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Abstract

The increasing deployment of distributed energy resources causes voltage and congestion issues in distribution grids. Recently,
online feedback optimization (OFO) emerges as a promising real-time solution approach. OFO uses measurements as feedback and
employs optimization algorithms as feedback controllers to steer the distribution system towards optimal operating points. OFO
does not need an accurate grid model nor consumption data of non-controllable loads and affords fast implementation, which make
it particularly suitable for real-time distribution grid management. This paper aims to provide an extensive robustness assessment
of OFO based on the primal-dual gradient projection (PDGP) algorithm under practical distribution grid operational conditions. To
quantify system performance, we use metrics including active power curtailment ratio, voltage and loading constraint violations,
normalized reference power tracking error, and distance to the deterministic-case trajectory. Simulations conducted on a 136-
bus medium-voltage grid using second-scale data reveal that the algorithm demonstrates satisfactory robustness to time-varying
generation and loads, grid model inaccuracy, measurement errors, and communication failures, but is susceptible to systematic
communication delays and unnoticed topology changes particularly involving tripping of cables at the beginning of distribution

feeders. Potential solutions to these shortcomings are discussed.

Keywords: Online feedback optimization, autonomous optimization, congestion management, system balancing, robustness

1. Introduction

The proliferation of distributed energy resources (DERs)
causes operational challenges for distribution system operators
(DSOs), including network congestion and voltage limit viola-
tions. Today, the network capacity is becoming a bottleneck to
the continuous deployment of DERs [[1]. Grid reinforcement is
the conventional solution approach. However, it requires sig-
nificant investments, well-trained workforce and is a long-term
process. An accompanying strategy is to actively exploit the
flexibility from these DERs.

A classic modeling framework for this task is optimal power
flow (OPF). Based on a distribution grid model, OPF can be
used to derive the optimal active and reactive power setpoints
of DERs given a predefined cost function. To represent and con-
strain voltages and loadings of cables and transformers within
their limits, nonlinear, relaxed, or linearized power flow rela-
tions, which map DER setpoints and power consumption of
non-controllable loads to voltages and loadings, are incorpo-
rated. While this framework, including its distributed imple-
mentations, has been well-studied [2], its applicability in the
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real-time distribution grid operational context is limited for sev-
eral reasons. First, to construct an OPF model, an accurate
grid topology is required, which is not always readily avail-
able to the DSO. Second, OPF takes real-time measurements of
non-controllable loads as input, which can cause privacy con-
cerns and these measurements are often not available either.
Third, by the time the data collection and OPF computation
are completed, the optimized setpoints might already have be-
come outdated due to rapid variations of generation and loads.
This becomes especially relevant when distributed optimization
techniques are used which typically take tens to hundreds of
communication rounds to reach convergence. Finally, a model-
based feedforward approach generally lacks robustness to sys-
tem uncertainties and disturbances [3, 4]].

Online feedback optimization (OFO) overcomes these chal-
lenges, making it a promising real-time solution approach to
distribution grid issues. Unlike the traditional offline approach
of waiting for the algorithm to converge, OFO enables rapid
deployment of new setpoints to inverter-interfaced DERs. This
is facilitated by integrating voltage and power flow measure-
ments into a closed-loop feedback system; see Fig. || for a
schematic overview of a feedback system and comparison to
a model-based feedforward system. Compared to local droop
control approaches, OFO ensures grid constraint satisfaction
[5]. Compared to deep reinforcement learning approaches [6—
9, OFO does not need a complicated (often offline centralized)
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training process and has guarantees to pursue globally optimal
solutions [10-13]].

Existing OFO controllers are designed utilizing algorithms
such as gradient projection with soft penalty functions [14+
20], gradient projection with barrier functions [21]], gradient
projection [22H26], dual ascent [S 27H33]], primal-dual gradi-
ent projection [[10H12},34H42]], and Newton-based second-order
methods [43144]; see also our recent survey paper [45]. The
various OFO algorithms, mostly, differ in the way they handle
output constraints such as voltage and loading limits. With soft
penalty or barrier functions, constraint violations are penalized
in the objective function. While using soft penalty functions can
result in prolonged constraint violations, using barrier functions
requires an additional iterative process over the barrier parame-
ter and may not be suitable for the online implementation under
time-varying grid conditions. In gradient projection, gradient
iterates are projected onto a linearized feasible region around
the current operating point. While this approach requires less
parameter tuning and shows benign convergence behavior [3]],
it leads to centralized calculations. In primal-dual methods,
output constraints are dualized, affording a distributed imple-
mentation [4]]. This feature renders them particularly suitable
for real-time distribution grid management. Compared to dual
ascent, the primal-dual gradient projection (PDGP) algorithm
offers the flexibility to tune the step size for the primal variable
update step.

Various sources of uncertainties such as grid model inaccu-
racy, measurement errors, communication failures and delays,
topology changes, and time-varying generation and loads may
jeopardize the performance of OFO. Therefore, it is imperative
to assess the robustness of OFO to those uncertainties which
may be present in practical distribution grid operational condi-
tions. For grid model inaccuracy, a theoretic robustness analysis
is provided in [20]], which is based on OFO with a soft penalty
function. Numerical and experimental evidence showing the ro-
bustness of OFO has also been presented in the literature, which
we summarize in Table[ll To improve the algorithm perfor-
mance under measurement errors and model uncertainty, state
estimation and online sensitivity estimation methods have been
advocated in [16H19]. Furthermore, the studies in [36} (39, 46]
eliminated the need of grid models leveraging zeroth-order op-
timization techniques which derive unbiased estimates of gra-
dients only using evaluations of the function. Finally, in case of
communication failures, a freezing strategy has been reported
in [[12} /411 47] which implies using the latest information.

Outlined in Table [I] our study aims to provide more ex-
tensive simulations to evaluate the robustness of OFO against
various uncertainties. These simulations confirm some exist-
ing results, challenge some other, and provide new findings.
We leverage the PDGP algorithm which features a gather-
and-broadcast communication architecture and distributed
calculations and is considered well-suited for distribution grids
due to reduced privacy concerns. Our investigation centers on
two applications of OFO: congestion management which aims
to enforce voltage and current limits in distribution grids, and
balancing service provision in the form of tracking given active
power setpoints from transmission system operators (TSOs).

Estimated non-

controllable loads Non-controllable loads

@ Power setpoints w Voltage, power flow
Offline feedforward X Physical system Yy
—
optimization y = h(x,w)
| o
Online feedback X Physical system Y
optimization y = h(x, w)

Figure 1: Block diagrams of an open-loop feedforward and a closed-loop feed-
back system, where x represents system input, y represents system output, w
(w) represents (estimated) system disturbance, and & maps system input and
disturbance to system output. Figure is adapted from [22].

We quantify system performance using metrics including active
power curtailment, constraint violations, tracking error, and
deviation from the deterministic case. As [2] points out, such
numerical simulations are pivotal for gaining insights into the
practical performance of various algorithms. In a broader con-
text, similar numerical studies have been conducted to assess
the impact of non-ideal communication on distributed opti-
mization algorithms including augmented Lagrangian-based
algorithms [48]] and the equivalent network approximation
method [49]].
To summarize, the main contributions of this paper are:

e Extensive simulations are conducted to evaluate the ro-
bustness of OFO under various sources of uncertainty
in practical distribution systems. The OFO implemen-
tation based on the PDGP algorithm enables fast, dis-
tributed calculations and requires only basic arithmetic
operations. The investigated uncertainty sources include
time-varying generation and loads, grid model inaccu-
racy, measurement errors, communication failures and
delays, and unnoticed topology changes.

e Quantification metrics are developed to assess the impact
on power curtailment, distribution system constraint vi-
olations, reference power tracking error, and deviation
from the deterministic case.

e Potential solutions to the identified shortcomings of OFO
are discussed.

The remainder of this paper is structured as follows:
Section 2] presents the optimization problem and the feedback-
based primal-dual gradient projection algorithm. Section[3]
provides system performance quantification metrics. Section[]
describes the case study and modeling of system uncertain-
ties. Section [3] presents simulation results. Finally, Section[6]
concludes this study.

2. Methodology

This section starts with introducing notations, followed by a
real-time optimization problem where the power flow relations



Table 1: Overview of numerical and experimental studies of OFO. MD: inaccurate grid models; MS: measurement errors; CF: communication failures; CD:
communication delays; TP: unobserved topology changes; TV: time-varying generation and loads.

Ref Variables Methodology Grid limits Balancing Uncertainties
Zhu 2016 [14] Q Soft penalty Voltage X vV
Hauswirth 2017 [[15] PQ Soft penalty Voltage, current X TV
Picallo 2020 [16] P Q Soft penalty Voltage X MS, TV
Picallo 2022 [17] P, Q Soft penalty Voltage X MD, TV
Cheng 2022 [18] Q Soft penalty Voltage X MD, TV

Xu 2023 [19] Q Soft penalty Voltage X MD, MS, TV
Colombino 2019 [20] P, Q Soft penalty Voltage X MD, TV
Gan 2016 [21] P,Q Barrier function Voltage X X
Ortmann 2023 [22] P,Q Gradient projection Voltage, current X MD, TV
Ortmann 2023 [23] PV Gradient projection Voltage, current X TP, TV
Klein-Helmkamp 2023 [24] P, Q Gradient projection Voltage v TV
Ortmann 2024 [25] PQ Gradient projection Voltage v TV

Cave 2024 [26] PQ Gradient projection Voltage, current X MD, MS, CD, TV
Bolognani 2015 [27] Q Dual ascent Voltage X TV
Bolognani 2019 [5] Q Dual ascent Voltage X vV
Ortmann 2020 [28] Q Dual ascent Voltage X vV
Ortmann 2020 [29] Q Dual ascent Voltage X MD, TV
Zhou 2020 [30] P,Q Dual ascent Voltage X TV

Tang 2021 [31] Q Dual ascent Voltage X TV
Magnusson 2020 [32] P,Q Dual ascent Voltage X MD, MS, CF, CD, TV
Patari 2022 [33] P,Q Dual ascent Voltage X MD, MS, CF, CD, TV
Dall’ Anese 2018 [10] PQ Primal-dual Voltage X TV

Dall’ Anese 2018 [11] PQ Primal-dual Voltage v TV

Zhou 2018 [34] PQ Primal-dual Voltage X TV
Bernstein 2019 [12] P,Q Primal-dual Voltage, current v CD, TV

Qu 2020 [35] Q Primal-dual Voltage X MD, MS, CD, TV
Chen 2020 [36] P,Q Primal-dual Voltage v MD, MS, TV
Ipach 2022 [37] PQ Primal-dual Voltage, current X CEF,CD, TV
Zhao 2022 [38] PQ Primal-dual Voltage X vV

Hu 2023 [39] Q Primal-dual Voltage X MD, CD, TV
Zhan 2023 [40] P,Q Primal-dual Voltage, current X MD, CF, TV
Panahazari 2023 [41] P,Q Primal-dual Voltage v CF, CD, TV
Guo 2023 [13] PQ Primal-dual Voltage X MS

Zhan 2024 [42] PQ Primal-dual Voltage, current X TV

Tang 2017 [43] P, Soft penalty (Newton)  Voltage, current X TV

Cheng 2022 [44] Q Soft penalty (Newton) Voltage X TV

This paper P,Q Primal-dual Voltage, current v MD, MS, CF, CD, TP, TV

are implicitly represented, and the PDGP algorithm to solve
the problem with a feedback-based implementation.

2.1. Notation

Consider a distribution grid with N + 1 buses collected in
the set N := {0,1,---, N}, and cables represented by the set
& :={(, )} ¢ N xN. Define N* := N\{0}, where bus 0 is
the substation bus and is assumed to have a fixed voltage. De-
note by Ng C N* the set of buses where renewable generation
units such as photovoltaics and small-scale wind turbines are
located, and by Ny € N* and &y C & the sets of monitored
buses and cables (with voltage and power flow measurements
available), respectively. For each bus i € Ny, denote by p;
and ¢, the active and reactive power generation, and by P ; and
§j the maximum active power generation and inverter capac-
ity, respectively. For each bus i € N*, denote by p? and ¢/

the active and reactive power demand. Let v; be the magnitude
of the complex voltage phasor for each bus j € Ny, and let v
and v be its lower and upper limits, respectively. For each ca-
ble (i, j) € Epy, denote by P;; and Q;; the active and reactive
power flow from bus i to j, respectively, and by S; ; its capacity.
For the transformer, denote by P;.4r, and Q4. the active and
reactive power flow, respectively, and by S, fo its capacity. Fi-
nally, upper-case (lower-case) boldface letters will be used for
matrices (column vectors) with appropriate components defined
earlier, e.g. v := [v;,i € N7, and p := [p;,i € Ng]T.

2.2. Optimization model

A real-time optimization problem, which aims to derive the
optimal active and reactive power setpoints of renewable gen-
eration units while adhering to distribution grid limits and fol-
lowing some reference active power setpoint from the TSO if



requested, is formulated in (T). Specifically, the objective func-
tion f in (Ta) concerns active power curtailment and reactive
power use, where £ is a sufficiently small positive weighting
factor that prioritizes reactive power use over active power cur-
tailment. Constraints (Ib)-(Id) ensure that voltages, cable load-
ings, and the transformer loading remain within their limits, re-
spectively. Note that the power flow terms, e.g. P;; and Q;;,
which denote the active and reactive power flow from bus i
to j respectively, can be both positive and negative, reflecting
bi-directional power flow due to distributed generation. These
constraints are essential to prevent voltage limit violations, con-
gestion and maintain network security, which is especially im-
portant in modern distribution grids with growing DER connec-
tions. If requested, guarantees adherence to the reference
active power setpoint through the transformer dictated by the
TSO. In @])—, Hi> Ais Pijs Prrafo> and m represent the respec-
tive dual variables (also known as the Lagrangian multipliers)
associated with the constraints, which indicate how much the
objective function would drop if the constraints were slightly
relaxed, i.e. they capture the sensitivity of their respective con-
straints. Note that the system state variables including volt-
ages and active and reactive power flow are dependent, through
some implicit function, on the active and reactive power set-
points of renewable generation units and power consumption of
non-controllable loads. Finally, @]) ensures satisfaction of the
operational limit of renewable generation units.

— 1

minimizef := Z(Pi - p,~)2 + Eg-“ Z qiz, (1a)

pigi¥iENG ieNG ieNg
5L V<V <Vip, A, Vi€ Ny, (1b)
G =[P+ Q% <8y pip V(i j) € Eny (10)
ftrafo = Plszo + Qtsz(, < §trafo . Ptrafos (ld)
Pfrafo = Ptrafo LT (Te)
(pi»qi) € X;,Yi € Ng, where (1f)

X =l(p.q):0< p <P p + <51,

Remark 1. In Problem and following simulations, we fo-
cus on utilizing renewable generation units to address voltage
and congestion issues which are often also caused by them and
provide grid services to TSOs. Notably, many regions in the
Netherlands are experiencing insufficient grid capacity to ac-
commodate increasing renewable generation [S0|]. The amount
of active power curtailment further serves as a direct metric
to evaluate the impact of control and various uncertainties on
end-users. Nevertheless, OFO is readily applicable to control
load units such as electric vehicles and battery energy storage
(141211361 42].

2.3. Online feedback optimization

Unlike model-based approaches where a power flow model
is supplied to Problem (I), OFO uses measurements as feed-
back and leverages optimization algorithms as feedback con-
trollers [4]] to drive the physical distribution system towards the
optimal operating point defined by Problem (I)). In this paper,

we implement OFO utilizing the PDGP algorithm which fea-
tures distributed calculations and a gather-and-broadcast com-
munication architecture [36]. Before presenting the algorithm,
the dual problem of (IJ) is given in (2):

maximize { minimize £( A, ” 7r)} 2
1204200 prs e e0.5E gy eXteng 0 B 4 Hs P Prrafos )

where the partial Lagrangian function £ is given in (3):

L. G A0, Prrafor ™) 1= [+ D Ai(vi = V) 3)
iENy
+ Z Hi(v —vi) + Z Pij(\/P%i + 07 _§ij)
iENy (i,))eEn

2 2 <
+ Prrafo ( 4\ Pzrafo + erafo - Strafo)

+ H(Ptrafo - Ptrafo)-

While several papers [10H12,36] leveraged regularized La-
grangian functions to establish theoretical convergence results,
we find in our simulations that the impact of some small regu-
larization factors (e.g. ~ 10™*/107%) on our numerical results is
negligible and the algorithm works well without regularization.

At its core, the PDGP algorithm performs projected gradi-
ent ascent and descent for the dual and primal variables, respec-
tively. At each time step (iteration) , it includes the following
five steps:

1. For each bus i € Ny, collect its voltage measurement fzf.‘ and
update A; and y;, where the projection operator is defined as
[u]* := max(u, 0) and @ with various superscripts represents
step sizes:

A [+ A -V, (4a)
P [k + ot (v - 9" (4b)

2. For each cable (i, j)) € &y, collect its active and reactive
power measurements Pff]. and Q{f]. and update p;;, where S f] =

P2+ (052
Pl < o + (ST = Sipl”. (4¢)

3. For the substation transformer collect its active and reac-
tive power measurements P and Q% . and update Prrafos

= B P+

pfr-:t;‘o [pn afo + e (S trafo §traf0 )] " 5 (4d)

lm f 0 trafo

k 2.
where S trafo tra f o)

if balancing service is requested by the TSO, update x:

75+ (P, — Prrago). (4e)

4. The DSO broadcasts the updated dual variables AF*!, /&+!,

k+1  k+1 k+1 Sk Ak
0;; ] s Pirafor and 77" and power flow measurements Pl.j, Qij,

P* and 0%

trafo’ trafo’



5. For each generator i € Ng, update its active and reactive
power setpoints p; and g;, where the projection operator pa-
rameterized by a positive definite matrix G [31] is defined

as projg[u] = argr;}in(x -—u)TGxX—u):
XE,

k+1 k
D; G p;
o |- ] “

-1 k
- aG V[pf,q,]l:

k ok qk+l ok K+l .
Pt ,qﬁ,/l ’”Hl pk+l p’:“ﬂ nk+l}

Components of the above gradient are specified in (§) as:

oLk 0
% P + Z (ﬂkv‘l k+1) Vi (Sa)
Di Ny Di
4 Z pk+1 P mn OP I Z pk+1 Qﬁm 00
mn. &k . mn. &k .
(m,n)e€y Sm" apl (m,n)e€y Sm” ap'

Ak
k+1 erafo 6Qtrafo

~k
k+1 Irafo 6Ptraf0
ptrafo Sk apl

ptrufoSk apl

trafo trafo
i 7Tk+1 8Ptraf0
api

oLk _ Av;
a + Z (/lkJrl f+l)# (Sb)

i Ny qi
+ Z pk+1 Pl:nn aPmn 4 Z pk+1 ercnn 0an

mn gk ] mn Gk ]
(m,n)e€y Sm” aq’ (m,n)e€y Sm” aql

Ak
k+1 thfo athfo
ptrafa Sk (36],

trafo

~k
k+1 tmfo aPtmfo
ptrafo Sk 66],

trafo
+ 7Tk+l

aPtrafo
dqi

Remark 2. The PDGP algorithm has very light computation
power and memory requirements. Steps 1-3 are performed in
parallel and involve only basic arithmetic operations. Step 5 is
also conducted in parallel at each controllable generation unit.
Its projection operation is realized by solving a two-variable
convex quadratic program, for which our earlier work [40] pro-
vides an efficient iterative algorithm.

Remark 3. The PDGP-based controller requires tuning of vari-
ous step sizes {a, al,a*, P, aPrre o} and the positive definite
matrix G to accelerate its convergence and improve its dynamic
performance; refer to [25] for a detailed discussion on tuning
G. While too small step sizes result in slow convergence, too
large step sizes lead to instability. The guideline for the choice
of the matrix G is that it should approximate the Hessian of
the Lagrangian function £ over p; and ¢; [S1]]. For simplicity,
a diagonal matrix is usually chosen. We find in our simula-
tions that the algorithm works well with a large range of step
sizes and choices of G. We conjecture that this is due to its
feedback-based nature.

3. Performance Evaluation Metrics

To assess the impact of uncertainties, the following metrics
are developed to quantify system performance. Specifically,
we use the active power curtailment, constraint violations, and
tracking error to quantify the impact on the end-users, DSO,
and TSO, respectively.

Active power curtailment

This reflects interest of end-users. The active power cur-
tailment ratio (APCR) is defined in (6a) as the ratio between
the total power curtailment and maximum power generation.
Its value lies in the interval [0, 1].

—k
) P — pF
PCR = Zke‘KZzeNg( i P,)' (6a)

—k
Zke’K ZiENG Pl

Constraint violations

Satisfaction of voltage, cable loading, and transformer load-
ing limits represents a requirement of the DSO. Definitions of
the average voltage violation (AVV), average loading violation
of cables (ALVC), and average loading violation of the trans-
former (ALVC) are given in (6b)-(6d), respectively. The pro-
jection operator ensures that only constraint violations are ac-

cumulated.
- iR PIPNCALIA SV
ALVC = |7<|I8MI ;{(Z%M [ef, - 11%). (6¢)
ALVT = oo I;( € g = Cirasol”).- (6d)

Reference tracking error

Tracking of the reference active power setpoint Ptm fo is
considered important to the TSO, if requested. For this, the nor-
malized root mean squared error (NRMSE) is defined in .

2

k Pk
1 Ptrafo - Ptrafo
NRMSE = | — _. 6e

K] ,;;( P* (6e)

trafo

Distance to the deterministic-case trajectory

Finally, the distance to the deterministic-case trajectory
(P¥. ¢¢) where no uncertainties are present is defined in (6f)
using the root mean squared deviation (RMSD).

R \/ZI‘KIIN 2 2 |0t =p e a7}

ke ieNG
(6f)
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Figure 2: A 136-bus medium-voltage grid from Simbench [52]. The green
square marks the substation bus. Locations of the substation bus and a few
other buses are modified for clarity.
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Figure 3: Hydropower and two example PV and load profiles. For visualization,
hydropower output is reduced by 2 MW.

4. Case Description

The objective of this case study is to evaluate the robustness
of OFO under various uncertainties in distribution grids. Partic-
ularly, OFO is used to derive active and reactive power setpoints
of renewable generation units such that their active power cur-
tailment is minimized while network and tracking constraints
are satisfied.

4.1. Test data

Simulations are performed on a synthetic urban 136-bus
medium-voltage (10-kV) grid from Simbench [52], shown in
Fig. 2] The test grid has an open ring topology and cross-links
between buses 1 and 2. Two 63-MVA HV/MV transformers
are installed. The cable impedance and capacity data are the
same as those in the original dataset. Following the dataset,
the test grid is assumed to be balanced; however, the algorithm
also works for unbalanced grids since no explicit power flow
relations are required in (I). The capacities of 133 distributed
renewable generation units, in this case photovoltaics (PVs),
are scaled by a factor of 5, reaching 121 MW in total. A
2.9-MW hydropower plant is also connected, which is not con-
trolled in the considered timescale. The total nominal load is
69 MW. Time series PV generation data are generated using the
HelioClim3 dataset [53]] with a 1-minute resolution for a sunny
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Figure 4: Sources of uncertainties in an OFO iteration.

day. Hydropower generation and load data from Simbench with
a 15-minute resolution are linearly interpolated into profiles
with a 1-minute resolution. In Fig. 3] hydropower and example
PV and load profiles are visualized, showing their variability.

The lower and upper voltage limits v and v are set as 0.95
and 1.05 pu, respectively. The loading limit for cables is 100%,
while that for each of the two HV/MV transformers is 50%
according to the original dataset. The reactive power weighting
factor £ is set to 0.1. The step sizes and the scaling matrix G
are chosen as @ = 0.1, ot = a# = 100, o = a?ro = o™ = 10,
and G = [(1) 002] using a trial-and-error strategy [35]. An
OFO iteration is executed every 6 seconds, yielding updated
active and reactive PV power setpoints.

All simulations are performed on a standard PC with an In-
tel 17-9750H processor and a 16-GB RAM. Power flow calcu-
lations are implemented with the high-performance Python li-
brary Power-Grid-Model 54} [55]]. A series implementation of
the time series simulation for a day including in total 14400
iterations takes 30 seconds, averaging 2 milliseconds per iter-
ation. This demonstrates the high computational efficiency of
the algorithm and its suitability for real-time control.

4.2. Sensitivity matrices

Define hp := [P;;,(i,j)) € &m,Puasol™ and hy =
[Qij, (i, ) € Em, Orrafol™. By the definition of the Lagrangian
function (E[), computing @) requires evaluating Vpv, Vv,
Vphp, Vihp, Vphg, and V4hg, which are the power-to-voltage
and power-to-branch flow sensitivity matrices. These matrices
evolve over time with varying generation and loads. In OFO,
one can usually approximate them with constant matrices due
to its feedback-based virtue, which brings robustness to model
mismatch [20}29]. In this study, we build these approximations
by running a series of perturbations around an operating point
using a distribution grid model and power flow calculations.
This allows OFO to work with any test system regardless of its
topology.
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Figure 5: Convergence of the algorithm under static loading for 500 iterations.
Results are shown for 4 buses located towards the feeder ending and 4 cables
located at the beginning. Numbered legends represent indices of buses/cables.

4.3. Uncertainty modeling

The following sources of uncertainties in practical distribu-
tion grids are considered in this study, which are summarized
in Fig. @] for an OFO iteration.

Time-varying generation and loads

Generation and loads in distribution grids are particularly
volatile. OFO often does not converge before generation and
load profiles have changed. In this study, at most 10 OFO it-
erations are run for each generation and load data point in the
time series profile. This simulates the performance of OFO at a
time-varying environment.

Grid model inaccuracy

Two modeling methods are applied to simulate the grid
model inaccuracy. The first method assumes that the modeling
errors are normally distributed. Therefore, Gaussian noise with
a standard deviation of o is added to the sensitivity matrices.
The second method assumes that the errors conform to a uni-
form distribution as in [32} 33} [35]]. For example, the voltage
sensitivity % is modeled using .

ov; ov;
— « —(1+w;j), where w;; ~ N (0,0?2) or w;j ~ U (=05, 05) .
dp;  Ip; ! ! ( ) ! o

Measurement errors

As in [19,[32] 33| [35]], Gaussian white noise with a standard
deviation of o7, is added to the measured voltages and power
flow.

Communication failures

These include missing measurements and failed broadcast
steps. A probability of failing pr is assigned to each measure-
ment and each broadcast step. In case of a missing measure-
ment, the corresponding dual variable is not updated. In case
of failed broadcast, the latest available dual information is used
for primal update.

Communication delays

For this, we assume the broadcasted information is delayed
for 7 steps. That is, at time step k, dual information from time
step k — 7 is actually used.

Topology changes

We investigate cases where a cable trips and a normally-
open switch is closed while restoring all loads. In total, 307
possible cases are examined for the test grid. Note that the
sensitivity matrices are kept unchanged to simulate a scenario
where such a network reconfiguration is not known by the DSO.

5. Results

5.1. Static case

In the static case, no uncertainties are present to the con-
troller to study its convergence. Figure [5| demonstrates quick
system constraint satisfaction and convergence of the algorithm
after approximately 250 iterations. Active and reactive power,
voltages, and cable and transformer loadings are shown in Figs.
Bh{5k without reference power tracking. The upper voltage
limit of 1.05 pu, the cable loading limit of 100%, and the trans-
former loading limit of 50% are successfully enforced. Active
power generation from PVs is curtailed, while reactive power is
either injected to reduce reactive power transfer to reduce cable
and transformer loadings or absorbed to lower voltage magni-
tudes. The diverse behavior observed in reactive power is cap-
tured by Problem (I)) and depends on the feeder characteristics.
For longer feeders, voltage constraints tend to be active, while
for shorter but denser feeders, loading constraints tend to be ac-
tive. Figure [5f shows reference power tracking at the HV/MV
transformer when a reference setpoint of -50 MW is asked by
the TSO.

5.2. Time-varying deterministic case

In the context of OFO, one does not wait for the algorithm to
converge. Instead, the system output is continuously measured
and the system input is immediately adjusted. In our simula-
tion, the time series generation and load data have a resolution
of one minute. Per 6 seconds, an OFO iteration is run, indicat-
ing that 10 OFO iterations are implemented per generation and
load data point. This is often not sufficient for the algorithm
to converge. Figure [6] shows the performance of OFO in such
a time-varying simulation. Figure[6p shows the active power
curtailment where more curtailment occurs around 12:00 be-
cause of the tighter export limit from reference power tracking
as shown in Fig. [6f. Figure [6p shows the diverse behavior in
reactive power as explained above without reference tracking.
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indices of buses/cables.

When reference tracking is required, all units consume reactive
power to increase network losses to limit export. Figures [6c{6
show grid constraint satisfaction (AVV and ALVC are both neg-
ligible, ALVT = 0.07%). Figure [f shows that the time-varying
reference power setpoints from 8:40 to 15:00 are tracked well
(NRMSE = 0.70%). Noticeably an overshoot occurs when the
tracking signal ends, which is quickly suppressed.

Figure [/| shows the various metrics under different uncer-
tainties under the time-varying simulation, where Fig. [/a shows
that the controller performance deteriorates with slower OFO
update rates resulting in higher constraint violations and refer-
ence tracking error, which is consistent with the results in [40}
41]. The optimal update rate depends on dynamics of distribu-
tion grids, communication infrastructure, and actuation speed
of inverters, and may require a cost-effectiveness analysis.

5.3. Grid model inaccuracy

Figures [7b and[7k show that the varying Gaussian and uni-
form noise added to the sensitivity matrices does not noticeably
impact system performance. RMSD values suggest that PV
inverters are actuated increasingly differently than in the deter-
ministic case. This, however, does not result in higher power
curtailment, constraint violations, or reference tracking error.
Such robustness to model inaccuracy, as also demonstrated in
for example [29, [35], is credited to its feedback-based imple-
mentation, and is not expected in model-based approaches.

5.4. Measurement errors

Using reference power tracking as an example, Fig. [§]il-
lustrates how measurement errors propagate through the system
and affect system output without inducing instability. Figure
further shows that the constraint violations and tracking error
increase mildly with measurement errors. With 1% (standard
deviation) measurement noise, the system performance is only
slightly affected. This demonstrates robustness of the algorithm
against random measurement errors. This aligns with the results
in [26, 35]. To eliminate the potential impact of measurement
errors, one can also connect a state estimator with OFO as sug-
gested in [[13}16].

5.5. Communication failures

We consider missing measurements and failures in the
broadcast step. When a measurement is missing, the corre-
sponding dual variable stays the same. When the broadcast
step fails, the latest available information is used to update PV
setpoints. These introduce random delays of the dual variables.
Our strategy represents an asynchronous algorithm and is sim-
ilar to the cyber-resilient algorithm in [41]]. Figures[7¢ and[7f
show that the asynchronous algorithm is sufficiently robust
to such communication failures. This aligns with the finding
in [40]. The system performance degrades mildly even at
30%-50% communication failure rates. The system fails at an
80% broadcast failure rate with significantly increased genera-
tion curtailment, where large ubiquitous delays can occur and
impair dual algorithm convergence 56 57]].

5.6. Communication delays

In this section, the impact of systematic communication de-
lays of various time steps is studied. At each time step k, dual
information from time step k — 7 is used for the primal update
step. Figures [7g and [Op show that the algorithm fails when
the ubiquitous delay T exceeds 2 time steps. This is consistent
with the result in [33]] but contradicts that in [32]]. This differ-
ence in results may stem from the different algorithms deployed
for OFO where their OFO controller relies only on communi-
cation between neighbouring nodes. Our result should, how-
ever, raise concerns over the robustness of OFO against those
systematic communication delays. The impact of delays can
be partially mitigated by choosing more conservative gradient
scaling, which is demonstrated in Figs. [7h and Pp. Neverthe-
less, such delays inevitably introduce oscillations to the system
inducing instability and render the algorithm sensitive to the
choice of gradient scaling and step sizes. An example is given
in Fig. [Ok. The algorithm works well when « is increased to 0.5
under no delays but fails if delays are present. Under systematic
communication delays, one should consider slowing down the
update rate to maintain system stability.
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Figure 7: Evaluation metrics under various distribution grid uncertainties. For each uncertain scenario involving grid model inaccuracy, measurement errors, and
communication failures, 10 simulations are run with different random seeds and the average results are plotted.

sensitivity matrices are still in use. We consider cases where
one cable trips and the feeder is reconnected by closing one
] switch ensuring that all loads are restored. In total, 307 cases
are built by traversing through all cables and switches and run-
1 ning power flow analyses. The static simulation is run for all
307 cases. We collect AVV, ALVC, ALVT, and NRMSE results
for the last 100 iterations and classify the case as fail if any
§ of these metrics exceeds 107° and success otherwise. In total
59 cases are classified as fail, leading to a failure rate of 19.2%.
08:40 015 150 525 1500 Figure@presents the distribution of successful and failed cases
along the tripped cable. It shows that in most failed cases, the
tripped cable is located at the beginning section of a distribution
feeder. As an example, Fig. [IT] shows the loading percentages
of two cables at the beginning of the feeder to which the tripped
feeder is connected. Overloading issues persist. This is because
that PVs located at the tripped feeder have zero sensitivities to-
wards the loading of the connected feeder in the outdated sen-
sitivity matrices. Topology identification, if available, can be a
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Figure 8: Reference power tracking with measurement errors.

5.7. Topology changes

We consider a scenario where the grid is reconfigured while
the DSO is not aware of it. This has not been examined in exist-
ing studies as also shown in Table[I] This implies that outdated
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Figure 9: Voltage profiles under various delays, scaling matrices, and step sizes.

potential solution to this. Online sensitivity estimation methods
and model-free OFO introduced in Section[I] can also be used
at the cost of additional complexity.

5.8. Multiple uncertainties

Finally, the interaction of multiple uncertainties is exam-
ined. Notably, we do not account for communication delays
and topology changes in this simulation as they are already
known to significantly compromise system performance. Fig-
ure|l2|shows the various metrics across 82 cases, including low,
medium, and high values for model inaccuracy, measurement
errors, missing measurements, and broadcast failures, respec-
tively, alongside the deterministic case (case 0). The observed
patterns, such as in constraint violations per 9 cases, are caused
by increased communication failure rates. Importantly, the si-
multaneous presence of multiple uncertainties does not intro-
duce stability issues. In summary, the system demonstrates ro-
bustness when confronted with multiple uncertainty sources.

5.9. Result summary

Based on the above simulation results, the following in-
sights and recommendations are provided:

1
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Figure 10: Distribution of successful and failed cases along the tripped cable.
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Figure 11: Cable overloading for a network reconfiguration case. Numbered
legends represent indices of cables.

e The PDGP-based OFO algorithm demonstrates sufficient
robustness to time-varying generation and loads, grid
model inaccuracy, measurement errors, communication
failures, and their combined presence.

o The algorithm can fail when systematic communication
delays exceed some upper bound.

e The algorithm can fail under unobserved topology
changes, particularly involving tripping of cables at
the beginning of feeders. Topology identification is a
potential solution. Online sensitivity estimation and
model-free OFO are promising but more complicated.

e Communication delays result in system oscillations and
render the algorithm sensitive to the choice of step sizes
and gradient scaling.

e Under systematic communication delays, one should
consider slowing down the update rate. The update
rate should match the communication rate to minimize
systematic delays effectively.

e Under severe uncertainties, more conservative gradient
scaling and step sizes are recommended. It is advisable
to start with small step sizes and G = I, and then slowly
increase step sizes and reduce Gy, to ensure stability.
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6. Conclusion

In this paper, we numerically assessed the robustness of
primal-dual gradient projection-based online feedback op-
timization. The assessment focused on several distribution
grid uncertainties. Active power curtailment, grid constraint
violations, and reference power tracking error were evaluated.
Simulation results showed that the algorithm demonstrates sat-
isfactory robustness to time-varying generation and loads, grid
model inaccuracy, measurement errors, and communication
failures, but is more susceptible to systematic communica-
tion delays and unobserved topology changes, particularly
involving tripping of cables at the beginning of distribution
feeders. Potential solutions were proposed to mitigate these
uncertainties. This paper will assist distribution system op-
erators in making informed decisions with the deployment of
online feedback optimization to manage local grid issues and
provide balancing services to transmission system operators.
As future work, we are interested in experimentally assessing
the algorithm in real-world distribution systems.
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