and A_1(LO) phonon modes located at 492 cm$^{-1}$ and 592 cm$^{-1}$, respectively, [Fig. 3(a)]. The spectral width of the E'_2 mode of about 3.4 cm$^{-1}$ confirms the high degree of lattice perfection demonstrated by XRD. Figure 3(b) displays the spectrum excited from the backside and thus reveals properties of InN in the region close to the interface InN/In$_2$O$_3$. In addition to the vibrational modes of bcc-In$_2$O$_3$ at 367, 497, and 630 cm$^{-1}$ [see Fig. 3(c) for In$_2$O$_3$ reference], the spectrum contains a broad feature close to the A_1(LO) phonon mode of InN. A similar feature [or L(q_D) mode] assigned to plasmon-related excitation, in addition to a low-frequency coupled plasmon LO-phonon mode [L(q_0)] at about 445 cm$^{-1}$, has been recently detected in heavily n-type doped InN layers grown on ZnO.15 The presence of plasmon-related excitations in the interface region and their absence close to the surface layer clearly suggest an inhomogeneous distribution of the electron density along
the growth direction of the sample. Here, the charge carriers are mainly concentrated in the interface region, whereas the top part of the layer has a moderate doping level. Indeed, room temperature PL measurements on the sample reveal the peak position of the PL band at 0.660 eV with a FWHM of only 98 meV [Fig. 3(d)]. Both the position of the PL peak in the proximity of the fundamental band gap of InN, as well as its moderate spectral width, indicate a low electron density in the region away from the interface.\(^{16}\)

In order to get further insight into the origin of carrier accumulation at the interface, the sample is studied by TEM. Selective area electron diffraction patterns acquired at the interface confirm the InN/In\(_2\)O\(_3\) in-plane orientational relationship as [1100] || [112]. Figure 4(a) shows a high-resolution TEM image demonstrating an abrupt and atomically flat interface between InN and In\(_2\)O\(_3\). In the filtered image [Fig. 4(b)], a one-to-one correspondence of the lattice planes of InN and In\(_2\)O\(_3\) is evident. In fact, the lattice mismatch between InN and In\(_2\)O\(_3\) in the (111) crystallographic plane of about 1% implies that adjacent misfit dislocations are separated by more than 100 atomic planes as confirmed by these micrographs. The InN epilayer itself has high crystalline quality, as already indicated by XRD and Raman spectroscopy. On the other hand, the TEM study evidences crystalline quality of the sample is confirmed by means of x-ray diffraction, TEM and Raman spectroscopy. Results of the optical spectroscopy show that the high electron concentration detected at the InN/In\(_2\)O\(_3\) interface decreases with the layer thickness on a 1 \(\mu\)m-scale. Although the origin of this accumulation layer, as well as the structure of the interface, require further investigation, it is already clear that In\(_2\)O\(_3\)(111) can be considered as a promising substrate for the growth of wurtzite InN.

The authors would like to thank Martin Wienold for the assistance in performing PL measurements, Hans-Peter Schönherr for the maintenance of the MBE system, and Sergio Fernández-Garrido for critical reading of this manuscript. This work was supported in part by the U.S. Office of Naval Research.

